xref: /openbsd/sys/crypto/cryptosoft.c (revision 73471bf0)
1 /*	$OpenBSD: cryptosoft.c,v 1.91 2021/10/24 10:26:22 patrick Exp $	*/
2 
3 /*
4  * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
5  *
6  * This code was written by Angelos D. Keromytis in Athens, Greece, in
7  * February 2000. Network Security Technologies Inc. (NSTI) kindly
8  * supported the development of this code.
9  *
10  * Copyright (c) 2000, 2001 Angelos D. Keromytis
11  *
12  * Permission to use, copy, and modify this software with or without fee
13  * is hereby granted, provided that this entire notice is included in
14  * all source code copies of any software which is or includes a copy or
15  * modification of this software.
16  *
17  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
18  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
19  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
20  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
21  * PURPOSE.
22  */
23 
24 #include <sys/param.h>
25 #include <sys/systm.h>
26 #include <sys/malloc.h>
27 #include <sys/mbuf.h>
28 #include <sys/errno.h>
29 #include <crypto/md5.h>
30 #include <crypto/sha1.h>
31 #include <crypto/rmd160.h>
32 #include <crypto/cast.h>
33 #include <crypto/cryptodev.h>
34 #include <crypto/cryptosoft.h>
35 #include <crypto/xform.h>
36 
37 const u_int8_t hmac_ipad_buffer[HMAC_MAX_BLOCK_LEN] = {
38 	0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
39 	0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
40 	0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
41 	0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
42 	0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
43 	0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
44 	0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
45 	0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
46 	0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
47 	0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
48 	0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
49 	0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
50 	0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
51 	0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
52 	0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
53 	0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36
54 };
55 
56 const u_int8_t hmac_opad_buffer[HMAC_MAX_BLOCK_LEN] = {
57 	0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C,
58 	0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C,
59 	0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C,
60 	0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C,
61 	0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C,
62 	0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C,
63 	0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C,
64 	0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C,
65 	0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C,
66 	0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C,
67 	0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C,
68 	0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C,
69 	0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C,
70 	0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C,
71 	0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C,
72 	0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C
73 };
74 
75 
76 struct swcr_list *swcr_sessions = NULL;
77 u_int32_t swcr_sesnum = 0;
78 int32_t swcr_id = -1;
79 
80 #define COPYBACK(x, a, b, c, d) \
81 	do { \
82 		if ((x) == CRYPTO_BUF_MBUF) \
83 			m_copyback((struct mbuf *)a,b,c,d,M_NOWAIT); \
84 		else \
85 			cuio_copyback((struct uio *)a,b,c,d); \
86 	} while (0)
87 #define COPYDATA(x, a, b, c, d) \
88 	do { \
89 		if ((x) == CRYPTO_BUF_MBUF) \
90 			m_copydata((struct mbuf *)a,b,c,d); \
91 		else \
92 			cuio_copydata((struct uio *)a,b,c,d); \
93 	} while (0)
94 
95 /*
96  * Apply a symmetric encryption/decryption algorithm.
97  */
98 int
99 swcr_encdec(struct cryptodesc *crd, struct swcr_data *sw, caddr_t buf,
100     int outtype)
101 {
102 	unsigned char iv[EALG_MAX_BLOCK_LEN], blk[EALG_MAX_BLOCK_LEN], *idat;
103 	unsigned char *ivp, *nivp, iv2[EALG_MAX_BLOCK_LEN];
104 	const struct enc_xform *exf;
105 	int i, k, j, blks, ind, count, ivlen;
106 	struct mbuf *m = NULL;
107 	struct uio *uio = NULL;
108 
109 	exf = sw->sw_exf;
110 	blks = exf->blocksize;
111 	ivlen = exf->ivsize;
112 
113 	/* Check for non-padded data */
114 	if (crd->crd_len % blks)
115 		return EINVAL;
116 
117 	if (outtype == CRYPTO_BUF_MBUF)
118 		m = (struct mbuf *) buf;
119 	else
120 		uio = (struct uio *) buf;
121 
122 	/* Initialize the IV */
123 	if (crd->crd_flags & CRD_F_ENCRYPT) {
124 		/* IV explicitly provided ? */
125 		if (crd->crd_flags & CRD_F_IV_EXPLICIT)
126 			bcopy(crd->crd_iv, iv, ivlen);
127 		else
128 			arc4random_buf(iv, ivlen);
129 
130 		/* Do we need to write the IV */
131 		if (!(crd->crd_flags & CRD_F_IV_PRESENT))
132 			COPYBACK(outtype, buf, crd->crd_inject, ivlen, iv);
133 
134 	} else {	/* Decryption */
135 			/* IV explicitly provided ? */
136 		if (crd->crd_flags & CRD_F_IV_EXPLICIT)
137 			bcopy(crd->crd_iv, iv, ivlen);
138 		else {
139 			/* Get IV off buf */
140 			COPYDATA(outtype, buf, crd->crd_inject, ivlen, iv);
141 		}
142 	}
143 
144 	ivp = iv;
145 
146 	/*
147 	 * xforms that provide a reinit method perform all IV
148 	 * handling themselves.
149 	 */
150 	if (exf->reinit)
151 		exf->reinit(sw->sw_kschedule, iv);
152 
153 	if (outtype == CRYPTO_BUF_MBUF) {
154 		/* Find beginning of data */
155 		m = m_getptr(m, crd->crd_skip, &k);
156 		if (m == NULL)
157 			return EINVAL;
158 
159 		i = crd->crd_len;
160 
161 		while (i > 0) {
162 			/*
163 			 * If there's insufficient data at the end of
164 			 * an mbuf, we have to do some copying.
165 			 */
166 			if (m->m_len < k + blks && m->m_len != k) {
167 				m_copydata(m, k, blks, blk);
168 
169 				/* Actual encryption/decryption */
170 				if (exf->reinit) {
171 					if (crd->crd_flags & CRD_F_ENCRYPT) {
172 						exf->encrypt(sw->sw_kschedule,
173 						    blk);
174 					} else {
175 						exf->decrypt(sw->sw_kschedule,
176 						    blk);
177 					}
178 				} else if (crd->crd_flags & CRD_F_ENCRYPT) {
179 					/* XOR with previous block */
180 					for (j = 0; j < blks; j++)
181 						blk[j] ^= ivp[j];
182 
183 					exf->encrypt(sw->sw_kschedule, blk);
184 
185 					/*
186 					 * Keep encrypted block for XOR'ing
187 					 * with next block
188 					 */
189 					bcopy(blk, iv, blks);
190 					ivp = iv;
191 				} else {	/* decrypt */
192 					/*
193 					 * Keep encrypted block for XOR'ing
194 					 * with next block
195 					 */
196 					nivp = (ivp == iv) ? iv2 : iv;
197 					bcopy(blk, nivp, blks);
198 
199 					exf->decrypt(sw->sw_kschedule, blk);
200 
201 					/* XOR with previous block */
202 					for (j = 0; j < blks; j++)
203 						blk[j] ^= ivp[j];
204 					ivp = nivp;
205 				}
206 
207 				/* Copy back decrypted block */
208 				m_copyback(m, k, blks, blk, M_NOWAIT);
209 
210 				/* Advance pointer */
211 				m = m_getptr(m, k + blks, &k);
212 				if (m == NULL)
213 					return EINVAL;
214 
215 				i -= blks;
216 
217 				/* Could be done... */
218 				if (i == 0)
219 					break;
220 			}
221 
222 			/* Skip possibly empty mbufs */
223 			if (k == m->m_len) {
224 				for (m = m->m_next; m && m->m_len == 0;
225 				    m = m->m_next)
226 					;
227 				k = 0;
228 			}
229 
230 			/* Sanity check */
231 			if (m == NULL)
232 				return EINVAL;
233 
234 			/*
235 			 * Warning: idat may point to garbage here, but
236 			 * we only use it in the while() loop, only if
237 			 * there are indeed enough data.
238 			 */
239 			idat = mtod(m, unsigned char *) + k;
240 
241 			while (m->m_len >= k + blks && i > 0) {
242 				if (exf->reinit) {
243 					if (crd->crd_flags & CRD_F_ENCRYPT) {
244 						exf->encrypt(sw->sw_kschedule,
245 						    idat);
246 					} else {
247 						exf->decrypt(sw->sw_kschedule,
248 						    idat);
249 					}
250 				} else if (crd->crd_flags & CRD_F_ENCRYPT) {
251 					/* XOR with previous block/IV */
252 					for (j = 0; j < blks; j++)
253 						idat[j] ^= ivp[j];
254 
255 					exf->encrypt(sw->sw_kschedule, idat);
256 					ivp = idat;
257 				} else {	/* decrypt */
258 					/*
259 					 * Keep encrypted block to be used
260 					 * in next block's processing.
261 					 */
262 					nivp = (ivp == iv) ? iv2 : iv;
263 					bcopy(idat, nivp, blks);
264 
265 					exf->decrypt(sw->sw_kschedule, idat);
266 
267 					/* XOR with previous block/IV */
268 					for (j = 0; j < blks; j++)
269 						idat[j] ^= ivp[j];
270 					ivp = nivp;
271 				}
272 
273 				idat += blks;
274 				k += blks;
275 				i -= blks;
276 			}
277 		}
278 	} else {
279 		/* Find beginning of data */
280 		count = crd->crd_skip;
281 		ind = cuio_getptr(uio, count, &k);
282 		if (ind == -1)
283 			return EINVAL;
284 
285 		i = crd->crd_len;
286 
287 		while (i > 0) {
288 			/*
289 			 * If there's insufficient data at the end,
290 			 * we have to do some copying.
291 			 */
292 			if (uio->uio_iov[ind].iov_len < k + blks &&
293 			    uio->uio_iov[ind].iov_len != k) {
294 				cuio_copydata(uio, count, blks, blk);
295 
296 				/* Actual encryption/decryption */
297 				if (exf->reinit) {
298 					if (crd->crd_flags & CRD_F_ENCRYPT) {
299 						exf->encrypt(sw->sw_kschedule,
300 						    blk);
301 					} else {
302 						exf->decrypt(sw->sw_kschedule,
303 						    blk);
304 					}
305 				} else if (crd->crd_flags & CRD_F_ENCRYPT) {
306 					/* XOR with previous block */
307 					for (j = 0; j < blks; j++)
308 						blk[j] ^= ivp[j];
309 
310 					exf->encrypt(sw->sw_kschedule, blk);
311 
312 					/*
313 					 * Keep encrypted block for XOR'ing
314 					 * with next block
315 					 */
316 					bcopy(blk, iv, blks);
317 					ivp = iv;
318 				} else {	/* decrypt */
319 					/*
320 					 * Keep encrypted block for XOR'ing
321 					 * with next block
322 					 */
323 					nivp = (ivp == iv) ? iv2 : iv;
324 					bcopy(blk, nivp, blks);
325 
326 					exf->decrypt(sw->sw_kschedule, blk);
327 
328 					/* XOR with previous block */
329 					for (j = 0; j < blks; j++)
330 						blk[j] ^= ivp[j];
331 					ivp = nivp;
332 				}
333 
334 				/* Copy back decrypted block */
335 				cuio_copyback(uio, count, blks, blk);
336 
337 				count += blks;
338 
339 				/* Advance pointer */
340 				ind = cuio_getptr(uio, count, &k);
341 				if (ind == -1)
342 					return (EINVAL);
343 
344 				i -= blks;
345 
346 				/* Could be done... */
347 				if (i == 0)
348 					break;
349 			}
350 
351 			/*
352 			 * Warning: idat may point to garbage here, but
353 			 * we only use it in the while() loop, only if
354 			 * there are indeed enough data.
355 			 */
356 			idat = (char *)uio->uio_iov[ind].iov_base + k;
357 
358 			while (uio->uio_iov[ind].iov_len >= k + blks &&
359 			    i > 0) {
360 				if (exf->reinit) {
361 					if (crd->crd_flags & CRD_F_ENCRYPT) {
362 						exf->encrypt(sw->sw_kschedule,
363 						    idat);
364 					} else {
365 						exf->decrypt(sw->sw_kschedule,
366 						    idat);
367 					}
368 				} else if (crd->crd_flags & CRD_F_ENCRYPT) {
369 					/* XOR with previous block/IV */
370 					for (j = 0; j < blks; j++)
371 						idat[j] ^= ivp[j];
372 
373 					exf->encrypt(sw->sw_kschedule, idat);
374 					ivp = idat;
375 				} else {	/* decrypt */
376 					/*
377 					 * Keep encrypted block to be used
378 					 * in next block's processing.
379 					 */
380 					nivp = (ivp == iv) ? iv2 : iv;
381 					bcopy(idat, nivp, blks);
382 
383 					exf->decrypt(sw->sw_kschedule, idat);
384 
385 					/* XOR with previous block/IV */
386 					for (j = 0; j < blks; j++)
387 						idat[j] ^= ivp[j];
388 					ivp = nivp;
389 				}
390 
391 				idat += blks;
392 				count += blks;
393 				k += blks;
394 				i -= blks;
395 			}
396 
397 			/*
398 			 * Advance to the next iov if the end of the current iov
399 			 * is aligned with the end of a cipher block.
400 			 * Note that the code is equivalent to calling:
401 			 *	ind = cuio_getptr(uio, count, &k);
402 			 */
403 			if (i > 0 && k == uio->uio_iov[ind].iov_len) {
404 				k = 0;
405 				ind++;
406 				if (ind >= uio->uio_iovcnt)
407 					return (EINVAL);
408 			}
409 		}
410 	}
411 
412 	return 0; /* Done with encryption/decryption */
413 }
414 
415 /*
416  * Compute keyed-hash authenticator.
417  */
418 int
419 swcr_authcompute(struct cryptop *crp, struct cryptodesc *crd,
420     struct swcr_data *sw, caddr_t buf, int outtype)
421 {
422 	unsigned char aalg[AALG_MAX_RESULT_LEN];
423 	const struct auth_hash *axf;
424 	union authctx ctx;
425 	int err;
426 
427 	if (sw->sw_ictx == 0)
428 		return EINVAL;
429 
430 	axf = sw->sw_axf;
431 
432 	bcopy(sw->sw_ictx, &ctx, axf->ctxsize);
433 
434 	if (outtype == CRYPTO_BUF_MBUF)
435 		err = m_apply((struct mbuf *) buf, crd->crd_skip, crd->crd_len,
436 		    (int (*)(caddr_t, caddr_t, unsigned int)) axf->Update,
437 		    (caddr_t) &ctx);
438 	else
439 		err = cuio_apply((struct uio *) buf, crd->crd_skip,
440 		    crd->crd_len,
441 		    (int (*)(caddr_t, caddr_t, unsigned int)) axf->Update,
442 		    (caddr_t) &ctx);
443 
444 	if (err)
445 		return err;
446 
447 	if (crd->crd_flags & CRD_F_ESN)
448 		axf->Update(&ctx, crd->crd_esn, 4);
449 
450 	switch (sw->sw_alg) {
451 	case CRYPTO_MD5_HMAC:
452 	case CRYPTO_SHA1_HMAC:
453 	case CRYPTO_RIPEMD160_HMAC:
454 	case CRYPTO_SHA2_256_HMAC:
455 	case CRYPTO_SHA2_384_HMAC:
456 	case CRYPTO_SHA2_512_HMAC:
457 		if (sw->sw_octx == NULL)
458 			return EINVAL;
459 
460 		axf->Final(aalg, &ctx);
461 		bcopy(sw->sw_octx, &ctx, axf->ctxsize);
462 		axf->Update(&ctx, aalg, axf->hashsize);
463 		axf->Final(aalg, &ctx);
464 		break;
465 	}
466 
467 	/* Inject the authentication data */
468 	if (outtype == CRYPTO_BUF_MBUF)
469 		COPYBACK(outtype, buf, crd->crd_inject, axf->authsize, aalg);
470 	else
471 		bcopy(aalg, crp->crp_mac, axf->authsize);
472 
473 	return 0;
474 }
475 
476 /*
477  * Apply a combined encryption-authentication transformation
478  */
479 int
480 swcr_authenc(struct cryptop *crp)
481 {
482 	uint32_t blkbuf[howmany(EALG_MAX_BLOCK_LEN, sizeof(uint32_t))];
483 	u_char *blk = (u_char *)blkbuf;
484 	u_char aalg[AALG_MAX_RESULT_LEN];
485 	u_char iv[EALG_MAX_BLOCK_LEN];
486 	union authctx ctx;
487 	struct cryptodesc *crd, *crda = NULL, *crde = NULL;
488 	struct swcr_list *session;
489 	struct swcr_data *sw, *swa, *swe = NULL;
490 	const struct auth_hash *axf = NULL;
491 	const struct enc_xform *exf = NULL;
492 	caddr_t buf = (caddr_t)crp->crp_buf;
493 	uint32_t *blkp;
494 	int aadlen, blksz, i, ivlen, outtype, len, iskip, oskip;
495 
496 	ivlen = blksz = iskip = oskip = 0;
497 
498 	session = &swcr_sessions[crp->crp_sid & 0xffffffff];
499 	for (i = 0; i < crp->crp_ndesc; i++) {
500 		crd = &crp->crp_desc[i];
501 		SLIST_FOREACH(sw, session, sw_next) {
502 			if (sw->sw_alg == crd->crd_alg)
503 				break;
504 		}
505 		if (sw == NULL)
506 			return (EINVAL);
507 
508 		switch (sw->sw_alg) {
509 		case CRYPTO_AES_GCM_16:
510 		case CRYPTO_AES_GMAC:
511 		case CRYPTO_CHACHA20_POLY1305:
512 			swe = sw;
513 			crde = crd;
514 			exf = swe->sw_exf;
515 			ivlen = exf->ivsize;
516 			break;
517 		case CRYPTO_AES_128_GMAC:
518 		case CRYPTO_AES_192_GMAC:
519 		case CRYPTO_AES_256_GMAC:
520 		case CRYPTO_CHACHA20_POLY1305_MAC:
521 			swa = sw;
522 			crda = crd;
523 			axf = swa->sw_axf;
524 			if (swa->sw_ictx == 0)
525 				return (EINVAL);
526 			bcopy(swa->sw_ictx, &ctx, axf->ctxsize);
527 			blksz = axf->blocksize;
528 			break;
529 		default:
530 			return (EINVAL);
531 		}
532 	}
533 	if (crde == NULL || crda == NULL)
534 		return (EINVAL);
535 
536 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
537 		outtype = CRYPTO_BUF_MBUF;
538 	} else {
539 		outtype = CRYPTO_BUF_IOV;
540 	}
541 
542 	/* Initialize the IV */
543 	if (crde->crd_flags & CRD_F_ENCRYPT) {
544 		/* IV explicitly provided ? */
545 		if (crde->crd_flags & CRD_F_IV_EXPLICIT)
546 			bcopy(crde->crd_iv, iv, ivlen);
547 		else
548 			arc4random_buf(iv, ivlen);
549 
550 		/* Do we need to write the IV */
551 		if (!(crde->crd_flags & CRD_F_IV_PRESENT))
552 			COPYBACK(outtype, buf, crde->crd_inject, ivlen, iv);
553 
554 	} else {	/* Decryption */
555 			/* IV explicitly provided ? */
556 		if (crde->crd_flags & CRD_F_IV_EXPLICIT)
557 			bcopy(crde->crd_iv, iv, ivlen);
558 		else {
559 			/* Get IV off buf */
560 			COPYDATA(outtype, buf, crde->crd_inject, ivlen, iv);
561 		}
562 	}
563 
564 	/* Supply MAC with IV */
565 	if (axf->Reinit)
566 		axf->Reinit(&ctx, iv, ivlen);
567 
568 	/* Supply MAC with AAD */
569 	aadlen = crda->crd_len;
570 	/*
571 	 * Section 5 of RFC 4106 specifies that AAD construction consists of
572 	 * {SPI, ESN, SN} whereas the real packet contains only {SPI, SN}.
573 	 * Unfortunately it doesn't follow a good example set in the Section
574 	 * 3.3.2.1 of RFC 4303 where upper part of the ESN, located in the
575 	 * external (to the packet) memory buffer, is processed by the hash
576 	 * function in the end thus allowing to retain simple programming
577 	 * interfaces and avoid kludges like the one below.
578 	 */
579 	if (crda->crd_flags & CRD_F_ESN) {
580 		aadlen += 4;
581 		/* SPI */
582 		COPYDATA(outtype, buf, crda->crd_skip, 4, blk);
583 		iskip = 4; /* loop below will start with an offset of 4 */
584 		/* ESN */
585 		bcopy(crda->crd_esn, blk + 4, 4);
586 		oskip = iskip + 4; /* offset output buffer blk by 8 */
587 	}
588 	for (i = iskip; i < crda->crd_len; i += axf->hashsize) {
589 		len = MIN(crda->crd_len - i, axf->hashsize - oskip);
590 		COPYDATA(outtype, buf, crda->crd_skip + i, len, blk + oskip);
591 		bzero(blk + len + oskip, axf->hashsize - len - oskip);
592 		axf->Update(&ctx, blk, axf->hashsize);
593 		oskip = 0; /* reset initial output offset */
594 	}
595 
596 	if (exf->reinit)
597 		exf->reinit(swe->sw_kschedule, iv);
598 
599 	/* Do encryption/decryption with MAC */
600 	for (i = 0; i < crde->crd_len; i += blksz) {
601 		len = MIN(crde->crd_len - i, blksz);
602 		if (len < blksz)
603 			bzero(blk, blksz);
604 		COPYDATA(outtype, buf, crde->crd_skip + i, len, blk);
605 		if (crde->crd_flags & CRD_F_ENCRYPT) {
606 			exf->encrypt(swe->sw_kschedule, blk);
607 			axf->Update(&ctx, blk, len);
608 		} else {
609 			axf->Update(&ctx, blk, len);
610 			exf->decrypt(swe->sw_kschedule, blk);
611 		}
612 		COPYBACK(outtype, buf, crde->crd_skip + i, len, blk);
613 	}
614 
615 	/* Do any required special finalization */
616 	switch (crda->crd_alg) {
617 		case CRYPTO_AES_128_GMAC:
618 		case CRYPTO_AES_192_GMAC:
619 		case CRYPTO_AES_256_GMAC:
620 			/* length block */
621 			bzero(blk, axf->hashsize);
622 			blkp = (uint32_t *)blk + 1;
623 			*blkp = htobe32(aadlen * 8);
624 			blkp = (uint32_t *)blk + 3;
625 			*blkp = htobe32(crde->crd_len * 8);
626 			axf->Update(&ctx, blk, axf->hashsize);
627 			break;
628 		case CRYPTO_CHACHA20_POLY1305_MAC:
629 			/* length block */
630 			bzero(blk, axf->hashsize);
631 			blkp = (uint32_t *)blk;
632 			*blkp = htole32(aadlen);
633 			blkp = (uint32_t *)blk + 2;
634 			*blkp = htole32(crde->crd_len);
635 			axf->Update(&ctx, blk, axf->hashsize);
636 			break;
637 	}
638 
639 	/* Finalize MAC */
640 	axf->Final(aalg, &ctx);
641 
642 	/* Inject the authentication data */
643 	if (outtype == CRYPTO_BUF_MBUF)
644 		COPYBACK(outtype, buf, crda->crd_inject, axf->authsize, aalg);
645 	else
646 		bcopy(aalg, crp->crp_mac, axf->authsize);
647 
648 	return (0);
649 }
650 
651 /*
652  * Apply a compression/decompression algorithm
653  */
654 int
655 swcr_compdec(struct cryptodesc *crd, struct swcr_data *sw,
656     caddr_t buf, int outtype)
657 {
658 	u_int8_t *data, *out;
659 	const struct comp_algo *cxf;
660 	int adj;
661 	u_int32_t result;
662 
663 	cxf = sw->sw_cxf;
664 
665 	/* We must handle the whole buffer of data in one time
666 	 * then if there is not all the data in the mbuf, we must
667 	 * copy in a buffer.
668 	 */
669 
670 	data = malloc(crd->crd_len, M_CRYPTO_DATA, M_NOWAIT);
671 	if (data == NULL)
672 		return (EINVAL);
673 	COPYDATA(outtype, buf, crd->crd_skip, crd->crd_len, data);
674 
675 	if (crd->crd_flags & CRD_F_COMP)
676 		result = cxf->compress(data, crd->crd_len, &out);
677 	else
678 		result = cxf->decompress(data, crd->crd_len, &out);
679 
680 	free(data, M_CRYPTO_DATA, crd->crd_len);
681 	if (result == 0)
682 		return EINVAL;
683 
684 	/* Copy back the (de)compressed data. m_copyback is
685 	 * extending the mbuf as necessary.
686 	 */
687 	sw->sw_size = result;
688 	/* Check the compressed size when doing compression */
689 	if (crd->crd_flags & CRD_F_COMP) {
690 		if (result > crd->crd_len) {
691 			/* Compression was useless, we lost time */
692 			free(out, M_CRYPTO_DATA, result);
693 			return 0;
694 		}
695 	}
696 
697 	COPYBACK(outtype, buf, crd->crd_skip, result, out);
698 	if (result < crd->crd_len) {
699 		adj = result - crd->crd_len;
700 		if (outtype == CRYPTO_BUF_MBUF) {
701 			adj = result - crd->crd_len;
702 			m_adj((struct mbuf *)buf, adj);
703 		} else {
704 			struct uio *uio = (struct uio *)buf;
705 			int ind;
706 
707 			adj = crd->crd_len - result;
708 			ind = uio->uio_iovcnt - 1;
709 
710 			while (adj > 0 && ind >= 0) {
711 				if (adj < uio->uio_iov[ind].iov_len) {
712 					uio->uio_iov[ind].iov_len -= adj;
713 					break;
714 				}
715 
716 				adj -= uio->uio_iov[ind].iov_len;
717 				uio->uio_iov[ind].iov_len = 0;
718 				ind--;
719 				uio->uio_iovcnt--;
720 			}
721 		}
722 	}
723 	free(out, M_CRYPTO_DATA, result);
724 	return 0;
725 }
726 
727 /*
728  * Generate a new software session.
729  */
730 int
731 swcr_newsession(u_int32_t *sid, struct cryptoini *cri)
732 {
733 	struct swcr_list *session;
734 	struct swcr_data *swd, *prev;
735 	const struct auth_hash *axf;
736 	const struct enc_xform *txf;
737 	const struct comp_algo *cxf;
738 	u_int32_t i;
739 	int k;
740 
741 	if (sid == NULL || cri == NULL)
742 		return EINVAL;
743 
744 	if (swcr_sessions != NULL) {
745 		for (i = 1; i < swcr_sesnum; i++)
746 			if (SLIST_EMPTY(&swcr_sessions[i]))
747 				break;
748 	}
749 
750 	if (swcr_sessions == NULL || i == swcr_sesnum) {
751 		if (swcr_sessions == NULL) {
752 			i = 1; /* We leave swcr_sessions[0] empty */
753 			swcr_sesnum = CRYPTO_SW_SESSIONS;
754 		} else
755 			swcr_sesnum *= 2;
756 
757 		session = mallocarray(swcr_sesnum, sizeof(struct swcr_list),
758 		    M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
759 		if (session == NULL) {
760 			/* Reset session number */
761 			if (swcr_sesnum == CRYPTO_SW_SESSIONS)
762 				swcr_sesnum = 0;
763 			else
764 				swcr_sesnum /= 2;
765 			return ENOBUFS;
766 		}
767 
768 		/* Copy existing sessions */
769 		if (swcr_sessions) {
770 			bcopy(swcr_sessions, session,
771 			    (swcr_sesnum / 2) * sizeof(struct swcr_list));
772 			free(swcr_sessions, M_CRYPTO_DATA,
773 			    (swcr_sesnum / 2) * sizeof(struct swcr_list));
774 		}
775 
776 		swcr_sessions = session;
777 	}
778 
779 	session = &swcr_sessions[i];
780 	*sid = i;
781 	prev = NULL;
782 
783 	while (cri) {
784 		swd = malloc(sizeof(struct swcr_data), M_CRYPTO_DATA,
785 		    M_NOWAIT | M_ZERO);
786 		if (swd == NULL) {
787 			swcr_freesession(i);
788 			return ENOBUFS;
789 		}
790 		if (prev == NULL)
791 			SLIST_INSERT_HEAD(session, swd, sw_next);
792 		else
793 			SLIST_INSERT_AFTER(prev, swd, sw_next);
794 
795 		switch (cri->cri_alg) {
796 		case CRYPTO_3DES_CBC:
797 			txf = &enc_xform_3des;
798 			goto enccommon;
799 		case CRYPTO_BLF_CBC:
800 			txf = &enc_xform_blf;
801 			goto enccommon;
802 		case CRYPTO_CAST_CBC:
803 			txf = &enc_xform_cast5;
804 			goto enccommon;
805 		case CRYPTO_AES_CBC:
806 			txf = &enc_xform_aes;
807 			goto enccommon;
808 		case CRYPTO_AES_CTR:
809 			txf = &enc_xform_aes_ctr;
810 			goto enccommon;
811 		case CRYPTO_AES_XTS:
812 			txf = &enc_xform_aes_xts;
813 			goto enccommon;
814 		case CRYPTO_AES_GCM_16:
815 			txf = &enc_xform_aes_gcm;
816 			goto enccommon;
817 		case CRYPTO_AES_GMAC:
818 			txf = &enc_xform_aes_gmac;
819 			swd->sw_exf = txf;
820 			break;
821 		case CRYPTO_CHACHA20_POLY1305:
822 			txf = &enc_xform_chacha20_poly1305;
823 			goto enccommon;
824 		case CRYPTO_NULL:
825 			txf = &enc_xform_null;
826 			goto enccommon;
827 		enccommon:
828 			if (txf->ctxsize > 0) {
829 				swd->sw_kschedule = malloc(txf->ctxsize,
830 				    M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
831 				if (swd->sw_kschedule == NULL) {
832 					swcr_freesession(i);
833 					return EINVAL;
834 				}
835 			}
836 			if (txf->setkey(swd->sw_kschedule, cri->cri_key,
837 			    cri->cri_klen / 8) < 0) {
838 				swcr_freesession(i);
839 				return EINVAL;
840 			}
841 			swd->sw_exf = txf;
842 			break;
843 
844 		case CRYPTO_MD5_HMAC:
845 			axf = &auth_hash_hmac_md5_96;
846 			goto authcommon;
847 		case CRYPTO_SHA1_HMAC:
848 			axf = &auth_hash_hmac_sha1_96;
849 			goto authcommon;
850 		case CRYPTO_RIPEMD160_HMAC:
851 			axf = &auth_hash_hmac_ripemd_160_96;
852 			goto authcommon;
853 		case CRYPTO_SHA2_256_HMAC:
854 			axf = &auth_hash_hmac_sha2_256_128;
855 			goto authcommon;
856 		case CRYPTO_SHA2_384_HMAC:
857 			axf = &auth_hash_hmac_sha2_384_192;
858 			goto authcommon;
859 		case CRYPTO_SHA2_512_HMAC:
860 			axf = &auth_hash_hmac_sha2_512_256;
861 			goto authcommon;
862 		authcommon:
863 			swd->sw_ictx = malloc(axf->ctxsize, M_CRYPTO_DATA,
864 			    M_NOWAIT);
865 			if (swd->sw_ictx == NULL) {
866 				swcr_freesession(i);
867 				return ENOBUFS;
868 			}
869 
870 			swd->sw_octx = malloc(axf->ctxsize, M_CRYPTO_DATA,
871 			    M_NOWAIT);
872 			if (swd->sw_octx == NULL) {
873 				swcr_freesession(i);
874 				return ENOBUFS;
875 			}
876 
877 			for (k = 0; k < cri->cri_klen / 8; k++)
878 				cri->cri_key[k] ^= HMAC_IPAD_VAL;
879 
880 			axf->Init(swd->sw_ictx);
881 			axf->Update(swd->sw_ictx, cri->cri_key,
882 			    cri->cri_klen / 8);
883 			axf->Update(swd->sw_ictx, hmac_ipad_buffer,
884 			    axf->blocksize - (cri->cri_klen / 8));
885 
886 			for (k = 0; k < cri->cri_klen / 8; k++)
887 				cri->cri_key[k] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
888 
889 			axf->Init(swd->sw_octx);
890 			axf->Update(swd->sw_octx, cri->cri_key,
891 			    cri->cri_klen / 8);
892 			axf->Update(swd->sw_octx, hmac_opad_buffer,
893 			    axf->blocksize - (cri->cri_klen / 8));
894 
895 			for (k = 0; k < cri->cri_klen / 8; k++)
896 				cri->cri_key[k] ^= HMAC_OPAD_VAL;
897 			swd->sw_axf = axf;
898 			break;
899 
900 		case CRYPTO_AES_128_GMAC:
901 			axf = &auth_hash_gmac_aes_128;
902 			goto authenccommon;
903 		case CRYPTO_AES_192_GMAC:
904 			axf = &auth_hash_gmac_aes_192;
905 			goto authenccommon;
906 		case CRYPTO_AES_256_GMAC:
907 			axf = &auth_hash_gmac_aes_256;
908 			goto authenccommon;
909 		case CRYPTO_CHACHA20_POLY1305_MAC:
910 			axf = &auth_hash_chacha20_poly1305;
911 			goto authenccommon;
912 		authenccommon:
913 			swd->sw_ictx = malloc(axf->ctxsize, M_CRYPTO_DATA,
914 			    M_NOWAIT);
915 			if (swd->sw_ictx == NULL) {
916 				swcr_freesession(i);
917 				return ENOBUFS;
918 			}
919 			axf->Init(swd->sw_ictx);
920 			axf->Setkey(swd->sw_ictx, cri->cri_key,
921 			    cri->cri_klen / 8);
922 			swd->sw_axf = axf;
923 			break;
924 
925 		case CRYPTO_DEFLATE_COMP:
926 			cxf = &comp_algo_deflate;
927 			swd->sw_cxf = cxf;
928 			break;
929 		case CRYPTO_ESN:
930 			/* nothing to do */
931 			break;
932 		default:
933 			swcr_freesession(i);
934 			return EINVAL;
935 		}
936 
937 		swd->sw_alg = cri->cri_alg;
938 		cri = cri->cri_next;
939 		prev = swd;
940 	}
941 	return 0;
942 }
943 
944 /*
945  * Free a session.
946  */
947 int
948 swcr_freesession(u_int64_t tid)
949 {
950 	struct swcr_list *session;
951 	struct swcr_data *swd;
952 	const struct enc_xform *txf;
953 	const struct auth_hash *axf;
954 	u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
955 
956 	if (sid > swcr_sesnum || swcr_sessions == NULL ||
957 	    SLIST_EMPTY(&swcr_sessions[sid]))
958 		return EINVAL;
959 
960 	/* Silently accept and return */
961 	if (sid == 0)
962 		return 0;
963 
964 	session = &swcr_sessions[sid];
965 	while (!SLIST_EMPTY(session)) {
966 		swd = SLIST_FIRST(session);
967 		SLIST_REMOVE_HEAD(session, sw_next);
968 
969 		switch (swd->sw_alg) {
970 		case CRYPTO_3DES_CBC:
971 		case CRYPTO_BLF_CBC:
972 		case CRYPTO_CAST_CBC:
973 		case CRYPTO_AES_CBC:
974 		case CRYPTO_AES_CTR:
975 		case CRYPTO_AES_XTS:
976 		case CRYPTO_AES_GCM_16:
977 		case CRYPTO_AES_GMAC:
978 		case CRYPTO_CHACHA20_POLY1305:
979 		case CRYPTO_NULL:
980 			txf = swd->sw_exf;
981 
982 			if (swd->sw_kschedule) {
983 				explicit_bzero(swd->sw_kschedule, txf->ctxsize);
984 				free(swd->sw_kschedule, M_CRYPTO_DATA,
985 				    txf->ctxsize);
986 			}
987 			break;
988 
989 		case CRYPTO_MD5_HMAC:
990 		case CRYPTO_SHA1_HMAC:
991 		case CRYPTO_RIPEMD160_HMAC:
992 		case CRYPTO_SHA2_256_HMAC:
993 		case CRYPTO_SHA2_384_HMAC:
994 		case CRYPTO_SHA2_512_HMAC:
995 			axf = swd->sw_axf;
996 
997 			if (swd->sw_ictx) {
998 				explicit_bzero(swd->sw_ictx, axf->ctxsize);
999 				free(swd->sw_ictx, M_CRYPTO_DATA, axf->ctxsize);
1000 			}
1001 			if (swd->sw_octx) {
1002 				explicit_bzero(swd->sw_octx, axf->ctxsize);
1003 				free(swd->sw_octx, M_CRYPTO_DATA, axf->ctxsize);
1004 			}
1005 			break;
1006 
1007 		case CRYPTO_AES_128_GMAC:
1008 		case CRYPTO_AES_192_GMAC:
1009 		case CRYPTO_AES_256_GMAC:
1010 		case CRYPTO_CHACHA20_POLY1305_MAC:
1011 			axf = swd->sw_axf;
1012 
1013 			if (swd->sw_ictx) {
1014 				explicit_bzero(swd->sw_ictx, axf->ctxsize);
1015 				free(swd->sw_ictx, M_CRYPTO_DATA, axf->ctxsize);
1016 			}
1017 			break;
1018 		}
1019 
1020 		free(swd, M_CRYPTO_DATA, sizeof(*swd));
1021 	}
1022 	return 0;
1023 }
1024 
1025 /*
1026  * Process a software request.
1027  */
1028 int
1029 swcr_process(struct cryptop *crp)
1030 {
1031 	struct cryptodesc *crd;
1032 	struct swcr_list *session;
1033 	struct swcr_data *sw;
1034 	u_int32_t lid;
1035 	int err = 0;
1036 	int type;
1037 	int i;
1038 
1039 	KASSERT(crp->crp_ndesc >= 1);
1040 
1041 	if (crp->crp_buf == NULL) {
1042 		err = EINVAL;
1043 		goto done;
1044 	}
1045 
1046 	lid = crp->crp_sid & 0xffffffff;
1047 	if (lid >= swcr_sesnum || lid == 0 ||
1048 	    SLIST_EMPTY(&swcr_sessions[lid])) {
1049 		err = ENOENT;
1050 		goto done;
1051 	}
1052 
1053 	if (crp->crp_flags & CRYPTO_F_IMBUF)
1054 		type = CRYPTO_BUF_MBUF;
1055 	else
1056 		type = CRYPTO_BUF_IOV;
1057 
1058 	/* Go through crypto descriptors, processing as we go */
1059 	session = &swcr_sessions[lid];
1060 	for (i = 0; i < crp->crp_ndesc; i++) {
1061 		crd = &crp->crp_desc[i];
1062 		/*
1063 		 * Find the crypto context.
1064 		 *
1065 		 * XXX Note that the logic here prevents us from having
1066 		 * XXX the same algorithm multiple times in a session
1067 		 * XXX (or rather, we can but it won't give us the right
1068 		 * XXX results). To do that, we'd need some way of differentiating
1069 		 * XXX between the various instances of an algorithm (so we can
1070 		 * XXX locate the correct crypto context).
1071 		 */
1072 		SLIST_FOREACH(sw, session, sw_next) {
1073 			if (sw->sw_alg == crd->crd_alg)
1074 				break;
1075 		}
1076 
1077 		/* No such context ? */
1078 		if (sw == NULL) {
1079 			err = EINVAL;
1080 			goto done;
1081 		}
1082 
1083 		switch (sw->sw_alg) {
1084 		case CRYPTO_NULL:
1085 			break;
1086 		case CRYPTO_3DES_CBC:
1087 		case CRYPTO_BLF_CBC:
1088 		case CRYPTO_CAST_CBC:
1089 		case CRYPTO_RIJNDAEL128_CBC:
1090 		case CRYPTO_AES_CTR:
1091 		case CRYPTO_AES_XTS:
1092 			if ((err = swcr_encdec(crd, sw,
1093 			    crp->crp_buf, type)) != 0)
1094 				goto done;
1095 			break;
1096 		case CRYPTO_MD5_HMAC:
1097 		case CRYPTO_SHA1_HMAC:
1098 		case CRYPTO_RIPEMD160_HMAC:
1099 		case CRYPTO_SHA2_256_HMAC:
1100 		case CRYPTO_SHA2_384_HMAC:
1101 		case CRYPTO_SHA2_512_HMAC:
1102 			if ((err = swcr_authcompute(crp, crd, sw,
1103 			    crp->crp_buf, type)) != 0)
1104 				goto done;
1105 			break;
1106 
1107 		case CRYPTO_AES_GCM_16:
1108 		case CRYPTO_AES_GMAC:
1109 		case CRYPTO_AES_128_GMAC:
1110 		case CRYPTO_AES_192_GMAC:
1111 		case CRYPTO_AES_256_GMAC:
1112 		case CRYPTO_CHACHA20_POLY1305:
1113 		case CRYPTO_CHACHA20_POLY1305_MAC:
1114 			err = swcr_authenc(crp);
1115 			goto done;
1116 
1117 		case CRYPTO_DEFLATE_COMP:
1118 			if ((err = swcr_compdec(crd, sw,
1119 			    crp->crp_buf, type)) != 0)
1120 				goto done;
1121 			else
1122 				crp->crp_olen = (int)sw->sw_size;
1123 			break;
1124 
1125 		default:
1126 			/* Unknown/unsupported algorithm */
1127 			err = EINVAL;
1128 			goto done;
1129 		}
1130 	}
1131 
1132 done:
1133 	return err;
1134 }
1135 
1136 /*
1137  * Initialize the driver, called from the kernel main().
1138  */
1139 void
1140 swcr_init(void)
1141 {
1142 	int algs[CRYPTO_ALGORITHM_MAX + 1];
1143 	int flags = CRYPTOCAP_F_SOFTWARE;
1144 
1145 	swcr_id = crypto_get_driverid(flags);
1146 	if (swcr_id < 0) {
1147 		/* This should never happen */
1148 		panic("Software crypto device cannot initialize!");
1149 	}
1150 
1151 	bzero(algs, sizeof(algs));
1152 
1153 	algs[CRYPTO_3DES_CBC] = CRYPTO_ALG_FLAG_SUPPORTED;
1154 	algs[CRYPTO_BLF_CBC] = CRYPTO_ALG_FLAG_SUPPORTED;
1155 	algs[CRYPTO_CAST_CBC] = CRYPTO_ALG_FLAG_SUPPORTED;
1156 	algs[CRYPTO_MD5_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED;
1157 	algs[CRYPTO_SHA1_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED;
1158 	algs[CRYPTO_RIPEMD160_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED;
1159 	algs[CRYPTO_AES_CBC] = CRYPTO_ALG_FLAG_SUPPORTED;
1160 	algs[CRYPTO_AES_CTR] = CRYPTO_ALG_FLAG_SUPPORTED;
1161 	algs[CRYPTO_AES_XTS] = CRYPTO_ALG_FLAG_SUPPORTED;
1162 	algs[CRYPTO_AES_GCM_16] = CRYPTO_ALG_FLAG_SUPPORTED;
1163 	algs[CRYPTO_AES_GMAC] = CRYPTO_ALG_FLAG_SUPPORTED;
1164 	algs[CRYPTO_DEFLATE_COMP] = CRYPTO_ALG_FLAG_SUPPORTED;
1165 	algs[CRYPTO_NULL] = CRYPTO_ALG_FLAG_SUPPORTED;
1166 	algs[CRYPTO_SHA2_256_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED;
1167 	algs[CRYPTO_SHA2_384_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED;
1168 	algs[CRYPTO_SHA2_512_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED;
1169 	algs[CRYPTO_AES_128_GMAC] = CRYPTO_ALG_FLAG_SUPPORTED;
1170 	algs[CRYPTO_AES_192_GMAC] = CRYPTO_ALG_FLAG_SUPPORTED;
1171 	algs[CRYPTO_AES_256_GMAC] = CRYPTO_ALG_FLAG_SUPPORTED;
1172 	algs[CRYPTO_CHACHA20_POLY1305] = CRYPTO_ALG_FLAG_SUPPORTED;
1173 	algs[CRYPTO_CHACHA20_POLY1305_MAC] = CRYPTO_ALG_FLAG_SUPPORTED;
1174 	algs[CRYPTO_ESN] = CRYPTO_ALG_FLAG_SUPPORTED;
1175 
1176 	crypto_register(swcr_id, algs, swcr_newsession,
1177 	    swcr_freesession, swcr_process);
1178 }
1179