xref: /openbsd/sys/arch/amd64/include/pmap.h (revision 09467b48)
1 /*	$OpenBSD: pmap.h,v 1.77 2020/01/24 05:27:32 kettenis Exp $	*/
2 /*	$NetBSD: pmap.h,v 1.1 2003/04/26 18:39:46 fvdl Exp $	*/
3 
4 /*
5  * Copyright (c) 1997 Charles D. Cranor and Washington University.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*
30  * Copyright (c) 2001 Wasabi Systems, Inc.
31  * All rights reserved.
32  *
33  * Written by Frank van der Linden for Wasabi Systems, Inc.
34  *
35  * Redistribution and use in source and binary forms, with or without
36  * modification, are permitted provided that the following conditions
37  * are met:
38  * 1. Redistributions of source code must retain the above copyright
39  *    notice, this list of conditions and the following disclaimer.
40  * 2. Redistributions in binary form must reproduce the above copyright
41  *    notice, this list of conditions and the following disclaimer in the
42  *    documentation and/or other materials provided with the distribution.
43  * 3. All advertising materials mentioning features or use of this software
44  *    must display the following acknowledgement:
45  *      This product includes software developed for the NetBSD Project by
46  *      Wasabi Systems, Inc.
47  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
48  *    or promote products derived from this software without specific prior
49  *    written permission.
50  *
51  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
52  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
53  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
54  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
55  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
56  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
57  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
58  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
59  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
60  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
61  * POSSIBILITY OF SUCH DAMAGE.
62  */
63 
64 /*
65  * pmap.h: see pmap.c for the history of this pmap module.
66  */
67 
68 #ifndef	_MACHINE_PMAP_H_
69 #define	_MACHINE_PMAP_H_
70 
71 #ifndef _LOCORE
72 #ifdef _KERNEL
73 #include <machine/cpufunc.h>
74 #endif /* _KERNEL */
75 #include <sys/mutex.h>
76 #include <uvm/uvm_object.h>
77 #include <machine/pte.h>
78 #endif
79 
80 /*
81  * The x86_64 pmap module closely resembles the i386 one. It uses
82  * the same recursive entry scheme. See the i386 pmap.h for a
83  * description. The alternate area trick for accessing non-current
84  * pmaps has been removed, though, because it performs badly on SMP
85  * systems.
86  * The most obvious difference to i386 is that 2 extra levels of page
87  * table need to be dealt with. The level 1 page table pages are at:
88  *
89  * l1: 0x00007f8000000000 - 0x00007fffffffffff     (39 bits, needs PML4 entry)
90  *
91  * The other levels are kept as physical pages in 3 UVM objects and are
92  * temporarily mapped for virtual access when needed.
93  *
94  * The other obvious difference from i386 is that it has a direct map of all
95  * physical memory in the VA range:
96  *
97  *     0xfffffd8000000000 - 0xffffff7fffffffff
98  *
99  * The direct map is used in some cases to access PTEs of non-current pmaps.
100  *
101  * Note that address space is signed, so the layout for 48 bits is:
102  *
103  *  +---------------------------------+ 0xffffffffffffffff
104  *  |         Kernel Image            |
105  *  +---------------------------------+ 0xffffff8000000000
106  *  |         Direct Map              |
107  *  +---------------------------------+ 0xfffffd8000000000
108  *  ~                                 ~
109  *  |                                 |
110  *  |         Kernel Space            |
111  *  |                                 |
112  *  |                                 |
113  *  +---------------------------------+ 0xffff800000000000 = 0x0000800000000000
114  *  |    L1 table (PTE pages)         |
115  *  +---------------------------------+ 0x00007f8000000000
116  *  ~                                 ~
117  *  |                                 |
118  *  |         User Space              |
119  *  |                                 |
120  *  |                                 |
121  *  +---------------------------------+ 0x0000000000000000
122  *
123  * In other words, there is a 'VA hole' at 0x0000800000000000 -
124  * 0xffff800000000000 which will trap, just as on, for example,
125  * sparcv9.
126  *
127  * The unused space can be used if needed, but it adds a little more
128  * complexity to the calculations.
129  */
130 
131 /*
132  * Mask to get rid of the sign-extended part of addresses.
133  */
134 #define VA_SIGN_MASK		0xffff000000000000
135 #define VA_SIGN_NEG(va)		((va) | VA_SIGN_MASK)
136 /*
137  * XXXfvdl this one's not right.
138  */
139 #define VA_SIGN_POS(va)		((va) & ~VA_SIGN_MASK)
140 
141 #define L4_SLOT_PTE		255
142 #define L4_SLOT_KERN		256
143 #define L4_SLOT_KERNBASE	511
144 #define NUM_L4_SLOT_DIRECT	4
145 #define L4_SLOT_DIRECT		(L4_SLOT_KERNBASE - NUM_L4_SLOT_DIRECT)
146 #define L4_SLOT_EARLY		(L4_SLOT_DIRECT - 1)
147 
148 #define PDIR_SLOT_KERN		L4_SLOT_KERN
149 #define PDIR_SLOT_PTE		L4_SLOT_PTE
150 #define PDIR_SLOT_DIRECT	L4_SLOT_DIRECT
151 #define PDIR_SLOT_EARLY		L4_SLOT_EARLY
152 
153 /*
154  * the following defines give the virtual addresses of various MMU
155  * data structures:
156  * PTE_BASE: the base VA of the linear PTE mappings
157  * PDP_PDE: the VA of the PDE that points back to the PDP
158  *
159  */
160 
161 #define PTE_BASE  ((pt_entry_t *) (L4_SLOT_PTE * NBPD_L4))
162 #define PMAP_DIRECT_BASE	(VA_SIGN_NEG((L4_SLOT_DIRECT * NBPD_L4)))
163 #define PMAP_DIRECT_END		(VA_SIGN_NEG(((L4_SLOT_DIRECT + \
164     NUM_L4_SLOT_DIRECT) * NBPD_L4)))
165 
166 #define L1_BASE		PTE_BASE
167 
168 #define L2_BASE ((pd_entry_t *)((char *)L1_BASE + L4_SLOT_PTE * NBPD_L3))
169 #define L3_BASE ((pd_entry_t *)((char *)L2_BASE + L4_SLOT_PTE * NBPD_L2))
170 #define L4_BASE ((pd_entry_t *)((char *)L3_BASE + L4_SLOT_PTE * NBPD_L1))
171 
172 #define PDP_PDE		(L4_BASE + PDIR_SLOT_PTE)
173 
174 #define PDP_BASE	L4_BASE
175 
176 #define NKL4_MAX_ENTRIES	(unsigned long)1
177 #define NKL3_MAX_ENTRIES	(unsigned long)(NKL4_MAX_ENTRIES * 512)
178 #define NKL2_MAX_ENTRIES	(unsigned long)(NKL3_MAX_ENTRIES * 512)
179 #define NKL1_MAX_ENTRIES	(unsigned long)(NKL2_MAX_ENTRIES * 512)
180 
181 #define NKL4_KIMG_ENTRIES	1
182 #define NKL3_KIMG_ENTRIES	1
183 #define NKL2_KIMG_ENTRIES	64
184 
185 /* number of pages of direct map entries set up by locore0.S */
186 #define NDML4_ENTRIES		1
187 #define NDML3_ENTRIES		1
188 #define NDML2_ENTRIES		4	/* 4GB */
189 
190 /*
191  * Since kva space is below the kernel in its entirety, we start off
192  * with zero entries on each level.
193  */
194 #define NKL4_START_ENTRIES	0
195 #define NKL3_START_ENTRIES	0
196 #define NKL2_START_ENTRIES	0
197 #define NKL1_START_ENTRIES	0	/* XXX */
198 
199 #define NTOPLEVEL_PDES		(PAGE_SIZE / (sizeof (pd_entry_t)))
200 
201 #define NPDPG			(PAGE_SIZE / sizeof (pd_entry_t))
202 
203 /*
204  * pl*_pi: index in the ptp page for a pde mapping a VA.
205  * (pl*_i below is the index in the virtual array of all pdes per level)
206  */
207 #define pl1_pi(VA)	(((VA_SIGN_POS(VA)) & L1_MASK) >> L1_SHIFT)
208 #define pl2_pi(VA)	(((VA_SIGN_POS(VA)) & L2_MASK) >> L2_SHIFT)
209 #define pl3_pi(VA)	(((VA_SIGN_POS(VA)) & L3_MASK) >> L3_SHIFT)
210 #define pl4_pi(VA)	(((VA_SIGN_POS(VA)) & L4_MASK) >> L4_SHIFT)
211 
212 /*
213  * pl*_i: generate index into pde/pte arrays in virtual space
214  */
215 #define pl1_i(VA)	(((VA_SIGN_POS(VA)) & L1_FRAME) >> L1_SHIFT)
216 #define pl2_i(VA)	(((VA_SIGN_POS(VA)) & L2_FRAME) >> L2_SHIFT)
217 #define pl3_i(VA)	(((VA_SIGN_POS(VA)) & L3_FRAME) >> L3_SHIFT)
218 #define pl4_i(VA)	(((VA_SIGN_POS(VA)) & L4_FRAME) >> L4_SHIFT)
219 #define pl_i(va, lvl) \
220         (((VA_SIGN_POS(va)) & ptp_masks[(lvl)-1]) >> ptp_shifts[(lvl)-1])
221 
222 #define PTP_MASK_INITIALIZER	{ L1_FRAME, L2_FRAME, L3_FRAME, L4_FRAME }
223 #define PTP_SHIFT_INITIALIZER	{ L1_SHIFT, L2_SHIFT, L3_SHIFT, L4_SHIFT }
224 #define NKPTP_INITIALIZER	{ NKL1_START_ENTRIES, NKL2_START_ENTRIES, \
225 				  NKL3_START_ENTRIES, NKL4_START_ENTRIES }
226 #define NKPTPMAX_INITIALIZER	{ NKL1_MAX_ENTRIES, NKL2_MAX_ENTRIES, \
227 				  NKL3_MAX_ENTRIES, NKL4_MAX_ENTRIES }
228 #define NBPD_INITIALIZER	{ NBPD_L1, NBPD_L2, NBPD_L3, NBPD_L4 }
229 #define PDES_INITIALIZER	{ L2_BASE, L3_BASE, L4_BASE }
230 
231 /*
232  * PTP macros:
233  *   a PTP's index is the PD index of the PDE that points to it
234  *   a PTP's offset is the byte-offset in the PTE space that this PTP is at
235  *   a PTP's VA is the first VA mapped by that PTP
236  */
237 
238 #define ptp_va2o(va, lvl)	(pl_i(va, (lvl)+1) * PAGE_SIZE)
239 
240 #define PTP_LEVELS	4
241 
242 /*
243  * PG_AVAIL usage: we make use of the ignored bits of the PTE
244  */
245 
246 #define PG_W		PG_AVAIL1	/* "wired" mapping */
247 #define PG_PVLIST	PG_AVAIL2	/* mapping has entry on pvlist */
248 /* PG_AVAIL3 not used */
249 
250 /*
251  * PCID assignments.
252  * The shootdown code assumes KERN, PROC, and PROC_INTEL are both
253  * consecutive and in that order.
254  */
255 #define PCID_KERN	0	/* for pmap_kernel() */
256 #define PCID_PROC	1	/* non-pmap_kernel(), U+K */
257 #define PCID_PROC_INTEL	2	/* non-pmap_kernel(), U-K (meltdown) */
258 #define PCID_TEMP	3	/* temp mapping of another non-pmap_kernel() */
259 
260 extern int pmap_use_pcid;	/* non-zero if PCID support is enabled */
261 
262 /*
263  * Number of PTEs per cache line.  8 byte pte, 64-byte cache line
264  * Used to avoid false sharing of cache lines.
265  */
266 #define NPTECL		8
267 
268 
269 #if defined(_KERNEL) && !defined(_LOCORE)
270 /*
271  * pmap data structures: see pmap.c for details of locking.
272  */
273 
274 struct pmap;
275 typedef struct pmap *pmap_t;
276 
277 /*
278  * we maintain a list of all non-kernel pmaps
279  */
280 
281 LIST_HEAD(pmap_head, pmap); /* struct pmap_head: head of a pmap list */
282 
283 /*
284  * the pmap structure
285  *
286  * note that the pm_obj contains the reference count,
287  * page list, and number of PTPs within the pmap.
288  */
289 
290 #define PMAP_TYPE_NORMAL	1
291 #define PMAP_TYPE_EPT		2
292 #define PMAP_TYPE_RVI		3
293 #define pmap_nested(pm) ((pm)->pm_type != PMAP_TYPE_NORMAL)
294 
295 struct pmap {
296 	struct mutex pm_mtx;
297 	struct uvm_object pm_obj[PTP_LEVELS-1]; /* objects for lvl >= 1) */
298 	LIST_ENTRY(pmap) pm_list;	/* list (lck by pm_list lock) */
299 	/*
300 	 * pm_pdir         : VA of page table to be used when executing in
301 	 *                   privileged mode
302 	 * pm_pdirpa       : PA of page table to be used when executing in
303 	 *                   privileged mode
304 	 * pm_pdir_intel   : VA of special page table to be used when executing
305 	 *                   on an Intel CPU in usermode (no kernel mappings)
306 	 * pm_pdirpa_intel : PA of special page table to be used when executing
307 	 *                   on an Intel CPU in usermode (no kernel mappings)
308 	 */
309 	pd_entry_t *pm_pdir, *pm_pdir_intel;
310 	paddr_t pm_pdirpa, pm_pdirpa_intel;
311 
312 	struct vm_page *pm_ptphint[PTP_LEVELS-1];
313 					/* pointer to a PTP in our pmap */
314 	struct pmap_statistics pm_stats;  /* pmap stats (lck by object lock) */
315 
316 	u_int64_t pm_cpus;		/* mask of CPUs using pmap */
317 	int pm_type;			/* Type of pmap this is (PMAP_TYPE_x) */
318 	uint64_t eptp;			/* cached EPTP (used by vmm) */
319 };
320 
321 /*
322  * MD flags that we use for pmap_enter (in the pa):
323  */
324 #define PMAP_PA_MASK	~((paddr_t)PAGE_MASK) /* to remove the flags */
325 #define	PMAP_NOCACHE	0x1 /* set the non-cacheable bit. */
326 #define	PMAP_WC		0x2 /* set page write combining. */
327 
328 /*
329  * We keep mod/ref flags in struct vm_page->pg_flags.
330  */
331 #define	PG_PMAP_MOD	PG_PMAP0
332 #define	PG_PMAP_REF	PG_PMAP1
333 #define	PG_PMAP_WC      PG_PMAP2
334 
335 /*
336  * for each managed physical page we maintain a list of <PMAP,VA>'s
337  * which it is mapped at.
338  */
339 struct pv_entry {			/* locked by its list's pvh_lock */
340 	struct pv_entry *pv_next;	/* next entry */
341 	struct pmap *pv_pmap;		/* the pmap */
342 	vaddr_t pv_va;			/* the virtual address */
343 	struct vm_page *pv_ptp;		/* the vm_page of the PTP */
344 };
345 
346 /*
347  * global kernel variables
348  */
349 
350 extern struct pmap kernel_pmap_store;	/* kernel pmap */
351 
352 extern long nkptp[];
353 
354 extern const paddr_t ptp_masks[];
355 extern const int ptp_shifts[];
356 extern const long nbpd[], nkptpmax[];
357 
358 /*
359  * macros
360  */
361 
362 #define	pmap_kernel()			(&kernel_pmap_store)
363 #define	pmap_resident_count(pmap)	((pmap)->pm_stats.resident_count)
364 #define	pmap_wired_count(pmap)		((pmap)->pm_stats.wired_count)
365 #define	pmap_update(pmap)		/* nothing (yet) */
366 
367 #define pmap_clear_modify(pg)		pmap_clear_attrs(pg, PG_M)
368 #define pmap_clear_reference(pg)	pmap_clear_attrs(pg, PG_U)
369 #define pmap_copy(DP,SP,D,L,S)
370 #define pmap_is_modified(pg)		pmap_test_attrs(pg, PG_M)
371 #define pmap_is_referenced(pg)		pmap_test_attrs(pg, PG_U)
372 #define pmap_move(DP,SP,D,L,S)
373 #define pmap_valid_entry(E) 		((E) & PG_V) /* is PDE or PTE valid? */
374 
375 #define pmap_proc_iflush(p,va,len)	/* nothing */
376 #define pmap_unuse_final(p)		/* nothing */
377 #define	pmap_remove_holes(vm)		do { /* nothing */ } while (0)
378 
379 
380 /*
381  * prototypes
382  */
383 
384 void		map_tramps(void);	/* machdep.c */
385 paddr_t		pmap_bootstrap(paddr_t, paddr_t);
386 void		pmap_randomize(void);
387 void		pmap_randomize_level(pd_entry_t *, int);
388 int		pmap_clear_attrs(struct vm_page *, unsigned long);
389 static void	pmap_page_protect(struct vm_page *, vm_prot_t);
390 void		pmap_page_remove (struct vm_page *);
391 static void	pmap_protect(struct pmap *, vaddr_t,
392 				vaddr_t, vm_prot_t);
393 void		pmap_remove(struct pmap *, vaddr_t, vaddr_t);
394 int		pmap_test_attrs(struct vm_page *, unsigned);
395 static void	pmap_update_pg(vaddr_t);
396 void		pmap_write_protect(struct pmap *, vaddr_t,
397 				vaddr_t, vm_prot_t);
398 void		pmap_fix_ept(struct pmap *, vaddr_t);
399 
400 paddr_t	pmap_prealloc_lowmem_ptps(paddr_t);
401 
402 void	pagezero(vaddr_t);
403 
404 int	pmap_convert(struct pmap *, int);
405 void	pmap_enter_special(vaddr_t, paddr_t, vm_prot_t);
406 vaddr_t	pmap_set_pml4_early(paddr_t pa);
407 void	pmap_clear_pml4_early(void);
408 
409 /*
410  * functions for flushing the cache for vaddrs and pages.
411  * these functions are not part of the MI pmap interface and thus
412  * should not be used as such.
413  */
414 void	pmap_flush_cache(vaddr_t, vsize_t);
415 #define pmap_flush_page(paddr) do {					\
416 	KDASSERT(PHYS_TO_VM_PAGE(paddr) != NULL);			\
417 	pmap_flush_cache(PMAP_DIRECT_MAP(paddr), PAGE_SIZE);		\
418 } while (/* CONSTCOND */ 0)
419 
420 #define	PMAP_STEAL_MEMORY	/* enable pmap_steal_memory() */
421 #define PMAP_GROWKERNEL		/* turn on pmap_growkernel interface */
422 
423 /*
424  * inline functions
425  */
426 
427 static inline void
428 pmap_remove_all(struct pmap *pmap)
429 {
430 	/* Nothing. */
431 }
432 
433 /*
434  * pmap_update_pg: flush one page from the TLB (or flush the whole thing
435  *	if hardware doesn't support one-page flushing)
436  */
437 
438 inline static void
439 pmap_update_pg(vaddr_t va)
440 {
441 	invlpg(va);
442 }
443 
444 /*
445  * pmap_page_protect: change the protection of all recorded mappings
446  *	of a managed page
447  *
448  * => this function is a frontend for pmap_page_remove/pmap_clear_attrs
449  * => we only have to worry about making the page more protected.
450  *	unprotecting a page is done on-demand at fault time.
451  */
452 
453 inline static void
454 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
455 {
456 	if ((prot & PROT_WRITE) == 0) {
457 		if (prot & (PROT_READ | PROT_EXEC)) {
458 			(void) pmap_clear_attrs(pg, PG_RW);
459 		} else {
460 			pmap_page_remove(pg);
461 		}
462 	}
463 }
464 
465 /*
466  * pmap_protect: change the protection of pages in a pmap
467  *
468  * => this function is a frontend for pmap_remove/pmap_write_protect
469  * => we only have to worry about making the page more protected.
470  *	unprotecting a page is done on-demand at fault time.
471  */
472 
473 inline static void
474 pmap_protect(struct pmap *pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
475 {
476 	if ((prot & PROT_WRITE) == 0) {
477 		if (prot & (PROT_READ| PROT_EXEC)) {
478 			pmap_write_protect(pmap, sva, eva, prot);
479 		} else {
480 			pmap_remove(pmap, sva, eva);
481 		}
482 	}
483 }
484 
485 /*
486  * various address inlines
487  *
488  *  vtopte: return a pointer to the PTE mapping a VA, works only for
489  *  user and PT addresses
490  *
491  *  kvtopte: return a pointer to the PTE mapping a kernel VA
492  */
493 
494 static inline pt_entry_t *
495 vtopte(vaddr_t va)
496 {
497 	return (PTE_BASE + pl1_i(va));
498 }
499 
500 static inline pt_entry_t *
501 kvtopte(vaddr_t va)
502 {
503 #ifdef LARGEPAGES
504 	{
505 		pd_entry_t *pde;
506 
507 		pde = L1_BASE + pl2_i(va);
508 		if (*pde & PG_PS)
509 			return ((pt_entry_t *)pde);
510 	}
511 #endif
512 
513 	return (PTE_BASE + pl1_i(va));
514 }
515 
516 #define PMAP_DIRECT_MAP(pa)	((vaddr_t)PMAP_DIRECT_BASE + (pa))
517 #define PMAP_DIRECT_UNMAP(va)	((paddr_t)(va) - PMAP_DIRECT_BASE)
518 #define pmap_map_direct(pg)	PMAP_DIRECT_MAP(VM_PAGE_TO_PHYS(pg))
519 #define pmap_unmap_direct(va)	PHYS_TO_VM_PAGE(PMAP_DIRECT_UNMAP(va))
520 
521 #define __HAVE_PMAP_DIRECT
522 
523 #endif /* _KERNEL && !_LOCORE */
524 
525 #ifndef _LOCORE
526 struct pv_entry;
527 struct vm_page_md {
528 	struct mutex pv_mtx;
529 	struct pv_entry *pv_list;
530 };
531 
532 #define VM_MDPAGE_INIT(pg) do {		\
533 	mtx_init(&(pg)->mdpage.pv_mtx, IPL_VM); \
534 	(pg)->mdpage.pv_list = NULL;	\
535 } while (0)
536 #endif	/* !_LOCORE */
537 
538 #endif	/* _MACHINE_PMAP_H_ */
539