1 /* $OpenBSD: sntrup761.c,v 1.1 2021/05/28 18:01:39 tobhe Exp $ */ 2 3 /* 4 * Public Domain, Authors: 5 * - Daniel J. Bernstein 6 * - Chitchanok Chuengsatiansup 7 * - Tanja Lange 8 * - Christine van Vredendaal 9 */ 10 11 #include <string.h> 12 #include "crypto_api.h" 13 14 #define int8 crypto_int8 15 #define uint8 crypto_uint8 16 #define int16 crypto_int16 17 #define uint16 crypto_uint16 18 #define int32 crypto_int32 19 #define uint32 crypto_uint32 20 #define int64 crypto_int64 21 #define uint64 crypto_uint64 22 23 /* from supercop-20201130/crypto_sort/int32/portable4/int32_minmax.inc */ 24 #define int32_MINMAX(a,b) \ 25 do { \ 26 int64_t ab = (int64_t)b ^ (int64_t)a; \ 27 int64_t c = (int64_t)b - (int64_t)a; \ 28 c ^= ab & (c ^ b); \ 29 c >>= 31; \ 30 c &= ab; \ 31 a ^= c; \ 32 b ^= c; \ 33 } while(0) 34 35 /* from supercop-20201130/crypto_sort/int32/portable4/sort.c */ 36 37 38 static void crypto_sort_int32(void *array,long long n) 39 { 40 long long top,p,q,r,i,j; 41 int32 *x = array; 42 43 if (n < 2) return; 44 top = 1; 45 while (top < n - top) top += top; 46 47 for (p = top;p >= 1;p >>= 1) { 48 i = 0; 49 while (i + 2 * p <= n) { 50 for (j = i;j < i + p;++j) 51 int32_MINMAX(x[j],x[j+p]); 52 i += 2 * p; 53 } 54 for (j = i;j < n - p;++j) 55 int32_MINMAX(x[j],x[j+p]); 56 57 i = 0; 58 j = 0; 59 for (q = top;q > p;q >>= 1) { 60 if (j != i) for (;;) { 61 if (j == n - q) goto done; 62 int32 a = x[j + p]; 63 for (r = q;r > p;r >>= 1) 64 int32_MINMAX(a,x[j + r]); 65 x[j + p] = a; 66 ++j; 67 if (j == i + p) { 68 i += 2 * p; 69 break; 70 } 71 } 72 while (i + p <= n - q) { 73 for (j = i;j < i + p;++j) { 74 int32 a = x[j + p]; 75 for (r = q;r > p;r >>= 1) 76 int32_MINMAX(a,x[j+r]); 77 x[j + p] = a; 78 } 79 i += 2 * p; 80 } 81 /* now i + p > n - q */ 82 j = i; 83 while (j < n - q) { 84 int32 a = x[j + p]; 85 for (r = q;r > p;r >>= 1) 86 int32_MINMAX(a,x[j+r]); 87 x[j + p] = a; 88 ++j; 89 } 90 91 done: ; 92 } 93 } 94 } 95 96 /* from supercop-20201130/crypto_sort/uint32/useint32/sort.c */ 97 98 /* can save time by vectorizing xor loops */ 99 /* can save time by integrating xor loops with int32_sort */ 100 101 static void crypto_sort_uint32(void *array,long long n) 102 { 103 crypto_uint32 *x = array; 104 long long j; 105 for (j = 0;j < n;++j) x[j] ^= 0x80000000; 106 crypto_sort_int32(array,n); 107 for (j = 0;j < n;++j) x[j] ^= 0x80000000; 108 } 109 110 /* from supercop-20201130/crypto_kem/sntrup761/ref/uint32.c */ 111 112 /* 113 CPU division instruction typically takes time depending on x. 114 This software is designed to take time independent of x. 115 Time still varies depending on m; user must ensure that m is constant. 116 Time also varies on CPUs where multiplication is variable-time. 117 There could be more CPU issues. 118 There could also be compiler issues. 119 */ 120 121 static void uint32_divmod_uint14(uint32 *q,uint16 *r,uint32 x,uint16 m) 122 { 123 uint32 v = 0x80000000; 124 uint32 qpart; 125 uint32 mask; 126 127 v /= m; 128 129 /* caller guarantees m > 0 */ 130 /* caller guarantees m < 16384 */ 131 /* vm <= 2^31 <= vm+m-1 */ 132 /* xvm <= 2^31 x <= xvm+x(m-1) */ 133 134 *q = 0; 135 136 qpart = (x*(uint64)v)>>31; 137 /* 2^31 qpart <= xv <= 2^31 qpart + 2^31-1 */ 138 /* 2^31 qpart m <= xvm <= 2^31 qpart m + (2^31-1)m */ 139 /* 2^31 qpart m <= 2^31 x <= 2^31 qpart m + (2^31-1)m + x(m-1) */ 140 /* 0 <= 2^31 newx <= (2^31-1)m + x(m-1) */ 141 /* 0 <= newx <= (1-1/2^31)m + x(m-1)/2^31 */ 142 /* 0 <= newx <= (1-1/2^31)(2^14-1) + (2^32-1)((2^14-1)-1)/2^31 */ 143 144 x -= qpart*m; *q += qpart; 145 /* x <= 49146 */ 146 147 qpart = (x*(uint64)v)>>31; 148 /* 0 <= newx <= (1-1/2^31)m + x(m-1)/2^31 */ 149 /* 0 <= newx <= m + 49146(2^14-1)/2^31 */ 150 /* 0 <= newx <= m + 0.4 */ 151 /* 0 <= newx <= m */ 152 153 x -= qpart*m; *q += qpart; 154 /* x <= m */ 155 156 x -= m; *q += 1; 157 mask = -(x>>31); 158 x += mask&(uint32)m; *q += mask; 159 /* x < m */ 160 161 *r = x; 162 } 163 164 165 static uint16 uint32_mod_uint14(uint32 x,uint16 m) 166 { 167 uint32 q; 168 uint16 r; 169 uint32_divmod_uint14(&q,&r,x,m); 170 return r; 171 } 172 173 /* from supercop-20201130/crypto_kem/sntrup761/ref/int32.c */ 174 175 static void int32_divmod_uint14(int32 *q,uint16 *r,int32 x,uint16 m) 176 { 177 uint32 uq,uq2; 178 uint16 ur,ur2; 179 uint32 mask; 180 181 uint32_divmod_uint14(&uq,&ur,0x80000000+(uint32)x,m); 182 uint32_divmod_uint14(&uq2,&ur2,0x80000000,m); 183 ur -= ur2; uq -= uq2; 184 mask = -(uint32)(ur>>15); 185 ur += mask&m; uq += mask; 186 *r = ur; *q = uq; 187 } 188 189 190 static uint16 int32_mod_uint14(int32 x,uint16 m) 191 { 192 int32 q; 193 uint16 r; 194 int32_divmod_uint14(&q,&r,x,m); 195 return r; 196 } 197 198 /* from supercop-20201130/crypto_kem/sntrup761/ref/paramsmenu.h */ 199 /* pick one of these three: */ 200 #define SIZE761 201 #undef SIZE653 202 #undef SIZE857 203 204 /* pick one of these two: */ 205 #define SNTRUP /* Streamlined NTRU Prime */ 206 #undef LPR /* NTRU LPRime */ 207 208 /* from supercop-20201130/crypto_kem/sntrup761/ref/params.h */ 209 #ifndef params_H 210 #define params_H 211 212 /* menu of parameter choices: */ 213 214 215 /* what the menu means: */ 216 217 #if defined(SIZE761) 218 #define p 761 219 #define q 4591 220 #define Rounded_bytes 1007 221 #ifndef LPR 222 #define Rq_bytes 1158 223 #define w 286 224 #else 225 #define w 250 226 #define tau0 2156 227 #define tau1 114 228 #define tau2 2007 229 #define tau3 287 230 #endif 231 232 #elif defined(SIZE653) 233 #define p 653 234 #define q 4621 235 #define Rounded_bytes 865 236 #ifndef LPR 237 #define Rq_bytes 994 238 #define w 288 239 #else 240 #define w 252 241 #define tau0 2175 242 #define tau1 113 243 #define tau2 2031 244 #define tau3 290 245 #endif 246 247 #elif defined(SIZE857) 248 #define p 857 249 #define q 5167 250 #define Rounded_bytes 1152 251 #ifndef LPR 252 #define Rq_bytes 1322 253 #define w 322 254 #else 255 #define w 281 256 #define tau0 2433 257 #define tau1 101 258 #define tau2 2265 259 #define tau3 324 260 #endif 261 262 #else 263 #error "no parameter set defined" 264 #endif 265 266 #ifdef LPR 267 #define I 256 268 #endif 269 270 #endif 271 272 /* from supercop-20201130/crypto_kem/sntrup761/ref/Decode.h */ 273 #ifndef Decode_H 274 #define Decode_H 275 276 277 /* Decode(R,s,M,len) */ 278 /* assumes 0 < M[i] < 16384 */ 279 /* produces 0 <= R[i] < M[i] */ 280 281 #endif 282 283 /* from supercop-20201130/crypto_kem/sntrup761/ref/Decode.c */ 284 285 static void Decode(uint16 *out,const unsigned char *S,const uint16 *M,long long len) 286 { 287 if (len == 1) { 288 if (M[0] == 1) 289 *out = 0; 290 else if (M[0] <= 256) 291 *out = uint32_mod_uint14(S[0],M[0]); 292 else 293 *out = uint32_mod_uint14(S[0]+(((uint16)S[1])<<8),M[0]); 294 } 295 if (len > 1) { 296 uint16 R2[(len+1)/2]; 297 uint16 M2[(len+1)/2]; 298 uint16 bottomr[len/2]; 299 uint32 bottomt[len/2]; 300 long long i; 301 for (i = 0;i < len-1;i += 2) { 302 uint32 m = M[i]*(uint32) M[i+1]; 303 if (m > 256*16383) { 304 bottomt[i/2] = 256*256; 305 bottomr[i/2] = S[0]+256*S[1]; 306 S += 2; 307 M2[i/2] = (((m+255)>>8)+255)>>8; 308 } else if (m >= 16384) { 309 bottomt[i/2] = 256; 310 bottomr[i/2] = S[0]; 311 S += 1; 312 M2[i/2] = (m+255)>>8; 313 } else { 314 bottomt[i/2] = 1; 315 bottomr[i/2] = 0; 316 M2[i/2] = m; 317 } 318 } 319 if (i < len) 320 M2[i/2] = M[i]; 321 Decode(R2,S,M2,(len+1)/2); 322 for (i = 0;i < len-1;i += 2) { 323 uint32 r = bottomr[i/2]; 324 uint32 r1; 325 uint16 r0; 326 r += bottomt[i/2]*R2[i/2]; 327 uint32_divmod_uint14(&r1,&r0,r,M[i]); 328 r1 = uint32_mod_uint14(r1,M[i+1]); /* only needed for invalid inputs */ 329 *out++ = r0; 330 *out++ = r1; 331 } 332 if (i < len) 333 *out++ = R2[i/2]; 334 } 335 } 336 337 /* from supercop-20201130/crypto_kem/sntrup761/ref/Encode.h */ 338 #ifndef Encode_H 339 #define Encode_H 340 341 342 /* Encode(s,R,M,len) */ 343 /* assumes 0 <= R[i] < M[i] < 16384 */ 344 345 #endif 346 347 /* from supercop-20201130/crypto_kem/sntrup761/ref/Encode.c */ 348 349 /* 0 <= R[i] < M[i] < 16384 */ 350 static void Encode(unsigned char *out,const uint16 *R,const uint16 *M,long long len) 351 { 352 if (len == 1) { 353 uint16 r = R[0]; 354 uint16 m = M[0]; 355 while (m > 1) { 356 *out++ = r; 357 r >>= 8; 358 m = (m+255)>>8; 359 } 360 } 361 if (len > 1) { 362 uint16 R2[(len+1)/2]; 363 uint16 M2[(len+1)/2]; 364 long long i; 365 for (i = 0;i < len-1;i += 2) { 366 uint32 m0 = M[i]; 367 uint32 r = R[i]+R[i+1]*m0; 368 uint32 m = M[i+1]*m0; 369 while (m >= 16384) { 370 *out++ = r; 371 r >>= 8; 372 m = (m+255)>>8; 373 } 374 R2[i/2] = r; 375 M2[i/2] = m; 376 } 377 if (i < len) { 378 R2[i/2] = R[i]; 379 M2[i/2] = M[i]; 380 } 381 Encode(out,R2,M2,(len+1)/2); 382 } 383 } 384 385 /* from supercop-20201130/crypto_kem/sntrup761/ref/kem.c */ 386 387 #ifdef LPR 388 #endif 389 390 391 /* ----- masks */ 392 393 #ifndef LPR 394 395 /* return -1 if x!=0; else return 0 */ 396 static int int16_nonzero_mask(int16 x) 397 { 398 uint16 u = x; /* 0, else 1...65535 */ 399 uint32 v = u; /* 0, else 1...65535 */ 400 v = -v; /* 0, else 2^32-65535...2^32-1 */ 401 v >>= 31; /* 0, else 1 */ 402 return -v; /* 0, else -1 */ 403 } 404 405 #endif 406 407 /* return -1 if x<0; otherwise return 0 */ 408 static int int16_negative_mask(int16 x) 409 { 410 uint16 u = x; 411 u >>= 15; 412 return -(int) u; 413 /* alternative with gcc -fwrapv: */ 414 /* x>>15 compiles to CPU's arithmetic right shift */ 415 } 416 417 /* ----- arithmetic mod 3 */ 418 419 typedef int8 small; 420 421 /* F3 is always represented as -1,0,1 */ 422 /* so ZZ_fromF3 is a no-op */ 423 424 /* x must not be close to top int16 */ 425 static small F3_freeze(int16 x) 426 { 427 return int32_mod_uint14(x+1,3)-1; 428 } 429 430 /* ----- arithmetic mod q */ 431 432 #define q12 ((q-1)/2) 433 typedef int16 Fq; 434 /* always represented as -q12...q12 */ 435 /* so ZZ_fromFq is a no-op */ 436 437 /* x must not be close to top int32 */ 438 static Fq Fq_freeze(int32 x) 439 { 440 return int32_mod_uint14(x+q12,q)-q12; 441 } 442 443 #ifndef LPR 444 445 static Fq Fq_recip(Fq a1) 446 { 447 int i = 1; 448 Fq ai = a1; 449 450 while (i < q-2) { 451 ai = Fq_freeze(a1*(int32)ai); 452 i += 1; 453 } 454 return ai; 455 } 456 457 #endif 458 459 /* ----- Top and Right */ 460 461 #ifdef LPR 462 #define tau 16 463 464 static int8 Top(Fq C) 465 { 466 return (tau1*(int32)(C+tau0)+16384)>>15; 467 } 468 469 static Fq Right(int8 T) 470 { 471 return Fq_freeze(tau3*(int32)T-tau2); 472 } 473 #endif 474 475 /* ----- small polynomials */ 476 477 #ifndef LPR 478 479 /* 0 if Weightw_is(r), else -1 */ 480 static int Weightw_mask(small *r) 481 { 482 int weight = 0; 483 int i; 484 485 for (i = 0;i < p;++i) weight += r[i]&1; 486 return int16_nonzero_mask(weight-w); 487 } 488 489 /* R3_fromR(R_fromRq(r)) */ 490 static void R3_fromRq(small *out,const Fq *r) 491 { 492 int i; 493 for (i = 0;i < p;++i) out[i] = F3_freeze(r[i]); 494 } 495 496 /* h = f*g in the ring R3 */ 497 static void R3_mult(small *h,const small *f,const small *g) 498 { 499 small fg[p+p-1]; 500 small result; 501 int i,j; 502 503 for (i = 0;i < p;++i) { 504 result = 0; 505 for (j = 0;j <= i;++j) result = F3_freeze(result+f[j]*g[i-j]); 506 fg[i] = result; 507 } 508 for (i = p;i < p+p-1;++i) { 509 result = 0; 510 for (j = i-p+1;j < p;++j) result = F3_freeze(result+f[j]*g[i-j]); 511 fg[i] = result; 512 } 513 514 for (i = p+p-2;i >= p;--i) { 515 fg[i-p] = F3_freeze(fg[i-p]+fg[i]); 516 fg[i-p+1] = F3_freeze(fg[i-p+1]+fg[i]); 517 } 518 519 for (i = 0;i < p;++i) h[i] = fg[i]; 520 } 521 522 /* returns 0 if recip succeeded; else -1 */ 523 static int R3_recip(small *out,const small *in) 524 { 525 small f[p+1],g[p+1],v[p+1],r[p+1]; 526 int i,loop,delta; 527 int sign,swap,t; 528 529 for (i = 0;i < p+1;++i) v[i] = 0; 530 for (i = 0;i < p+1;++i) r[i] = 0; 531 r[0] = 1; 532 for (i = 0;i < p;++i) f[i] = 0; 533 f[0] = 1; f[p-1] = f[p] = -1; 534 for (i = 0;i < p;++i) g[p-1-i] = in[i]; 535 g[p] = 0; 536 537 delta = 1; 538 539 for (loop = 0;loop < 2*p-1;++loop) { 540 for (i = p;i > 0;--i) v[i] = v[i-1]; 541 v[0] = 0; 542 543 sign = -g[0]*f[0]; 544 swap = int16_negative_mask(-delta) & int16_nonzero_mask(g[0]); 545 delta ^= swap&(delta^-delta); 546 delta += 1; 547 548 for (i = 0;i < p+1;++i) { 549 t = swap&(f[i]^g[i]); f[i] ^= t; g[i] ^= t; 550 t = swap&(v[i]^r[i]); v[i] ^= t; r[i] ^= t; 551 } 552 553 for (i = 0;i < p+1;++i) g[i] = F3_freeze(g[i]+sign*f[i]); 554 for (i = 0;i < p+1;++i) r[i] = F3_freeze(r[i]+sign*v[i]); 555 556 for (i = 0;i < p;++i) g[i] = g[i+1]; 557 g[p] = 0; 558 } 559 560 sign = f[0]; 561 for (i = 0;i < p;++i) out[i] = sign*v[p-1-i]; 562 563 return int16_nonzero_mask(delta); 564 } 565 566 #endif 567 568 /* ----- polynomials mod q */ 569 570 /* h = f*g in the ring Rq */ 571 static void Rq_mult_small(Fq *h,const Fq *f,const small *g) 572 { 573 Fq fg[p+p-1]; 574 Fq result; 575 int i,j; 576 577 for (i = 0;i < p;++i) { 578 result = 0; 579 for (j = 0;j <= i;++j) result = Fq_freeze(result+f[j]*(int32)g[i-j]); 580 fg[i] = result; 581 } 582 for (i = p;i < p+p-1;++i) { 583 result = 0; 584 for (j = i-p+1;j < p;++j) result = Fq_freeze(result+f[j]*(int32)g[i-j]); 585 fg[i] = result; 586 } 587 588 for (i = p+p-2;i >= p;--i) { 589 fg[i-p] = Fq_freeze(fg[i-p]+fg[i]); 590 fg[i-p+1] = Fq_freeze(fg[i-p+1]+fg[i]); 591 } 592 593 for (i = 0;i < p;++i) h[i] = fg[i]; 594 } 595 596 #ifndef LPR 597 598 /* h = 3f in Rq */ 599 static void Rq_mult3(Fq *h,const Fq *f) 600 { 601 int i; 602 603 for (i = 0;i < p;++i) h[i] = Fq_freeze(3*f[i]); 604 } 605 606 /* out = 1/(3*in) in Rq */ 607 /* returns 0 if recip succeeded; else -1 */ 608 static int Rq_recip3(Fq *out,const small *in) 609 { 610 Fq f[p+1],g[p+1],v[p+1],r[p+1]; 611 int i,loop,delta; 612 int swap,t; 613 int32 f0,g0; 614 Fq scale; 615 616 for (i = 0;i < p+1;++i) v[i] = 0; 617 for (i = 0;i < p+1;++i) r[i] = 0; 618 r[0] = Fq_recip(3); 619 for (i = 0;i < p;++i) f[i] = 0; 620 f[0] = 1; f[p-1] = f[p] = -1; 621 for (i = 0;i < p;++i) g[p-1-i] = in[i]; 622 g[p] = 0; 623 624 delta = 1; 625 626 for (loop = 0;loop < 2*p-1;++loop) { 627 for (i = p;i > 0;--i) v[i] = v[i-1]; 628 v[0] = 0; 629 630 swap = int16_negative_mask(-delta) & int16_nonzero_mask(g[0]); 631 delta ^= swap&(delta^-delta); 632 delta += 1; 633 634 for (i = 0;i < p+1;++i) { 635 t = swap&(f[i]^g[i]); f[i] ^= t; g[i] ^= t; 636 t = swap&(v[i]^r[i]); v[i] ^= t; r[i] ^= t; 637 } 638 639 f0 = f[0]; 640 g0 = g[0]; 641 for (i = 0;i < p+1;++i) g[i] = Fq_freeze(f0*g[i]-g0*f[i]); 642 for (i = 0;i < p+1;++i) r[i] = Fq_freeze(f0*r[i]-g0*v[i]); 643 644 for (i = 0;i < p;++i) g[i] = g[i+1]; 645 g[p] = 0; 646 } 647 648 scale = Fq_recip(f[0]); 649 for (i = 0;i < p;++i) out[i] = Fq_freeze(scale*(int32)v[p-1-i]); 650 651 return int16_nonzero_mask(delta); 652 } 653 654 #endif 655 656 /* ----- rounded polynomials mod q */ 657 658 static void Round(Fq *out,const Fq *a) 659 { 660 int i; 661 for (i = 0;i < p;++i) out[i] = a[i]-F3_freeze(a[i]); 662 } 663 664 /* ----- sorting to generate short polynomial */ 665 666 static void Short_fromlist(small *out,const uint32 *in) 667 { 668 uint32 L[p]; 669 int i; 670 671 for (i = 0;i < w;++i) L[i] = in[i]&(uint32)-2; 672 for (i = w;i < p;++i) L[i] = (in[i]&(uint32)-3)|1; 673 crypto_sort_uint32(L,p); 674 for (i = 0;i < p;++i) out[i] = (L[i]&3)-1; 675 } 676 677 /* ----- underlying hash function */ 678 679 #define Hash_bytes 32 680 681 /* e.g., b = 0 means out = Hash0(in) */ 682 static void Hash_prefix(unsigned char *out,int b,const unsigned char *in,int inlen) 683 { 684 unsigned char x[inlen+1]; 685 unsigned char h[64]; 686 int i; 687 688 x[0] = b; 689 for (i = 0;i < inlen;++i) x[i+1] = in[i]; 690 crypto_hash_sha512(h,x,inlen+1); 691 for (i = 0;i < 32;++i) out[i] = h[i]; 692 } 693 694 /* ----- higher-level randomness */ 695 696 static uint32 urandom32(void) 697 { 698 unsigned char c[4]; 699 uint32 out[4]; 700 701 randombytes(c,4); 702 out[0] = (uint32)c[0]; 703 out[1] = ((uint32)c[1])<<8; 704 out[2] = ((uint32)c[2])<<16; 705 out[3] = ((uint32)c[3])<<24; 706 return out[0]+out[1]+out[2]+out[3]; 707 } 708 709 static void Short_random(small *out) 710 { 711 uint32 L[p]; 712 int i; 713 714 for (i = 0;i < p;++i) L[i] = urandom32(); 715 Short_fromlist(out,L); 716 } 717 718 #ifndef LPR 719 720 static void Small_random(small *out) 721 { 722 int i; 723 724 for (i = 0;i < p;++i) out[i] = (((urandom32()&0x3fffffff)*3)>>30)-1; 725 } 726 727 #endif 728 729 /* ----- Streamlined NTRU Prime Core */ 730 731 #ifndef LPR 732 733 /* h,(f,ginv) = KeyGen() */ 734 static void KeyGen(Fq *h,small *f,small *ginv) 735 { 736 small g[p]; 737 Fq finv[p]; 738 739 for (;;) { 740 Small_random(g); 741 if (R3_recip(ginv,g) == 0) break; 742 } 743 Short_random(f); 744 Rq_recip3(finv,f); /* always works */ 745 Rq_mult_small(h,finv,g); 746 } 747 748 /* c = Encrypt(r,h) */ 749 static void Encrypt(Fq *c,const small *r,const Fq *h) 750 { 751 Fq hr[p]; 752 753 Rq_mult_small(hr,h,r); 754 Round(c,hr); 755 } 756 757 /* r = Decrypt(c,(f,ginv)) */ 758 static void Decrypt(small *r,const Fq *c,const small *f,const small *ginv) 759 { 760 Fq cf[p]; 761 Fq cf3[p]; 762 small e[p]; 763 small ev[p]; 764 int mask; 765 int i; 766 767 Rq_mult_small(cf,c,f); 768 Rq_mult3(cf3,cf); 769 R3_fromRq(e,cf3); 770 R3_mult(ev,e,ginv); 771 772 mask = Weightw_mask(ev); /* 0 if weight w, else -1 */ 773 for (i = 0;i < w;++i) r[i] = ((ev[i]^1)&~mask)^1; 774 for (i = w;i < p;++i) r[i] = ev[i]&~mask; 775 } 776 777 #endif 778 779 /* ----- NTRU LPRime Core */ 780 781 #ifdef LPR 782 783 /* (G,A),a = KeyGen(G); leaves G unchanged */ 784 static void KeyGen(Fq *A,small *a,const Fq *G) 785 { 786 Fq aG[p]; 787 788 Short_random(a); 789 Rq_mult_small(aG,G,a); 790 Round(A,aG); 791 } 792 793 /* B,T = Encrypt(r,(G,A),b) */ 794 static void Encrypt(Fq *B,int8 *T,const int8 *r,const Fq *G,const Fq *A,const small *b) 795 { 796 Fq bG[p]; 797 Fq bA[p]; 798 int i; 799 800 Rq_mult_small(bG,G,b); 801 Round(B,bG); 802 Rq_mult_small(bA,A,b); 803 for (i = 0;i < I;++i) T[i] = Top(Fq_freeze(bA[i]+r[i]*q12)); 804 } 805 806 /* r = Decrypt((B,T),a) */ 807 static void Decrypt(int8 *r,const Fq *B,const int8 *T,const small *a) 808 { 809 Fq aB[p]; 810 int i; 811 812 Rq_mult_small(aB,B,a); 813 for (i = 0;i < I;++i) 814 r[i] = -int16_negative_mask(Fq_freeze(Right(T[i])-aB[i]+4*w+1)); 815 } 816 817 #endif 818 819 /* ----- encoding I-bit inputs */ 820 821 #ifdef LPR 822 823 #define Inputs_bytes (I/8) 824 typedef int8 Inputs[I]; /* passed by reference */ 825 826 static void Inputs_encode(unsigned char *s,const Inputs r) 827 { 828 int i; 829 for (i = 0;i < Inputs_bytes;++i) s[i] = 0; 830 for (i = 0;i < I;++i) s[i>>3] |= r[i]<<(i&7); 831 } 832 833 #endif 834 835 /* ----- Expand */ 836 837 #ifdef LPR 838 839 static const unsigned char aes_nonce[16] = {0}; 840 841 static void Expand(uint32 *L,const unsigned char *k) 842 { 843 int i; 844 crypto_stream_aes256ctr((unsigned char *) L,4*p,aes_nonce,k); 845 for (i = 0;i < p;++i) { 846 uint32 L0 = ((unsigned char *) L)[4*i]; 847 uint32 L1 = ((unsigned char *) L)[4*i+1]; 848 uint32 L2 = ((unsigned char *) L)[4*i+2]; 849 uint32 L3 = ((unsigned char *) L)[4*i+3]; 850 L[i] = L0+(L1<<8)+(L2<<16)+(L3<<24); 851 } 852 } 853 854 #endif 855 856 /* ----- Seeds */ 857 858 #ifdef LPR 859 860 #define Seeds_bytes 32 861 862 static void Seeds_random(unsigned char *s) 863 { 864 randombytes(s,Seeds_bytes); 865 } 866 867 #endif 868 869 /* ----- Generator, HashShort */ 870 871 #ifdef LPR 872 873 /* G = Generator(k) */ 874 static void Generator(Fq *G,const unsigned char *k) 875 { 876 uint32 L[p]; 877 int i; 878 879 Expand(L,k); 880 for (i = 0;i < p;++i) G[i] = uint32_mod_uint14(L[i],q)-q12; 881 } 882 883 /* out = HashShort(r) */ 884 static void HashShort(small *out,const Inputs r) 885 { 886 unsigned char s[Inputs_bytes]; 887 unsigned char h[Hash_bytes]; 888 uint32 L[p]; 889 890 Inputs_encode(s,r); 891 Hash_prefix(h,5,s,sizeof s); 892 Expand(L,h); 893 Short_fromlist(out,L); 894 } 895 896 #endif 897 898 /* ----- NTRU LPRime Expand */ 899 900 #ifdef LPR 901 902 /* (S,A),a = XKeyGen() */ 903 static void XKeyGen(unsigned char *S,Fq *A,small *a) 904 { 905 Fq G[p]; 906 907 Seeds_random(S); 908 Generator(G,S); 909 KeyGen(A,a,G); 910 } 911 912 /* B,T = XEncrypt(r,(S,A)) */ 913 static void XEncrypt(Fq *B,int8 *T,const int8 *r,const unsigned char *S,const Fq *A) 914 { 915 Fq G[p]; 916 small b[p]; 917 918 Generator(G,S); 919 HashShort(b,r); 920 Encrypt(B,T,r,G,A,b); 921 } 922 923 #define XDecrypt Decrypt 924 925 #endif 926 927 /* ----- encoding small polynomials (including short polynomials) */ 928 929 #define Small_bytes ((p+3)/4) 930 931 /* these are the only functions that rely on p mod 4 = 1 */ 932 933 static void Small_encode(unsigned char *s,const small *f) 934 { 935 small x; 936 int i; 937 938 for (i = 0;i < p/4;++i) { 939 x = *f++ + 1; 940 x += (*f++ + 1)<<2; 941 x += (*f++ + 1)<<4; 942 x += (*f++ + 1)<<6; 943 *s++ = x; 944 } 945 x = *f++ + 1; 946 *s++ = x; 947 } 948 949 static void Small_decode(small *f,const unsigned char *s) 950 { 951 unsigned char x; 952 int i; 953 954 for (i = 0;i < p/4;++i) { 955 x = *s++; 956 *f++ = ((small)(x&3))-1; x >>= 2; 957 *f++ = ((small)(x&3))-1; x >>= 2; 958 *f++ = ((small)(x&3))-1; x >>= 2; 959 *f++ = ((small)(x&3))-1; 960 } 961 x = *s++; 962 *f++ = ((small)(x&3))-1; 963 } 964 965 /* ----- encoding general polynomials */ 966 967 #ifndef LPR 968 969 static void Rq_encode(unsigned char *s,const Fq *r) 970 { 971 uint16 R[p],M[p]; 972 int i; 973 974 for (i = 0;i < p;++i) R[i] = r[i]+q12; 975 for (i = 0;i < p;++i) M[i] = q; 976 Encode(s,R,M,p); 977 } 978 979 static void Rq_decode(Fq *r,const unsigned char *s) 980 { 981 uint16 R[p],M[p]; 982 int i; 983 984 for (i = 0;i < p;++i) M[i] = q; 985 Decode(R,s,M,p); 986 for (i = 0;i < p;++i) r[i] = ((Fq)R[i])-q12; 987 } 988 989 #endif 990 991 /* ----- encoding rounded polynomials */ 992 993 static void Rounded_encode(unsigned char *s,const Fq *r) 994 { 995 uint16 R[p],M[p]; 996 int i; 997 998 for (i = 0;i < p;++i) R[i] = ((r[i]+q12)*10923)>>15; 999 for (i = 0;i < p;++i) M[i] = (q+2)/3; 1000 Encode(s,R,M,p); 1001 } 1002 1003 static void Rounded_decode(Fq *r,const unsigned char *s) 1004 { 1005 uint16 R[p],M[p]; 1006 int i; 1007 1008 for (i = 0;i < p;++i) M[i] = (q+2)/3; 1009 Decode(R,s,M,p); 1010 for (i = 0;i < p;++i) r[i] = R[i]*3-q12; 1011 } 1012 1013 /* ----- encoding top polynomials */ 1014 1015 #ifdef LPR 1016 1017 #define Top_bytes (I/2) 1018 1019 static void Top_encode(unsigned char *s,const int8 *T) 1020 { 1021 int i; 1022 for (i = 0;i < Top_bytes;++i) 1023 s[i] = T[2*i]+(T[2*i+1]<<4); 1024 } 1025 1026 static void Top_decode(int8 *T,const unsigned char *s) 1027 { 1028 int i; 1029 for (i = 0;i < Top_bytes;++i) { 1030 T[2*i] = s[i]&15; 1031 T[2*i+1] = s[i]>>4; 1032 } 1033 } 1034 1035 #endif 1036 1037 /* ----- Streamlined NTRU Prime Core plus encoding */ 1038 1039 #ifndef LPR 1040 1041 typedef small Inputs[p]; /* passed by reference */ 1042 #define Inputs_random Short_random 1043 #define Inputs_encode Small_encode 1044 #define Inputs_bytes Small_bytes 1045 1046 #define Ciphertexts_bytes Rounded_bytes 1047 #define SecretKeys_bytes (2*Small_bytes) 1048 #define PublicKeys_bytes Rq_bytes 1049 1050 /* pk,sk = ZKeyGen() */ 1051 static void ZKeyGen(unsigned char *pk,unsigned char *sk) 1052 { 1053 Fq h[p]; 1054 small f[p],v[p]; 1055 1056 KeyGen(h,f,v); 1057 Rq_encode(pk,h); 1058 Small_encode(sk,f); sk += Small_bytes; 1059 Small_encode(sk,v); 1060 } 1061 1062 /* C = ZEncrypt(r,pk) */ 1063 static void ZEncrypt(unsigned char *C,const Inputs r,const unsigned char *pk) 1064 { 1065 Fq h[p]; 1066 Fq c[p]; 1067 Rq_decode(h,pk); 1068 Encrypt(c,r,h); 1069 Rounded_encode(C,c); 1070 } 1071 1072 /* r = ZDecrypt(C,sk) */ 1073 static void ZDecrypt(Inputs r,const unsigned char *C,const unsigned char *sk) 1074 { 1075 small f[p],v[p]; 1076 Fq c[p]; 1077 1078 Small_decode(f,sk); sk += Small_bytes; 1079 Small_decode(v,sk); 1080 Rounded_decode(c,C); 1081 Decrypt(r,c,f,v); 1082 } 1083 1084 #endif 1085 1086 /* ----- NTRU LPRime Expand plus encoding */ 1087 1088 #ifdef LPR 1089 1090 #define Ciphertexts_bytes (Rounded_bytes+Top_bytes) 1091 #define SecretKeys_bytes Small_bytes 1092 #define PublicKeys_bytes (Seeds_bytes+Rounded_bytes) 1093 1094 static void Inputs_random(Inputs r) 1095 { 1096 unsigned char s[Inputs_bytes]; 1097 int i; 1098 1099 randombytes(s,sizeof s); 1100 for (i = 0;i < I;++i) r[i] = 1&(s[i>>3]>>(i&7)); 1101 } 1102 1103 /* pk,sk = ZKeyGen() */ 1104 static void ZKeyGen(unsigned char *pk,unsigned char *sk) 1105 { 1106 Fq A[p]; 1107 small a[p]; 1108 1109 XKeyGen(pk,A,a); pk += Seeds_bytes; 1110 Rounded_encode(pk,A); 1111 Small_encode(sk,a); 1112 } 1113 1114 /* c = ZEncrypt(r,pk) */ 1115 static void ZEncrypt(unsigned char *c,const Inputs r,const unsigned char *pk) 1116 { 1117 Fq A[p]; 1118 Fq B[p]; 1119 int8 T[I]; 1120 1121 Rounded_decode(A,pk+Seeds_bytes); 1122 XEncrypt(B,T,r,pk,A); 1123 Rounded_encode(c,B); c += Rounded_bytes; 1124 Top_encode(c,T); 1125 } 1126 1127 /* r = ZDecrypt(C,sk) */ 1128 static void ZDecrypt(Inputs r,const unsigned char *c,const unsigned char *sk) 1129 { 1130 small a[p]; 1131 Fq B[p]; 1132 int8 T[I]; 1133 1134 Small_decode(a,sk); 1135 Rounded_decode(B,c); 1136 Top_decode(T,c+Rounded_bytes); 1137 XDecrypt(r,B,T,a); 1138 } 1139 1140 #endif 1141 1142 /* ----- confirmation hash */ 1143 1144 #define Confirm_bytes 32 1145 1146 /* h = HashConfirm(r,pk,cache); cache is Hash4(pk) */ 1147 static void HashConfirm(unsigned char *h,const unsigned char *r,const unsigned char *pk,const unsigned char *cache) 1148 { 1149 #ifndef LPR 1150 unsigned char x[Hash_bytes*2]; 1151 int i; 1152 1153 Hash_prefix(x,3,r,Inputs_bytes); 1154 for (i = 0;i < Hash_bytes;++i) x[Hash_bytes+i] = cache[i]; 1155 #else 1156 unsigned char x[Inputs_bytes+Hash_bytes]; 1157 int i; 1158 1159 for (i = 0;i < Inputs_bytes;++i) x[i] = r[i]; 1160 for (i = 0;i < Hash_bytes;++i) x[Inputs_bytes+i] = cache[i]; 1161 #endif 1162 Hash_prefix(h,2,x,sizeof x); 1163 } 1164 1165 /* ----- session-key hash */ 1166 1167 /* k = HashSession(b,y,z) */ 1168 static void HashSession(unsigned char *k,int b,const unsigned char *y,const unsigned char *z) 1169 { 1170 #ifndef LPR 1171 unsigned char x[Hash_bytes+Ciphertexts_bytes+Confirm_bytes]; 1172 int i; 1173 1174 Hash_prefix(x,3,y,Inputs_bytes); 1175 for (i = 0;i < Ciphertexts_bytes+Confirm_bytes;++i) x[Hash_bytes+i] = z[i]; 1176 #else 1177 unsigned char x[Inputs_bytes+Ciphertexts_bytes+Confirm_bytes]; 1178 int i; 1179 1180 for (i = 0;i < Inputs_bytes;++i) x[i] = y[i]; 1181 for (i = 0;i < Ciphertexts_bytes+Confirm_bytes;++i) x[Inputs_bytes+i] = z[i]; 1182 #endif 1183 Hash_prefix(k,b,x,sizeof x); 1184 } 1185 1186 /* ----- Streamlined NTRU Prime and NTRU LPRime */ 1187 1188 /* pk,sk = KEM_KeyGen() */ 1189 static void KEM_KeyGen(unsigned char *pk,unsigned char *sk) 1190 { 1191 int i; 1192 1193 ZKeyGen(pk,sk); sk += SecretKeys_bytes; 1194 for (i = 0;i < PublicKeys_bytes;++i) *sk++ = pk[i]; 1195 randombytes(sk,Inputs_bytes); sk += Inputs_bytes; 1196 Hash_prefix(sk,4,pk,PublicKeys_bytes); 1197 } 1198 1199 /* c,r_enc = Hide(r,pk,cache); cache is Hash4(pk) */ 1200 static void Hide(unsigned char *c,unsigned char *r_enc,const Inputs r,const unsigned char *pk,const unsigned char *cache) 1201 { 1202 Inputs_encode(r_enc,r); 1203 ZEncrypt(c,r,pk); c += Ciphertexts_bytes; 1204 HashConfirm(c,r_enc,pk,cache); 1205 } 1206 1207 /* c,k = Encap(pk) */ 1208 static void Encap(unsigned char *c,unsigned char *k,const unsigned char *pk) 1209 { 1210 Inputs r; 1211 unsigned char r_enc[Inputs_bytes]; 1212 unsigned char cache[Hash_bytes]; 1213 1214 Hash_prefix(cache,4,pk,PublicKeys_bytes); 1215 Inputs_random(r); 1216 Hide(c,r_enc,r,pk,cache); 1217 HashSession(k,1,r_enc,c); 1218 } 1219 1220 /* 0 if matching ciphertext+confirm, else -1 */ 1221 static int Ciphertexts_diff_mask(const unsigned char *c,const unsigned char *c2) 1222 { 1223 uint16 differentbits = 0; 1224 int len = Ciphertexts_bytes+Confirm_bytes; 1225 1226 while (len-- > 0) differentbits |= (*c++)^(*c2++); 1227 return (1&((differentbits-1)>>8))-1; 1228 } 1229 1230 /* k = Decap(c,sk) */ 1231 static void Decap(unsigned char *k,const unsigned char *c,const unsigned char *sk) 1232 { 1233 const unsigned char *pk = sk + SecretKeys_bytes; 1234 const unsigned char *rho = pk + PublicKeys_bytes; 1235 const unsigned char *cache = rho + Inputs_bytes; 1236 Inputs r; 1237 unsigned char r_enc[Inputs_bytes]; 1238 unsigned char cnew[Ciphertexts_bytes+Confirm_bytes]; 1239 int mask; 1240 int i; 1241 1242 ZDecrypt(r,c,sk); 1243 Hide(cnew,r_enc,r,pk,cache); 1244 mask = Ciphertexts_diff_mask(c,cnew); 1245 for (i = 0;i < Inputs_bytes;++i) r_enc[i] ^= mask&(r_enc[i]^rho[i]); 1246 HashSession(k,1+mask,r_enc,c); 1247 } 1248 1249 /* ----- crypto_kem API */ 1250 1251 1252 int crypto_kem_sntrup761_keypair(unsigned char *pk,unsigned char *sk) 1253 { 1254 KEM_KeyGen(pk,sk); 1255 return 0; 1256 } 1257 1258 int crypto_kem_sntrup761_enc(unsigned char *c,unsigned char *k,const unsigned char *pk) 1259 { 1260 Encap(c,k,pk); 1261 return 0; 1262 } 1263 1264 int crypto_kem_sntrup761_dec(unsigned char *k,const unsigned char *c,const unsigned char *sk) 1265 { 1266 Decap(k,c,sk); 1267 return 0; 1268 } 1269 1270