xref: /openbsd/sys/arch/sparc64/dev/ifb.c (revision a34540b3)
1 /*	$OpenBSD: ifb.c,v 1.19 2010/07/20 20:47:17 miod Exp $	*/
2 
3 /*
4  * Copyright (c) 2007, 2008, 2009 Miodrag Vallat.
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 /*
20  * Least-effort driver for the Sun Expert3D cards (based on the
21  * ``Wildcat'' chips).
22  *
23  * There is no public documentation for these chips available.
24  * Since they are no longer supported by 3DLabs (which got bought by
25  * Creative), and Sun does not want to publish even minimal information
26  * or source code, the best we can do is experiment.
27  *
28  * Quoting Alan Coopersmith in
29  * http://mail.opensolaris.org/pipermail/opensolaris-discuss/2005-December/011885.html
30  * ``Unfortunately, the lawyers have asked we not give details about why
31  *   specific components are not being released.''
32  */
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/device.h>
37 #include <sys/errno.h>
38 #include <sys/ioctl.h>
39 #include <sys/malloc.h>
40 #include <sys/pciio.h>
41 
42 #include <uvm/uvm_extern.h>
43 
44 #include <machine/autoconf.h>
45 #include <machine/bus.h>
46 #include <machine/intr.h>
47 #include <machine/openfirm.h>
48 
49 #include <dev/pci/pcireg.h>
50 #include <dev/pci/pcivar.h>
51 
52 #include <dev/wscons/wsconsio.h>
53 #include <dev/wscons/wsdisplayvar.h>
54 
55 #include <dev/rasops/rasops.h>
56 
57 #include <machine/fbvar.h>
58 
59 #ifdef APERTURE
60 extern int allowaperture;
61 #endif
62 
63 /*
64  * Parts of the following hardware knowledge come from David S. Miller's
65  * XVR-500 Linux driver (drivers/video/sunxvr500.c).
66  */
67 
68 /*
69  * The Expert3D and Expert3d-Lite cards are built around the Wildcat
70  * 5110, 6210 and 7210 chips.
71  *
72  * The card exposes the following resources:
73  * - a 32MB aperture window in which views to the different frame buffer
74  *   areas can be mapped, in the first BAR.
75  * - a 64KB or 128KB PROM and registers area, in the second BAR.
76  * - a 8MB ``direct burst'' memory mapping, in the third BAR.
77  *
78  * The location of this BAR range is pointed to by a board-specific PCI
79  * configuration register.
80  *
81  * In the state the PROM leaves us in, the 8MB frame buffer windows map
82  * the video memory as interleaved stripes, of which the non-visible parts
83  * can still be addressed (probably for fast screen switching).
84  *
85  * Unfortunately, since we do not know how to reconfigure the stripes
86  * to provide at least a linear frame buffer, we have to write to both
87  * windows and have them provide the complete image.
88  *
89  * Moreover, high pixel values in the overlay planes (such as 0xff or 0xfe)
90  * seem to enable other planes with random contents, so we'll limit ourselves
91  * to 7bpp operation.
92  */
93 
94 /*
95  * The Fcode driver sets up a communication structure, allowing third-party
96  * code to reprogram the video mode while still allowing the Fcode routines
97  * to access the overlay planes.
98  *
99  * We'll use this information as well, although so far it's unlikely
100  * any code will do so, as long as the only documentation for this
101  * hardware amounts to zilch.
102  */
103 
104 /* probably some form of signature */
105 #define	IFB_SHARED_SIGNATURE		0x00
106 #define	SIG_IFB					0x09209911
107 #define	SIG_JFB					0x05140213
108 #define	IFB_SHARED_MONITOR_MODE		0x10
109 #define	IFB_SHARED_WIDTH		0x14
110 #define	IFB_SHARED_HEIGHT		0x18
111 #define	IFB_SHARED_V_FREQ		0x1c
112 #define	IFB_SHARED_TIMING_H_FP		0x20
113 #define	IFB_SHARED_TIMING_H_SYNC	0x24
114 #define	IFB_SHARED_TIMING_H_BP		0x28
115 #define	IFB_SHARED_TIMING_V_FP		0x2c
116 #define	IFB_SHARED_TIMING_V_SYNC	0x30
117 #define	IFB_SHARED_TIMING_V_BP		0x34
118 #define	IFB_SHARED_TIMING_FLAGS		0x38
119 #define	IFB_SHARED_CMAP_DIRTY		0x3c
120 #define	IFB_SHARED_TERM8_GSR		0x4c
121 #define	IFB_SHARED_TERM8_SPR		0x50
122 #define	IFB_SHARED_TERM8_SPLR		0x54
123 
124 /*
125  * The Expert3D has an extra BAR that is not present on the -Lite
126  * version.  This register contains bits that tell us how many BARs to
127  * skip before we get to the BARs that interest us.
128  */
129 #define IFB_PCI_CFG			0x5c
130 #define IFB_PCI_CFG_BAR_OFFSET(x)	((x & 0x000000e0) >> 3)
131 
132 /*
133  * 6000 (jfb) / 8000 (ifb) engine command
134  * This register is used to issue (some) commands sequences to the
135  * acceleration hardware.
136  */
137 #define JFB_REG_ENGINE			0x6000
138 #define IFB_REG_ENGINE			0x8000
139 
140 /*
141  * 8040 component configuration
142  * This register controls which parts of the board will be addressed by
143  * writes to other configuration registers.
144  * Apparently the low two bytes control the frame buffer windows for the
145  * given head (starting at 1).
146  * The high two bytes are texture related.
147  */
148 #define	IFB_REG_COMPONENT_SELECT	0x8040
149 
150 /*
151  * 8044 status
152  * This register has a bit that signals completion of commands issued
153  * to the acceleration hardware.
154  */
155 #define IFB_REG_STATUS			0x8044
156 #define IFB_REG_STATUS_DONE			0x00000004
157 
158 /*
159  * 8058 magnifying configuration
160  * This register apparently controls magnifying.
161  * bits 5-6 select the window width divider (00: by 2, 01: by 4, 10: by 8,
162  *   11: by 16)
163  * bits 7-8 select the zoom factor (00: disabled, 01: x2, 10: x4, 11: x8)
164  */
165 #define	IFB_REG_MAGNIFY			0x8058
166 #define	IFB_REG_MAGNIFY_DISABLE			0x00000000
167 #define	IFB_REG_MAGNIFY_X2			0x00000040
168 #define	IFB_REG_MAGNIFY_X4			0x00000080
169 #define	IFB_REG_MAGNIFY_X8			0x000000c0
170 #define	IFB_REG_MAGNIFY_WINDIV2			0x00000000
171 #define	IFB_REG_MAGNIFY_WINDIV4			0x00000010
172 #define	IFB_REG_MAGNIFY_WINDIV8			0x00000020
173 #define	IFB_REG_MAGNIFY_WINDIV16		0x00000030
174 
175 /*
176  * 8070 display resolution
177  * Contains the size of the display, as ((height - 1) << 16) | (width - 1)
178  */
179 #define	IFB_REG_RESOLUTION		0x8070
180 /*
181  * 8074 configuration register
182  * Contains 0x1a000088 | ((Log2 stride) << 16)
183  */
184 #define	IFB_REG_CONFIG			0x8074
185 /*
186  * 8078 32bit frame buffer window #0 (8 to 9 MB)
187  * Contains the offset (relative to BAR0) of the 32 bit frame buffer window.
188  */
189 #define	IFB_REG_FB32_0			0x8078
190 /*
191  * 807c 32bit frame buffer window #1 (8 to 9 MB)
192  * Contains the offset (relative to BAR0) of the 32 bit frame buffer window.
193  */
194 #define	IFB_REG_FB32_1			0x807c
195 /*
196  * 8080 8bit frame buffer window #0 (2 to 2.2 MB)
197  * Contains the offset (relative to BAR0) of the 8 bit frame buffer window.
198  */
199 #define	IFB_REG_FB8_0			0x8080
200 /*
201  * 8084 8bit frame buffer window #1 (2 to 2.2 MB)
202  * Contains the offset (relative to BAR0) of the 8 bit frame buffer window.
203  */
204 #define	IFB_REG_FB8_1			0x8084
205 /*
206  * 8088 unknown window (as large as a 32 bit frame buffer)
207  */
208 #define	IFB_REG_FB_UNK0			0x8088
209 /*
210  * 808c unknown window (as large as a 8 bit frame buffer)
211  */
212 #define	IFB_REG_FB_UNK1			0x808c
213 /*
214  * 8090 unknown window (as large as a 8 bit frame buffer)
215  */
216 #define	IFB_REG_FB_UNK2			0x8090
217 
218 /*
219  * 80bc RAMDAC palette index register
220  */
221 #define	IFB_REG_CMAP_INDEX		0x80bc
222 /*
223  * 80c0 RAMDAC palette data register
224  */
225 #define	IFB_REG_CMAP_DATA		0x80c0
226 
227 /*
228  * 80e4 DPMS state register
229  * States ``off'' and ``suspend'' need chip reprogramming before video can
230  * be enabled again.
231  */
232 #define	IFB_REG_DPMS_STATE		0x80e4
233 #define	IFB_REG_DPMS_OFF			0x00000000
234 #define	IFB_REG_DPMS_SUSPEND			0x00000001
235 #define	IFB_REG_DPMS_STANDBY			0x00000002
236 #define	IFB_REG_DPMS_ON				0x00000003
237 
238 /*
239  * (some) ROP codes
240  */
241 
242 #define	IFB_ROP_CLEAR	0x00000000	/* clear bits in rop mask */
243 #define	IFB_ROP_SRC	0x00330000	/* copy src bits matching rop mask */
244 #define	IFB_ROP_XOR	0x00cc0000	/* xor src bits with rop mask */
245 #define	IFB_ROP_SET	0x00ff0000	/* set bits in rop mask */
246 
247 #define IFB_COORDS(x, y)	((x) | (y) << 16)
248 
249 /* blitter directions */
250 #define IFB_BLT_DIR_BACKWARDS_Y		(0x08 | 0x02)
251 #define IFB_BLT_DIR_BACKWARDS_X		(0x04 | 0x01)
252 
253 #define	IFB_PIXELMASK	0x7f	/* 7bpp */
254 
255 struct ifb_softc {
256 	struct sunfb sc_sunfb;
257 
258 	bus_space_tag_t sc_mem_t;
259 	pcitag_t sc_pcitag;
260 
261 	/* overlays mappings */
262 	bus_space_handle_t sc_mem_h;
263 	bus_addr_t sc_membase, sc_fb8bank0_base, sc_fb8bank1_base;
264 	bus_size_t sc_memlen;
265 	vaddr_t	sc_memvaddr, sc_fb8bank0_vaddr, sc_fb8bank1_vaddr;
266 
267 	/* registers mapping */
268 	bus_space_handle_t sc_reg_h;
269 	bus_addr_t sc_regbase;
270 	bus_size_t sc_reglen;
271 
272 	/* communication area */
273 	volatile uint32_t *sc_comm;
274 
275 	/* acceleration information */
276 	u_int	sc_acceltype;
277 #define	IFB_ACCEL_NONE			0
278 #define	IFB_ACCEL_IFB			1	/* Expert3D style */
279 #define	IFB_ACCEL_JFB			2	/* XVR-500 style */
280 	void (*sc_rop)(void *, int, int, int, int, int, int, uint32_t, int32_t);
281 
282 	/* wsdisplay related goo */
283 	u_int	sc_mode;
284 	struct wsdisplay_emulops sc_old_ops;
285 	u_int8_t sc_cmap_red[256];
286 	u_int8_t sc_cmap_green[256];
287 	u_int8_t sc_cmap_blue[256];
288 };
289 
290 int	ifb_ioctl(void *, u_long, caddr_t, int, struct proc *);
291 paddr_t	ifb_mmap(void *, off_t, int);
292 void	ifb_burner(void *, u_int, u_int);
293 
294 struct wsdisplay_accessops ifb_accessops = {
295 	ifb_ioctl,
296 	ifb_mmap,
297 	NULL,	/* alloc_screen */
298 	NULL,	/* free_screen */
299 	NULL,	/* show_screen */
300 	NULL,	/* load_font */
301 	NULL,	/* scrollback */
302 	NULL,	/* getchar */
303 	ifb_burner,
304 	NULL	/* pollc */
305 };
306 
307 int	ifbmatch(struct device *, void *, void *);
308 void	ifbattach(struct device *, struct device *, void *);
309 
310 struct cfattach ifb_ca = {
311 	sizeof (struct ifb_softc), ifbmatch, ifbattach
312 };
313 
314 struct cfdriver ifb_cd = {
315 	NULL, "ifb", DV_DULL
316 };
317 
318 int	ifb_accel_identify(const char *);
319 static inline
320 u_int	ifb_dac_value(u_int, u_int, u_int);
321 int	ifb_getcmap(struct ifb_softc *, struct wsdisplay_cmap *);
322 static inline
323 int	ifb_is_console(int);
324 int	ifb_mapregs(struct ifb_softc *, struct pci_attach_args *);
325 int	ifb_putcmap(struct ifb_softc *, struct wsdisplay_cmap *);
326 void	ifb_setcolor(void *, u_int, u_int8_t, u_int8_t, u_int8_t);
327 void	ifb_setcolormap(struct sunfb *,
328 	    void (*)(void *, u_int, u_int8_t, u_int8_t, u_int8_t));
329 
330 void	ifb_copyrect(struct ifb_softc *, int, int, int, int, int, int);
331 void	ifb_fillrect(struct ifb_softc *, int, int, int, int, int);
332 static inline
333 void	ifb_rop(struct ifb_softc *, int, int, int, int, int, int, uint32_t,
334 	    int32_t);
335 void	ifb_rop_common(struct ifb_softc *, bus_addr_t, int, int, int, int,
336 	    int, int, uint32_t, int32_t);
337 void	ifb_rop_ifb(void *, int, int, int, int, int, int, uint32_t, int32_t);
338 void	ifb_rop_jfb(void *, int, int, int, int, int, int, uint32_t, int32_t);
339 int	ifb_rop_wait(struct ifb_softc *);
340 
341 int	ifb_putchar_dumb(void *, int, int, u_int, long);
342 int	ifb_copycols_dumb(void *, int, int, int, int);
343 int	ifb_erasecols_dumb(void *, int, int, int, long);
344 int	ifb_copyrows_dumb(void *, int, int, int);
345 int	ifb_eraserows_dumb(void *, int, int, long);
346 int	ifb_do_cursor_dumb(struct rasops_info *);
347 
348 int	ifb_putchar(void *, int, int, u_int, long);
349 int	ifb_copycols(void *, int, int, int, int);
350 int	ifb_erasecols(void *, int, int, int, long);
351 int	ifb_copyrows(void *, int, int, int);
352 int	ifb_eraserows(void *, int, int, long);
353 int	ifb_do_cursor(struct rasops_info *);
354 
355 int
356 ifbmatch(struct device *parent, void *cf, void *aux)
357 {
358 	return ifb_ident(aux);
359 }
360 
361 void
362 ifbattach(struct device *parent, struct device *self, void *aux)
363 {
364 	struct ifb_softc *sc = (struct ifb_softc *)self;
365 	struct pci_attach_args *paa = aux;
366 	struct rasops_info *ri;
367 	uint32_t dev_comm;
368 	int node, console;
369 	char *name, *text;
370 
371 	sc->sc_mem_t = paa->pa_memt;
372 	sc->sc_pcitag = paa->pa_tag;
373 
374 	node = PCITAG_NODE(paa->pa_tag);
375 	console = ifb_is_console(node);
376 
377 	printf("\n");
378 
379 	/*
380 	 * Multiple heads appear as PCI subfunctions.
381 	 * However, the ofw node for it lacks most properties,
382 	 * and its BAR only give access to registers, not
383 	 * frame buffer memory.
384 	 */
385 	if (!node_has_property(node, "device_type")) {
386 		printf("%s: secondary output not supported yet\n",
387 		    self->dv_xname);
388 		return;
389 	}
390 
391 	/*
392 	 * Describe the beast.
393 	 */
394 
395 	name = text = getpropstring(node, "name");
396 	if (strncmp(text, "SUNW,", 5) == 0)
397 		text += 5;
398 	printf("%s: %s", self->dv_xname, text);
399 	text = getpropstring(node, "model");
400 	if (*text != '\0')
401 		printf(" (%s)", text);
402 
403 	if (ifb_mapregs(sc, paa))
404 		return;
405 
406 	sc->sc_fb8bank0_base = bus_space_read_4(sc->sc_mem_t, sc->sc_reg_h,
407 	      IFB_REG_FB8_0);
408 	sc->sc_fb8bank1_base = bus_space_read_4(sc->sc_mem_t, sc->sc_reg_h,
409 	      IFB_REG_FB8_1);
410 
411 	sc->sc_memvaddr = (vaddr_t)bus_space_vaddr(sc->sc_mem_t, sc->sc_mem_h);
412 	sc->sc_fb8bank0_vaddr = sc->sc_memvaddr +
413 	    sc->sc_fb8bank0_base - sc->sc_membase;
414 	sc->sc_fb8bank1_vaddr = sc->sc_memvaddr +
415 	    sc->sc_fb8bank1_base - sc->sc_membase;
416 
417 	/*
418 	 * The values stored into the node properties might have been
419 	 * modified since the Fcode was last run. Pick the geometry
420 	 * information from the configuration registers instead.
421 	 * This replaces
422 	fb_setsize(&sc->sc_sunfb, 8, 1152, 900, node, 0);
423 	 */
424 
425 	sc->sc_sunfb.sf_width = (bus_space_read_4(sc->sc_mem_t, sc->sc_reg_h,
426 	    IFB_REG_RESOLUTION) & 0xffff) + 1;
427 	sc->sc_sunfb.sf_height = (bus_space_read_4(sc->sc_mem_t, sc->sc_reg_h,
428 	    IFB_REG_RESOLUTION) >> 16) + 1;
429 	sc->sc_sunfb.sf_depth = 8;
430 	sc->sc_sunfb.sf_linebytes = 1 << (bus_space_read_4(sc->sc_mem_t,
431 	    sc->sc_reg_h, IFB_REG_CONFIG) >> 16);
432 	sc->sc_sunfb.sf_fbsize =
433 	    sc->sc_sunfb.sf_height * sc->sc_sunfb.sf_linebytes;
434 
435 	printf(", %dx%d\n", sc->sc_sunfb.sf_width, sc->sc_sunfb.sf_height);
436 
437 	ri = &sc->sc_sunfb.sf_ro;
438 	ri->ri_bits = NULL;
439 	ri->ri_hw = sc;
440 
441 	fbwscons_init(&sc->sc_sunfb, RI_BSWAP, console);
442 
443 	/*
444 	 * Find out what flavour of ifb we are...
445 	 */
446 
447 	sc->sc_acceltype = ifb_accel_identify(name);
448 
449 	switch (sc->sc_acceltype) {
450 	case IFB_ACCEL_IFB:
451 		sc->sc_rop = ifb_rop_ifb;
452 		break;
453 	case IFB_ACCEL_JFB:
454 		/*
455 		 * Remember the address of the communication area
456 		 */
457 		if (OF_getprop(node, "dev-comm", &dev_comm,
458 		    sizeof dev_comm) != -1) {
459 			sc->sc_comm = (volatile uint32_t *)(vaddr_t)dev_comm;
460 		}
461 		sc->sc_rop = ifb_rop_jfb;
462 		break;
463 	}
464 
465 	/*
466 	 * Clear the unwanted pixel planes: all if non console (thus
467 	 * white background), and all planes above 7bpp otherwise.
468 	 * This also allows to check whether the accelerated code works,
469 	 * or not.
470 	 */
471 
472 	if (sc->sc_acceltype != IFB_ACCEL_NONE) {
473 		ifb_rop(sc, 0, 0, 0, 0, sc->sc_sunfb.sf_width,
474 		    sc->sc_sunfb.sf_height, IFB_ROP_CLEAR,
475 		    console ? ~IFB_PIXELMASK : ~0);
476 		if (ifb_rop_wait(sc) == 0) {
477 			/* fall back to dumb software operation */
478 			sc->sc_acceltype = IFB_ACCEL_NONE;
479 		}
480 	}
481 
482 	if (sc->sc_acceltype == IFB_ACCEL_NONE) {
483 		/* due to the way we will handle updates */
484 		ri->ri_flg &= ~RI_FULLCLEAR;
485 
486 		if (!console) {
487 			bzero((void *)sc->sc_fb8bank0_vaddr,
488 			    sc->sc_sunfb.sf_fbsize);
489 			bzero((void *)sc->sc_fb8bank1_vaddr,
490 			    sc->sc_sunfb.sf_fbsize);
491 		}
492 	}
493 
494 	/* pick centering delta */
495 	sc->sc_fb8bank0_vaddr += ri->ri_bits - ri->ri_origbits;
496 	sc->sc_fb8bank1_vaddr += ri->ri_bits - ri->ri_origbits;
497 
498 	sc->sc_old_ops = ri->ri_ops;	/* structure copy */
499 
500 	if (sc->sc_acceltype != IFB_ACCEL_NONE) {
501 		ri->ri_ops.copyrows = ifb_copyrows;
502 		ri->ri_ops.copycols = ifb_copycols;
503 		ri->ri_ops.eraserows = ifb_eraserows;
504 		ri->ri_ops.erasecols = ifb_erasecols;
505 		ri->ri_ops.putchar = ifb_putchar_dumb;
506 		ri->ri_do_cursor = ifb_do_cursor;
507 	} else {
508 		ri->ri_ops.copyrows = ifb_copyrows_dumb;
509 		ri->ri_ops.copycols = ifb_copycols_dumb;
510 		ri->ri_ops.eraserows = ifb_eraserows_dumb;
511 		ri->ri_ops.erasecols = ifb_erasecols_dumb;
512 		ri->ri_ops.putchar = ifb_putchar_dumb;
513 		ri->ri_do_cursor = ifb_do_cursor_dumb;
514 	}
515 
516 	ifb_setcolormap(&sc->sc_sunfb, ifb_setcolor);
517 	sc->sc_mode = WSDISPLAYIO_MODE_EMUL;
518 
519 	if (console)
520 		fbwscons_console_init(&sc->sc_sunfb, -1);
521 	fbwscons_attach(&sc->sc_sunfb, &ifb_accessops, console);
522 }
523 
524 /*
525  * Attempt to identify what kind of ifb we are talking to, so as to setup
526  * proper acceleration information.
527  */
528 int
529 ifb_accel_identify(const char *name)
530 {
531 	if (strcmp(name, "SUNW,Expert3D") == 0 ||
532 	    strcmp(name, "SUNW,Expert3D-Lite") == 0)
533 		return IFB_ACCEL_IFB;
534 
535 	if (strcmp(name, "SUNW,XVR-1200") == 0)
536 		return IFB_ACCEL_JFB;
537 
538 	/* XVR-500 is bobcat, XVR-600 is xvr600 */
539 
540 	return IFB_ACCEL_NONE;
541 }
542 
543 int
544 ifb_ioctl(void *v, u_long cmd, caddr_t data, int flags, struct proc *p)
545 {
546 	struct ifb_softc *sc = v;
547 	struct wsdisplay_fbinfo *wdf;
548 	struct pcisel *sel;
549 	int mode;
550 
551 	switch (cmd) {
552 	case WSDISPLAYIO_GTYPE:
553 		*(u_int *)data = WSDISPLAY_TYPE_IFB;
554 		break;
555 
556 	case WSDISPLAYIO_SMODE:
557 		mode = *(u_int *)data;
558 		if (mode == WSDISPLAYIO_MODE_EMUL)
559 			ifb_setcolormap(&sc->sc_sunfb, ifb_setcolor);
560 		sc->sc_mode = mode;
561 		break;
562 	case WSDISPLAYIO_GINFO:
563 		wdf = (void *)data;
564 		wdf->height = sc->sc_sunfb.sf_height;
565 		wdf->width  = sc->sc_sunfb.sf_width;
566 		wdf->depth  = sc->sc_sunfb.sf_depth;
567 		wdf->cmsize = 256;
568 		break;
569 	case WSDISPLAYIO_LINEBYTES:
570 		*(u_int *)data = sc->sc_sunfb.sf_linebytes;
571 		break;
572 
573 	case WSDISPLAYIO_GETCMAP:
574 		return ifb_getcmap(sc, (struct wsdisplay_cmap *)data);
575 	case WSDISPLAYIO_PUTCMAP:
576 		return ifb_putcmap(sc, (struct wsdisplay_cmap *)data);
577 
578 	case WSDISPLAYIO_GPCIID:
579 		sel = (struct pcisel *)data;
580 		sel->pc_bus = PCITAG_BUS(sc->sc_pcitag);
581 		sel->pc_dev = PCITAG_DEV(sc->sc_pcitag);
582 		sel->pc_func = PCITAG_FUN(sc->sc_pcitag);
583 		break;
584 
585 	case WSDISPLAYIO_SVIDEO:
586 	case WSDISPLAYIO_GVIDEO:
587 		break;
588 
589 	case WSDISPLAYIO_GCURPOS:
590 	case WSDISPLAYIO_SCURPOS:
591 	case WSDISPLAYIO_GCURMAX:
592 	case WSDISPLAYIO_GCURSOR:
593 	case WSDISPLAYIO_SCURSOR:
594 	default:
595 		return -1; /* not supported yet */
596         }
597 
598 	return 0;
599 }
600 
601 static inline
602 u_int
603 ifb_dac_value(u_int r, u_int g, u_int b)
604 {
605 	/*
606 	 * Convert 8 bit values to 10 bit scale, by shifting and inserting
607 	 * the former high bits in the low two bits.
608 	 * Simply shifting is sligthly too dull.
609 	 */
610 	r = (r << 2) | (r >> 6);
611 	g = (g << 2) | (g >> 6);
612 	b = (b << 2) | (b >> 6);
613 
614 	return (b << 20) | (g << 10) | r;
615 }
616 
617 int
618 ifb_getcmap(struct ifb_softc *sc, struct wsdisplay_cmap *cm)
619 {
620 	u_int index = cm->index;
621 	u_int count = cm->count;
622 	int error;
623 
624 	if (index >= 256 || count > 256 - index)
625 		return EINVAL;
626 
627 	error = copyout(&sc->sc_cmap_red[index], cm->red, count);
628 	if (error)
629 		return error;
630 	error = copyout(&sc->sc_cmap_green[index], cm->green, count);
631 	if (error)
632 		return error;
633 	error = copyout(&sc->sc_cmap_blue[index], cm->blue, count);
634 	if (error)
635 		return error;
636 	return 0;
637 }
638 
639 int
640 ifb_putcmap(struct ifb_softc *sc, struct wsdisplay_cmap *cm)
641 {
642 	u_int index = cm->index;
643 	u_int count = cm->count;
644 	u_int i;
645 	int error;
646 	u_char *r, *g, *b;
647 
648 	if (index >= 256 || count > 256 - index)
649 		return EINVAL;
650 
651 	if ((error = copyin(cm->red, &sc->sc_cmap_red[index], count)) != 0)
652 		return error;
653 	if ((error = copyin(cm->green, &sc->sc_cmap_green[index], count)) != 0)
654 		return error;
655 	if ((error = copyin(cm->blue, &sc->sc_cmap_blue[index], count)) != 0)
656 		return error;
657 
658 	r = &sc->sc_cmap_red[index];
659 	g = &sc->sc_cmap_green[index];
660 	b = &sc->sc_cmap_blue[index];
661 
662 	for (i = 0; i < count; i++) {
663 		bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h,
664 		    IFB_REG_CMAP_INDEX, index);
665 		bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h, IFB_REG_CMAP_DATA,
666 		    ifb_dac_value(*r, *g, *b));
667 		r++, g++, b++, index++;
668 	}
669 	return 0;
670 }
671 
672 void
673 ifb_setcolor(void *v, u_int index, u_int8_t r, u_int8_t g, u_int8_t b)
674 {
675 	struct ifb_softc *sc = v;
676 
677 	sc->sc_cmap_red[index] = r;
678 	sc->sc_cmap_green[index] = g;
679 	sc->sc_cmap_blue[index] = b;
680 
681 	bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h, IFB_REG_CMAP_INDEX,
682 	    index);
683 	bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h, IFB_REG_CMAP_DATA,
684 	    ifb_dac_value(r, g, b));
685 }
686 
687 /* similar in spirit to fbwscons_setcolormap() */
688 void
689 ifb_setcolormap(struct sunfb *sf,
690     void (*setcolor)(void *, u_int, u_int8_t, u_int8_t, u_int8_t))
691 {
692 	struct rasops_info *ri = &sf->sf_ro;
693 	int i;
694 	const u_char *color;
695 
696 	/*
697 	 * Compensate for overlay plane limitations. Since we'll operate
698 	 * in 7bpp mode, our basic colors will use positions 00 to 0f,
699 	 * and the inverted colors will use positions 7f to 70.
700 	 */
701 
702 	for (i = 0x00; i < 0x10; i++) {
703 		color = &rasops_cmap[i * 3];
704 		setcolor(sf, i, color[0], color[1], color[2]);
705 	}
706 	for (i = 0x70; i < 0x80; i++) {
707 		color = &rasops_cmap[(0xf0 | i) * 3];
708 		setcolor(sf, i, color[0], color[1], color[2]);
709 	}
710 
711 	/*
712 	 * Proper operation apparently needs black to be 01, always.
713 	 * Replace black, red and white with white, black and red.
714 	 * Kind of ugly, but it works.
715 	 */
716 	ri->ri_devcmap[WSCOL_WHITE] = 0x00000000;
717 	ri->ri_devcmap[WSCOL_BLACK] = 0x01010101;
718 	ri->ri_devcmap[WSCOL_RED] = 0x07070707;
719 
720 	color = &rasops_cmap[(WSCOL_WHITE + 8) * 3];	/* real white */
721 	setcolor(sf, 0, color[0], color[1], color[2]);
722 	setcolor(sf, IFB_PIXELMASK ^ 0, ~color[0], ~color[1], ~color[2]);
723 	color = &rasops_cmap[WSCOL_BLACK * 3];
724 	setcolor(sf, 1, color[0], color[1], color[2]);
725 	setcolor(sf, IFB_PIXELMASK ^ 1, ~color[0], ~color[1], ~color[2]);
726 	color = &rasops_cmap[WSCOL_RED * 3];
727 	setcolor(sf, 7, color[0], color[1], color[2]);
728 	setcolor(sf, IFB_PIXELMASK ^ 7, ~color[0], ~color[1], ~color[2]);
729 }
730 
731 paddr_t
732 ifb_mmap(void *v, off_t off, int prot)
733 {
734 	struct ifb_softc *sc = (struct ifb_softc *)v;
735 
736 	switch (sc->sc_mode) {
737 	case WSDISPLAYIO_MODE_MAPPED:
738 		/*
739 		 * In mapped mode, provide access to the two overlays,
740 		 * followed by the control registers, at the following
741 		 * addresses:
742 		 * 00000000	overlay 0, size up to 2MB (visible fb size)
743 		 * 01000000	overlay 1, size up to 2MB (visible fb size)
744 		 * 02000000	control registers
745 		 */
746 		off -= 0x00000000;
747 		if (off >= 0 && off < round_page(sc->sc_sunfb.sf_fbsize)) {
748 			return bus_space_mmap(sc->sc_mem_t,
749 			    sc->sc_fb8bank0_base,
750 			    off, prot, BUS_SPACE_MAP_LINEAR);
751 		}
752 		off -= 0x01000000;
753 		if (off >= 0 && off < round_page(sc->sc_sunfb.sf_fbsize)) {
754 			return bus_space_mmap(sc->sc_mem_t,
755 			    sc->sc_fb8bank1_base,
756 			    off, prot, BUS_SPACE_MAP_LINEAR);
757 		}
758 #ifdef APERTURE
759 		off -= 0x01000000;
760 		if (allowaperture != 0 && sc->sc_acceltype != IFB_ACCEL_NONE) {
761 			if (off >= 0 && off < round_page(sc->sc_reglen)) {
762 				return bus_space_mmap(sc->sc_mem_t,
763 				    sc->sc_regbase,
764 				    off, prot, BUS_SPACE_MAP_LINEAR);
765 			}
766 		}
767 #endif
768 		break;
769 	}
770 
771 	return -1;
772 }
773 
774 void
775 ifb_burner(void *v, u_int on, u_int flags)
776 {
777 	struct ifb_softc *sc = (struct ifb_softc *)v;
778 	int s;
779 	uint32_t dpms;
780 
781 	s = splhigh();
782 	if (on)
783 		dpms = IFB_REG_DPMS_ON;
784 	else {
785 #ifdef notyet
786 		if (flags & WSDISPLAY_BURN_VBLANK)
787 			dpms = IFB_REG_DPMS_SUSPEND;
788 		else
789 #endif
790 			dpms = IFB_REG_DPMS_STANDBY;
791 	}
792 	bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h, IFB_REG_DPMS_STATE, dpms);
793 	splx(s);
794 }
795 
796 static inline int
797 ifb_is_console(int node)
798 {
799 	extern int fbnode;
800 
801 	return fbnode == node;
802 }
803 
804 int
805 ifb_mapregs(struct ifb_softc *sc, struct pci_attach_args *pa)
806 {
807 	u_int32_t cf;
808 	int bar, rc;
809 
810 	cf = pci_conf_read(pa->pa_pc, pa->pa_tag, IFB_PCI_CFG);
811 	bar = PCI_MAPREG_START + IFB_PCI_CFG_BAR_OFFSET(cf);
812 
813 	cf = pci_conf_read(pa->pa_pc, pa->pa_tag, bar);
814 	if (PCI_MAPREG_TYPE(cf) == PCI_MAPREG_TYPE_IO)
815 		rc = EINVAL;
816 	else {
817 		rc = pci_mapreg_map(pa, bar, cf,
818 		    BUS_SPACE_MAP_LINEAR, NULL, &sc->sc_mem_h,
819 		    &sc->sc_membase, &sc->sc_memlen, 0);
820 	}
821 	if (rc != 0) {
822 		printf("\n%s: can't map video memory\n",
823 		    sc->sc_sunfb.sf_dev.dv_xname);
824 		return rc;
825 	}
826 
827 	cf = pci_conf_read(pa->pa_pc, pa->pa_tag, bar + 4);
828 	if (PCI_MAPREG_TYPE(cf) == PCI_MAPREG_TYPE_IO)
829 		rc = EINVAL;
830 	else {
831 		rc = pci_mapreg_map(pa, bar + 4, cf,
832 		    0, NULL, &sc->sc_reg_h,
833 		     &sc->sc_regbase, &sc->sc_reglen, 0x9000);
834 	}
835 	if (rc != 0) {
836 		printf("\n%s: can't map register space\n",
837 		    sc->sc_sunfb.sf_dev.dv_xname);
838 		return rc;
839 	}
840 
841 	return 0;
842 }
843 
844 /*
845  * Non accelerated routines.
846  */
847 
848 int
849 ifb_putchar_dumb(void *cookie, int row, int col, u_int uc, long attr)
850 {
851 	struct rasops_info *ri = cookie;
852 	struct ifb_softc *sc = ri->ri_hw;
853 
854 	ri->ri_bits = (void *)sc->sc_fb8bank0_vaddr;
855 	sc->sc_old_ops.putchar(cookie, row, col, uc, attr);
856 	ri->ri_bits = (void *)sc->sc_fb8bank1_vaddr;
857 	sc->sc_old_ops.putchar(cookie, row, col, uc, attr);
858 
859 	return 0;
860 }
861 
862 int
863 ifb_copycols_dumb(void *cookie, int row, int src, int dst, int num)
864 {
865 	struct rasops_info *ri = cookie;
866 	struct ifb_softc *sc = ri->ri_hw;
867 
868 	ri->ri_bits = (void *)sc->sc_fb8bank0_vaddr;
869 	sc->sc_old_ops.copycols(cookie, row, src, dst, num);
870 	ri->ri_bits = (void *)sc->sc_fb8bank1_vaddr;
871 	sc->sc_old_ops.copycols(cookie, row, src, dst, num);
872 
873 	return 0;
874 }
875 
876 int
877 ifb_erasecols_dumb(void *cookie, int row, int col, int num, long attr)
878 {
879 	struct rasops_info *ri = cookie;
880 	struct ifb_softc *sc = ri->ri_hw;
881 
882 	ri->ri_bits = (void *)sc->sc_fb8bank0_vaddr;
883 	sc->sc_old_ops.erasecols(cookie, row, col, num, attr);
884 	ri->ri_bits = (void *)sc->sc_fb8bank1_vaddr;
885 	sc->sc_old_ops.erasecols(cookie, row, col, num, attr);
886 
887 	return 0;
888 }
889 
890 int
891 ifb_copyrows_dumb(void *cookie, int src, int dst, int num)
892 {
893 	struct rasops_info *ri = cookie;
894 	struct ifb_softc *sc = ri->ri_hw;
895 
896 	ri->ri_bits = (void *)sc->sc_fb8bank0_vaddr;
897 	sc->sc_old_ops.copyrows(cookie, src, dst, num);
898 	ri->ri_bits = (void *)sc->sc_fb8bank1_vaddr;
899 	sc->sc_old_ops.copyrows(cookie, src, dst, num);
900 
901 	return 0;
902 }
903 
904 int
905 ifb_eraserows_dumb(void *cookie, int row, int num, long attr)
906 {
907 	struct rasops_info *ri = cookie;
908 	struct ifb_softc *sc = ri->ri_hw;
909 
910 	ri->ri_bits = (void *)sc->sc_fb8bank0_vaddr;
911 	sc->sc_old_ops.eraserows(cookie, row, num, attr);
912 	ri->ri_bits = (void *)sc->sc_fb8bank1_vaddr;
913 	sc->sc_old_ops.eraserows(cookie, row, num, attr);
914 
915 	return 0;
916 }
917 
918 /* Similar to rasops_do_cursor(), but using a 7bit pixel mask. */
919 
920 #define	CURSOR_MASK	0x7f7f7f7f
921 
922 int
923 ifb_do_cursor_dumb(struct rasops_info *ri)
924 {
925 	struct ifb_softc *sc = ri->ri_hw;
926 	int full1, height, cnt, slop1, slop2, row, col;
927 	int ovl_offset = sc->sc_fb8bank1_vaddr - sc->sc_fb8bank0_vaddr;
928 	u_char *dp0, *dp1, *rp;
929 
930 	row = ri->ri_crow;
931 	col = ri->ri_ccol;
932 
933 	ri->ri_bits = (void *)sc->sc_fb8bank0_vaddr;
934 	rp = ri->ri_bits + row * ri->ri_yscale + col * ri->ri_xscale;
935 	height = ri->ri_font->fontheight;
936 	slop1 = (4 - ((long)rp & 3)) & 3;
937 
938 	if (slop1 > ri->ri_xscale)
939 		slop1 = ri->ri_xscale;
940 
941 	slop2 = (ri->ri_xscale - slop1) & 3;
942 	full1 = (ri->ri_xscale - slop1 - slop2) >> 2;
943 
944 	if ((slop1 | slop2) == 0) {
945 		/* A common case */
946 		while (height--) {
947 			dp0 = rp;
948 			dp1 = dp0 + ovl_offset;
949 			rp += ri->ri_stride;
950 
951 			for (cnt = full1; cnt; cnt--) {
952 				*(int32_t *)dp0 ^= CURSOR_MASK;
953 				*(int32_t *)dp1 ^= CURSOR_MASK;
954 				dp0 += 4;
955 				dp1 += 4;
956 			}
957 		}
958 	} else {
959 		/* XXX this is stupid.. use masks instead */
960 		while (height--) {
961 			dp0 = rp;
962 			dp1 = dp0 + ovl_offset;
963 			rp += ri->ri_stride;
964 
965 			if (slop1 & 1) {
966 				*dp0++ ^= (u_char)CURSOR_MASK;
967 				*dp1++ ^= (u_char)CURSOR_MASK;
968 			}
969 
970 			if (slop1 & 2) {
971 				*(int16_t *)dp0 ^= (int16_t)CURSOR_MASK;
972 				*(int16_t *)dp1 ^= (int16_t)CURSOR_MASK;
973 				dp0 += 2;
974 				dp1 += 2;
975 			}
976 
977 			for (cnt = full1; cnt; cnt--) {
978 				*(int32_t *)dp0 ^= CURSOR_MASK;
979 				*(int32_t *)dp1 ^= CURSOR_MASK;
980 				dp0 += 4;
981 				dp1 += 4;
982 			}
983 
984 			if (slop2 & 1) {
985 				*dp0++ ^= (u_char)CURSOR_MASK;
986 				*dp1++ ^= (u_char)CURSOR_MASK;
987 			}
988 
989 			if (slop2 & 2) {
990 				*(int16_t *)dp0 ^= (int16_t)CURSOR_MASK;
991 				*(int16_t *)dp1 ^= (int16_t)CURSOR_MASK;
992 			}
993 		}
994 	}
995 
996 	return 0;
997 }
998 
999 /*
1000  * Accelerated routines.
1001  */
1002 
1003 int
1004 ifb_copycols(void *cookie, int row, int src, int dst, int num)
1005 {
1006 	struct rasops_info *ri = cookie;
1007 	struct ifb_softc *sc = ri->ri_hw;
1008 
1009 	num *= ri->ri_font->fontwidth;
1010 	src *= ri->ri_font->fontwidth;
1011 	dst *= ri->ri_font->fontwidth;
1012 	row *= ri->ri_font->fontheight;
1013 
1014 	ifb_copyrect(sc, ri->ri_xorigin + src, ri->ri_yorigin + row,
1015 	    ri->ri_xorigin + dst, ri->ri_yorigin + row,
1016 	    num, ri->ri_font->fontheight);
1017 
1018 	return 0;
1019 }
1020 
1021 int
1022 ifb_erasecols(void *cookie, int row, int col, int num, long attr)
1023 {
1024 	struct rasops_info *ri = cookie;
1025 	struct ifb_softc *sc = ri->ri_hw;
1026 	int bg, fg;
1027 
1028 	ri->ri_ops.unpack_attr(cookie, attr, &fg, &bg, NULL);
1029 
1030 	row *= ri->ri_font->fontheight;
1031 	col *= ri->ri_font->fontwidth;
1032 	num *= ri->ri_font->fontwidth;
1033 
1034 	ifb_fillrect(sc, ri->ri_xorigin + col, ri->ri_yorigin + row,
1035 	    num, ri->ri_font->fontheight, ri->ri_devcmap[bg]);
1036 
1037 	return 0;
1038 }
1039 
1040 int
1041 ifb_copyrows(void *cookie, int src, int dst, int num)
1042 {
1043 	struct rasops_info *ri = cookie;
1044 	struct ifb_softc *sc = ri->ri_hw;
1045 
1046 	num *= ri->ri_font->fontheight;
1047 	src *= ri->ri_font->fontheight;
1048 	dst *= ri->ri_font->fontheight;
1049 
1050 	ifb_copyrect(sc, ri->ri_xorigin, ri->ri_yorigin + src,
1051 	    ri->ri_xorigin, ri->ri_yorigin + dst, ri->ri_emuwidth, num);
1052 
1053 	return 0;
1054 }
1055 
1056 int
1057 ifb_eraserows(void *cookie, int row, int num, long attr)
1058 {
1059 	struct rasops_info *ri = cookie;
1060 	struct ifb_softc *sc = ri->ri_hw;
1061 	int bg, fg;
1062 	int x, y, w;
1063 
1064 	ri->ri_ops.unpack_attr(cookie, attr, &fg, &bg, NULL);
1065 
1066 	if ((num == ri->ri_rows) && ISSET(ri->ri_flg, RI_FULLCLEAR)) {
1067 		num = ri->ri_height;
1068 		x = y = 0;
1069 		w = ri->ri_width;
1070 	} else {
1071 		num *= ri->ri_font->fontheight;
1072 		x = ri->ri_xorigin;
1073 		y = ri->ri_yorigin + row * ri->ri_font->fontheight;
1074 		w = ri->ri_emuwidth;
1075 	}
1076 	ifb_fillrect(sc, x, y, w, num, ri->ri_devcmap[bg]);
1077 
1078 	return 0;
1079 }
1080 
1081 void
1082 ifb_copyrect(struct ifb_softc *sc, int sx, int sy, int dx, int dy, int w, int h)
1083 {
1084 	ifb_rop(sc, sx, sy, dx, dy, w, h, IFB_ROP_SRC, IFB_PIXELMASK);
1085 	ifb_rop_wait(sc);
1086 }
1087 
1088 void
1089 ifb_fillrect(struct ifb_softc *sc, int x, int y, int w, int h, int bg)
1090 {
1091 	int32_t mask;
1092 
1093 	/* pixels to set... */
1094 	mask = IFB_PIXELMASK & bg;
1095 	if (mask != 0) {
1096 		ifb_rop(sc, x, y, x, y, w, h, IFB_ROP_SET, mask);
1097 		ifb_rop_wait(sc);
1098 	}
1099 
1100 	/* pixels to clear... */
1101 	mask = IFB_PIXELMASK & ~bg;
1102 	if (mask != 0) {
1103 		ifb_rop(sc, x, y, x, y, w, h, IFB_ROP_CLEAR, mask);
1104 		ifb_rop_wait(sc);
1105 	}
1106 }
1107 
1108 /*
1109  * Perform a raster operation on both overlay planes.
1110  * Puzzled by all the magic numbers in there? So are we. Isn't a dire
1111  * lack of documentation wonderful?
1112  */
1113 
1114 static inline void
1115 ifb_rop(struct ifb_softc *sc, int sx, int sy, int dx, int dy, int w, int h,
1116     uint32_t rop, int32_t planemask)
1117 {
1118 	(*sc->sc_rop)(sc, sx, sy, dx, dy, w, h, rop, planemask);
1119 }
1120 
1121 void
1122 ifb_rop_common(struct ifb_softc *sc, bus_addr_t reg, int sx, int sy,
1123     int dx, int dy, int w, int h, uint32_t rop, int32_t planemask)
1124 {
1125 	int dir = 0;
1126 
1127 	/*
1128 	 * Compute rop direction. This only really matters for
1129 	 * screen-to-screen copies.
1130 	 */
1131 	if (sy < dy /* && sy + h > dy */) {
1132 		sy += h - 1;
1133 		dy += h;
1134 		dir |= IFB_BLT_DIR_BACKWARDS_Y;
1135 	}
1136 	if (sx < dx /* && sx + w > dx */) {
1137 		sx += w - 1;
1138 		dx += w;
1139 		dir |= IFB_BLT_DIR_BACKWARDS_X;
1140 	}
1141 
1142 	/* Which one of those below is your magic number for today? */
1143 	bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h, reg, 0x61000001);
1144 	bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h, reg, 0);
1145 	bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h, reg, 0x6301c080);
1146 	bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h, reg, 0x80000000);
1147 	bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h, reg, rop);
1148 	bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h, reg, planemask);
1149 	bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h, reg, 0);
1150 	bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h, reg, 0x64000303);
1151 	/*
1152 	 * This value is a pixel offset within the destination area. It is
1153 	 * probably used to define complex polygon shapes, with the
1154 	 * last pixel in the list being back to (0,0).
1155 	 */
1156 	bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h, reg, IFB_COORDS(0, 0));
1157 	bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h, reg, 0);
1158 	bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h, reg, 0x00030000);
1159 	bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h, reg, 0x2200010d);
1160 
1161 	bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h, reg, 0x33f01000 | dir);
1162 	bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h, reg, IFB_COORDS(dx, dy));
1163 	bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h, reg, IFB_COORDS(w, h));
1164 	bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h, reg, IFB_COORDS(sx, sy));
1165 }
1166 
1167 void
1168 ifb_rop_ifb(void *v, int sx, int sy, int dx, int dy, int w, int h,
1169     uint32_t rop, int32_t planemask)
1170 {
1171 	struct ifb_softc *sc = (struct ifb_softc *)v;
1172 	bus_addr_t reg = IFB_REG_ENGINE;
1173 
1174 	bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h, reg, 2);
1175 	bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h, reg, 1);
1176 	/* the ``0101'' part is probably a component selection */
1177 	bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h, reg, 0x540101ff);
1178 
1179 	ifb_rop_common(sc, reg, sx, sy, dx, dy, w, h, rop, planemask);
1180 }
1181 
1182 void
1183 ifb_rop_jfb(void *v, int sx, int sy, int dx, int dy, int w, int h,
1184     uint32_t rop, int32_t planemask)
1185 {
1186 	struct ifb_softc *sc = (struct ifb_softc *)v;
1187 	bus_addr_t reg = JFB_REG_ENGINE;
1188 	uint32_t spr, splr;
1189 
1190 	/*
1191 	 * Pick the current spr and splr values from the communication
1192 	 * area if possible.
1193 	 */
1194 	if (sc->sc_comm != NULL) {
1195 		spr = sc->sc_comm[IFB_SHARED_TERM8_SPR >> 2];
1196 		splr = sc->sc_comm[IFB_SHARED_TERM8_SPLR >> 2];
1197 	} else {
1198 		/* supposedly sane defaults */
1199 		spr = 0x54ff0303;
1200 		splr = 0x5c0000ff;
1201 	}
1202 
1203 	bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h, reg, 0x00400016);
1204 	bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h, reg, 0x5b000002);
1205 	bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h, reg, 0x5a000000);
1206 	bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h, reg, spr);
1207 	bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h, reg, splr);
1208 
1209 	ifb_rop_common(sc, reg, sx, sy, dx, dy, w, h, rop, planemask);
1210 
1211 	bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h, reg, 0x5a000001);
1212 	bus_space_write_4(sc->sc_mem_t, sc->sc_reg_h, reg, 0x5b000001);
1213 }
1214 
1215 int
1216 ifb_rop_wait(struct ifb_softc *sc)
1217 {
1218 	int i;
1219 
1220 	for (i = 1000000; i != 0; i--) {
1221 		if (bus_space_read_4(sc->sc_mem_t, sc->sc_reg_h,
1222 		    IFB_REG_STATUS) & IFB_REG_STATUS_DONE)
1223 			break;
1224 		DELAY(1);
1225 	}
1226 
1227 	return i;
1228 }
1229 
1230 int
1231 ifb_do_cursor(struct rasops_info *ri)
1232 {
1233 	struct ifb_softc *sc = ri->ri_hw;
1234 	int y, x;
1235 
1236 	y = ri->ri_yorigin + ri->ri_crow * ri->ri_font->fontheight;
1237 	x = ri->ri_xorigin + ri->ri_ccol * ri->ri_font->fontwidth;
1238 
1239 	ifb_rop(sc, x, y, x, y, ri->ri_font->fontwidth, ri->ri_font->fontheight,
1240 	    IFB_ROP_XOR, IFB_PIXELMASK);
1241 	ifb_rop_wait(sc);
1242 
1243 	return 0;
1244 }
1245