xref: /openbsd/sbin/iked/sntrup761.c (revision d415bd75)
1 /*  $OpenBSD: sntrup761.c,v 1.1 2021/05/28 18:01:39 tobhe Exp $ */
2 
3 /*
4  * Public Domain, Authors:
5  * - Daniel J. Bernstein
6  * - Chitchanok Chuengsatiansup
7  * - Tanja Lange
8  * - Christine van Vredendaal
9  */
10 
11 #include <string.h>
12 #include "crypto_api.h"
13 
14 #define int8 crypto_int8
15 #define uint8 crypto_uint8
16 #define int16 crypto_int16
17 #define uint16 crypto_uint16
18 #define int32 crypto_int32
19 #define uint32 crypto_uint32
20 #define int64 crypto_int64
21 #define uint64 crypto_uint64
22 
23 /* from supercop-20201130/crypto_sort/int32/portable4/int32_minmax.inc */
24 #define int32_MINMAX(a,b) \
25 do { \
26   int64_t ab = (int64_t)b ^ (int64_t)a; \
27   int64_t c = (int64_t)b - (int64_t)a; \
28   c ^= ab & (c ^ b); \
29   c >>= 31; \
30   c &= ab; \
31   a ^= c; \
32   b ^= c; \
33 } while(0)
34 
35 /* from supercop-20201130/crypto_sort/int32/portable4/sort.c */
36 
37 
38 static void crypto_sort_int32(void *array,long long n)
39 {
40   long long top,p,q,r,i,j;
41   int32 *x = array;
42 
43   if (n < 2) return;
44   top = 1;
45   while (top < n - top) top += top;
46 
47   for (p = top;p >= 1;p >>= 1) {
48     i = 0;
49     while (i + 2 * p <= n) {
50       for (j = i;j < i + p;++j)
51         int32_MINMAX(x[j],x[j+p]);
52       i += 2 * p;
53     }
54     for (j = i;j < n - p;++j)
55       int32_MINMAX(x[j],x[j+p]);
56 
57     i = 0;
58     j = 0;
59     for (q = top;q > p;q >>= 1) {
60       if (j != i) for (;;) {
61         if (j == n - q) goto done;
62         int32 a = x[j + p];
63         for (r = q;r > p;r >>= 1)
64           int32_MINMAX(a,x[j + r]);
65         x[j + p] = a;
66         ++j;
67         if (j == i + p) {
68           i += 2 * p;
69           break;
70         }
71       }
72       while (i + p <= n - q) {
73         for (j = i;j < i + p;++j) {
74           int32 a = x[j + p];
75           for (r = q;r > p;r >>= 1)
76             int32_MINMAX(a,x[j+r]);
77           x[j + p] = a;
78         }
79         i += 2 * p;
80       }
81       /* now i + p > n - q */
82       j = i;
83       while (j < n - q) {
84         int32 a = x[j + p];
85         for (r = q;r > p;r >>= 1)
86           int32_MINMAX(a,x[j+r]);
87         x[j + p] = a;
88         ++j;
89       }
90 
91       done: ;
92     }
93   }
94 }
95 
96 /* from supercop-20201130/crypto_sort/uint32/useint32/sort.c */
97 
98 /* can save time by vectorizing xor loops */
99 /* can save time by integrating xor loops with int32_sort */
100 
101 static void crypto_sort_uint32(void *array,long long n)
102 {
103   crypto_uint32 *x = array;
104   long long j;
105   for (j = 0;j < n;++j) x[j] ^= 0x80000000;
106   crypto_sort_int32(array,n);
107   for (j = 0;j < n;++j) x[j] ^= 0x80000000;
108 }
109 
110 /* from supercop-20201130/crypto_kem/sntrup761/ref/uint32.c */
111 
112 /*
113 CPU division instruction typically takes time depending on x.
114 This software is designed to take time independent of x.
115 Time still varies depending on m; user must ensure that m is constant.
116 Time also varies on CPUs where multiplication is variable-time.
117 There could be more CPU issues.
118 There could also be compiler issues.
119 */
120 
121 static void uint32_divmod_uint14(uint32 *q,uint16 *r,uint32 x,uint16 m)
122 {
123   uint32 v = 0x80000000;
124   uint32 qpart;
125   uint32 mask;
126 
127   v /= m;
128 
129   /* caller guarantees m > 0 */
130   /* caller guarantees m < 16384 */
131   /* vm <= 2^31 <= vm+m-1 */
132   /* xvm <= 2^31 x <= xvm+x(m-1) */
133 
134   *q = 0;
135 
136   qpart = (x*(uint64)v)>>31;
137   /* 2^31 qpart <= xv <= 2^31 qpart + 2^31-1 */
138   /* 2^31 qpart m <= xvm <= 2^31 qpart m + (2^31-1)m */
139   /* 2^31 qpart m <= 2^31 x <= 2^31 qpart m + (2^31-1)m + x(m-1) */
140   /* 0 <= 2^31 newx <= (2^31-1)m + x(m-1) */
141   /* 0 <= newx <= (1-1/2^31)m + x(m-1)/2^31 */
142   /* 0 <= newx <= (1-1/2^31)(2^14-1) + (2^32-1)((2^14-1)-1)/2^31 */
143 
144   x -= qpart*m; *q += qpart;
145   /* x <= 49146 */
146 
147   qpart = (x*(uint64)v)>>31;
148   /* 0 <= newx <= (1-1/2^31)m + x(m-1)/2^31 */
149   /* 0 <= newx <= m + 49146(2^14-1)/2^31 */
150   /* 0 <= newx <= m + 0.4 */
151   /* 0 <= newx <= m */
152 
153   x -= qpart*m; *q += qpart;
154   /* x <= m */
155 
156   x -= m; *q += 1;
157   mask = -(x>>31);
158   x += mask&(uint32)m; *q += mask;
159   /* x < m */
160 
161   *r = x;
162 }
163 
164 
165 static uint16 uint32_mod_uint14(uint32 x,uint16 m)
166 {
167   uint32 q;
168   uint16 r;
169   uint32_divmod_uint14(&q,&r,x,m);
170   return r;
171 }
172 
173 /* from supercop-20201130/crypto_kem/sntrup761/ref/int32.c */
174 
175 static void int32_divmod_uint14(int32 *q,uint16 *r,int32 x,uint16 m)
176 {
177   uint32 uq,uq2;
178   uint16 ur,ur2;
179   uint32 mask;
180 
181   uint32_divmod_uint14(&uq,&ur,0x80000000+(uint32)x,m);
182   uint32_divmod_uint14(&uq2,&ur2,0x80000000,m);
183   ur -= ur2; uq -= uq2;
184   mask = -(uint32)(ur>>15);
185   ur += mask&m; uq += mask;
186   *r = ur; *q = uq;
187 }
188 
189 
190 static uint16 int32_mod_uint14(int32 x,uint16 m)
191 {
192   int32 q;
193   uint16 r;
194   int32_divmod_uint14(&q,&r,x,m);
195   return r;
196 }
197 
198 /* from supercop-20201130/crypto_kem/sntrup761/ref/paramsmenu.h */
199 /* pick one of these three: */
200 #define SIZE761
201 #undef SIZE653
202 #undef SIZE857
203 
204 /* pick one of these two: */
205 #define SNTRUP /* Streamlined NTRU Prime */
206 #undef LPR /* NTRU LPRime */
207 
208 /* from supercop-20201130/crypto_kem/sntrup761/ref/params.h */
209 #ifndef params_H
210 #define params_H
211 
212 /* menu of parameter choices: */
213 
214 
215 /* what the menu means: */
216 
217 #if defined(SIZE761)
218 #define p 761
219 #define q 4591
220 #define Rounded_bytes 1007
221 #ifndef LPR
222 #define Rq_bytes 1158
223 #define w 286
224 #else
225 #define w 250
226 #define tau0 2156
227 #define tau1 114
228 #define tau2 2007
229 #define tau3 287
230 #endif
231 
232 #elif defined(SIZE653)
233 #define p 653
234 #define q 4621
235 #define Rounded_bytes 865
236 #ifndef LPR
237 #define Rq_bytes 994
238 #define w 288
239 #else
240 #define w 252
241 #define tau0 2175
242 #define tau1 113
243 #define tau2 2031
244 #define tau3 290
245 #endif
246 
247 #elif defined(SIZE857)
248 #define p 857
249 #define q 5167
250 #define Rounded_bytes 1152
251 #ifndef LPR
252 #define Rq_bytes 1322
253 #define w 322
254 #else
255 #define w 281
256 #define tau0 2433
257 #define tau1 101
258 #define tau2 2265
259 #define tau3 324
260 #endif
261 
262 #else
263 #error "no parameter set defined"
264 #endif
265 
266 #ifdef LPR
267 #define I 256
268 #endif
269 
270 #endif
271 
272 /* from supercop-20201130/crypto_kem/sntrup761/ref/Decode.h */
273 #ifndef Decode_H
274 #define Decode_H
275 
276 
277 /* Decode(R,s,M,len) */
278 /* assumes 0 < M[i] < 16384 */
279 /* produces 0 <= R[i] < M[i] */
280 
281 #endif
282 
283 /* from supercop-20201130/crypto_kem/sntrup761/ref/Decode.c */
284 
285 static void Decode(uint16 *out,const unsigned char *S,const uint16 *M,long long len)
286 {
287   if (len == 1) {
288     if (M[0] == 1)
289       *out = 0;
290     else if (M[0] <= 256)
291       *out = uint32_mod_uint14(S[0],M[0]);
292     else
293       *out = uint32_mod_uint14(S[0]+(((uint16)S[1])<<8),M[0]);
294   }
295   if (len > 1) {
296     uint16 R2[(len+1)/2];
297     uint16 M2[(len+1)/2];
298     uint16 bottomr[len/2];
299     uint32 bottomt[len/2];
300     long long i;
301     for (i = 0;i < len-1;i += 2) {
302       uint32 m = M[i]*(uint32) M[i+1];
303       if (m > 256*16383) {
304         bottomt[i/2] = 256*256;
305         bottomr[i/2] = S[0]+256*S[1];
306         S += 2;
307         M2[i/2] = (((m+255)>>8)+255)>>8;
308       } else if (m >= 16384) {
309         bottomt[i/2] = 256;
310         bottomr[i/2] = S[0];
311         S += 1;
312         M2[i/2] = (m+255)>>8;
313       } else {
314         bottomt[i/2] = 1;
315         bottomr[i/2] = 0;
316         M2[i/2] = m;
317       }
318     }
319     if (i < len)
320       M2[i/2] = M[i];
321     Decode(R2,S,M2,(len+1)/2);
322     for (i = 0;i < len-1;i += 2) {
323       uint32 r = bottomr[i/2];
324       uint32 r1;
325       uint16 r0;
326       r += bottomt[i/2]*R2[i/2];
327       uint32_divmod_uint14(&r1,&r0,r,M[i]);
328       r1 = uint32_mod_uint14(r1,M[i+1]); /* only needed for invalid inputs */
329       *out++ = r0;
330       *out++ = r1;
331     }
332     if (i < len)
333       *out++ = R2[i/2];
334   }
335 }
336 
337 /* from supercop-20201130/crypto_kem/sntrup761/ref/Encode.h */
338 #ifndef Encode_H
339 #define Encode_H
340 
341 
342 /* Encode(s,R,M,len) */
343 /* assumes 0 <= R[i] < M[i] < 16384 */
344 
345 #endif
346 
347 /* from supercop-20201130/crypto_kem/sntrup761/ref/Encode.c */
348 
349 /* 0 <= R[i] < M[i] < 16384 */
350 static void Encode(unsigned char *out,const uint16 *R,const uint16 *M,long long len)
351 {
352   if (len == 1) {
353     uint16 r = R[0];
354     uint16 m = M[0];
355     while (m > 1) {
356       *out++ = r;
357       r >>= 8;
358       m = (m+255)>>8;
359     }
360   }
361   if (len > 1) {
362     uint16 R2[(len+1)/2];
363     uint16 M2[(len+1)/2];
364     long long i;
365     for (i = 0;i < len-1;i += 2) {
366       uint32 m0 = M[i];
367       uint32 r = R[i]+R[i+1]*m0;
368       uint32 m = M[i+1]*m0;
369       while (m >= 16384) {
370         *out++ = r;
371         r >>= 8;
372         m = (m+255)>>8;
373       }
374       R2[i/2] = r;
375       M2[i/2] = m;
376     }
377     if (i < len) {
378       R2[i/2] = R[i];
379       M2[i/2] = M[i];
380     }
381     Encode(out,R2,M2,(len+1)/2);
382   }
383 }
384 
385 /* from supercop-20201130/crypto_kem/sntrup761/ref/kem.c */
386 
387 #ifdef LPR
388 #endif
389 
390 
391 /* ----- masks */
392 
393 #ifndef LPR
394 
395 /* return -1 if x!=0; else return 0 */
396 static int int16_nonzero_mask(int16 x)
397 {
398   uint16 u = x; /* 0, else 1...65535 */
399   uint32 v = u; /* 0, else 1...65535 */
400   v = -v; /* 0, else 2^32-65535...2^32-1 */
401   v >>= 31; /* 0, else 1 */
402   return -v; /* 0, else -1 */
403 }
404 
405 #endif
406 
407 /* return -1 if x<0; otherwise return 0 */
408 static int int16_negative_mask(int16 x)
409 {
410   uint16 u = x;
411   u >>= 15;
412   return -(int) u;
413   /* alternative with gcc -fwrapv: */
414   /* x>>15 compiles to CPU's arithmetic right shift */
415 }
416 
417 /* ----- arithmetic mod 3 */
418 
419 typedef int8 small;
420 
421 /* F3 is always represented as -1,0,1 */
422 /* so ZZ_fromF3 is a no-op */
423 
424 /* x must not be close to top int16 */
425 static small F3_freeze(int16 x)
426 {
427   return int32_mod_uint14(x+1,3)-1;
428 }
429 
430 /* ----- arithmetic mod q */
431 
432 #define q12 ((q-1)/2)
433 typedef int16 Fq;
434 /* always represented as -q12...q12 */
435 /* so ZZ_fromFq is a no-op */
436 
437 /* x must not be close to top int32 */
438 static Fq Fq_freeze(int32 x)
439 {
440   return int32_mod_uint14(x+q12,q)-q12;
441 }
442 
443 #ifndef LPR
444 
445 static Fq Fq_recip(Fq a1)
446 {
447   int i = 1;
448   Fq ai = a1;
449 
450   while (i < q-2) {
451     ai = Fq_freeze(a1*(int32)ai);
452     i += 1;
453   }
454   return ai;
455 }
456 
457 #endif
458 
459 /* ----- Top and Right */
460 
461 #ifdef LPR
462 #define tau 16
463 
464 static int8 Top(Fq C)
465 {
466   return (tau1*(int32)(C+tau0)+16384)>>15;
467 }
468 
469 static Fq Right(int8 T)
470 {
471   return Fq_freeze(tau3*(int32)T-tau2);
472 }
473 #endif
474 
475 /* ----- small polynomials */
476 
477 #ifndef LPR
478 
479 /* 0 if Weightw_is(r), else -1 */
480 static int Weightw_mask(small *r)
481 {
482   int weight = 0;
483   int i;
484 
485   for (i = 0;i < p;++i) weight += r[i]&1;
486   return int16_nonzero_mask(weight-w);
487 }
488 
489 /* R3_fromR(R_fromRq(r)) */
490 static void R3_fromRq(small *out,const Fq *r)
491 {
492   int i;
493   for (i = 0;i < p;++i) out[i] = F3_freeze(r[i]);
494 }
495 
496 /* h = f*g in the ring R3 */
497 static void R3_mult(small *h,const small *f,const small *g)
498 {
499   small fg[p+p-1];
500   small result;
501   int i,j;
502 
503   for (i = 0;i < p;++i) {
504     result = 0;
505     for (j = 0;j <= i;++j) result = F3_freeze(result+f[j]*g[i-j]);
506     fg[i] = result;
507   }
508   for (i = p;i < p+p-1;++i) {
509     result = 0;
510     for (j = i-p+1;j < p;++j) result = F3_freeze(result+f[j]*g[i-j]);
511     fg[i] = result;
512   }
513 
514   for (i = p+p-2;i >= p;--i) {
515     fg[i-p] = F3_freeze(fg[i-p]+fg[i]);
516     fg[i-p+1] = F3_freeze(fg[i-p+1]+fg[i]);
517   }
518 
519   for (i = 0;i < p;++i) h[i] = fg[i];
520 }
521 
522 /* returns 0 if recip succeeded; else -1 */
523 static int R3_recip(small *out,const small *in)
524 {
525   small f[p+1],g[p+1],v[p+1],r[p+1];
526   int i,loop,delta;
527   int sign,swap,t;
528 
529   for (i = 0;i < p+1;++i) v[i] = 0;
530   for (i = 0;i < p+1;++i) r[i] = 0;
531   r[0] = 1;
532   for (i = 0;i < p;++i) f[i] = 0;
533   f[0] = 1; f[p-1] = f[p] = -1;
534   for (i = 0;i < p;++i) g[p-1-i] = in[i];
535   g[p] = 0;
536 
537   delta = 1;
538 
539   for (loop = 0;loop < 2*p-1;++loop) {
540     for (i = p;i > 0;--i) v[i] = v[i-1];
541     v[0] = 0;
542 
543     sign = -g[0]*f[0];
544     swap = int16_negative_mask(-delta) & int16_nonzero_mask(g[0]);
545     delta ^= swap&(delta^-delta);
546     delta += 1;
547 
548     for (i = 0;i < p+1;++i) {
549       t = swap&(f[i]^g[i]); f[i] ^= t; g[i] ^= t;
550       t = swap&(v[i]^r[i]); v[i] ^= t; r[i] ^= t;
551     }
552 
553     for (i = 0;i < p+1;++i) g[i] = F3_freeze(g[i]+sign*f[i]);
554     for (i = 0;i < p+1;++i) r[i] = F3_freeze(r[i]+sign*v[i]);
555 
556     for (i = 0;i < p;++i) g[i] = g[i+1];
557     g[p] = 0;
558   }
559 
560   sign = f[0];
561   for (i = 0;i < p;++i) out[i] = sign*v[p-1-i];
562 
563   return int16_nonzero_mask(delta);
564 }
565 
566 #endif
567 
568 /* ----- polynomials mod q */
569 
570 /* h = f*g in the ring Rq */
571 static void Rq_mult_small(Fq *h,const Fq *f,const small *g)
572 {
573   Fq fg[p+p-1];
574   Fq result;
575   int i,j;
576 
577   for (i = 0;i < p;++i) {
578     result = 0;
579     for (j = 0;j <= i;++j) result = Fq_freeze(result+f[j]*(int32)g[i-j]);
580     fg[i] = result;
581   }
582   for (i = p;i < p+p-1;++i) {
583     result = 0;
584     for (j = i-p+1;j < p;++j) result = Fq_freeze(result+f[j]*(int32)g[i-j]);
585     fg[i] = result;
586   }
587 
588   for (i = p+p-2;i >= p;--i) {
589     fg[i-p] = Fq_freeze(fg[i-p]+fg[i]);
590     fg[i-p+1] = Fq_freeze(fg[i-p+1]+fg[i]);
591   }
592 
593   for (i = 0;i < p;++i) h[i] = fg[i];
594 }
595 
596 #ifndef LPR
597 
598 /* h = 3f in Rq */
599 static void Rq_mult3(Fq *h,const Fq *f)
600 {
601   int i;
602 
603   for (i = 0;i < p;++i) h[i] = Fq_freeze(3*f[i]);
604 }
605 
606 /* out = 1/(3*in) in Rq */
607 /* returns 0 if recip succeeded; else -1 */
608 static int Rq_recip3(Fq *out,const small *in)
609 {
610   Fq f[p+1],g[p+1],v[p+1],r[p+1];
611   int i,loop,delta;
612   int swap,t;
613   int32 f0,g0;
614   Fq scale;
615 
616   for (i = 0;i < p+1;++i) v[i] = 0;
617   for (i = 0;i < p+1;++i) r[i] = 0;
618   r[0] = Fq_recip(3);
619   for (i = 0;i < p;++i) f[i] = 0;
620   f[0] = 1; f[p-1] = f[p] = -1;
621   for (i = 0;i < p;++i) g[p-1-i] = in[i];
622   g[p] = 0;
623 
624   delta = 1;
625 
626   for (loop = 0;loop < 2*p-1;++loop) {
627     for (i = p;i > 0;--i) v[i] = v[i-1];
628     v[0] = 0;
629 
630     swap = int16_negative_mask(-delta) & int16_nonzero_mask(g[0]);
631     delta ^= swap&(delta^-delta);
632     delta += 1;
633 
634     for (i = 0;i < p+1;++i) {
635       t = swap&(f[i]^g[i]); f[i] ^= t; g[i] ^= t;
636       t = swap&(v[i]^r[i]); v[i] ^= t; r[i] ^= t;
637     }
638 
639     f0 = f[0];
640     g0 = g[0];
641     for (i = 0;i < p+1;++i) g[i] = Fq_freeze(f0*g[i]-g0*f[i]);
642     for (i = 0;i < p+1;++i) r[i] = Fq_freeze(f0*r[i]-g0*v[i]);
643 
644     for (i = 0;i < p;++i) g[i] = g[i+1];
645     g[p] = 0;
646   }
647 
648   scale = Fq_recip(f[0]);
649   for (i = 0;i < p;++i) out[i] = Fq_freeze(scale*(int32)v[p-1-i]);
650 
651   return int16_nonzero_mask(delta);
652 }
653 
654 #endif
655 
656 /* ----- rounded polynomials mod q */
657 
658 static void Round(Fq *out,const Fq *a)
659 {
660   int i;
661   for (i = 0;i < p;++i) out[i] = a[i]-F3_freeze(a[i]);
662 }
663 
664 /* ----- sorting to generate short polynomial */
665 
666 static void Short_fromlist(small *out,const uint32 *in)
667 {
668   uint32 L[p];
669   int i;
670 
671   for (i = 0;i < w;++i) L[i] = in[i]&(uint32)-2;
672   for (i = w;i < p;++i) L[i] = (in[i]&(uint32)-3)|1;
673   crypto_sort_uint32(L,p);
674   for (i = 0;i < p;++i) out[i] = (L[i]&3)-1;
675 }
676 
677 /* ----- underlying hash function */
678 
679 #define Hash_bytes 32
680 
681 /* e.g., b = 0 means out = Hash0(in) */
682 static void Hash_prefix(unsigned char *out,int b,const unsigned char *in,int inlen)
683 {
684   unsigned char x[inlen+1];
685   unsigned char h[64];
686   int i;
687 
688   x[0] = b;
689   for (i = 0;i < inlen;++i) x[i+1] = in[i];
690   crypto_hash_sha512(h,x,inlen+1);
691   for (i = 0;i < 32;++i) out[i] = h[i];
692 }
693 
694 /* ----- higher-level randomness */
695 
696 static uint32 urandom32(void)
697 {
698   unsigned char c[4];
699   uint32 out[4];
700 
701   randombytes(c,4);
702   out[0] = (uint32)c[0];
703   out[1] = ((uint32)c[1])<<8;
704   out[2] = ((uint32)c[2])<<16;
705   out[3] = ((uint32)c[3])<<24;
706   return out[0]+out[1]+out[2]+out[3];
707 }
708 
709 static void Short_random(small *out)
710 {
711   uint32 L[p];
712   int i;
713 
714   for (i = 0;i < p;++i) L[i] = urandom32();
715   Short_fromlist(out,L);
716 }
717 
718 #ifndef LPR
719 
720 static void Small_random(small *out)
721 {
722   int i;
723 
724   for (i = 0;i < p;++i) out[i] = (((urandom32()&0x3fffffff)*3)>>30)-1;
725 }
726 
727 #endif
728 
729 /* ----- Streamlined NTRU Prime Core */
730 
731 #ifndef LPR
732 
733 /* h,(f,ginv) = KeyGen() */
734 static void KeyGen(Fq *h,small *f,small *ginv)
735 {
736   small g[p];
737   Fq finv[p];
738 
739   for (;;) {
740     Small_random(g);
741     if (R3_recip(ginv,g) == 0) break;
742   }
743   Short_random(f);
744   Rq_recip3(finv,f); /* always works */
745   Rq_mult_small(h,finv,g);
746 }
747 
748 /* c = Encrypt(r,h) */
749 static void Encrypt(Fq *c,const small *r,const Fq *h)
750 {
751   Fq hr[p];
752 
753   Rq_mult_small(hr,h,r);
754   Round(c,hr);
755 }
756 
757 /* r = Decrypt(c,(f,ginv)) */
758 static void Decrypt(small *r,const Fq *c,const small *f,const small *ginv)
759 {
760   Fq cf[p];
761   Fq cf3[p];
762   small e[p];
763   small ev[p];
764   int mask;
765   int i;
766 
767   Rq_mult_small(cf,c,f);
768   Rq_mult3(cf3,cf);
769   R3_fromRq(e,cf3);
770   R3_mult(ev,e,ginv);
771 
772   mask = Weightw_mask(ev); /* 0 if weight w, else -1 */
773   for (i = 0;i < w;++i) r[i] = ((ev[i]^1)&~mask)^1;
774   for (i = w;i < p;++i) r[i] = ev[i]&~mask;
775 }
776 
777 #endif
778 
779 /* ----- NTRU LPRime Core */
780 
781 #ifdef LPR
782 
783 /* (G,A),a = KeyGen(G); leaves G unchanged */
784 static void KeyGen(Fq *A,small *a,const Fq *G)
785 {
786   Fq aG[p];
787 
788   Short_random(a);
789   Rq_mult_small(aG,G,a);
790   Round(A,aG);
791 }
792 
793 /* B,T = Encrypt(r,(G,A),b) */
794 static void Encrypt(Fq *B,int8 *T,const int8 *r,const Fq *G,const Fq *A,const small *b)
795 {
796   Fq bG[p];
797   Fq bA[p];
798   int i;
799 
800   Rq_mult_small(bG,G,b);
801   Round(B,bG);
802   Rq_mult_small(bA,A,b);
803   for (i = 0;i < I;++i) T[i] = Top(Fq_freeze(bA[i]+r[i]*q12));
804 }
805 
806 /* r = Decrypt((B,T),a) */
807 static void Decrypt(int8 *r,const Fq *B,const int8 *T,const small *a)
808 {
809   Fq aB[p];
810   int i;
811 
812   Rq_mult_small(aB,B,a);
813   for (i = 0;i < I;++i)
814     r[i] = -int16_negative_mask(Fq_freeze(Right(T[i])-aB[i]+4*w+1));
815 }
816 
817 #endif
818 
819 /* ----- encoding I-bit inputs */
820 
821 #ifdef LPR
822 
823 #define Inputs_bytes (I/8)
824 typedef int8 Inputs[I]; /* passed by reference */
825 
826 static void Inputs_encode(unsigned char *s,const Inputs r)
827 {
828   int i;
829   for (i = 0;i < Inputs_bytes;++i) s[i] = 0;
830   for (i = 0;i < I;++i) s[i>>3] |= r[i]<<(i&7);
831 }
832 
833 #endif
834 
835 /* ----- Expand */
836 
837 #ifdef LPR
838 
839 static const unsigned char aes_nonce[16] = {0};
840 
841 static void Expand(uint32 *L,const unsigned char *k)
842 {
843   int i;
844   crypto_stream_aes256ctr((unsigned char *) L,4*p,aes_nonce,k);
845   for (i = 0;i < p;++i) {
846     uint32 L0 = ((unsigned char *) L)[4*i];
847     uint32 L1 = ((unsigned char *) L)[4*i+1];
848     uint32 L2 = ((unsigned char *) L)[4*i+2];
849     uint32 L3 = ((unsigned char *) L)[4*i+3];
850     L[i] = L0+(L1<<8)+(L2<<16)+(L3<<24);
851   }
852 }
853 
854 #endif
855 
856 /* ----- Seeds */
857 
858 #ifdef LPR
859 
860 #define Seeds_bytes 32
861 
862 static void Seeds_random(unsigned char *s)
863 {
864   randombytes(s,Seeds_bytes);
865 }
866 
867 #endif
868 
869 /* ----- Generator, HashShort */
870 
871 #ifdef LPR
872 
873 /* G = Generator(k) */
874 static void Generator(Fq *G,const unsigned char *k)
875 {
876   uint32 L[p];
877   int i;
878 
879   Expand(L,k);
880   for (i = 0;i < p;++i) G[i] = uint32_mod_uint14(L[i],q)-q12;
881 }
882 
883 /* out = HashShort(r) */
884 static void HashShort(small *out,const Inputs r)
885 {
886   unsigned char s[Inputs_bytes];
887   unsigned char h[Hash_bytes];
888   uint32 L[p];
889 
890   Inputs_encode(s,r);
891   Hash_prefix(h,5,s,sizeof s);
892   Expand(L,h);
893   Short_fromlist(out,L);
894 }
895 
896 #endif
897 
898 /* ----- NTRU LPRime Expand */
899 
900 #ifdef LPR
901 
902 /* (S,A),a = XKeyGen() */
903 static void XKeyGen(unsigned char *S,Fq *A,small *a)
904 {
905   Fq G[p];
906 
907   Seeds_random(S);
908   Generator(G,S);
909   KeyGen(A,a,G);
910 }
911 
912 /* B,T = XEncrypt(r,(S,A)) */
913 static void XEncrypt(Fq *B,int8 *T,const int8 *r,const unsigned char *S,const Fq *A)
914 {
915   Fq G[p];
916   small b[p];
917 
918   Generator(G,S);
919   HashShort(b,r);
920   Encrypt(B,T,r,G,A,b);
921 }
922 
923 #define XDecrypt Decrypt
924 
925 #endif
926 
927 /* ----- encoding small polynomials (including short polynomials) */
928 
929 #define Small_bytes ((p+3)/4)
930 
931 /* these are the only functions that rely on p mod 4 = 1 */
932 
933 static void Small_encode(unsigned char *s,const small *f)
934 {
935   small x;
936   int i;
937 
938   for (i = 0;i < p/4;++i) {
939     x = *f++ + 1;
940     x += (*f++ + 1)<<2;
941     x += (*f++ + 1)<<4;
942     x += (*f++ + 1)<<6;
943     *s++ = x;
944   }
945   x = *f++ + 1;
946   *s++ = x;
947 }
948 
949 static void Small_decode(small *f,const unsigned char *s)
950 {
951   unsigned char x;
952   int i;
953 
954   for (i = 0;i < p/4;++i) {
955     x = *s++;
956     *f++ = ((small)(x&3))-1; x >>= 2;
957     *f++ = ((small)(x&3))-1; x >>= 2;
958     *f++ = ((small)(x&3))-1; x >>= 2;
959     *f++ = ((small)(x&3))-1;
960   }
961   x = *s++;
962   *f++ = ((small)(x&3))-1;
963 }
964 
965 /* ----- encoding general polynomials */
966 
967 #ifndef LPR
968 
969 static void Rq_encode(unsigned char *s,const Fq *r)
970 {
971   uint16 R[p],M[p];
972   int i;
973 
974   for (i = 0;i < p;++i) R[i] = r[i]+q12;
975   for (i = 0;i < p;++i) M[i] = q;
976   Encode(s,R,M,p);
977 }
978 
979 static void Rq_decode(Fq *r,const unsigned char *s)
980 {
981   uint16 R[p],M[p];
982   int i;
983 
984   for (i = 0;i < p;++i) M[i] = q;
985   Decode(R,s,M,p);
986   for (i = 0;i < p;++i) r[i] = ((Fq)R[i])-q12;
987 }
988 
989 #endif
990 
991 /* ----- encoding rounded polynomials */
992 
993 static void Rounded_encode(unsigned char *s,const Fq *r)
994 {
995   uint16 R[p],M[p];
996   int i;
997 
998   for (i = 0;i < p;++i) R[i] = ((r[i]+q12)*10923)>>15;
999   for (i = 0;i < p;++i) M[i] = (q+2)/3;
1000   Encode(s,R,M,p);
1001 }
1002 
1003 static void Rounded_decode(Fq *r,const unsigned char *s)
1004 {
1005   uint16 R[p],M[p];
1006   int i;
1007 
1008   for (i = 0;i < p;++i) M[i] = (q+2)/3;
1009   Decode(R,s,M,p);
1010   for (i = 0;i < p;++i) r[i] = R[i]*3-q12;
1011 }
1012 
1013 /* ----- encoding top polynomials */
1014 
1015 #ifdef LPR
1016 
1017 #define Top_bytes (I/2)
1018 
1019 static void Top_encode(unsigned char *s,const int8 *T)
1020 {
1021   int i;
1022   for (i = 0;i < Top_bytes;++i)
1023     s[i] = T[2*i]+(T[2*i+1]<<4);
1024 }
1025 
1026 static void Top_decode(int8 *T,const unsigned char *s)
1027 {
1028   int i;
1029   for (i = 0;i < Top_bytes;++i) {
1030     T[2*i] = s[i]&15;
1031     T[2*i+1] = s[i]>>4;
1032   }
1033 }
1034 
1035 #endif
1036 
1037 /* ----- Streamlined NTRU Prime Core plus encoding */
1038 
1039 #ifndef LPR
1040 
1041 typedef small Inputs[p]; /* passed by reference */
1042 #define Inputs_random Short_random
1043 #define Inputs_encode Small_encode
1044 #define Inputs_bytes Small_bytes
1045 
1046 #define Ciphertexts_bytes Rounded_bytes
1047 #define SecretKeys_bytes (2*Small_bytes)
1048 #define PublicKeys_bytes Rq_bytes
1049 
1050 /* pk,sk = ZKeyGen() */
1051 static void ZKeyGen(unsigned char *pk,unsigned char *sk)
1052 {
1053   Fq h[p];
1054   small f[p],v[p];
1055 
1056   KeyGen(h,f,v);
1057   Rq_encode(pk,h);
1058   Small_encode(sk,f); sk += Small_bytes;
1059   Small_encode(sk,v);
1060 }
1061 
1062 /* C = ZEncrypt(r,pk) */
1063 static void ZEncrypt(unsigned char *C,const Inputs r,const unsigned char *pk)
1064 {
1065   Fq h[p];
1066   Fq c[p];
1067   Rq_decode(h,pk);
1068   Encrypt(c,r,h);
1069   Rounded_encode(C,c);
1070 }
1071 
1072 /* r = ZDecrypt(C,sk) */
1073 static void ZDecrypt(Inputs r,const unsigned char *C,const unsigned char *sk)
1074 {
1075   small f[p],v[p];
1076   Fq c[p];
1077 
1078   Small_decode(f,sk); sk += Small_bytes;
1079   Small_decode(v,sk);
1080   Rounded_decode(c,C);
1081   Decrypt(r,c,f,v);
1082 }
1083 
1084 #endif
1085 
1086 /* ----- NTRU LPRime Expand plus encoding */
1087 
1088 #ifdef LPR
1089 
1090 #define Ciphertexts_bytes (Rounded_bytes+Top_bytes)
1091 #define SecretKeys_bytes Small_bytes
1092 #define PublicKeys_bytes (Seeds_bytes+Rounded_bytes)
1093 
1094 static void Inputs_random(Inputs r)
1095 {
1096   unsigned char s[Inputs_bytes];
1097   int i;
1098 
1099   randombytes(s,sizeof s);
1100   for (i = 0;i < I;++i) r[i] = 1&(s[i>>3]>>(i&7));
1101 }
1102 
1103 /* pk,sk = ZKeyGen() */
1104 static void ZKeyGen(unsigned char *pk,unsigned char *sk)
1105 {
1106   Fq A[p];
1107   small a[p];
1108 
1109   XKeyGen(pk,A,a); pk += Seeds_bytes;
1110   Rounded_encode(pk,A);
1111   Small_encode(sk,a);
1112 }
1113 
1114 /* c = ZEncrypt(r,pk) */
1115 static void ZEncrypt(unsigned char *c,const Inputs r,const unsigned char *pk)
1116 {
1117   Fq A[p];
1118   Fq B[p];
1119   int8 T[I];
1120 
1121   Rounded_decode(A,pk+Seeds_bytes);
1122   XEncrypt(B,T,r,pk,A);
1123   Rounded_encode(c,B); c += Rounded_bytes;
1124   Top_encode(c,T);
1125 }
1126 
1127 /* r = ZDecrypt(C,sk) */
1128 static void ZDecrypt(Inputs r,const unsigned char *c,const unsigned char *sk)
1129 {
1130   small a[p];
1131   Fq B[p];
1132   int8 T[I];
1133 
1134   Small_decode(a,sk);
1135   Rounded_decode(B,c);
1136   Top_decode(T,c+Rounded_bytes);
1137   XDecrypt(r,B,T,a);
1138 }
1139 
1140 #endif
1141 
1142 /* ----- confirmation hash */
1143 
1144 #define Confirm_bytes 32
1145 
1146 /* h = HashConfirm(r,pk,cache); cache is Hash4(pk) */
1147 static void HashConfirm(unsigned char *h,const unsigned char *r,const unsigned char *pk,const unsigned char *cache)
1148 {
1149 #ifndef LPR
1150   unsigned char x[Hash_bytes*2];
1151   int i;
1152 
1153   Hash_prefix(x,3,r,Inputs_bytes);
1154   for (i = 0;i < Hash_bytes;++i) x[Hash_bytes+i] = cache[i];
1155 #else
1156   unsigned char x[Inputs_bytes+Hash_bytes];
1157   int i;
1158 
1159   for (i = 0;i < Inputs_bytes;++i) x[i] = r[i];
1160   for (i = 0;i < Hash_bytes;++i) x[Inputs_bytes+i] = cache[i];
1161 #endif
1162   Hash_prefix(h,2,x,sizeof x);
1163 }
1164 
1165 /* ----- session-key hash */
1166 
1167 /* k = HashSession(b,y,z) */
1168 static void HashSession(unsigned char *k,int b,const unsigned char *y,const unsigned char *z)
1169 {
1170 #ifndef LPR
1171   unsigned char x[Hash_bytes+Ciphertexts_bytes+Confirm_bytes];
1172   int i;
1173 
1174   Hash_prefix(x,3,y,Inputs_bytes);
1175   for (i = 0;i < Ciphertexts_bytes+Confirm_bytes;++i) x[Hash_bytes+i] = z[i];
1176 #else
1177   unsigned char x[Inputs_bytes+Ciphertexts_bytes+Confirm_bytes];
1178   int i;
1179 
1180   for (i = 0;i < Inputs_bytes;++i) x[i] = y[i];
1181   for (i = 0;i < Ciphertexts_bytes+Confirm_bytes;++i) x[Inputs_bytes+i] = z[i];
1182 #endif
1183   Hash_prefix(k,b,x,sizeof x);
1184 }
1185 
1186 /* ----- Streamlined NTRU Prime and NTRU LPRime */
1187 
1188 /* pk,sk = KEM_KeyGen() */
1189 static void KEM_KeyGen(unsigned char *pk,unsigned char *sk)
1190 {
1191   int i;
1192 
1193   ZKeyGen(pk,sk); sk += SecretKeys_bytes;
1194   for (i = 0;i < PublicKeys_bytes;++i) *sk++ = pk[i];
1195   randombytes(sk,Inputs_bytes); sk += Inputs_bytes;
1196   Hash_prefix(sk,4,pk,PublicKeys_bytes);
1197 }
1198 
1199 /* c,r_enc = Hide(r,pk,cache); cache is Hash4(pk) */
1200 static void Hide(unsigned char *c,unsigned char *r_enc,const Inputs r,const unsigned char *pk,const unsigned char *cache)
1201 {
1202   Inputs_encode(r_enc,r);
1203   ZEncrypt(c,r,pk); c += Ciphertexts_bytes;
1204   HashConfirm(c,r_enc,pk,cache);
1205 }
1206 
1207 /* c,k = Encap(pk) */
1208 static void Encap(unsigned char *c,unsigned char *k,const unsigned char *pk)
1209 {
1210   Inputs r;
1211   unsigned char r_enc[Inputs_bytes];
1212   unsigned char cache[Hash_bytes];
1213 
1214   Hash_prefix(cache,4,pk,PublicKeys_bytes);
1215   Inputs_random(r);
1216   Hide(c,r_enc,r,pk,cache);
1217   HashSession(k,1,r_enc,c);
1218 }
1219 
1220 /* 0 if matching ciphertext+confirm, else -1 */
1221 static int Ciphertexts_diff_mask(const unsigned char *c,const unsigned char *c2)
1222 {
1223   uint16 differentbits = 0;
1224   int len = Ciphertexts_bytes+Confirm_bytes;
1225 
1226   while (len-- > 0) differentbits |= (*c++)^(*c2++);
1227   return (1&((differentbits-1)>>8))-1;
1228 }
1229 
1230 /* k = Decap(c,sk) */
1231 static void Decap(unsigned char *k,const unsigned char *c,const unsigned char *sk)
1232 {
1233   const unsigned char *pk = sk + SecretKeys_bytes;
1234   const unsigned char *rho = pk + PublicKeys_bytes;
1235   const unsigned char *cache = rho + Inputs_bytes;
1236   Inputs r;
1237   unsigned char r_enc[Inputs_bytes];
1238   unsigned char cnew[Ciphertexts_bytes+Confirm_bytes];
1239   int mask;
1240   int i;
1241 
1242   ZDecrypt(r,c,sk);
1243   Hide(cnew,r_enc,r,pk,cache);
1244   mask = Ciphertexts_diff_mask(c,cnew);
1245   for (i = 0;i < Inputs_bytes;++i) r_enc[i] ^= mask&(r_enc[i]^rho[i]);
1246   HashSession(k,1+mask,r_enc,c);
1247 }
1248 
1249 /* ----- crypto_kem API */
1250 
1251 
1252 int crypto_kem_sntrup761_keypair(unsigned char *pk,unsigned char *sk)
1253 {
1254   KEM_KeyGen(pk,sk);
1255   return 0;
1256 }
1257 
1258 int crypto_kem_sntrup761_enc(unsigned char *c,unsigned char *k,const unsigned char *pk)
1259 {
1260   Encap(c,k,pk);
1261   return 0;
1262 }
1263 
1264 int crypto_kem_sntrup761_dec(unsigned char *k,const unsigned char *c,const unsigned char *sk)
1265 {
1266   Decap(k,c,sk);
1267   return 0;
1268 }
1269 
1270