xref: /openbsd/sys/arch/sparc64/dev/ifb.c (revision 3b372c34)
1 /*	$OpenBSD: ifb.c,v 1.27 2024/05/14 08:26:13 jsg Exp $	*/
2 
3 /*
4  * Copyright (c) 2007, 2008, 2009 Miodrag Vallat.
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 /*
20  * Least-effort driver for the Sun Expert3D cards (based on the
21  * ``Wildcat'' chips).
22  *
23  * There is no public documentation for these chips available.
24  * Since they are no longer supported by 3DLabs (which got bought by
25  * Creative), and Sun does not want to publish even minimal information
26  * or source code, the best we can do is experiment.
27  *
28  * Quoting Alan Coopersmith in
29  * http://mail.opensolaris.org/pipermail/opensolaris-discuss/2005-December/011885.html
30  * ``Unfortunately, the lawyers have asked we not give details about why
31  *   specific components are not being released.''
32  */
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/device.h>
37 #include <sys/errno.h>
38 #include <sys/ioctl.h>
39 #include <sys/malloc.h>
40 #include <sys/pciio.h>
41 
42 #include <uvm/uvm_extern.h>
43 
44 #include <machine/autoconf.h>
45 #include <machine/bus.h>
46 #include <machine/intr.h>
47 #include <machine/openfirm.h>
48 
49 #include <dev/pci/pcireg.h>
50 #include <dev/pci/pcivar.h>
51 
52 #include <dev/wscons/wsconsio.h>
53 #include <dev/wscons/wsdisplayvar.h>
54 
55 #include <dev/rasops/rasops.h>
56 
57 #include <machine/fbvar.h>
58 
59 #ifdef APERTURE
60 extern int allowaperture;
61 #endif
62 
63 /*
64  * Parts of the following hardware knowledge come from David S. Miller's
65  * XVR-500 Linux driver (drivers/video/sunxvr500.c).
66  */
67 
68 /*
69  * The Expert3D and Expert3d-Lite cards are built around the Wildcat
70  * 5110, 6210 and 7210 chips.
71  *
72  * The card exposes the following resources:
73  * - a 32MB (ifb), 64MB (xvr600) or 128MB (jfb) aperture window in which
74  *   views to the different frame buffer areas can be mapped, in the first BAR.
75  * - a 64KB or 128KB PROM and registers area, in the second BAR.
76  * - a 8MB ``direct burst'' memory mapping, in the third BAR.
77  *
78  * The location of this BAR range is pointed to by a board-specific PCI
79  * configuration register.
80  *
81  * In the state the PROM leaves us in, the 8MB frame buffer windows map
82  * the video memory as interleaved stripes, of which the non-visible parts
83  * can still be addressed (probably for fast screen switching).
84  *
85  * Unfortunately, since we do not know how to reconfigure the stripes
86  * to provide at least a linear frame buffer, we have to write to both
87  * windows and have them provide the complete image.
88  *
89  * Moreover, high pixel values in the overlay planes (such as 0xff or 0xfe)
90  * seem to enable other planes with random contents, so we'll limit ourselves
91  * to 7bpp operation.
92  */
93 
94 /*
95  * The Fcode driver sets up a communication structure, allowing third-party
96  * code to reprogram the video mode while still allowing the Fcode routines
97  * to access the overlay planes.
98  *
99  * We'll use this information as well, although so far it's unlikely
100  * any code will do so, as long as the only documentation for this
101  * hardware amounts to zilch.
102  */
103 
104 /* probably some form of signature */
105 #define	IFB_SHARED_SIGNATURE		0x00
106 #define	SIG_IFB					0x09209911
107 #define	SIG_JFB					0x05140213
108 #define	IFB_SHARED_MONITOR_MODE		0x10
109 #define	IFB_SHARED_WIDTH		0x14
110 #define	IFB_SHARED_HEIGHT		0x18
111 #define	IFB_SHARED_V_FREQ		0x1c
112 #define	IFB_SHARED_TIMING_H_FP		0x20
113 #define	IFB_SHARED_TIMING_H_SYNC	0x24
114 #define	IFB_SHARED_TIMING_H_BP		0x28
115 #define	IFB_SHARED_TIMING_V_FP		0x2c
116 #define	IFB_SHARED_TIMING_V_SYNC	0x30
117 #define	IFB_SHARED_TIMING_V_BP		0x34
118 #define	IFB_SHARED_TIMING_FLAGS		0x38
119 #define	IFB_SHARED_CMAP_DIRTY		0x3c
120 #define	IFB_SHARED_TERM8_GSR		0x4c
121 #define	IFB_SHARED_TERM8_SPR		0x50
122 #define	IFB_SHARED_TERM8_SPLR		0x54
123 
124 /*
125  * The Expert3D has an extra BAR that is not present on the -Lite
126  * version.  This register contains bits that tell us how many BARs to
127  * skip before we get to the BARs that interest us.
128  */
129 #define IFB_PCI_CFG			0x5c
130 #define IFB_PCI_CFG_BAR_OFFSET(x)	((x & 0x000000e0) >> 3)
131 
132 /*
133  * 6000 (jfb) / 8000 (ifb) engine command
134  * This register is used to issue (some) commands sequences to the
135  * acceleration hardware.
136  */
137 #define JFB_REG_ENGINE			0x6000
138 #define IFB_REG_ENGINE			0x8000
139 
140 /*
141  * 8040 component configuration
142  * This register controls which parts of the board will be addressed by
143  * writes to other configuration registers.
144  * Apparently the low two bytes control the frame buffer windows for the
145  * given head (starting at 1).
146  * The high two bytes are texture related.
147  */
148 #define	IFB_REG_COMPONENT_SELECT	0x8040
149 
150 /*
151  * 8044 status
152  * This register has a bit that signals completion of commands issued
153  * to the acceleration hardware.
154  */
155 #define IFB_REG_STATUS			0x8044
156 #define IFB_REG_STATUS_DONE			0x00000004
157 
158 /*
159  * 8058 magnifying configuration
160  * This register apparently controls magnifying.
161  * bits 5-6 select the window width divider (00: by 2, 01: by 4, 10: by 8,
162  *   11: by 16)
163  * bits 7-8 select the zoom factor (00: disabled, 01: x2, 10: x4, 11: x8)
164  */
165 #define	IFB_REG_MAGNIFY			0x8058
166 #define	IFB_REG_MAGNIFY_DISABLE			0x00000000
167 #define	IFB_REG_MAGNIFY_X2			0x00000040
168 #define	IFB_REG_MAGNIFY_X4			0x00000080
169 #define	IFB_REG_MAGNIFY_X8			0x000000c0
170 #define	IFB_REG_MAGNIFY_WINDIV2			0x00000000
171 #define	IFB_REG_MAGNIFY_WINDIV4			0x00000010
172 #define	IFB_REG_MAGNIFY_WINDIV8			0x00000020
173 #define	IFB_REG_MAGNIFY_WINDIV16		0x00000030
174 
175 /*
176  * 8070 display resolution
177  * Contains the size of the display, as ((height - 1) << 16) | (width - 1)
178  */
179 #define	IFB_REG_RESOLUTION		0x8070
180 /*
181  * 8074 configuration register
182  * Contains 0x1a000088 | ((Log2 stride) << 16)
183  */
184 #define	IFB_REG_CONFIG			0x8074
185 /*
186  * 8078 32bit frame buffer window #0 (8 to 9 MB)
187  * Contains the offset (relative to BAR0) of the 32 bit frame buffer window.
188  */
189 #define	IFB_REG_FB32_0			0x8078
190 /*
191  * 807c 32bit frame buffer window #1 (8 to 9 MB)
192  * Contains the offset (relative to BAR0) of the 32 bit frame buffer window.
193  */
194 #define	IFB_REG_FB32_1			0x807c
195 /*
196  * 8080 8bit frame buffer window #0 (2 to 2.2 MB)
197  * Contains the offset (relative to BAR0) of the 8 bit frame buffer window.
198  */
199 #define	IFB_REG_FB8_0			0x8080
200 /*
201  * 8084 8bit frame buffer window #1 (2 to 2.2 MB)
202  * Contains the offset (relative to BAR0) of the 8 bit frame buffer window.
203  */
204 #define	IFB_REG_FB8_1			0x8084
205 /*
206  * 8088 unknown window (as large as a 32 bit frame buffer)
207  */
208 #define	IFB_REG_FB_UNK0			0x8088
209 /*
210  * 808c unknown window (as large as a 8 bit frame buffer)
211  */
212 #define	IFB_REG_FB_UNK1			0x808c
213 /*
214  * 8090 unknown window (as large as a 8 bit frame buffer)
215  */
216 #define	IFB_REG_FB_UNK2			0x8090
217 
218 /*
219  * 80bc RAMDAC palette index register
220  */
221 #define	IFB_REG_CMAP_INDEX		0x80bc
222 /*
223  * 80c0 RAMDAC palette data register
224  */
225 #define	IFB_REG_CMAP_DATA		0x80c0
226 
227 /*
228  * 80e4 DPMS state register
229  * States ``off'' and ``suspend'' need chip reprogramming before video can
230  * be enabled again.
231  */
232 #define	IFB_REG_DPMS_STATE		0x80e4
233 #define	IFB_REG_DPMS_OFF			0x00000000
234 #define	IFB_REG_DPMS_SUSPEND			0x00000001
235 #define	IFB_REG_DPMS_STANDBY			0x00000002
236 #define	IFB_REG_DPMS_ON				0x00000003
237 
238 /*
239  * (some) ROP codes
240  */
241 
242 #define	IFB_ROP_CLEAR	0x00000000	/* clear bits in rop mask */
243 #define	IFB_ROP_SRC	0x00330000	/* copy src bits matching rop mask */
244 #define	IFB_ROP_XOR	0x00cc0000	/* xor src bits with rop mask */
245 #define	IFB_ROP_SET	0x00ff0000	/* set bits in rop mask */
246 
247 #define IFB_COORDS(x, y)	((x) | (y) << 16)
248 
249 /* blitter directions */
250 #define IFB_BLT_DIR_BACKWARDS_Y		(0x08 | 0x02)
251 #define IFB_BLT_DIR_BACKWARDS_X		(0x04 | 0x01)
252 
253 #define	IFB_PIXELMASK	0x7f	/* 7bpp */
254 
255 struct ifb_softc {
256 	struct sunfb sc_sunfb;
257 
258 	bus_space_tag_t sc_mem_t;
259 	pcitag_t sc_pcitag;
260 
261 	/* overlays mappings */
262 	bus_space_handle_t sc_mem_h;
263 	bus_addr_t sc_membase, sc_fb8bank0_base, sc_fb8bank1_base;
264 	bus_size_t sc_memlen;
265 	vaddr_t	sc_memvaddr, sc_fb8bank0_vaddr, sc_fb8bank1_vaddr;
266 
267 	/* registers mapping */
268 	bus_space_handle_t sc_reg_h;
269 	bus_addr_t sc_regbase;
270 	bus_size_t sc_reglen;
271 
272 	/* communication area */
273 	volatile uint32_t *sc_comm;
274 
275 	/* acceleration information */
276 	u_int	sc_acceltype;
277 #define	IFB_ACCEL_NONE			0
278 #define	IFB_ACCEL_IFB			1	/* Expert3D style */
279 #define	IFB_ACCEL_JFB			2	/* XVR-500 style */
280 	void (*sc_rop)(void *, int, int, int, int, int, int, uint32_t, int32_t);
281 
282 	/* wsdisplay related goo */
283 	u_int	sc_mode;
284 	struct wsdisplay_emulops sc_old_ops;
285 	u_int8_t sc_cmap_red[256];
286 	u_int8_t sc_cmap_green[256];
287 	u_int8_t sc_cmap_blue[256];
288 };
289 
290 int	ifb_ioctl(void *, u_long, caddr_t, int, struct proc *);
291 paddr_t	ifb_mmap(void *, off_t, int);
292 void	ifb_burner(void *, u_int, u_int);
293 
294 struct wsdisplay_accessops ifb_accessops = {
295 	.ioctl = ifb_ioctl,
296 	.mmap = ifb_mmap,
297 	.burn_screen = ifb_burner
298 };
299 
300 int	ifbmatch(struct device *, void *, void *);
301 void	ifbattach(struct device *, struct device *, void *);
302 
303 const struct cfattach ifb_ca = {
304 	sizeof (struct ifb_softc), ifbmatch, ifbattach
305 };
306 
307 struct cfdriver ifb_cd = {
308 	NULL, "ifb", DV_DULL
309 };
310 
311 int	ifb_accel_identify(const char *);
312 static inline
313 u_int	ifb_dac_value(u_int, u_int, u_int);
314 int	ifb_getcmap(struct ifb_softc *, struct wsdisplay_cmap *);
315 static inline
316 int	ifb_is_console(int);
317 int	ifb_mapregs(struct ifb_softc *, struct pci_attach_args *);
318 int	ifb_putcmap(struct ifb_softc *, struct wsdisplay_cmap *);
319 void	ifb_setcolor(void *, u_int, u_int8_t, u_int8_t, u_int8_t);
320 void	ifb_setcolormap(struct sunfb *,
321 	    void (*)(void *, u_int, u_int8_t, u_int8_t, u_int8_t));
322 
323 void	ifb_copyrect(struct ifb_softc *, int, int, int, int, int, int);
324 void	ifb_fillrect(struct ifb_softc *, int, int, int, int, int);
325 static inline
326 void	ifb_rop(struct ifb_softc *, int, int, int, int, int, int, uint32_t,
327 	    int32_t);
328 void	ifb_rop_common(struct ifb_softc *, bus_addr_t, int, int, int, int,
329 	    int, int, uint32_t, int32_t);
330 void	ifb_rop_ifb(void *, int, int, int, int, int, int, uint32_t, int32_t);
331 void	ifb_rop_jfb(void *, int, int, int, int, int, int, uint32_t, int32_t);
332 int	ifb_rop_wait(struct ifb_softc *);
333 
334 int	ifb_putchar_dumb(void *, int, int, u_int, uint32_t);
335 int	ifb_copycols_dumb(void *, int, int, int, int);
336 int	ifb_erasecols_dumb(void *, int, int, int, uint32_t);
337 int	ifb_copyrows_dumb(void *, int, int, int);
338 int	ifb_eraserows_dumb(void *, int, int, uint32_t);
339 int	ifb_do_cursor_dumb(struct rasops_info *);
340 
341 int	ifb_copycols(void *, int, int, int, int);
342 int	ifb_erasecols(void *, int, int, int, uint32_t);
343 int	ifb_copyrows(void *, int, int, int);
344 int	ifb_eraserows(void *, int, int, uint32_t);
345 int	ifb_do_cursor(struct rasops_info *);
346 
347 int
ifbmatch(struct device * parent,void * cf,void * aux)348 ifbmatch(struct device *parent, void *cf, void *aux)
349 {
350 	return ifb_ident(aux);
351 }
352 
353 void
ifbattach(struct device * parent,struct device * self,void * aux)354 ifbattach(struct device *parent, struct device *self, void *aux)
355 {
356 	struct ifb_softc *sc = (struct ifb_softc *)self;
357 	struct pci_attach_args *paa = aux;
358 	struct rasops_info *ri;
359 	uint32_t dev_comm;
360 	int node, console;
361 	char *name, *text;
362 	char namebuf[32];
363 
364 	sc->sc_mem_t = paa->pa_memt;
365 	sc->sc_pcitag = paa->pa_tag;
366 
367 	node = PCITAG_NODE(paa->pa_tag);
368 	console = ifb_is_console(node);
369 
370 	printf("\n");
371 
372 	/*
373 	 * Multiple heads appear as PCI subfunctions.
374 	 * However, the ofw node for it lacks most properties,
375 	 * and its BAR only give access to registers, not
376 	 * frame buffer memory.
377 	 */
378 	if (!node_has_property(node, "device_type")) {
379 		printf("%s: secondary output not supported yet\n",
380 		    self->dv_xname);
381 		return;
382 	}
383 
384 	/*
385 	 * Describe the beast.
386 	 */
387 
388 	name = text = getpropstringA(node, "name", namebuf);
389 	if (strncmp(text, "SUNW,", 5) == 0)
390 		text += 5;
391 	printf("%s: %s", self->dv_xname, text);
392 	text = getpropstring(node, "model");
393 	if (*text != '\0')
394 		printf(" (%s)", text);
395 
396 	if (ifb_mapregs(sc, paa))
397 		return;
398 
399 	sc->sc_fb8bank0_base = bus_space_read_4(sc->sc_mem_t, sc->sc_reg_h,
400 	      IFB_REG_FB8_0);
401 	sc->sc_fb8bank1_base = bus_space_read_4(sc->sc_mem_t, sc->sc_reg_h,
402 	      IFB_REG_FB8_1);
403 
404 	sc->sc_memvaddr = (vaddr_t)bus_space_vaddr(sc->sc_mem_t, sc->sc_mem_h);
405 	sc->sc_fb8bank0_vaddr = sc->sc_memvaddr +
406 	    sc->sc_fb8bank0_base - sc->sc_membase;
407 	sc->sc_fb8bank1_vaddr = sc->sc_memvaddr +
408 	    sc->sc_fb8bank1_base - sc->sc_membase;
409 
410 	/*
411 	 * The values stored into the node properties might have been
412 	 * modified since the Fcode was last run. Pick the geometry
413 	 * information from the configuration registers instead.
414 	 * This replaces
415 	fb_setsize(&sc->sc_sunfb, 8, 1152, 900, node, 0);
416 	 */
417 
418 	sc->sc_sunfb.sf_width = (bus_space_read_4(sc->sc_mem_t, sc->sc_reg_h,
419 	    IFB_REG_RESOLUTION) & 0xffff) + 1;
420 	sc->sc_sunfb.sf_height = (bus_space_read_4(sc->sc_mem_t, sc->sc_reg_h,
421 	    IFB_REG_RESOLUTION) >> 16) + 1;
422 	sc->sc_sunfb.sf_depth = 8;
423 	sc->sc_sunfb.sf_linebytes = 1 << (bus_space_read_4(sc->sc_mem_t,
424 	    sc->sc_reg_h, IFB_REG_CONFIG) >> 16);
425 	sc->sc_sunfb.sf_fbsize =
426 	    sc->sc_sunfb.sf_height * sc->sc_sunfb.sf_linebytes;
427 
428 	printf(", %dx%d\n", sc->sc_sunfb.sf_width, sc->sc_sunfb.sf_height);
429 
430 	ri = &sc->sc_sunfb.sf_ro;
431 	ri->ri_bits = NULL;
432 	ri->ri_hw = sc;
433 
434 	fbwscons_init(&sc->sc_sunfb, RI_BSWAP, console);
435 
436 	/*
437 	 * Find out what flavour of ifb we are...
438 	 */
439 
440 	sc->sc_acceltype = ifb_accel_identify(name);
441 
442 	switch (sc->sc_acceltype) {
443 	case IFB_ACCEL_IFB:
444 		sc->sc_rop = ifb_rop_ifb;
445 		break;
446 	case IFB_ACCEL_JFB:
447 		/*
448 		 * Remember the address of the communication area
449 		 */
450 		if (OF_getprop(node, "dev-comm", &dev_comm,
451 		    sizeof dev_comm) != -1) {
452 			sc->sc_comm = (volatile uint32_t *)(vaddr_t)dev_comm;
453 		}
454 		sc->sc_rop = ifb_rop_jfb;
455 		break;
456 	}
457 
458 	/*
459 	 * Clear the unwanted pixel planes: all if non console (thus
460 	 * white background), and all planes above 7bpp otherwise.
461 	 * This also allows to check whether the accelerated code works,
462 	 * or not.
463 	 */
464 
465 	if (sc->sc_acceltype != IFB_ACCEL_NONE) {
466 		ifb_rop(sc, 0, 0, 0, 0, sc->sc_sunfb.sf_width,
467 		    sc->sc_sunfb.sf_height, IFB_ROP_CLEAR,
468 		    console ? ~IFB_PIXELMASK : ~0);
469 		if (ifb_rop_wait(sc) == 0) {
470 			/* fall back to dumb software operation */
471 			sc->sc_acceltype = IFB_ACCEL_NONE;
472 		}
473 	}
474 
475 	if (sc->sc_acceltype == IFB_ACCEL_NONE) {
476 		/* due to the way we will handle updates */
477 		ri->ri_flg &= ~RI_FULLCLEAR;
478 
479 		if (!console) {
480 			bzero((void *)sc->sc_fb8bank0_vaddr,
481 			    sc->sc_sunfb.sf_fbsize);
482 			bzero((void *)sc->sc_fb8bank1_vaddr,
483 			    sc->sc_sunfb.sf_fbsize);
484 		}
485 	}
486 
487 	/* pick centering delta */
488 	sc->sc_fb8bank0_vaddr += ri->ri_bits - ri->ri_origbits;
489 	sc->sc_fb8bank1_vaddr += ri->ri_bits - ri->ri_origbits;
490 
491 	sc->sc_old_ops = ri->ri_ops;	/* structure copy */
492 
493 	if (sc->sc_acceltype != IFB_ACCEL_NONE) {
494 		ri->ri_ops.copyrows = ifb_copyrows;
495 		ri->ri_ops.copycols = ifb_copycols;
496 		ri->ri_ops.eraserows = ifb_eraserows;
497 		ri->ri_ops.erasecols = ifb_erasecols;
498 		ri->ri_ops.putchar = ifb_putchar_dumb;
499 		ri->ri_do_cursor = ifb_do_cursor;
500 	} else {
501 		ri->ri_ops.copyrows = ifb_copyrows_dumb;
502 		ri->ri_ops.copycols = ifb_copycols_dumb;
503 		ri->ri_ops.eraserows = ifb_eraserows_dumb;
504 		ri->ri_ops.erasecols = ifb_erasecols_dumb;
505 		ri->ri_ops.putchar = ifb_putchar_dumb;
506 		ri->ri_do_cursor = ifb_do_cursor_dumb;
507 	}
508 
509 	ifb_setcolormap(&sc->sc_sunfb, ifb_setcolor);
510 	sc->sc_mode = WSDISPLAYIO_MODE_EMUL;
511 
512 	if (console)
513 		fbwscons_console_init(&sc->sc_sunfb, -1);
514 	fbwscons_attach(&sc->sc_sunfb, &ifb_accessops, console);
515 }
516 
517 /*
518  * Attempt to identify what kind of ifb we are talking to, so as to setup
519  * proper acceleration information.
520  */
521 int
ifb_accel_identify(const char * name)522 ifb_accel_identify(const char *name)
523 {
524 	if (strcmp(name, "SUNW,Expert3D") == 0 ||
525 	    strcmp(name, "SUNW,Expert3D-Lite") == 0)
526 		return IFB_ACCEL_IFB;	/* ifblite */
527 
528 	if (strcmp(name, "SUNW,XVR-1200") == 0)
529 		return IFB_ACCEL_JFB;	/* jfb */
530 
531 	if (strcmp(name, "SUNW,XVR-600") == 0)
532 		return IFB_ACCEL_JFB;	/* xvr600 */
533 
534 	/* XVR-500 is bobcat */
535 
536 	return IFB_ACCEL_NONE;
537 }
538 
539 int
ifb_ioctl(void * v,u_long cmd,caddr_t data,int flags,struct proc * p)540 ifb_ioctl(void *v, u_long cmd, caddr_t data, int flags, struct proc *p)
541 {
542 	struct ifb_softc *sc = v;
543 	struct wsdisplay_fbinfo *wdf;
544 	struct pcisel *sel;
545 	int mode;
546 
547 	switch (cmd) {
548 	case WSDISPLAYIO_GTYPE:
549 		*(u_int *)data = WSDISPLAY_TYPE_IFB;
550 		break;
551 
552 	case WSDISPLAYIO_SMODE:
553 		mode = *(u_int *)data;
554 		if (mode == WSDISPLAYIO_MODE_EMUL)
555 			ifb_setcolormap(&sc->sc_sunfb, ifb_setcolor);
556 		sc->sc_mode = mode;
557 		break;
558 	case WSDISPLAYIO_GINFO:
559 		wdf = (void *)data;
560 		wdf->height = sc->sc_sunfb.sf_height;
561 		wdf->width  = sc->sc_sunfb.sf_width;
562 		wdf->depth  = sc->sc_sunfb.sf_depth;
563 		wdf->stride = sc->sc_sunfb.sf_linebytes;
564 		wdf->offset = 0;
565 		wdf->cmsize = 256;
566 		break;
567 	case WSDISPLAYIO_LINEBYTES:
568 		*(u_int *)data = sc->sc_sunfb.sf_linebytes;
569 		break;
570 
571 	case WSDISPLAYIO_GETCMAP:
572 		return ifb_getcmap(sc, (struct wsdisplay_cmap *)data);
573 	case WSDISPLAYIO_PUTCMAP:
574 		return ifb_putcmap(sc, (struct wsdisplay_cmap *)data);
575 
576 	case WSDISPLAYIO_GPCIID:
577 		sel = (struct pcisel *)data;
578 		sel->pc_bus = PCITAG_BUS(sc->sc_pcitag);
579 		sel->pc_dev = PCITAG_DEV(sc->sc_pcitag);
580 		sel->pc_func = PCITAG_FUN(sc->sc_pcitag);
581 		break;
582 
583 	case WSDISPLAYIO_SVIDEO:
584 	case WSDISPLAYIO_GVIDEO:
585 		break;
586 
587 	case WSDISPLAYIO_GCURPOS:
588 	case WSDISPLAYIO_SCURPOS:
589 	case WSDISPLAYIO_GCURMAX:
590 	case WSDISPLAYIO_GCURSOR:
591 	case WSDISPLAYIO_SCURSOR:
592 	default:
593 		return -1; /* not supported yet */
594         }
595 
596 	return 0;
597 }
598 
599 static inline
600 u_int
ifb_dac_value(u_int r,u_int g,u_int b)601 ifb_dac_value(u_int r, u_int g, u_int b)
602 {
603 	/*
604 	 * Convert 8 bit values to 10 bit scale, by shifting and inserting
605 	 * the former high bits in the low two bits.
606 	 * Simply shifting is slightly too dull.
607 	 */
608 	r = (r << 2) | (r >> 6);
609 	g = (g << 2) | (g >> 6);
610 	b = (b << 2) | (b >> 6);
611 
612 	return (b << 20) | (g << 10) | r;
613 }
614 
615 int
ifb_getcmap(struct ifb_softc * sc,struct wsdisplay_cmap * cm)616 ifb_getcmap(struct ifb_softc *sc, struct wsdisplay_cmap *cm)
617 {
618 	u_int index = cm->index;
619 	u_int count = cm->count;
620 	int error;
621 
622 	if (index >= 256 || count > 256 - index)
623 		return EINVAL;
624 
625 	error = copyout(&sc->sc_cmap_red[index], cm->red, count);
626 	if (error)
627 		return error;
628 	error = copyout(&sc->sc_cmap_green[index], cm->green, count);
629 	if (error)
630 		return error;
631 	error = copyout(&sc->sc_cmap_blue[index], cm->blue, count);
632 	if (error)
633 		return error;
634 	return 0;
635 }
636 
637 int
ifb_putcmap(struct ifb_softc * sc,struct wsdisplay_cmap * cm)638 ifb_putcmap(struct ifb_softc *sc, struct wsdisplay_cmap *cm)
639 {
640 	u_int index = cm->index;
641 	u_int count = cm->count;
642 	u_int i;
643 	int error;
644 	u_char *r, *g, *b;
645 
646 	if (index >= 256 || count > 256 - index)
647 		return EINVAL;
648 
649 	if ((error = copyin(cm->red, &sc->sc_cmap_red[index], count)) != 0)
650 		return error;
651 	if ((error = copyin(cm->green, &sc->sc_cmap_green[index], count)) != 0)
652 		return error;
653 	if ((error = copyin(cm->blue, &sc->sc_cmap_blue[index], count)) != 0)
654 		return error;
655 
656 	r = &sc->sc_cmap_red[index];
657 	g = &sc->sc_cmap_green[index];
658 	b = &sc->sc_cmap_blue[index];
659 
660 	for (i = 0; i < count; i++) {
661 		bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h,
662 		    IFB_REG_CMAP_INDEX, index);
663 		bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h, IFB_REG_CMAP_DATA,
664 		    ifb_dac_value(*r, *g, *b));
665 		r++, g++, b++, index++;
666 	}
667 	return 0;
668 }
669 
670 void
ifb_setcolor(void * v,u_int index,u_int8_t r,u_int8_t g,u_int8_t b)671 ifb_setcolor(void *v, u_int index, u_int8_t r, u_int8_t g, u_int8_t b)
672 {
673 	struct ifb_softc *sc = v;
674 
675 	sc->sc_cmap_red[index] = r;
676 	sc->sc_cmap_green[index] = g;
677 	sc->sc_cmap_blue[index] = b;
678 
679 	bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h, IFB_REG_CMAP_INDEX,
680 	    index);
681 	bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h, IFB_REG_CMAP_DATA,
682 	    ifb_dac_value(r, g, b));
683 }
684 
685 /* similar in spirit to fbwscons_setcolormap() */
686 void
ifb_setcolormap(struct sunfb * sf,void (* setcolor)(void *,u_int,u_int8_t,u_int8_t,u_int8_t))687 ifb_setcolormap(struct sunfb *sf,
688     void (*setcolor)(void *, u_int, u_int8_t, u_int8_t, u_int8_t))
689 {
690 	struct rasops_info *ri = &sf->sf_ro;
691 	int i;
692 	const u_char *color;
693 
694 	/*
695 	 * Compensate for overlay plane limitations. Since we'll operate
696 	 * in 7bpp mode, our basic colors will use positions 00 to 0f,
697 	 * and the inverted colors will use positions 7f to 70.
698 	 */
699 
700 	for (i = 0x00; i < 0x10; i++) {
701 		color = &rasops_cmap[i * 3];
702 		setcolor(sf, i, color[0], color[1], color[2]);
703 	}
704 	for (i = 0x70; i < 0x80; i++) {
705 		color = &rasops_cmap[(0xf0 | i) * 3];
706 		setcolor(sf, i, color[0], color[1], color[2]);
707 	}
708 
709 	/*
710 	 * Proper operation apparently needs black to be 01, always.
711 	 * Replace black, red and white with white, black and red.
712 	 * Kind of ugly, but it works.
713 	 */
714 	ri->ri_devcmap[WSCOL_WHITE] = 0x00000000;
715 	ri->ri_devcmap[WSCOL_BLACK] = 0x01010101;
716 	ri->ri_devcmap[WSCOL_RED] = 0x07070707;
717 
718 	color = &rasops_cmap[(WSCOL_WHITE + 8) * 3];	/* real white */
719 	setcolor(sf, 0, color[0], color[1], color[2]);
720 	setcolor(sf, IFB_PIXELMASK ^ 0, ~color[0], ~color[1], ~color[2]);
721 	color = &rasops_cmap[WSCOL_BLACK * 3];
722 	setcolor(sf, 1, color[0], color[1], color[2]);
723 	setcolor(sf, IFB_PIXELMASK ^ 1, ~color[0], ~color[1], ~color[2]);
724 	color = &rasops_cmap[WSCOL_RED * 3];
725 	setcolor(sf, 7, color[0], color[1], color[2]);
726 	setcolor(sf, IFB_PIXELMASK ^ 7, ~color[0], ~color[1], ~color[2]);
727 }
728 
729 paddr_t
ifb_mmap(void * v,off_t off,int prot)730 ifb_mmap(void *v, off_t off, int prot)
731 {
732 	struct ifb_softc *sc = (struct ifb_softc *)v;
733 
734 	switch (sc->sc_mode) {
735 	case WSDISPLAYIO_MODE_MAPPED:
736 		/*
737 		 * In mapped mode, provide access to the two overlays,
738 		 * followed by the control registers, at the following
739 		 * addresses:
740 		 * 00000000	overlay 0, size up to 2MB (visible fb size)
741 		 * 01000000	overlay 1, size up to 2MB (visible fb size)
742 		 * 02000000	control registers
743 		 */
744 		off -= 0x00000000;
745 		if (off >= 0 && off < round_page(sc->sc_sunfb.sf_fbsize)) {
746 			return bus_space_mmap(sc->sc_mem_t,
747 			    sc->sc_fb8bank0_base,
748 			    off, prot, BUS_SPACE_MAP_LINEAR);
749 		}
750 		off -= 0x01000000;
751 		if (off >= 0 && off < round_page(sc->sc_sunfb.sf_fbsize)) {
752 			return bus_space_mmap(sc->sc_mem_t,
753 			    sc->sc_fb8bank1_base,
754 			    off, prot, BUS_SPACE_MAP_LINEAR);
755 		}
756 #ifdef APERTURE
757 		off -= 0x01000000;
758 		if (allowaperture != 0 && sc->sc_acceltype != IFB_ACCEL_NONE) {
759 			if (off >= 0 && off < round_page(sc->sc_reglen)) {
760 				return bus_space_mmap(sc->sc_mem_t,
761 				    sc->sc_regbase,
762 				    off, prot, BUS_SPACE_MAP_LINEAR);
763 			}
764 		}
765 #endif
766 		break;
767 	}
768 
769 	return -1;
770 }
771 
772 void
ifb_burner(void * v,u_int on,u_int flags)773 ifb_burner(void *v, u_int on, u_int flags)
774 {
775 	struct ifb_softc *sc = (struct ifb_softc *)v;
776 	int s;
777 	uint32_t dpms;
778 
779 	s = splhigh();
780 	if (on)
781 		dpms = IFB_REG_DPMS_ON;
782 	else {
783 #ifdef notyet
784 		if (flags & WSDISPLAY_BURN_VBLANK)
785 			dpms = IFB_REG_DPMS_SUSPEND;
786 		else
787 #endif
788 			dpms = IFB_REG_DPMS_STANDBY;
789 	}
790 	bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h, IFB_REG_DPMS_STATE, dpms);
791 	splx(s);
792 }
793 
794 static inline int
ifb_is_console(int node)795 ifb_is_console(int node)
796 {
797 	extern int fbnode;
798 
799 	return fbnode == node;
800 }
801 
802 int
ifb_mapregs(struct ifb_softc * sc,struct pci_attach_args * pa)803 ifb_mapregs(struct ifb_softc *sc, struct pci_attach_args *pa)
804 {
805 	u_int32_t cf;
806 	int bar, rc;
807 
808 	cf = pci_conf_read(pa->pa_pc, pa->pa_tag, IFB_PCI_CFG);
809 	bar = PCI_MAPREG_START + IFB_PCI_CFG_BAR_OFFSET(cf);
810 
811 	cf = pci_conf_read(pa->pa_pc, pa->pa_tag, bar);
812 	if (PCI_MAPREG_TYPE(cf) == PCI_MAPREG_TYPE_IO)
813 		rc = EINVAL;
814 	else {
815 		rc = pci_mapreg_map(pa, bar, cf,
816 		    BUS_SPACE_MAP_LINEAR, NULL, &sc->sc_mem_h,
817 		    &sc->sc_membase, &sc->sc_memlen, 0);
818 	}
819 	if (rc != 0) {
820 		printf("\n%s: can't map video memory\n",
821 		    sc->sc_sunfb.sf_dev.dv_xname);
822 		return rc;
823 	}
824 
825 	cf = pci_conf_read(pa->pa_pc, pa->pa_tag, bar + 4);
826 	if (PCI_MAPREG_TYPE(cf) == PCI_MAPREG_TYPE_IO)
827 		rc = EINVAL;
828 	else {
829 		rc = pci_mapreg_map(pa, bar + 4, cf,
830 		    0, NULL, &sc->sc_reg_h,
831 		     &sc->sc_regbase, &sc->sc_reglen, 0x9000);
832 	}
833 	if (rc != 0) {
834 		printf("\n%s: can't map register space\n",
835 		    sc->sc_sunfb.sf_dev.dv_xname);
836 		return rc;
837 	}
838 
839 	return 0;
840 }
841 
842 /*
843  * Non accelerated routines.
844  */
845 
846 int
ifb_putchar_dumb(void * cookie,int row,int col,u_int uc,uint32_t attr)847 ifb_putchar_dumb(void *cookie, int row, int col, u_int uc, uint32_t attr)
848 {
849 	struct rasops_info *ri = cookie;
850 	struct ifb_softc *sc = ri->ri_hw;
851 
852 	ri->ri_bits = (void *)sc->sc_fb8bank0_vaddr;
853 	sc->sc_old_ops.putchar(cookie, row, col, uc, attr);
854 	ri->ri_bits = (void *)sc->sc_fb8bank1_vaddr;
855 	sc->sc_old_ops.putchar(cookie, row, col, uc, attr);
856 
857 	return 0;
858 }
859 
860 int
ifb_copycols_dumb(void * cookie,int row,int src,int dst,int num)861 ifb_copycols_dumb(void *cookie, int row, int src, int dst, int num)
862 {
863 	struct rasops_info *ri = cookie;
864 	struct ifb_softc *sc = ri->ri_hw;
865 
866 	ri->ri_bits = (void *)sc->sc_fb8bank0_vaddr;
867 	sc->sc_old_ops.copycols(cookie, row, src, dst, num);
868 	ri->ri_bits = (void *)sc->sc_fb8bank1_vaddr;
869 	sc->sc_old_ops.copycols(cookie, row, src, dst, num);
870 
871 	return 0;
872 }
873 
874 int
ifb_erasecols_dumb(void * cookie,int row,int col,int num,uint32_t attr)875 ifb_erasecols_dumb(void *cookie, int row, int col, int num, uint32_t attr)
876 {
877 	struct rasops_info *ri = cookie;
878 	struct ifb_softc *sc = ri->ri_hw;
879 
880 	ri->ri_bits = (void *)sc->sc_fb8bank0_vaddr;
881 	sc->sc_old_ops.erasecols(cookie, row, col, num, attr);
882 	ri->ri_bits = (void *)sc->sc_fb8bank1_vaddr;
883 	sc->sc_old_ops.erasecols(cookie, row, col, num, attr);
884 
885 	return 0;
886 }
887 
888 int
ifb_copyrows_dumb(void * cookie,int src,int dst,int num)889 ifb_copyrows_dumb(void *cookie, int src, int dst, int num)
890 {
891 	struct rasops_info *ri = cookie;
892 	struct ifb_softc *sc = ri->ri_hw;
893 
894 	ri->ri_bits = (void *)sc->sc_fb8bank0_vaddr;
895 	sc->sc_old_ops.copyrows(cookie, src, dst, num);
896 	ri->ri_bits = (void *)sc->sc_fb8bank1_vaddr;
897 	sc->sc_old_ops.copyrows(cookie, src, dst, num);
898 
899 	return 0;
900 }
901 
902 int
ifb_eraserows_dumb(void * cookie,int row,int num,uint32_t attr)903 ifb_eraserows_dumb(void *cookie, int row, int num, uint32_t attr)
904 {
905 	struct rasops_info *ri = cookie;
906 	struct ifb_softc *sc = ri->ri_hw;
907 
908 	ri->ri_bits = (void *)sc->sc_fb8bank0_vaddr;
909 	sc->sc_old_ops.eraserows(cookie, row, num, attr);
910 	ri->ri_bits = (void *)sc->sc_fb8bank1_vaddr;
911 	sc->sc_old_ops.eraserows(cookie, row, num, attr);
912 
913 	return 0;
914 }
915 
916 /* Similar to rasops_do_cursor(), but using a 7bit pixel mask. */
917 
918 #define	CURSOR_MASK	0x7f7f7f7f
919 
920 int
ifb_do_cursor_dumb(struct rasops_info * ri)921 ifb_do_cursor_dumb(struct rasops_info *ri)
922 {
923 	struct ifb_softc *sc = ri->ri_hw;
924 	int full1, height, cnt, slop1, slop2, row, col;
925 	int ovl_offset = sc->sc_fb8bank1_vaddr - sc->sc_fb8bank0_vaddr;
926 	u_char *dp0, *dp1, *rp;
927 
928 	row = ri->ri_crow;
929 	col = ri->ri_ccol;
930 
931 	ri->ri_bits = (void *)sc->sc_fb8bank0_vaddr;
932 	rp = ri->ri_bits + row * ri->ri_yscale + col * ri->ri_xscale;
933 	height = ri->ri_font->fontheight;
934 	slop1 = (4 - ((long)rp & 3)) & 3;
935 
936 	if (slop1 > ri->ri_xscale)
937 		slop1 = ri->ri_xscale;
938 
939 	slop2 = (ri->ri_xscale - slop1) & 3;
940 	full1 = (ri->ri_xscale - slop1 - slop2) >> 2;
941 
942 	if ((slop1 | slop2) == 0) {
943 		/* A common case */
944 		while (height--) {
945 			dp0 = rp;
946 			dp1 = dp0 + ovl_offset;
947 			rp += ri->ri_stride;
948 
949 			for (cnt = full1; cnt; cnt--) {
950 				*(int32_t *)dp0 ^= CURSOR_MASK;
951 				*(int32_t *)dp1 ^= CURSOR_MASK;
952 				dp0 += 4;
953 				dp1 += 4;
954 			}
955 		}
956 	} else {
957 		/* XXX this is stupid.. use masks instead */
958 		while (height--) {
959 			dp0 = rp;
960 			dp1 = dp0 + ovl_offset;
961 			rp += ri->ri_stride;
962 
963 			if (slop1 & 1) {
964 				*dp0++ ^= (u_char)CURSOR_MASK;
965 				*dp1++ ^= (u_char)CURSOR_MASK;
966 			}
967 
968 			if (slop1 & 2) {
969 				*(int16_t *)dp0 ^= (int16_t)CURSOR_MASK;
970 				*(int16_t *)dp1 ^= (int16_t)CURSOR_MASK;
971 				dp0 += 2;
972 				dp1 += 2;
973 			}
974 
975 			for (cnt = full1; cnt; cnt--) {
976 				*(int32_t *)dp0 ^= CURSOR_MASK;
977 				*(int32_t *)dp1 ^= CURSOR_MASK;
978 				dp0 += 4;
979 				dp1 += 4;
980 			}
981 
982 			if (slop2 & 1) {
983 				*dp0++ ^= (u_char)CURSOR_MASK;
984 				*dp1++ ^= (u_char)CURSOR_MASK;
985 			}
986 
987 			if (slop2 & 2) {
988 				*(int16_t *)dp0 ^= (int16_t)CURSOR_MASK;
989 				*(int16_t *)dp1 ^= (int16_t)CURSOR_MASK;
990 			}
991 		}
992 	}
993 
994 	return 0;
995 }
996 
997 /*
998  * Accelerated routines.
999  */
1000 
1001 int
ifb_copycols(void * cookie,int row,int src,int dst,int num)1002 ifb_copycols(void *cookie, int row, int src, int dst, int num)
1003 {
1004 	struct rasops_info *ri = cookie;
1005 	struct ifb_softc *sc = ri->ri_hw;
1006 
1007 	num *= ri->ri_font->fontwidth;
1008 	src *= ri->ri_font->fontwidth;
1009 	dst *= ri->ri_font->fontwidth;
1010 	row *= ri->ri_font->fontheight;
1011 
1012 	ifb_copyrect(sc, ri->ri_xorigin + src, ri->ri_yorigin + row,
1013 	    ri->ri_xorigin + dst, ri->ri_yorigin + row,
1014 	    num, ri->ri_font->fontheight);
1015 
1016 	return 0;
1017 }
1018 
1019 int
ifb_erasecols(void * cookie,int row,int col,int num,uint32_t attr)1020 ifb_erasecols(void *cookie, int row, int col, int num, uint32_t attr)
1021 {
1022 	struct rasops_info *ri = cookie;
1023 	struct ifb_softc *sc = ri->ri_hw;
1024 	int bg, fg;
1025 
1026 	ri->ri_ops.unpack_attr(cookie, attr, &fg, &bg, NULL);
1027 
1028 	row *= ri->ri_font->fontheight;
1029 	col *= ri->ri_font->fontwidth;
1030 	num *= ri->ri_font->fontwidth;
1031 
1032 	ifb_fillrect(sc, ri->ri_xorigin + col, ri->ri_yorigin + row,
1033 	    num, ri->ri_font->fontheight, ri->ri_devcmap[bg]);
1034 
1035 	return 0;
1036 }
1037 
1038 int
ifb_copyrows(void * cookie,int src,int dst,int num)1039 ifb_copyrows(void *cookie, int src, int dst, int num)
1040 {
1041 	struct rasops_info *ri = cookie;
1042 	struct ifb_softc *sc = ri->ri_hw;
1043 
1044 	num *= ri->ri_font->fontheight;
1045 	src *= ri->ri_font->fontheight;
1046 	dst *= ri->ri_font->fontheight;
1047 
1048 	ifb_copyrect(sc, ri->ri_xorigin, ri->ri_yorigin + src,
1049 	    ri->ri_xorigin, ri->ri_yorigin + dst, ri->ri_emuwidth, num);
1050 
1051 	return 0;
1052 }
1053 
1054 int
ifb_eraserows(void * cookie,int row,int num,uint32_t attr)1055 ifb_eraserows(void *cookie, int row, int num, uint32_t attr)
1056 {
1057 	struct rasops_info *ri = cookie;
1058 	struct ifb_softc *sc = ri->ri_hw;
1059 	int bg, fg;
1060 	int x, y, w;
1061 
1062 	ri->ri_ops.unpack_attr(cookie, attr, &fg, &bg, NULL);
1063 
1064 	if ((num == ri->ri_rows) && ISSET(ri->ri_flg, RI_FULLCLEAR)) {
1065 		num = ri->ri_height;
1066 		x = y = 0;
1067 		w = ri->ri_width;
1068 	} else {
1069 		num *= ri->ri_font->fontheight;
1070 		x = ri->ri_xorigin;
1071 		y = ri->ri_yorigin + row * ri->ri_font->fontheight;
1072 		w = ri->ri_emuwidth;
1073 	}
1074 	ifb_fillrect(sc, x, y, w, num, ri->ri_devcmap[bg]);
1075 
1076 	return 0;
1077 }
1078 
1079 void
ifb_copyrect(struct ifb_softc * sc,int sx,int sy,int dx,int dy,int w,int h)1080 ifb_copyrect(struct ifb_softc *sc, int sx, int sy, int dx, int dy, int w, int h)
1081 {
1082 	ifb_rop(sc, sx, sy, dx, dy, w, h, IFB_ROP_SRC, IFB_PIXELMASK);
1083 	ifb_rop_wait(sc);
1084 }
1085 
1086 void
ifb_fillrect(struct ifb_softc * sc,int x,int y,int w,int h,int bg)1087 ifb_fillrect(struct ifb_softc *sc, int x, int y, int w, int h, int bg)
1088 {
1089 	int32_t mask;
1090 
1091 	/* pixels to set... */
1092 	mask = IFB_PIXELMASK & bg;
1093 	if (mask != 0) {
1094 		ifb_rop(sc, x, y, x, y, w, h, IFB_ROP_SET, mask);
1095 		ifb_rop_wait(sc);
1096 	}
1097 
1098 	/* pixels to clear... */
1099 	mask = IFB_PIXELMASK & ~bg;
1100 	if (mask != 0) {
1101 		ifb_rop(sc, x, y, x, y, w, h, IFB_ROP_CLEAR, mask);
1102 		ifb_rop_wait(sc);
1103 	}
1104 }
1105 
1106 /*
1107  * Perform a raster operation on both overlay planes.
1108  * Puzzled by all the magic numbers in there? So are we. Isn't a dire
1109  * lack of documentation wonderful?
1110  */
1111 
1112 static inline void
ifb_rop(struct ifb_softc * sc,int sx,int sy,int dx,int dy,int w,int h,uint32_t rop,int32_t planemask)1113 ifb_rop(struct ifb_softc *sc, int sx, int sy, int dx, int dy, int w, int h,
1114     uint32_t rop, int32_t planemask)
1115 {
1116 	(*sc->sc_rop)(sc, sx, sy, dx, dy, w, h, rop, planemask);
1117 }
1118 
1119 void
ifb_rop_common(struct ifb_softc * sc,bus_addr_t reg,int sx,int sy,int dx,int dy,int w,int h,uint32_t rop,int32_t planemask)1120 ifb_rop_common(struct ifb_softc *sc, bus_addr_t reg, int sx, int sy,
1121     int dx, int dy, int w, int h, uint32_t rop, int32_t planemask)
1122 {
1123 	int dir = 0;
1124 
1125 	/*
1126 	 * Compute rop direction. This only really matters for
1127 	 * screen-to-screen copies.
1128 	 */
1129 	if (sy < dy /* && sy + h > dy */) {
1130 		sy += h - 1;
1131 		dy += h;
1132 		dir |= IFB_BLT_DIR_BACKWARDS_Y;
1133 	}
1134 	if (sx < dx /* && sx + w > dx */) {
1135 		sx += w - 1;
1136 		dx += w;
1137 		dir |= IFB_BLT_DIR_BACKWARDS_X;
1138 	}
1139 
1140 	/* Which one of those below is your magic number for today? */
1141 	bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h, reg, 0x61000001);
1142 	bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h, reg, 0);
1143 	bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h, reg, 0x6301c080);
1144 	bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h, reg, 0x80000000);
1145 	bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h, reg, rop);
1146 	bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h, reg, planemask);
1147 	bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h, reg, 0);
1148 	bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h, reg, 0x64000303);
1149 	/*
1150 	 * This value is a pixel offset within the destination area. It is
1151 	 * probably used to define complex polygon shapes, with the
1152 	 * last pixel in the list being back to (0,0).
1153 	 */
1154 	bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h, reg, IFB_COORDS(0, 0));
1155 	bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h, reg, 0);
1156 	bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h, reg, 0x00030000);
1157 	bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h, reg, 0x2200010d);
1158 
1159 	bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h, reg, 0x33f01000 | dir);
1160 	bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h, reg, IFB_COORDS(dx, dy));
1161 	bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h, reg, IFB_COORDS(w, h));
1162 	bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h, reg, IFB_COORDS(sx, sy));
1163 }
1164 
1165 void
ifb_rop_ifb(void * v,int sx,int sy,int dx,int dy,int w,int h,uint32_t rop,int32_t planemask)1166 ifb_rop_ifb(void *v, int sx, int sy, int dx, int dy, int w, int h,
1167     uint32_t rop, int32_t planemask)
1168 {
1169 	struct ifb_softc *sc = (struct ifb_softc *)v;
1170 	bus_addr_t reg = IFB_REG_ENGINE;
1171 
1172 	bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h, reg, 2);
1173 	bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h, reg, 1);
1174 	/* the ``0101'' part is probably a component selection */
1175 	bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h, reg, 0x540101ff);
1176 
1177 	ifb_rop_common(sc, reg, sx, sy, dx, dy, w, h, rop, planemask);
1178 }
1179 
1180 void
ifb_rop_jfb(void * v,int sx,int sy,int dx,int dy,int w,int h,uint32_t rop,int32_t planemask)1181 ifb_rop_jfb(void *v, int sx, int sy, int dx, int dy, int w, int h,
1182     uint32_t rop, int32_t planemask)
1183 {
1184 	struct ifb_softc *sc = (struct ifb_softc *)v;
1185 	bus_addr_t reg = JFB_REG_ENGINE;
1186 	uint32_t spr, splr;
1187 
1188 	/*
1189 	 * Pick the current spr and splr values from the communication
1190 	 * area if possible.
1191 	 */
1192 	if (sc->sc_comm != NULL) {
1193 		spr = sc->sc_comm[IFB_SHARED_TERM8_SPR >> 2];
1194 		splr = sc->sc_comm[IFB_SHARED_TERM8_SPLR >> 2];
1195 	} else {
1196 		/* supposedly sane defaults */
1197 		spr = 0x54ff0303;
1198 		splr = 0x5c0000ff;
1199 	}
1200 
1201 	bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h, reg, 0x00400016);
1202 	bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h, reg, 0x5b000002);
1203 	bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h, reg, 0x5a000000);
1204 	bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h, reg, spr);
1205 	bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h, reg, splr);
1206 
1207 	ifb_rop_common(sc, reg, sx, sy, dx, dy, w, h, rop, planemask);
1208 
1209 	bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h, reg, 0x5a000001);
1210 	bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h, reg, 0x5b000001);
1211 }
1212 
1213 int
ifb_rop_wait(struct ifb_softc * sc)1214 ifb_rop_wait(struct ifb_softc *sc)
1215 {
1216 	int i;
1217 
1218 	for (i = 1000000; i != 0; i--) {
1219 		if (bus_space_read_4(sc->sc_mem_t, sc->sc_reg_h,
1220 		    IFB_REG_STATUS) & IFB_REG_STATUS_DONE)
1221 			break;
1222 		DELAY(1);
1223 	}
1224 
1225 	return i;
1226 }
1227 
1228 int
ifb_do_cursor(struct rasops_info * ri)1229 ifb_do_cursor(struct rasops_info *ri)
1230 {
1231 	struct ifb_softc *sc = ri->ri_hw;
1232 	int y, x;
1233 
1234 	y = ri->ri_yorigin + ri->ri_crow * ri->ri_font->fontheight;
1235 	x = ri->ri_xorigin + ri->ri_ccol * ri->ri_font->fontwidth;
1236 
1237 	ifb_rop(sc, x, y, x, y, ri->ri_font->fontwidth, ri->ri_font->fontheight,
1238 	    IFB_ROP_XOR, IFB_PIXELMASK);
1239 	ifb_rop_wait(sc);
1240 
1241 	return 0;
1242 }
1243