xref: /openbsd/sys/arch/sparc64/fpu/fpu_div.c (revision 09467b48)
1 /*	$OpenBSD: fpu_div.c,v 1.3 2013/11/26 20:33:15 deraadt Exp $	*/
2 /*	$NetBSD: fpu_div.c,v 1.2 1994/11/20 20:52:38 deraadt Exp $ */
3 
4 /*
5  * Copyright (c) 1992, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This software was developed by the Computer Systems Engineering group
9  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
10  * contributed to Berkeley.
11  *
12  * All advertising materials mentioning features or use of this software
13  * must display the following acknowledgement:
14  *	This product includes software developed by the University of
15  *	California, Lawrence Berkeley Laboratory.
16  *
17  * Redistribution and use in source and binary forms, with or without
18  * modification, are permitted provided that the following conditions
19  * are met:
20  * 1. Redistributions of source code must retain the above copyright
21  *    notice, this list of conditions and the following disclaimer.
22  * 2. Redistributions in binary form must reproduce the above copyright
23  *    notice, this list of conditions and the following disclaimer in the
24  *    documentation and/or other materials provided with the distribution.
25  * 3. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	@(#)fpu_div.c	8.1 (Berkeley) 6/11/93
42  */
43 
44 /*
45  * Perform an FPU divide (return x / y).
46  */
47 
48 #include <sys/types.h>
49 
50 #include <machine/reg.h>
51 
52 #include <sparc64/fpu/fpu_arith.h>
53 #include <sparc64/fpu/fpu_emu.h>
54 
55 /*
56  * Division of normal numbers is done as follows:
57  *
58  * x and y are floating point numbers, i.e., in the form 1.bbbb * 2^e.
59  * If X and Y are the mantissas (1.bbbb's), the quotient is then:
60  *
61  *	q = (X / Y) * 2^((x exponent) - (y exponent))
62  *
63  * Since X and Y are both in [1.0,2.0), the quotient's mantissa (X / Y)
64  * will be in [0.5,2.0).  Moreover, it will be less than 1.0 if and only
65  * if X < Y.  In that case, it will have to be shifted left one bit to
66  * become a normal number, and the exponent decremented.  Thus, the
67  * desired exponent is:
68  *
69  *	left_shift = x->fp_mant < y->fp_mant;
70  *	result_exp = x->fp_exp - y->fp_exp - left_shift;
71  *
72  * The quotient mantissa X/Y can then be computed one bit at a time
73  * using the following algorithm:
74  *
75  *	Q = 0;			-- Initial quotient.
76  *	R = X;			-- Initial remainder,
77  *	if (left_shift)		--   but fixed up in advance.
78  *		R *= 2;
79  *	for (bit = FP_NMANT; --bit >= 0; R *= 2) {
80  *		if (R >= Y) {
81  *			Q |= 1 << bit;
82  *			R -= Y;
83  *		}
84  *	}
85  *
86  * The subtraction R -= Y always removes the uppermost bit from R (and
87  * can sometimes remove additional lower-order 1 bits); this proof is
88  * left to the reader.
89  *
90  * This loop correctly calculates the guard and round bits since they are
91  * included in the expanded internal representation.  The sticky bit
92  * is to be set if and only if any other bits beyond guard and round
93  * would be set.  From the above it is obvious that this is true if and
94  * only if the remainder R is nonzero when the loop terminates.
95  *
96  * Examining the loop above, we can see that the quotient Q is built
97  * one bit at a time ``from the top down''.  This means that we can
98  * dispense with the multi-word arithmetic and just build it one word
99  * at a time, writing each result word when it is done.
100  *
101  * Furthermore, since X and Y are both in [1.0,2.0), we know that,
102  * initially, R >= Y.  (Recall that, if X < Y, R is set to X * 2 and
103  * is therefore at in [2.0,4.0).)  Thus Q is sure to have bit FP_NMANT-1
104  * set, and R can be set initially to either X - Y (when X >= Y) or
105  * 2X - Y (when X < Y).  In addition, comparing R and Y is difficult,
106  * so we will simply calculate R - Y and see if that underflows.
107  * This leads to the following revised version of the algorithm:
108  *
109  *	R = X;
110  *	bit = FP_1;
111  *	D = R - Y;
112  *	if (D >= 0) {
113  *		result_exp = x->fp_exp - y->fp_exp;
114  *		R = D;
115  *		q = bit;
116  *		bit >>= 1;
117  *	} else {
118  *		result_exp = x->fp_exp - y->fp_exp - 1;
119  *		q = 0;
120  *	}
121  *	R <<= 1;
122  *	do  {
123  *		D = R - Y;
124  *		if (D >= 0) {
125  *			q |= bit;
126  *			R = D;
127  *		}
128  *		R <<= 1;
129  *	} while ((bit >>= 1) != 0);
130  *	Q[0] = q;
131  *	for (i = 1; i < 4; i++) {
132  *		q = 0, bit = 1U << 31;
133  *		do {
134  *			D = R - Y;
135  *			if (D >= 0) {
136  *				q |= bit;
137  *				R = D;
138  *			}
139  *			R <<= 1;
140  *		} while ((bit >>= 1) != 0);
141  *		Q[i] = q;
142  *	}
143  *
144  * This can be refined just a bit further by moving the `R <<= 1'
145  * calculations to the front of the do-loops and eliding the first one.
146  * The process can be terminated immediately whenever R becomes 0, but
147  * this is relatively rare, and we do not bother.
148  */
149 
150 struct fpn *
151 fpu_div(fe)
152 	register struct fpemu *fe;
153 {
154 	register struct fpn *x = &fe->fe_f1, *y = &fe->fe_f2;
155 	register u_int q, bit;
156 	register u_int r0, r1, r2, r3, d0, d1, d2, d3, y0, y1, y2, y3;
157 	FPU_DECL_CARRY
158 
159 	/*
160 	 * Since divide is not commutative, we cannot just use ORDER.
161 	 * Check either operand for NaN first; if there is at least one,
162 	 * order the signalling one (if only one) onto the right, then
163 	 * return it.  Otherwise we have the following cases:
164 	 *
165 	 *	Inf / Inf = NaN, plus NV exception
166 	 *	Inf / num = Inf [i.e., return x]
167 	 *	Inf / 0   = Inf [i.e., return x]
168 	 *	0 / Inf = 0 [i.e., return x]
169 	 *	0 / num = 0 [i.e., return x]
170 	 *	0 / 0   = NaN, plus NV exception
171 	 *	num / Inf = 0
172 	 *	num / num = num (do the divide)
173 	 *	num / 0   = Inf, plus DZ exception
174 	 */
175 	if (ISNAN(x) || ISNAN(y)) {
176 		ORDER(x, y);
177 		return (y);
178 	}
179 	if (ISINF(x) || ISZERO(x)) {
180 		if (x->fp_class == y->fp_class)
181 			return (fpu_newnan(fe));
182 		return (x);
183 	}
184 
185 	/* all results at this point use XOR of operand signs */
186 	x->fp_sign ^= y->fp_sign;
187 	if (ISINF(y)) {
188 		x->fp_class = FPC_ZERO;
189 		return (x);
190 	}
191 	if (ISZERO(y)) {
192 		fe->fe_cx = FSR_DZ;
193 		x->fp_class = FPC_INF;
194 		return (x);
195 	}
196 
197 	/*
198 	 * Macros for the divide.  See comments at top for algorithm.
199 	 * Note that we expand R, D, and Y here.
200 	 */
201 
202 #define	SUBTRACT		/* D = R - Y */ \
203 	FPU_SUBS(d3, r3, y3); FPU_SUBCS(d2, r2, y2); \
204 	FPU_SUBCS(d1, r1, y1); FPU_SUBC(d0, r0, y0)
205 
206 #define	NONNEGATIVE		/* D >= 0 */ \
207 	((int)d0 >= 0)
208 
209 #ifdef FPU_SHL1_BY_ADD
210 #define	SHL1			/* R <<= 1 */ \
211 	FPU_ADDS(r3, r3, r3); FPU_ADDCS(r2, r2, r2); \
212 	FPU_ADDCS(r1, r1, r1); FPU_ADDC(r0, r0, r0)
213 #else
214 #define	SHL1 \
215 	r0 = (r0 << 1) | (r1 >> 31), r1 = (r1 << 1) | (r2 >> 31), \
216 	r2 = (r2 << 1) | (r3 >> 31), r3 <<= 1
217 #endif
218 
219 #define	LOOP			/* do ... while (bit >>= 1) */ \
220 	do { \
221 		SHL1; \
222 		SUBTRACT; \
223 		if (NONNEGATIVE) { \
224 			q |= bit; \
225 			r0 = d0, r1 = d1, r2 = d2, r3 = d3; \
226 		} \
227 	} while ((bit >>= 1) != 0)
228 
229 #define	WORD(r, i)			/* calculate r->fp_mant[i] */ \
230 	q = 0; \
231 	bit = 1U << 31; \
232 	LOOP; \
233 	(x)->fp_mant[i] = q
234 
235 	/* Setup.  Note that we put our result in x. */
236 	r0 = x->fp_mant[0];
237 	r1 = x->fp_mant[1];
238 	r2 = x->fp_mant[2];
239 	r3 = x->fp_mant[3];
240 	y0 = y->fp_mant[0];
241 	y1 = y->fp_mant[1];
242 	y2 = y->fp_mant[2];
243 	y3 = y->fp_mant[3];
244 
245 	bit = FP_1;
246 	SUBTRACT;
247 	if (NONNEGATIVE) {
248 		x->fp_exp -= y->fp_exp;
249 		r0 = d0, r1 = d1, r2 = d2, r3 = d3;
250 		q = bit;
251 		bit >>= 1;
252 	} else {
253 		x->fp_exp -= y->fp_exp + 1;
254 		q = 0;
255 	}
256 	LOOP;
257 	x->fp_mant[0] = q;
258 	WORD(x, 1);
259 	WORD(x, 2);
260 	WORD(x, 3);
261 	x->fp_sticky = r0 | r1 | r2 | r3;
262 
263 	return (x);
264 }
265