xref: /openbsd/sys/dev/ic/ar5211.c (revision 09467b48)
1 /*	$OpenBSD: ar5211.c,v 1.50 2018/01/31 11:27:03 stsp Exp $	*/
2 
3 /*
4  * Copyright (c) 2004, 2005, 2006, 2007 Reyk Floeter <reyk@openbsd.org>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 /*
20  * HAL interface for the Atheros AR5001 Wireless LAN chipset
21  * (AR5211 + AR5111).
22  */
23 
24 #include <dev/ic/ar5xxx.h>
25 #include <dev/ic/ar5211reg.h>
26 #include <dev/ic/ar5211var.h>
27 
28 HAL_BOOL	 ar5k_ar5211_nic_reset(struct ath_hal *, u_int32_t);
29 HAL_BOOL	 ar5k_ar5211_nic_wakeup(struct ath_hal *, u_int16_t);
30 u_int16_t	 ar5k_ar5211_radio_revision(struct ath_hal *, HAL_CHIP);
31 void		 ar5k_ar5211_fill(struct ath_hal *);
32 HAL_BOOL	 ar5k_ar5211_rfregs(struct ath_hal *, HAL_CHANNEL *, u_int,
33     u_int);
34 
35 /*
36  * Initial register setting for the AR5211
37  */
38 static const struct ar5k_ini ar5211_ini[] =
39     AR5K_AR5211_INI;
40 static const struct ar5k_ar5211_ini_mode ar5211_mode[] =
41     AR5K_AR5211_INI_MODE;
42 static const struct ar5k_ar5211_ini_rf ar5211_rf[] =
43     AR5K_AR5211_INI_RF;
44 
45 AR5K_HAL_FUNCTIONS(extern, ar5k_ar5211,);
46 
47 void
48 ar5k_ar5211_fill(struct ath_hal *hal)
49 {
50 	hal->ah_magic = AR5K_AR5211_MAGIC;
51 
52 	/*
53 	 * Init/Exit functions
54 	 */
55 	AR5K_HAL_FUNCTION(hal, ar5211, get_rate_table);
56 	AR5K_HAL_FUNCTION(hal, ar5211, detach);
57 
58 	/*
59 	 * Reset functions
60 	 */
61 	AR5K_HAL_FUNCTION(hal, ar5211, reset);
62 	AR5K_HAL_FUNCTION(hal, ar5211, set_opmode);
63 	AR5K_HAL_FUNCTION(hal, ar5211, calibrate);
64 
65 	/*
66 	 * TX functions
67 	 */
68 	AR5K_HAL_FUNCTION(hal, ar5211, update_tx_triglevel);
69 	AR5K_HAL_FUNCTION(hal, ar5211, setup_tx_queue);
70 	AR5K_HAL_FUNCTION(hal, ar5211, setup_tx_queueprops);
71 	AR5K_HAL_FUNCTION(hal, ar5211, release_tx_queue);
72 	AR5K_HAL_FUNCTION(hal, ar5211, reset_tx_queue);
73 	AR5K_HAL_FUNCTION(hal, ar5211, get_tx_buf);
74 	AR5K_HAL_FUNCTION(hal, ar5211, put_tx_buf);
75 	AR5K_HAL_FUNCTION(hal, ar5211, tx_start);
76 	AR5K_HAL_FUNCTION(hal, ar5211, stop_tx_dma);
77 	AR5K_HAL_FUNCTION(hal, ar5211, setup_tx_desc);
78 	AR5K_HAL_FUNCTION(hal, ar5211, setup_xtx_desc);
79 	AR5K_HAL_FUNCTION(hal, ar5211, fill_tx_desc);
80 	AR5K_HAL_FUNCTION(hal, ar5211, proc_tx_desc);
81 	AR5K_HAL_FUNCTION(hal, ar5211, has_veol);
82 
83 	/*
84 	 * RX functions
85 	 */
86 	AR5K_HAL_FUNCTION(hal, ar5211, get_rx_buf);
87 	AR5K_HAL_FUNCTION(hal, ar5211, put_rx_buf);
88 	AR5K_HAL_FUNCTION(hal, ar5211, start_rx);
89 	AR5K_HAL_FUNCTION(hal, ar5211, stop_rx_dma);
90 	AR5K_HAL_FUNCTION(hal, ar5211, start_rx_pcu);
91 	AR5K_HAL_FUNCTION(hal, ar5211, stop_pcu_recv);
92 	AR5K_HAL_FUNCTION(hal, ar5211, set_mcast_filter);
93 	AR5K_HAL_FUNCTION(hal, ar5211, set_mcast_filterindex);
94 	AR5K_HAL_FUNCTION(hal, ar5211, clear_mcast_filter_idx);
95 	AR5K_HAL_FUNCTION(hal, ar5211, get_rx_filter);
96 	AR5K_HAL_FUNCTION(hal, ar5211, set_rx_filter);
97 	AR5K_HAL_FUNCTION(hal, ar5211, setup_rx_desc);
98 	AR5K_HAL_FUNCTION(hal, ar5211, proc_rx_desc);
99 	AR5K_HAL_FUNCTION(hal, ar5211, set_rx_signal);
100 
101 	/*
102 	 * Misc functions
103 	 */
104 	AR5K_HAL_FUNCTION(hal, ar5211, dump_state);
105 	AR5K_HAL_FUNCTION(hal, ar5211, get_diag_state);
106 	AR5K_HAL_FUNCTION(hal, ar5211, get_lladdr);
107 	AR5K_HAL_FUNCTION(hal, ar5211, set_lladdr);
108 	AR5K_HAL_FUNCTION(hal, ar5211, set_regdomain);
109 	AR5K_HAL_FUNCTION(hal, ar5211, set_ledstate);
110 	AR5K_HAL_FUNCTION(hal, ar5211, set_associd);
111 	AR5K_HAL_FUNCTION(hal, ar5211, set_gpio_input);
112 	AR5K_HAL_FUNCTION(hal, ar5211, set_gpio_output);
113 	AR5K_HAL_FUNCTION(hal, ar5211, get_gpio);
114 	AR5K_HAL_FUNCTION(hal, ar5211, set_gpio);
115 	AR5K_HAL_FUNCTION(hal, ar5211, set_gpio_intr);
116 	AR5K_HAL_FUNCTION(hal, ar5211, get_tsf32);
117 	AR5K_HAL_FUNCTION(hal, ar5211, get_tsf64);
118 	AR5K_HAL_FUNCTION(hal, ar5211, reset_tsf);
119 	AR5K_HAL_FUNCTION(hal, ar5211, get_regdomain);
120 	AR5K_HAL_FUNCTION(hal, ar5211, detect_card_present);
121 	AR5K_HAL_FUNCTION(hal, ar5211, update_mib_counters);
122 	AR5K_HAL_FUNCTION(hal, ar5211, get_rf_gain);
123 	AR5K_HAL_FUNCTION(hal, ar5211, set_slot_time);
124 	AR5K_HAL_FUNCTION(hal, ar5211, get_slot_time);
125 	AR5K_HAL_FUNCTION(hal, ar5211, set_ack_timeout);
126 	AR5K_HAL_FUNCTION(hal, ar5211, get_ack_timeout);
127 	AR5K_HAL_FUNCTION(hal, ar5211, set_cts_timeout);
128 	AR5K_HAL_FUNCTION(hal, ar5211, get_cts_timeout);
129 
130 	/*
131 	 * Key table (WEP) functions
132 	 */
133 	AR5K_HAL_FUNCTION(hal, ar5211, is_cipher_supported);
134 	AR5K_HAL_FUNCTION(hal, ar5211, get_keycache_size);
135 	AR5K_HAL_FUNCTION(hal, ar5211, reset_key);
136 	AR5K_HAL_FUNCTION(hal, ar5211, is_key_valid);
137 	AR5K_HAL_FUNCTION(hal, ar5211, set_key);
138 	AR5K_HAL_FUNCTION(hal, ar5211, set_key_lladdr);
139 	AR5K_HAL_FUNCTION(hal, ar5211, softcrypto);
140 
141 	/*
142 	 * Power management functions
143 	 */
144 	AR5K_HAL_FUNCTION(hal, ar5211, set_power);
145 	AR5K_HAL_FUNCTION(hal, ar5211, get_power_mode);
146 	AR5K_HAL_FUNCTION(hal, ar5211, query_pspoll_support);
147 	AR5K_HAL_FUNCTION(hal, ar5211, init_pspoll);
148 	AR5K_HAL_FUNCTION(hal, ar5211, enable_pspoll);
149 	AR5K_HAL_FUNCTION(hal, ar5211, disable_pspoll);
150 
151 	/*
152 	 * Beacon functions
153 	 */
154 	AR5K_HAL_FUNCTION(hal, ar5211, init_beacon);
155 	AR5K_HAL_FUNCTION(hal, ar5211, set_beacon_timers);
156 	AR5K_HAL_FUNCTION(hal, ar5211, reset_beacon);
157 	AR5K_HAL_FUNCTION(hal, ar5211, wait_for_beacon);
158 
159 	/*
160 	 * Interrupt functions
161 	 */
162 	AR5K_HAL_FUNCTION(hal, ar5211, is_intr_pending);
163 	AR5K_HAL_FUNCTION(hal, ar5211, get_isr);
164 	AR5K_HAL_FUNCTION(hal, ar5211, get_intr);
165 	AR5K_HAL_FUNCTION(hal, ar5211, set_intr);
166 
167 	/*
168 	 * Chipset functions (ar5k-specific, non-HAL)
169 	 */
170 	AR5K_HAL_FUNCTION(hal, ar5211, get_capabilities);
171 	AR5K_HAL_FUNCTION(hal, ar5211, radar_alert);
172 
173 	/*
174 	 * EEPROM access
175 	 */
176 	AR5K_HAL_FUNCTION(hal, ar5211, eeprom_is_busy);
177 	AR5K_HAL_FUNCTION(hal, ar5211, eeprom_read);
178 	AR5K_HAL_FUNCTION(hal, ar5211, eeprom_write);
179 
180 	/*
181 	 * Unused functions or functions not implemented
182 	 */
183 	AR5K_HAL_FUNCTION(hal, ar5211, get_tx_queueprops);
184 	AR5K_HAL_FUNCTION(hal, ar5211, num_tx_pending);
185 	AR5K_HAL_FUNCTION(hal, ar5211, phy_disable);
186 	AR5K_HAL_FUNCTION(hal, ar5211, set_txpower_limit);
187 	AR5K_HAL_FUNCTION(hal, ar5211, set_def_antenna);
188 	AR5K_HAL_FUNCTION(hal, ar5211, get_def_antenna);
189 	AR5K_HAL_FUNCTION(hal, ar5211, set_bssid_mask);
190 #ifdef notyet
191 	AR5K_HAL_FUNCTION(hal, ar5211, set_capability);
192 	AR5K_HAL_FUNCTION(hal, ar5211, proc_mib_event);
193 	AR5K_HAL_FUNCTION(hal, ar5211, get_tx_inter_queue);
194 #endif
195 }
196 
197 struct ath_hal *
198 ar5k_ar5211_attach(u_int16_t device, void *sc, bus_space_tag_t st,
199     bus_space_handle_t sh, int *status)
200 {
201 	struct ath_hal *hal = (struct ath_hal*) sc;
202 	u_int8_t mac[IEEE80211_ADDR_LEN];
203 	u_int32_t srev;
204 
205 	ar5k_ar5211_fill(hal);
206 
207 	/* Bring device out of sleep and reset its units */
208 	if (ar5k_ar5211_nic_wakeup(hal, AR5K_INIT_MODE) != AH_TRUE)
209 		return (NULL);
210 
211 	/* Get MAC, PHY and RADIO revisions */
212 	srev = AR5K_REG_READ(AR5K_AR5211_SREV);
213 	hal->ah_mac_srev = srev;
214 	hal->ah_mac_version = AR5K_REG_MS(srev, AR5K_AR5211_SREV_VER);
215 	hal->ah_mac_revision = AR5K_REG_MS(srev, AR5K_AR5211_SREV_REV);
216 	hal->ah_phy_revision = AR5K_REG_READ(AR5K_AR5211_PHY_CHIP_ID) &
217 	    0x00ffffffff;
218 	hal->ah_radio_5ghz_revision =
219 	    ar5k_ar5211_radio_revision(hal, HAL_CHIP_5GHZ);
220 	hal->ah_radio_2ghz_revision = 0;
221 
222 	/* Identify the chipset (this has to be done in an early step) */
223 	hal->ah_version = AR5K_AR5211;
224 	hal->ah_radio = AR5K_AR5111;
225 	hal->ah_phy = AR5K_AR5211_PHY(0);
226 
227 	bcopy(etherbroadcastaddr, mac, IEEE80211_ADDR_LEN);
228 	ar5k_ar5211_set_associd(hal, mac, 0, 0);
229 	ar5k_ar5211_get_lladdr(hal, mac);
230 	ar5k_ar5211_set_opmode(hal);
231 
232 	return (hal);
233 }
234 
235 HAL_BOOL
236 ar5k_ar5211_nic_reset(struct ath_hal *hal, u_int32_t val)
237 {
238 	HAL_BOOL ret = AH_FALSE;
239 	u_int32_t mask = val ? val : ~0;
240 
241 	/* Read-and-clear */
242 	AR5K_REG_READ(AR5K_AR5211_RXDP);
243 
244 	/*
245 	 * Reset the device and wait until success
246 	 */
247 	AR5K_REG_WRITE(AR5K_AR5211_RC, val);
248 
249 	/* Wait at least 128 PCI clocks */
250 	AR5K_DELAY(15);
251 
252 	val &=
253 	    AR5K_AR5211_RC_PCU | AR5K_AR5211_RC_BB;
254 
255 	mask &=
256 	    AR5K_AR5211_RC_PCU | AR5K_AR5211_RC_BB;
257 
258 	ret = ar5k_register_timeout(hal, AR5K_AR5211_RC, mask, val, AH_FALSE);
259 
260 	/*
261 	 * Reset configuration register
262 	 */
263 	if ((val & AR5K_AR5211_RC_PCU) == 0)
264 		AR5K_REG_WRITE(AR5K_AR5211_CFG, AR5K_AR5211_INIT_CFG);
265 
266 	return (ret);
267 }
268 
269 HAL_BOOL
270 ar5k_ar5211_nic_wakeup(struct ath_hal *hal, u_int16_t flags)
271 {
272 	u_int32_t turbo, mode, clock;
273 
274 	turbo = 0;
275 	mode = 0;
276 	clock = 0;
277 
278 	/*
279 	 * Get channel mode flags
280 	 */
281 
282 	if (flags & IEEE80211_CHAN_2GHZ) {
283 		mode |= AR5K_AR5211_PHY_MODE_FREQ_2GHZ;
284 		clock |= AR5K_AR5211_PHY_PLL_44MHZ;
285 	} else if (flags & IEEE80211_CHAN_5GHZ) {
286 		mode |= AR5K_AR5211_PHY_MODE_FREQ_5GHZ;
287 		clock |= AR5K_AR5211_PHY_PLL_40MHZ;
288 	} else {
289 		AR5K_PRINT("invalid radio frequency mode\n");
290 		return (AH_FALSE);
291 	}
292 
293 	if ((flags & IEEE80211_CHAN_CCK) ||
294 	    (flags & IEEE80211_CHAN_DYN)) {
295 		/* Dynamic OFDM/CCK is not supported by the AR5211 */
296 		mode |= AR5K_AR5211_PHY_MODE_MOD_CCK;
297 	} else if (flags & IEEE80211_CHAN_OFDM) {
298 		mode |= AR5K_AR5211_PHY_MODE_MOD_OFDM;
299 	} else {
300 		AR5K_PRINT("invalid radio frequency mode\n");
301 		return (AH_FALSE);
302 	}
303 
304 	/*
305 	 * Reset and wakeup the device
306 	 */
307 
308 	/* ...reset chipset and PCI device */
309 	if (ar5k_ar5211_nic_reset(hal,
310 		AR5K_AR5211_RC_CHIP | AR5K_AR5211_RC_PCI) == AH_FALSE) {
311 		AR5K_PRINT("failed to reset the AR5211 + PCI chipset\n");
312 		return (AH_FALSE);
313 	}
314 
315 	/* ...wakeup */
316 	if (ar5k_ar5211_set_power(hal,
317 		HAL_PM_AWAKE, AH_TRUE, 0) == AH_FALSE) {
318 		AR5K_PRINT("failed to resume the AR5211 (again)\n");
319 		return (AH_FALSE);
320 	}
321 
322 	/* ...final warm reset */
323 	if (ar5k_ar5211_nic_reset(hal, 0) == AH_FALSE) {
324 		AR5K_PRINT("failed to warm reset the AR5211\n");
325 		return (AH_FALSE);
326 	}
327 
328 	/* ...set the PHY operating mode */
329 	AR5K_REG_WRITE(AR5K_AR5211_PHY_PLL, clock);
330 	AR5K_DELAY(300);
331 
332 	AR5K_REG_WRITE(AR5K_AR5211_PHY_MODE, mode);
333 	AR5K_REG_WRITE(AR5K_AR5211_PHY_TURBO, turbo);
334 
335 	return (AH_TRUE);
336 }
337 
338 u_int16_t
339 ar5k_ar5211_radio_revision(struct ath_hal *hal, HAL_CHIP chip)
340 {
341 	int i;
342 	u_int32_t srev;
343 	u_int16_t ret;
344 
345 	/*
346 	 * Set the radio chip access register
347 	 */
348 	switch (chip) {
349 	case HAL_CHIP_2GHZ:
350 		AR5K_REG_WRITE(AR5K_AR5211_PHY(0), AR5K_AR5211_PHY_SHIFT_2GHZ);
351 		break;
352 	case HAL_CHIP_5GHZ:
353 		AR5K_REG_WRITE(AR5K_AR5211_PHY(0), AR5K_AR5211_PHY_SHIFT_5GHZ);
354 		break;
355 	default:
356 		return (0);
357 	}
358 
359 	AR5K_DELAY(2000);
360 
361 	/* ...wait until PHY is ready and read the selected radio revision */
362 	AR5K_REG_WRITE(AR5K_AR5211_PHY(0x34), 0x00001c16);
363 
364 	for (i = 0; i < 8; i++)
365 		AR5K_REG_WRITE(AR5K_AR5211_PHY(0x20), 0x00010000);
366 	srev = (AR5K_REG_READ(AR5K_AR5211_PHY(0x100)) >> 24) & 0xff;
367 
368 	ret = ar5k_bitswap(((srev & 0xf0) >> 4) | ((srev & 0x0f) << 4), 8);
369 
370 	/* Reset to the 5GHz mode */
371 	AR5K_REG_WRITE(AR5K_AR5211_PHY(0), AR5K_AR5211_PHY_SHIFT_5GHZ);
372 
373 	return (ret);
374 }
375 
376 const HAL_RATE_TABLE *
377 ar5k_ar5211_get_rate_table(struct ath_hal *hal, u_int mode)
378 {
379 	switch (mode) {
380 	case HAL_MODE_11A:
381 		return (&hal->ah_rt_11a);
382 	case HAL_MODE_11B:
383 		return (&hal->ah_rt_11b);
384 	case HAL_MODE_11G:
385 	case HAL_MODE_PUREG:
386 		return (&hal->ah_rt_11g);
387 	default:
388 		return (NULL);
389 	}
390 
391 	return (NULL);
392 }
393 
394 void
395 ar5k_ar5211_detach(struct ath_hal *hal)
396 {
397 	/*
398 	 * Free HAL structure, assume interrupts are down
399 	 */
400 	free(hal, M_DEVBUF, 0);
401 }
402 
403 HAL_BOOL
404 ar5k_ar5211_phy_disable(struct ath_hal *hal)
405 {
406 	AR5K_REG_WRITE(AR5K_AR5211_PHY_ACTIVE, AR5K_AR5211_PHY_DISABLE);
407 	return (AH_TRUE);
408 }
409 
410 HAL_BOOL
411 ar5k_ar5211_reset(struct ath_hal *hal, HAL_OPMODE op_mode, HAL_CHANNEL *channel,
412     HAL_BOOL change_channel, HAL_STATUS *status)
413 {
414 	struct ar5k_eeprom_info *ee = &hal->ah_capabilities.cap_eeprom;
415 	u_int8_t mac[IEEE80211_ADDR_LEN];
416 	u_int32_t data, s_seq, s_ant, s_led[3];
417 	u_int i, mode, freq, ee_mode, ant[2];
418 
419 	/* Not used, keep for HAL compatibility */
420 	*status = HAL_OK;
421 
422 	/*
423 	 * Save some registers before a reset
424 	 */
425 	if (change_channel == AH_TRUE) {
426 		s_seq = AR5K_REG_READ(AR5K_AR5211_DCU_SEQNUM(0));
427 		s_ant = AR5K_REG_READ(AR5K_AR5211_DEFAULT_ANTENNA);
428 	} else {
429 		s_seq = 0;
430 		s_ant = 1;
431 	}
432 
433 	s_led[0] = AR5K_REG_READ(AR5K_AR5211_PCICFG) &
434 	    AR5K_AR5211_PCICFG_LEDSTATE;
435 	s_led[1] = AR5K_REG_READ(AR5K_AR5211_GPIOCR);
436 	s_led[2] = AR5K_REG_READ(AR5K_AR5211_GPIODO);
437 
438 	if (ar5k_ar5211_nic_wakeup(hal, channel->c_channel_flags) == AH_FALSE)
439 		return (AH_FALSE);
440 
441 	/*
442 	 * Initialize operating mode
443 	 */
444 	hal->ah_op_mode = op_mode;
445 
446 	if ((channel->c_channel_flags & CHANNEL_A) == CHANNEL_A) {
447 		mode = AR5K_INI_VAL_11A;
448 		freq = AR5K_INI_RFGAIN_5GHZ;
449 		ee_mode = AR5K_EEPROM_MODE_11A;
450 	} else if ((channel->c_channel_flags & CHANNEL_B) == CHANNEL_B) {
451 		if (hal->ah_capabilities.cap_mode & HAL_MODE_11B) {
452 			mode = AR5K_INI_VAL_11B;
453 			ee_mode = AR5K_EEPROM_MODE_11B;
454 		} else {
455 			mode = AR5K_INI_VAL_11G;
456 			ee_mode = AR5K_EEPROM_MODE_11G;
457 		}
458 		freq = AR5K_INI_RFGAIN_2GHZ;
459 	} else if ((channel->c_channel_flags & (CHANNEL_G | CHANNEL_PUREG)) ==
460 	    (CHANNEL_G | CHANNEL_PUREG)) {
461 		mode = AR5K_INI_VAL_11G;
462 		freq = AR5K_INI_RFGAIN_2GHZ;
463 		ee_mode = AR5K_EEPROM_MODE_11G;
464 	} else {
465 		AR5K_PRINTF("invalid channel: %d\n", channel->c_channel);
466 		return (AH_FALSE);
467 	}
468 
469 	/* PHY access enable */
470 	AR5K_REG_WRITE(AR5K_AR5211_PHY(0), AR5K_AR5211_PHY_SHIFT_5GHZ);
471 
472 	/*
473 	 * Write initial RF registers
474 	 */
475 	if (ar5k_ar5211_rfregs(hal, channel, freq, ee_mode) == AH_FALSE)
476 		return (AH_FALSE);
477 
478 	/*
479 	 * Write initial mode settings
480 	 */
481 	for (i = 0; i < nitems(ar5211_mode); i++) {
482 		AR5K_REG_WAIT(i);
483 		AR5K_REG_WRITE((u_int32_t)ar5211_mode[i].mode_register,
484 		    ar5211_mode[i].mode_value[mode]);
485 	}
486 
487 	/*
488 	 * Write initial register settings
489 	 */
490 	for (i = 0; i < nitems(ar5211_ini); i++) {
491 		if (change_channel == AH_TRUE &&
492 		    ar5211_ini[i].ini_register >= AR5K_AR5211_PCU_MIN &&
493 		    ar5211_ini[i].ini_register <= AR5K_AR5211_PCU_MAX)
494 			continue;
495 
496 		AR5K_REG_WAIT(i);
497 		AR5K_REG_WRITE((u_int32_t)ar5211_ini[i].ini_register,
498 		    ar5211_ini[i].ini_value);
499 	}
500 
501 	/*
502 	 * Write initial RF gain settings
503 	 */
504 	if (ar5k_rfgain(hal, freq) == AH_FALSE)
505 		return (AH_FALSE);
506 
507 	AR5K_DELAY(1000);
508 
509 	/*
510 	 * Configure additional registers
511 	 */
512 
513 	if (hal->ah_radio == AR5K_AR5111) {
514 		if (channel->c_channel_flags & IEEE80211_CHAN_B)
515 			AR5K_REG_ENABLE_BITS(AR5K_AR5211_TXCFG,
516 			    AR5K_AR5211_TXCFG_B_MODE);
517 		else
518 			AR5K_REG_DISABLE_BITS(AR5K_AR5211_TXCFG,
519 			    AR5K_AR5211_TXCFG_B_MODE);
520 	}
521 
522 	/* Set antenna mode */
523 	AR5K_REG_MASKED_BITS(AR5K_AR5211_PHY(0x44),
524 	    hal->ah_antenna[ee_mode][0], 0xfffffc06);
525 
526 	if (freq == AR5K_INI_RFGAIN_2GHZ)
527 		ant[0] = ant[1] = HAL_ANT_FIXED_B;
528 	else
529 		ant[0] = ant[1] = HAL_ANT_FIXED_A;
530 
531 	AR5K_REG_WRITE(AR5K_AR5211_PHY_ANT_SWITCH_TABLE_0,
532 	    hal->ah_antenna[ee_mode][ant[0]]);
533 	AR5K_REG_WRITE(AR5K_AR5211_PHY_ANT_SWITCH_TABLE_1,
534 	    hal->ah_antenna[ee_mode][ant[1]]);
535 
536 	/* Commit values from EEPROM */
537 	AR5K_REG_WRITE_BITS(AR5K_AR5211_PHY_FC,
538 	    AR5K_AR5211_PHY_FC_TX_CLIP, ee->ee_tx_clip);
539 
540 	AR5K_REG_WRITE(AR5K_AR5211_PHY(0x5a),
541 	    AR5K_AR5211_PHY_NF_SVAL(ee->ee_noise_floor_thr[ee_mode]));
542 
543 	AR5K_REG_MASKED_BITS(AR5K_AR5211_PHY(0x11),
544 	    (ee->ee_switch_settling[ee_mode] << 7) & 0x3f80, 0xffffc07f);
545 	AR5K_REG_MASKED_BITS(AR5K_AR5211_PHY(0x12),
546 	    (ee->ee_ant_tx_rx[ee_mode] << 12) & 0x3f000, 0xfffc0fff);
547 	AR5K_REG_MASKED_BITS(AR5K_AR5211_PHY(0x14),
548 	    (ee->ee_adc_desired_size[ee_mode] & 0x00ff) |
549 	    ((ee->ee_pga_desired_size[ee_mode] << 8) & 0xff00), 0xffff0000);
550 
551 	AR5K_REG_WRITE(AR5K_AR5211_PHY(0x0d),
552 	    (ee->ee_tx_end2xpa_disable[ee_mode] << 24) |
553 	    (ee->ee_tx_end2xpa_disable[ee_mode] << 16) |
554 	    (ee->ee_tx_frm2xpa_enable[ee_mode] << 8) |
555 	    (ee->ee_tx_frm2xpa_enable[ee_mode]));
556 
557 	AR5K_REG_MASKED_BITS(AR5K_AR5211_PHY(0x0a),
558 	    ee->ee_tx_end2xlna_enable[ee_mode] << 8, 0xffff00ff);
559 	AR5K_REG_MASKED_BITS(AR5K_AR5211_PHY(0x19),
560 	    (ee->ee_thr_62[ee_mode] << 12) & 0x7f000, 0xfff80fff);
561 	AR5K_REG_MASKED_BITS(AR5K_AR5211_PHY(0x49), 4, 0xffffff01);
562 
563 	AR5K_REG_ENABLE_BITS(AR5K_AR5211_PHY_IQ,
564 	    AR5K_AR5211_PHY_IQ_CORR_ENABLE |
565 	    (ee->ee_i_cal[ee_mode] << AR5K_AR5211_PHY_IQ_CORR_Q_I_COFF_S) |
566 	    ee->ee_q_cal[ee_mode]);
567 
568 	/*
569 	 * Restore saved values
570 	 */
571 	AR5K_REG_WRITE(AR5K_AR5211_DCU_SEQNUM(0), s_seq);
572 	AR5K_REG_WRITE(AR5K_AR5211_DEFAULT_ANTENNA, s_ant);
573 	AR5K_REG_ENABLE_BITS(AR5K_AR5211_PCICFG, s_led[0]);
574 	AR5K_REG_WRITE(AR5K_AR5211_GPIOCR, s_led[1]);
575 	AR5K_REG_WRITE(AR5K_AR5211_GPIODO, s_led[2]);
576 
577 	/*
578 	 * Misc
579 	 */
580 	bcopy(etherbroadcastaddr, mac, IEEE80211_ADDR_LEN);
581 	ar5k_ar5211_set_associd(hal, mac, 0, 0);
582 	ar5k_ar5211_set_opmode(hal);
583 	AR5K_REG_WRITE(AR5K_AR5211_PISR, 0xffffffff);
584 	AR5K_REG_WRITE(AR5K_AR5211_RSSI_THR, AR5K_TUNE_RSSI_THRES);
585 
586 	/*
587 	 * Set Rx/Tx DMA Configuration
588 	 */
589 	AR5K_REG_WRITE_BITS(AR5K_AR5211_TXCFG, AR5K_AR5211_TXCFG_SDMAMR,
590 	    AR5K_AR5211_DMASIZE_512B | AR5K_AR5211_TXCFG_DMASIZE);
591 	AR5K_REG_WRITE_BITS(AR5K_AR5211_RXCFG, AR5K_AR5211_RXCFG_SDMAMW,
592 	    AR5K_AR5211_DMASIZE_512B);
593 
594 	/*
595 	 * Set channel and calibrate the PHY
596 	 */
597 	if (ar5k_channel(hal, channel) == AH_FALSE)
598 		return (AH_FALSE);
599 
600 	/*
601 	 * Enable the PHY and wait until completion
602 	 */
603 	AR5K_REG_WRITE(AR5K_AR5211_PHY_ACTIVE, AR5K_AR5211_PHY_ENABLE);
604 
605 	data = AR5K_REG_READ(AR5K_AR5211_PHY_RX_DELAY) &
606 	    AR5K_AR5211_PHY_RX_DELAY_M;
607 	data = (channel->c_channel_flags & IEEE80211_CHAN_CCK) ?
608 	    ((data << 2) / 22) : (data / 10);
609 
610 	AR5K_DELAY(100 + data);
611 
612 	/*
613 	 * Start calibration
614 	 */
615 	AR5K_REG_ENABLE_BITS(AR5K_AR5211_PHY_AGCCTL,
616 	    AR5K_AR5211_PHY_AGCCTL_NF |
617 	    AR5K_AR5211_PHY_AGCCTL_CAL);
618 
619 	if (channel->c_channel_flags & IEEE80211_CHAN_B) {
620 		hal->ah_calibration = AH_FALSE;
621 	} else {
622 		hal->ah_calibration = AH_TRUE;
623 		AR5K_REG_WRITE_BITS(AR5K_AR5211_PHY_IQ,
624 		    AR5K_AR5211_PHY_IQ_CAL_NUM_LOG_MAX, 15);
625 		AR5K_REG_ENABLE_BITS(AR5K_AR5211_PHY_IQ,
626 		    AR5K_AR5211_PHY_IQ_RUN);
627 	}
628 
629 	/*
630 	 * Reset queues and start beacon timers at the end of the reset routine
631 	 */
632 	for (i = 0; i < hal->ah_capabilities.cap_queues.q_tx_num; i++) {
633 		AR5K_REG_WRITE_Q(AR5K_AR5211_DCU_QCUMASK(i), i);
634 		if (ar5k_ar5211_reset_tx_queue(hal, i) == AH_FALSE) {
635 			AR5K_PRINTF("failed to reset TX queue #%d\n", i);
636 			return (AH_FALSE);
637 		}
638 	}
639 
640 	/* Pre-enable interrupts */
641 	ar5k_ar5211_set_intr(hal, HAL_INT_RX | HAL_INT_TX | HAL_INT_FATAL);
642 
643 	/*
644 	 * Set RF kill flags if supported by the device (read from the EEPROM)
645 	 */
646 	if (AR5K_EEPROM_HDR_RFKILL(hal->ah_capabilities.cap_eeprom.ee_header)) {
647 		ar5k_ar5211_set_gpio_input(hal, 0);
648 		if ((hal->ah_gpio[0] = ar5k_ar5211_get_gpio(hal, 0)) == 0)
649 			ar5k_ar5211_set_gpio_intr(hal, 0, 1);
650 		else
651 			ar5k_ar5211_set_gpio_intr(hal, 0, 0);
652 	}
653 
654 	/*
655 	 * Disable beacons and reset the register
656 	 */
657 	AR5K_REG_DISABLE_BITS(AR5K_AR5211_BEACON,
658 	    AR5K_AR5211_BEACON_ENABLE | AR5K_AR5211_BEACON_RESET_TSF);
659 
660 	return (AH_TRUE);
661 }
662 
663 void
664 ar5k_ar5211_set_def_antenna(struct ath_hal *hal, u_int ant)
665 {
666 	AR5K_REG_WRITE(AR5K_AR5211_DEFAULT_ANTENNA, ant);
667 }
668 
669 u_int
670 ar5k_ar5211_get_def_antenna(struct ath_hal *hal)
671 {
672 	return AR5K_REG_READ(AR5K_AR5211_DEFAULT_ANTENNA);
673 }
674 
675 void
676 ar5k_ar5211_set_opmode(struct ath_hal *hal)
677 {
678 	u_int32_t pcu_reg, low_id, high_id;
679 
680 	pcu_reg = 0;
681 
682 	switch (hal->ah_op_mode) {
683 #ifndef IEEE80211_STA_ONLY
684 	case IEEE80211_M_IBSS:
685 		pcu_reg |= AR5K_AR5211_STA_ID1_ADHOC |
686 		    AR5K_AR5211_STA_ID1_DESC_ANTENNA;
687 		break;
688 
689 	case IEEE80211_M_HOSTAP:
690 		pcu_reg |= AR5K_AR5211_STA_ID1_AP |
691 		    AR5K_AR5211_STA_ID1_RTS_DEFAULT_ANTENNA;
692 		break;
693 #endif
694 
695 	case IEEE80211_M_STA:
696 	case IEEE80211_M_MONITOR:
697 		pcu_reg |= AR5K_AR5211_STA_ID1_DEFAULT_ANTENNA;
698 		break;
699 
700 	default:
701 		return;
702 	}
703 
704 	/*
705 	 * Set PCU registers
706 	 */
707 	low_id = AR5K_LOW_ID(hal->ah_sta_id);
708 	high_id = AR5K_HIGH_ID(hal->ah_sta_id);
709 	AR5K_REG_WRITE(AR5K_AR5211_STA_ID0, low_id);
710 	AR5K_REG_WRITE(AR5K_AR5211_STA_ID1, pcu_reg | high_id);
711 
712 	return;
713 }
714 
715 HAL_BOOL
716 ar5k_ar5211_calibrate(struct ath_hal *hal, HAL_CHANNEL *channel)
717 {
718 	u_int32_t i_pwr, q_pwr;
719 	int32_t iq_corr, i_coff, i_coffd, q_coff, q_coffd;
720 
721 	if (hal->ah_calibration == AH_FALSE ||
722 	    AR5K_REG_READ(AR5K_AR5211_PHY_IQ) & AR5K_AR5211_PHY_IQ_RUN)
723 		goto done;
724 
725 	hal->ah_calibration = AH_FALSE;
726 
727 	iq_corr = AR5K_REG_READ(AR5K_AR5211_PHY_IQRES_CAL_CORR);
728 	i_pwr = AR5K_REG_READ(AR5K_AR5211_PHY_IQRES_CAL_PWR_I);
729 	q_pwr = AR5K_REG_READ(AR5K_AR5211_PHY_IQRES_CAL_PWR_Q);
730 	i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
731 	q_coffd = q_pwr >> 6;
732 
733 	if (i_coffd == 0 || q_coffd == 0)
734 		goto done;
735 
736 	i_coff = ((-iq_corr) / i_coffd) & 0x3f;
737 	q_coff = (((int32_t)i_pwr / q_coffd) - 64) & 0x1f;
738 
739 	/* Commit new IQ value */
740 	AR5K_REG_ENABLE_BITS(AR5K_AR5211_PHY_IQ,
741 	    AR5K_AR5211_PHY_IQ_CORR_ENABLE |
742 	    ((u_int32_t)q_coff) |
743 	    ((u_int32_t)i_coff << AR5K_AR5211_PHY_IQ_CORR_Q_I_COFF_S));
744 
745  done:
746 	/* Start noise floor calibration */
747 	AR5K_REG_ENABLE_BITS(AR5K_AR5211_PHY_AGCCTL,
748 	    AR5K_AR5211_PHY_AGCCTL_NF);
749 
750 	return (AH_TRUE);
751 }
752 
753 /*
754  * Transmit functions
755  */
756 
757 HAL_BOOL
758 ar5k_ar5211_update_tx_triglevel(struct ath_hal *hal, HAL_BOOL increase)
759 {
760 	u_int32_t trigger_level, imr;
761 	HAL_BOOL status = AH_FALSE;
762 
763 	/*
764 	 * Disable interrupts by setting the mask
765 	 */
766 	imr = ar5k_ar5211_set_intr(hal, hal->ah_imr & ~HAL_INT_GLOBAL);
767 
768 	trigger_level = AR5K_REG_MS(AR5K_REG_READ(AR5K_AR5211_TXCFG),
769 	    AR5K_AR5211_TXCFG_TXFULL);
770 
771 	if (increase == AH_FALSE) {
772 		if (--trigger_level < AR5K_TUNE_MIN_TX_FIFO_THRES)
773 			goto done;
774 	} else
775 		trigger_level +=
776 		    ((AR5K_TUNE_MAX_TX_FIFO_THRES - trigger_level) / 2);
777 
778 	/*
779 	 * Update trigger level on success
780 	 */
781 	AR5K_REG_WRITE_BITS(AR5K_AR5211_TXCFG,
782 	    AR5K_AR5211_TXCFG_TXFULL, trigger_level);
783 	status = AH_TRUE;
784 
785  done:
786 	/*
787 	 * Restore interrupt mask
788 	 */
789 	ar5k_ar5211_set_intr(hal, imr);
790 
791 	return (status);
792 }
793 
794 int
795 ar5k_ar5211_setup_tx_queue(struct ath_hal *hal, HAL_TX_QUEUE queue_type,
796     const HAL_TXQ_INFO *queue_info)
797 {
798 	u_int queue;
799 
800 	/*
801 	 * Get queue by type
802 	 */
803 	if (queue_type == HAL_TX_QUEUE_DATA) {
804 		for (queue = HAL_TX_QUEUE_ID_DATA_MIN;
805 		     hal->ah_txq[queue].tqi_type != HAL_TX_QUEUE_INACTIVE;
806 		     queue++)
807 			if (queue > HAL_TX_QUEUE_ID_DATA_MAX)
808 				return (-1);
809 	} else if (queue_type == HAL_TX_QUEUE_PSPOLL) {
810 		queue = HAL_TX_QUEUE_ID_PSPOLL;
811 	} else if (queue_type == HAL_TX_QUEUE_BEACON) {
812 		queue = HAL_TX_QUEUE_ID_BEACON;
813 	} else if (queue_type == HAL_TX_QUEUE_CAB) {
814 		queue = HAL_TX_QUEUE_ID_CAB;
815 	} else
816 		return (-1);
817 
818 	/*
819 	 * Setup internal queue structure
820 	 */
821 	bzero(&hal->ah_txq[queue], sizeof(HAL_TXQ_INFO));
822 	hal->ah_txq[queue].tqi_type = queue_type;
823 
824 	if (queue_info != NULL) {
825 		if (ar5k_ar5211_setup_tx_queueprops(hal, queue, queue_info)
826 		    != AH_TRUE)
827 			return (-1);
828 	}
829 
830 	AR5K_Q_ENABLE_BITS(hal->ah_txq_interrupts, queue);
831 
832 	return (queue);
833 }
834 
835 HAL_BOOL
836 ar5k_ar5211_setup_tx_queueprops(struct ath_hal *hal, int queue,
837     const HAL_TXQ_INFO *queue_info)
838 {
839 	AR5K_ASSERT_ENTRY(queue, hal->ah_capabilities.cap_queues.q_tx_num);
840 
841 	if (hal->ah_txq[queue].tqi_type == HAL_TX_QUEUE_INACTIVE)
842 		return (AH_FALSE);
843 
844 	bcopy(queue_info, &hal->ah_txq[queue], sizeof(HAL_TXQ_INFO));
845 
846 	if (queue_info->tqi_type == HAL_TX_QUEUE_DATA &&
847 	    (queue_info->tqi_subtype >= HAL_WME_AC_VI) &&
848 	    (queue_info->tqi_subtype <= HAL_WME_UPSD))
849 		hal->ah_txq[queue].tqi_flags |=
850 		    AR5K_TXQ_FLAG_POST_FR_BKOFF_DIS;
851 
852 	return (AH_TRUE);
853 }
854 
855 HAL_BOOL
856 ar5k_ar5211_get_tx_queueprops(struct ath_hal *hal, int queue,
857     HAL_TXQ_INFO *queue_info)
858 {
859 	AR5K_ASSERT_ENTRY(queue, hal->ah_capabilities.cap_queues.q_tx_num);
860 	bcopy(&hal->ah_txq[queue], queue_info, sizeof(HAL_TXQ_INFO));
861 	return (AH_TRUE);
862 }
863 
864 HAL_BOOL
865 ar5k_ar5211_release_tx_queue(struct ath_hal *hal, u_int queue)
866 {
867 	AR5K_ASSERT_ENTRY(queue, hal->ah_capabilities.cap_queues.q_tx_num);
868 
869 	/* This queue will be skipped in further operations */
870 	hal->ah_txq[queue].tqi_type = HAL_TX_QUEUE_INACTIVE;
871 	AR5K_Q_DISABLE_BITS(hal->ah_txq_interrupts, queue);
872 
873 	return (AH_FALSE);
874 }
875 
876 HAL_BOOL
877 ar5k_ar5211_reset_tx_queue(struct ath_hal *hal, u_int queue)
878 {
879 	u_int32_t cw_min, cw_max, retry_lg, retry_sh;
880 	struct ieee80211_channel *channel = (struct ieee80211_channel*)
881 	    &hal->ah_current_channel;
882 	HAL_TXQ_INFO *tq;
883 
884 	AR5K_ASSERT_ENTRY(queue, hal->ah_capabilities.cap_queues.q_tx_num);
885 
886 	tq = &hal->ah_txq[queue];
887 
888 	if (tq->tqi_type == HAL_TX_QUEUE_INACTIVE)
889 		return (AH_TRUE);
890 
891 	/*
892 	 * Set registers by channel mode
893 	 */
894 	if (IEEE80211_IS_CHAN_B(channel)) {
895 		hal->ah_cw_min = AR5K_TUNE_CWMIN_11B;
896 		cw_max = hal->ah_cw_max = AR5K_TUNE_CWMAX_11B;
897 		hal->ah_aifs = AR5K_TUNE_AIFS_11B;
898 	} else {
899 		hal->ah_cw_min = AR5K_TUNE_CWMIN;
900 		cw_max = hal->ah_cw_max = AR5K_TUNE_CWMAX;
901 		hal->ah_aifs = AR5K_TUNE_AIFS;
902 	}
903 
904 	/*
905 	 * Set retry limits
906 	 */
907 	if (hal->ah_software_retry == AH_TRUE) {
908 		/* XXX Need to test this */
909 		retry_lg = hal->ah_limit_tx_retries;
910 		retry_sh = retry_lg =
911 		    retry_lg > AR5K_AR5211_DCU_RETRY_LMT_SH_RETRY ?
912 		    AR5K_AR5211_DCU_RETRY_LMT_SH_RETRY : retry_lg;
913 	} else {
914 		retry_lg = AR5K_INIT_LG_RETRY;
915 		retry_sh = AR5K_INIT_SH_RETRY;
916 	}
917 
918 	AR5K_REG_WRITE(AR5K_AR5211_DCU_RETRY_LMT(queue),
919 	    AR5K_REG_SM(AR5K_INIT_SLG_RETRY,
920 	    AR5K_AR5211_DCU_RETRY_LMT_SLG_RETRY) |
921 	    AR5K_REG_SM(AR5K_INIT_SSH_RETRY,
922 	    AR5K_AR5211_DCU_RETRY_LMT_SSH_RETRY) |
923 	    AR5K_REG_SM(retry_lg, AR5K_AR5211_DCU_RETRY_LMT_LG_RETRY) |
924 	    AR5K_REG_SM(retry_sh, AR5K_AR5211_DCU_RETRY_LMT_SH_RETRY));
925 
926 	/*
927 	 * Set initial content window (cw_min/cw_max)
928 	 */
929 	cw_min = 1;
930 	while (cw_min < hal->ah_cw_min)
931 		cw_min = (cw_min << 1) | 1;
932 
933 	cw_min = tq->tqi_cw_min < 0 ?
934 	    (cw_min >> (-tq->tqi_cw_min)) :
935 	    ((cw_min << tq->tqi_cw_min) + (1 << tq->tqi_cw_min) - 1);
936 	cw_max = tq->tqi_cw_max < 0 ?
937 	    (cw_max >> (-tq->tqi_cw_max)) :
938 	    ((cw_max << tq->tqi_cw_max) + (1 << tq->tqi_cw_max) - 1);
939 
940 	AR5K_REG_WRITE(AR5K_AR5211_DCU_LCL_IFS(queue),
941 	    AR5K_REG_SM(cw_min, AR5K_AR5211_DCU_LCL_IFS_CW_MIN) |
942 	    AR5K_REG_SM(cw_max, AR5K_AR5211_DCU_LCL_IFS_CW_MAX) |
943 	    AR5K_REG_SM(hal->ah_aifs + tq->tqi_aifs,
944 	    AR5K_AR5211_DCU_LCL_IFS_AIFS));
945 
946 	/*
947 	 * Set misc registers
948 	 */
949 	AR5K_REG_WRITE(AR5K_AR5211_QCU_MISC(queue),
950 	    AR5K_AR5211_QCU_MISC_DCU_EARLY);
951 
952 	if (tq->tqi_cbr_period) {
953 		AR5K_REG_WRITE(AR5K_AR5211_QCU_CBRCFG(queue),
954 		    AR5K_REG_SM(tq->tqi_cbr_period,
955 		    AR5K_AR5211_QCU_CBRCFG_INTVAL) |
956 		    AR5K_REG_SM(tq->tqi_cbr_overflow_limit,
957 		    AR5K_AR5211_QCU_CBRCFG_ORN_THRES));
958 		AR5K_REG_ENABLE_BITS(AR5K_AR5211_QCU_MISC(queue),
959 		    AR5K_AR5211_QCU_MISC_FRSHED_CBR);
960 		if (tq->tqi_cbr_overflow_limit)
961 			AR5K_REG_ENABLE_BITS(AR5K_AR5211_QCU_MISC(queue),
962 			    AR5K_AR5211_QCU_MISC_CBR_THRES_ENABLE);
963 	}
964 
965 	if (tq->tqi_ready_time) {
966 		AR5K_REG_WRITE(AR5K_AR5211_QCU_RDYTIMECFG(queue),
967 		    AR5K_REG_SM(tq->tqi_ready_time,
968 		    AR5K_AR5211_QCU_RDYTIMECFG_INTVAL) |
969 		    AR5K_AR5211_QCU_RDYTIMECFG_ENABLE);
970 	}
971 
972 	if (tq->tqi_burst_time) {
973 		AR5K_REG_WRITE(AR5K_AR5211_DCU_CHAN_TIME(queue),
974 		    AR5K_REG_SM(tq->tqi_burst_time,
975 		    AR5K_AR5211_DCU_CHAN_TIME_DUR) |
976 		    AR5K_AR5211_DCU_CHAN_TIME_ENABLE);
977 
978 		if (tq->tqi_flags & AR5K_TXQ_FLAG_RDYTIME_EXP_POLICY_ENABLE) {
979 			AR5K_REG_ENABLE_BITS(AR5K_AR5211_QCU_MISC(queue),
980 			    AR5K_AR5211_QCU_MISC_TXE);
981 		}
982 	}
983 
984 	if (tq->tqi_flags & AR5K_TXQ_FLAG_BACKOFF_DISABLE) {
985 		AR5K_REG_WRITE(AR5K_AR5211_DCU_MISC(queue),
986 		    AR5K_AR5211_DCU_MISC_POST_FR_BKOFF_DIS);
987 	}
988 
989 	if (tq->tqi_flags & AR5K_TXQ_FLAG_FRAG_BURST_BACKOFF_ENABLE) {
990 		AR5K_REG_WRITE(AR5K_AR5211_DCU_MISC(queue),
991 		    AR5K_AR5211_DCU_MISC_BACKOFF_FRAG);
992 	}
993 
994 	/*
995 	 * Set registers by queue type
996 	 */
997 	switch (tq->tqi_type) {
998 	case HAL_TX_QUEUE_BEACON:
999 		AR5K_REG_ENABLE_BITS(AR5K_AR5211_QCU_MISC(queue),
1000 		    AR5K_AR5211_QCU_MISC_FRSHED_DBA_GT |
1001 		    AR5K_AR5211_QCU_MISC_CBREXP_BCN |
1002 		    AR5K_AR5211_QCU_MISC_BCN_ENABLE);
1003 
1004 		AR5K_REG_ENABLE_BITS(AR5K_AR5211_DCU_MISC(queue),
1005 		    (AR5K_AR5211_DCU_MISC_ARBLOCK_CTL_GLOBAL <<
1006 		    AR5K_AR5211_DCU_MISC_ARBLOCK_CTL_GLOBAL) |
1007 		    AR5K_AR5211_DCU_MISC_POST_FR_BKOFF_DIS |
1008 		    AR5K_AR5211_DCU_MISC_BCN_ENABLE);
1009 
1010 		AR5K_REG_WRITE(AR5K_AR5211_QCU_RDYTIMECFG(queue),
1011 		    ((AR5K_TUNE_BEACON_INTERVAL -
1012 		    (AR5K_TUNE_SW_BEACON_RESP - AR5K_TUNE_DMA_BEACON_RESP) -
1013 		    AR5K_TUNE_ADDITIONAL_SWBA_BACKOFF) * 1024) |
1014 		    AR5K_AR5211_QCU_RDYTIMECFG_ENABLE);
1015 		break;
1016 
1017 	case HAL_TX_QUEUE_CAB:
1018 		AR5K_REG_ENABLE_BITS(AR5K_AR5211_QCU_MISC(queue),
1019 		    AR5K_AR5211_QCU_MISC_FRSHED_DBA_GT |
1020 		    AR5K_AR5211_QCU_MISC_CBREXP |
1021 		    AR5K_AR5211_QCU_MISC_CBREXP_BCN);
1022 
1023 		AR5K_REG_ENABLE_BITS(AR5K_AR5211_DCU_MISC(queue),
1024 		    (AR5K_AR5211_DCU_MISC_ARBLOCK_CTL_GLOBAL <<
1025 		    AR5K_AR5211_DCU_MISC_ARBLOCK_CTL_GLOBAL));
1026 		break;
1027 
1028 	case HAL_TX_QUEUE_PSPOLL:
1029 		AR5K_REG_ENABLE_BITS(AR5K_AR5211_QCU_MISC(queue),
1030 		    AR5K_AR5211_QCU_MISC_CBREXP);
1031 		break;
1032 
1033 	case HAL_TX_QUEUE_DATA:
1034 	default:
1035 		break;
1036 	}
1037 
1038 	/*
1039 	 * Enable tx queue in the secondary interrupt mask registers
1040 	 */
1041 	AR5K_REG_WRITE(AR5K_AR5211_SIMR0,
1042 	    AR5K_REG_SM(hal->ah_txq_interrupts, AR5K_AR5211_SIMR0_QCU_TXOK) |
1043 	    AR5K_REG_SM(hal->ah_txq_interrupts, AR5K_AR5211_SIMR0_QCU_TXDESC));
1044 	AR5K_REG_WRITE(AR5K_AR5211_SIMR1,
1045 	    AR5K_REG_SM(hal->ah_txq_interrupts, AR5K_AR5211_SIMR1_QCU_TXERR));
1046 	AR5K_REG_WRITE(AR5K_AR5211_SIMR2,
1047 	    AR5K_REG_SM(hal->ah_txq_interrupts, AR5K_AR5211_SIMR2_QCU_TXURN));
1048 
1049 	return (AH_TRUE);
1050 }
1051 
1052 u_int32_t
1053 ar5k_ar5211_get_tx_buf(struct ath_hal *hal, u_int queue)
1054 {
1055 	AR5K_ASSERT_ENTRY(queue, hal->ah_capabilities.cap_queues.q_tx_num);
1056 
1057 	/*
1058 	 * Get the transmit queue descriptor pointer from the selected queue
1059 	 */
1060 	return (AR5K_REG_READ(AR5K_AR5211_QCU_TXDP(queue)));
1061 }
1062 
1063 HAL_BOOL
1064 ar5k_ar5211_put_tx_buf(struct ath_hal *hal, u_int queue, u_int32_t phys_addr)
1065 {
1066 	AR5K_ASSERT_ENTRY(queue, hal->ah_capabilities.cap_queues.q_tx_num);
1067 
1068 	/*
1069 	 * Set the transmit queue descriptor pointer for the selected queue
1070 	 * (this won't work if the queue is still active)
1071 	 */
1072 	if (AR5K_REG_READ_Q(AR5K_AR5211_QCU_TXE, queue))
1073 		return (AH_FALSE);
1074 
1075 	AR5K_REG_WRITE(AR5K_AR5211_QCU_TXDP(queue), phys_addr);
1076 
1077 	return (AH_TRUE);
1078 }
1079 
1080 u_int32_t
1081 ar5k_ar5211_num_tx_pending(struct ath_hal *hal, u_int queue)
1082 {
1083 	AR5K_ASSERT_ENTRY(queue, hal->ah_capabilities.cap_queues.q_tx_num);
1084 	return (AR5K_AR5211_QCU_STS(queue) & AR5K_AR5211_QCU_STS_FRMPENDCNT);
1085 }
1086 
1087 HAL_BOOL
1088 ar5k_ar5211_tx_start(struct ath_hal *hal, u_int queue)
1089 {
1090 	AR5K_ASSERT_ENTRY(queue, hal->ah_capabilities.cap_queues.q_tx_num);
1091 
1092 	/* Return if queue is disabled */
1093 	if (AR5K_REG_READ_Q(AR5K_AR5211_QCU_TXD, queue))
1094 		return (AH_FALSE);
1095 
1096 	/* Start queue */
1097 	AR5K_REG_WRITE_Q(AR5K_AR5211_QCU_TXE, queue);
1098 
1099 	return (AH_TRUE);
1100 }
1101 
1102 HAL_BOOL
1103 ar5k_ar5211_stop_tx_dma(struct ath_hal *hal, u_int queue)
1104 {
1105 	int i = 100, pending;
1106 
1107 	AR5K_ASSERT_ENTRY(queue, hal->ah_capabilities.cap_queues.q_tx_num);
1108 
1109 	/*
1110 	 * Schedule TX disable and wait until queue is empty
1111 	 */
1112 	AR5K_REG_WRITE_Q(AR5K_AR5211_QCU_TXD, queue);
1113 
1114 	do {
1115 		pending = AR5K_REG_READ(AR5K_AR5211_QCU_STS(queue)) &
1116 		     AR5K_AR5211_QCU_STS_FRMPENDCNT;
1117 		delay(100);
1118 	} while (--i && pending);
1119 
1120 	/* Clear register */
1121 	AR5K_REG_WRITE(AR5K_AR5211_QCU_TXD, 0);
1122 
1123 	return (AH_TRUE);
1124 }
1125 
1126 HAL_BOOL
1127 ar5k_ar5211_setup_tx_desc(struct ath_hal *hal, struct ath_desc *desc,
1128     u_int packet_length, u_int header_length, HAL_PKT_TYPE type, u_int tx_power,
1129     u_int tx_rate0, u_int tx_tries0, u_int key_index, u_int antenna_mode,
1130     u_int flags, u_int rtscts_rate, u_int rtscts_duration)
1131 {
1132 	struct ar5k_ar5211_tx_desc *tx_desc;
1133 
1134 	tx_desc = (struct ar5k_ar5211_tx_desc*)&desc->ds_ctl0;
1135 
1136 	/*
1137 	 * Validate input
1138 	 */
1139 	if (tx_tries0 == 0)
1140 		return (AH_FALSE);
1141 
1142 	if ((tx_desc->tx_control_0 = (packet_length &
1143 	    AR5K_AR5211_DESC_TX_CTL0_FRAME_LEN)) != packet_length)
1144 		return (AH_FALSE);
1145 
1146 	tx_desc->tx_control_0 |=
1147 	    AR5K_REG_SM(tx_rate0, AR5K_AR5211_DESC_TX_CTL0_XMIT_RATE) |
1148 	    AR5K_REG_SM(antenna_mode, AR5K_AR5211_DESC_TX_CTL0_ANT_MODE_XMIT);
1149 	tx_desc->tx_control_1 =
1150 	    AR5K_REG_SM(type, AR5K_AR5211_DESC_TX_CTL1_FRAME_TYPE);
1151 
1152 #define _TX_FLAGS(_c, _flag)						\
1153 	if (flags & HAL_TXDESC_##_flag)					\
1154 		tx_desc->tx_control_##_c |=				\
1155 			AR5K_AR5211_DESC_TX_CTL##_c##_##_flag
1156 
1157 	_TX_FLAGS(0, CLRDMASK);
1158 	_TX_FLAGS(0, VEOL);
1159 	_TX_FLAGS(0, INTREQ);
1160 	_TX_FLAGS(0, RTSENA);
1161 	_TX_FLAGS(1, NOACK);
1162 
1163 #undef _TX_FLAGS
1164 
1165 	/*
1166 	 * WEP crap
1167 	 */
1168 	if (key_index != HAL_TXKEYIX_INVALID) {
1169 		tx_desc->tx_control_0 |=
1170 		    AR5K_AR5211_DESC_TX_CTL0_ENCRYPT_KEY_VALID;
1171 		tx_desc->tx_control_1 |=
1172 		    AR5K_REG_SM(key_index,
1173 		    AR5K_AR5211_DESC_TX_CTL1_ENCRYPT_KEY_INDEX);
1174 	}
1175 
1176 	return (AH_TRUE);
1177 }
1178 
1179 HAL_BOOL
1180 ar5k_ar5211_fill_tx_desc(struct ath_hal *hal, struct ath_desc *desc,
1181     u_int segment_length, HAL_BOOL first_segment, HAL_BOOL last_segment)
1182 {
1183 	struct ar5k_ar5211_tx_desc *tx_desc;
1184 
1185 	tx_desc = (struct ar5k_ar5211_tx_desc*)&desc->ds_ctl0;
1186 
1187 	/* Clear status descriptor */
1188 	bzero(desc->ds_hw, sizeof(desc->ds_hw));
1189 
1190 	/* Validate segment length and initialize the descriptor */
1191 	if (segment_length & ~AR5K_AR5211_DESC_TX_CTL1_BUF_LEN)
1192 		return (AH_FALSE);
1193 	tx_desc->tx_control_1 =
1194 #if 0
1195 	    (tx_desc->tx_control_1 & ~AR5K_AR5211_DESC_TX_CTL1_BUF_LEN) |
1196 #endif
1197 	    segment_length;
1198 
1199 	if (first_segment != AH_TRUE)
1200 		tx_desc->tx_control_0 &= ~AR5K_AR5211_DESC_TX_CTL0_FRAME_LEN;
1201 
1202 	if (last_segment != AH_TRUE)
1203 		tx_desc->tx_control_1 |= AR5K_AR5211_DESC_TX_CTL1_MORE;
1204 
1205 	return (AH_TRUE);
1206 }
1207 
1208 HAL_BOOL
1209 ar5k_ar5211_setup_xtx_desc(struct ath_hal *hal, struct ath_desc *desc,
1210     u_int tx_rate1, u_int tx_tries1, u_int tx_rate2, u_int tx_tries2,
1211     u_int tx_rate3, u_int tx_tries3)
1212 {
1213 	return (AH_FALSE);
1214 }
1215 
1216 HAL_STATUS
1217 ar5k_ar5211_proc_tx_desc(struct ath_hal *hal, struct ath_desc *desc)
1218 {
1219 	struct ar5k_ar5211_tx_status *tx_status;
1220 	struct ar5k_ar5211_tx_desc *tx_desc;
1221 
1222 	tx_desc = (struct ar5k_ar5211_tx_desc*)&desc->ds_ctl0;
1223 	tx_status = (struct ar5k_ar5211_tx_status*)&desc->ds_hw[0];
1224 
1225 	/* No frame has been send or error */
1226 	if ((tx_status->tx_status_1 & AR5K_AR5211_DESC_TX_STATUS1_DONE) == 0)
1227 		return (HAL_EINPROGRESS);
1228 
1229 	/*
1230 	 * Get descriptor status
1231 	 */
1232 	desc->ds_us.tx.ts_tstamp =
1233 	    AR5K_REG_MS(tx_status->tx_status_0,
1234 	    AR5K_AR5211_DESC_TX_STATUS0_SEND_TIMESTAMP);
1235 	desc->ds_us.tx.ts_shortretry =
1236 	    AR5K_REG_MS(tx_status->tx_status_0,
1237 	    AR5K_AR5211_DESC_TX_STATUS0_RTS_FAIL_COUNT);
1238 	desc->ds_us.tx.ts_longretry =
1239 	    AR5K_REG_MS(tx_status->tx_status_0,
1240 	    AR5K_AR5211_DESC_TX_STATUS0_DATA_FAIL_COUNT);
1241 	desc->ds_us.tx.ts_seqnum =
1242 	    AR5K_REG_MS(tx_status->tx_status_1,
1243 	    AR5K_AR5211_DESC_TX_STATUS1_SEQ_NUM);
1244 	desc->ds_us.tx.ts_rssi =
1245 	    AR5K_REG_MS(tx_status->tx_status_1,
1246 	    AR5K_AR5211_DESC_TX_STATUS1_ACK_SIG_STRENGTH);
1247 	desc->ds_us.tx.ts_antenna = 1;
1248 	desc->ds_us.tx.ts_status = 0;
1249 	desc->ds_us.tx.ts_rate =
1250 	    AR5K_REG_MS(tx_desc->tx_control_0,
1251 	    AR5K_AR5211_DESC_TX_CTL0_XMIT_RATE);
1252 
1253 	if ((tx_status->tx_status_0 &
1254 	    AR5K_AR5211_DESC_TX_STATUS0_FRAME_XMIT_OK) == 0) {
1255 		if (tx_status->tx_status_0 &
1256 		    AR5K_AR5211_DESC_TX_STATUS0_EXCESSIVE_RETRIES)
1257 			desc->ds_us.tx.ts_status |= HAL_TXERR_XRETRY;
1258 
1259 		if (tx_status->tx_status_0 &
1260 		    AR5K_AR5211_DESC_TX_STATUS0_FIFO_UNDERRUN)
1261 			desc->ds_us.tx.ts_status |= HAL_TXERR_FIFO;
1262 
1263 		if (tx_status->tx_status_0 &
1264 		    AR5K_AR5211_DESC_TX_STATUS0_FILTERED)
1265 			desc->ds_us.tx.ts_status |= HAL_TXERR_FILT;
1266 	}
1267 
1268 	return (HAL_OK);
1269 }
1270 
1271 HAL_BOOL
1272 ar5k_ar5211_has_veol(struct ath_hal *hal)
1273 {
1274 	return (AH_TRUE);
1275 }
1276 
1277 /*
1278  * Receive functions
1279  */
1280 
1281 u_int32_t
1282 ar5k_ar5211_get_rx_buf(struct ath_hal *hal)
1283 {
1284 	return (AR5K_REG_READ(AR5K_AR5211_RXDP));
1285 }
1286 
1287 void
1288 ar5k_ar5211_put_rx_buf(struct ath_hal *hal, u_int32_t phys_addr)
1289 {
1290 	AR5K_REG_WRITE(AR5K_AR5211_RXDP, phys_addr);
1291 }
1292 
1293 void
1294 ar5k_ar5211_start_rx(struct ath_hal *hal)
1295 {
1296 	AR5K_REG_WRITE(AR5K_AR5211_CR, AR5K_AR5211_CR_RXE);
1297 }
1298 
1299 HAL_BOOL
1300 ar5k_ar5211_stop_rx_dma(struct ath_hal *hal)
1301 {
1302 	int i;
1303 
1304 	AR5K_REG_WRITE(AR5K_AR5211_CR, AR5K_AR5211_CR_RXD);
1305 
1306 	/*
1307 	 * It may take some time to disable the DMA receive unit
1308 	 */
1309 	for (i = 2000;
1310 	     i > 0 && (AR5K_REG_READ(AR5K_AR5211_CR) & AR5K_AR5211_CR_RXE) != 0;
1311 	     i--)
1312 		AR5K_DELAY(10);
1313 
1314 	return (i > 0 ? AH_TRUE : AH_FALSE);
1315 }
1316 
1317 void
1318 ar5k_ar5211_start_rx_pcu(struct ath_hal *hal)
1319 {
1320 	AR5K_REG_DISABLE_BITS(AR5K_AR5211_DIAG_SW, AR5K_AR5211_DIAG_SW_DIS_RX);
1321 }
1322 
1323 void
1324 ar5k_ar5211_stop_pcu_recv(struct ath_hal *hal)
1325 {
1326 	AR5K_REG_ENABLE_BITS(AR5K_AR5211_DIAG_SW, AR5K_AR5211_DIAG_SW_DIS_RX);
1327 }
1328 
1329 void
1330 ar5k_ar5211_set_mcast_filter(struct ath_hal *hal, u_int32_t filter0,
1331     u_int32_t filter1)
1332 {
1333 	/* Set the multicat filter */
1334 	AR5K_REG_WRITE(AR5K_AR5211_MCAST_FIL0, filter0);
1335 	AR5K_REG_WRITE(AR5K_AR5211_MCAST_FIL1, filter1);
1336 }
1337 
1338 HAL_BOOL
1339 ar5k_ar5211_set_mcast_filterindex(struct ath_hal *hal, u_int32_t index)
1340 {
1341 	if (index >= 64) {
1342 	    return (AH_FALSE);
1343 	} else if (index >= 32) {
1344 	    AR5K_REG_ENABLE_BITS(AR5K_AR5211_MCAST_FIL1,
1345 		(1 << (index - 32)));
1346 	} else {
1347 	    AR5K_REG_ENABLE_BITS(AR5K_AR5211_MCAST_FIL0,
1348 		(1 << index));
1349 	}
1350 
1351 	return (AH_TRUE);
1352 }
1353 
1354 HAL_BOOL
1355 ar5k_ar5211_clear_mcast_filter_idx(struct ath_hal *hal, u_int32_t index)
1356 {
1357 
1358 	if (index >= 64) {
1359 	    return (AH_FALSE);
1360 	} else if (index >= 32) {
1361 	    AR5K_REG_DISABLE_BITS(AR5K_AR5211_MCAST_FIL1,
1362 		(1 << (index - 32)));
1363 	} else {
1364 	    AR5K_REG_DISABLE_BITS(AR5K_AR5211_MCAST_FIL0,
1365 		(1 << index));
1366 	}
1367 
1368 	return (AH_TRUE);
1369 }
1370 
1371 u_int32_t
1372 ar5k_ar5211_get_rx_filter(struct ath_hal *hal)
1373 {
1374 	return (AR5K_REG_READ(AR5K_AR5211_RX_FILTER));
1375 }
1376 
1377 void
1378 ar5k_ar5211_set_rx_filter(struct ath_hal *hal, u_int32_t filter)
1379 {
1380 	AR5K_REG_WRITE(AR5K_AR5211_RX_FILTER, filter);
1381 }
1382 
1383 HAL_BOOL
1384 ar5k_ar5211_setup_rx_desc(struct ath_hal *hal, struct ath_desc *desc,
1385     u_int32_t size, u_int flags)
1386 {
1387 	struct ar5k_ar5211_rx_desc *rx_desc;
1388 
1389 	rx_desc = (struct ar5k_ar5211_rx_desc*)&desc->ds_ctl0;
1390 
1391 	if ((rx_desc->rx_control_1 = (size &
1392 	    AR5K_AR5211_DESC_RX_CTL1_BUF_LEN)) != size)
1393 		return (AH_FALSE);
1394 
1395 	if (flags & HAL_RXDESC_INTREQ)
1396 		rx_desc->rx_control_1 |= AR5K_AR5211_DESC_RX_CTL1_INTREQ;
1397 
1398 	return (AH_TRUE);
1399 }
1400 
1401 HAL_STATUS
1402 ar5k_ar5211_proc_rx_desc(struct ath_hal *hal, struct ath_desc *desc,
1403     u_int32_t phys_addr, struct ath_desc *next)
1404 {
1405 	struct ar5k_ar5211_rx_status *rx_status;
1406 
1407 	rx_status = (struct ar5k_ar5211_rx_status*)&desc->ds_hw[0];
1408 
1409 	/* No frame received / not ready */
1410 	if ((rx_status->rx_status_1 & AR5K_AR5211_DESC_RX_STATUS1_DONE) == 0)
1411 		return (HAL_EINPROGRESS);
1412 
1413 	/*
1414 	 * Frame receive status
1415 	 */
1416 	desc->ds_us.rx.rs_datalen = rx_status->rx_status_0 &
1417 	    AR5K_AR5211_DESC_RX_STATUS0_DATA_LEN;
1418 	desc->ds_us.rx.rs_rssi =
1419 	    AR5K_REG_MS(rx_status->rx_status_0,
1420 	    AR5K_AR5211_DESC_RX_STATUS0_RECEIVE_SIGNAL);
1421 	desc->ds_us.rx.rs_rate =
1422 	    AR5K_REG_MS(rx_status->rx_status_0,
1423 	    AR5K_AR5211_DESC_RX_STATUS0_RECEIVE_RATE);
1424 	desc->ds_us.rx.rs_antenna = rx_status->rx_status_0 &
1425 	    AR5K_AR5211_DESC_RX_STATUS0_RECEIVE_ANTENNA;
1426 	desc->ds_us.rx.rs_more = rx_status->rx_status_0 &
1427 	    AR5K_AR5211_DESC_RX_STATUS0_MORE;
1428 	desc->ds_us.rx.rs_tstamp =
1429 	    AR5K_REG_MS(rx_status->rx_status_1,
1430 	    AR5K_AR5211_DESC_RX_STATUS1_RECEIVE_TIMESTAMP);
1431 	desc->ds_us.rx.rs_status = 0;
1432 
1433 	/*
1434 	 * Key table status
1435 	 */
1436 	if (rx_status->rx_status_1 &
1437 	    AR5K_AR5211_DESC_RX_STATUS1_KEY_INDEX_VALID) {
1438 		desc->ds_us.rx.rs_keyix =
1439 		    AR5K_REG_MS(rx_status->rx_status_1,
1440 		    AR5K_AR5211_DESC_RX_STATUS1_KEY_INDEX);
1441 	} else {
1442 		desc->ds_us.rx.rs_keyix = HAL_RXKEYIX_INVALID;
1443 	}
1444 
1445 	/*
1446 	 * Receive/descriptor errors
1447 	 */
1448 	if ((rx_status->rx_status_1 &
1449 	    AR5K_AR5211_DESC_RX_STATUS1_FRAME_RECEIVE_OK) == 0) {
1450 		if (rx_status->rx_status_1 &
1451 		    AR5K_AR5211_DESC_RX_STATUS1_CRC_ERROR)
1452 			desc->ds_us.rx.rs_status |= HAL_RXERR_CRC;
1453 
1454 		if (rx_status->rx_status_1 &
1455 		    AR5K_AR5211_DESC_RX_STATUS1_PHY_ERROR) {
1456 			desc->ds_us.rx.rs_status |= HAL_RXERR_PHY;
1457 			desc->ds_us.rx.rs_phyerr =
1458 			    AR5K_REG_MS(rx_status->rx_status_1,
1459 			    AR5K_AR5211_DESC_RX_STATUS1_PHY_ERROR);
1460 		}
1461 
1462 		if (rx_status->rx_status_1 &
1463 		    AR5K_AR5211_DESC_RX_STATUS1_DECRYPT_CRC_ERROR)
1464 			desc->ds_us.rx.rs_status |= HAL_RXERR_DECRYPT;
1465 	}
1466 
1467 	return (HAL_OK);
1468 }
1469 
1470 void
1471 ar5k_ar5211_set_rx_signal(struct ath_hal *hal)
1472 {
1473 	/* Signal state monitoring is not yet supported */
1474 }
1475 
1476 /*
1477  * Misc functions
1478  */
1479 
1480 void
1481 ar5k_ar5211_dump_state(struct ath_hal *hal)
1482 {
1483 #ifdef AR5K_DEBUG
1484 #define AR5K_PRINT_REGISTER(_x)						\
1485 	printf("(%s: %08x) ", #_x, AR5K_REG_READ(AR5K_AR5211_##_x));
1486 
1487 	printf("MAC registers:\n");
1488 	AR5K_PRINT_REGISTER(CR);
1489 	AR5K_PRINT_REGISTER(CFG);
1490 	AR5K_PRINT_REGISTER(IER);
1491 	AR5K_PRINT_REGISTER(RTSD0);
1492 	AR5K_PRINT_REGISTER(TXCFG);
1493 	AR5K_PRINT_REGISTER(RXCFG);
1494 	AR5K_PRINT_REGISTER(RXJLA);
1495 	AR5K_PRINT_REGISTER(MIBC);
1496 	AR5K_PRINT_REGISTER(TOPS);
1497 	AR5K_PRINT_REGISTER(RXNOFRM);
1498 	AR5K_PRINT_REGISTER(RPGTO);
1499 	AR5K_PRINT_REGISTER(RFCNT);
1500 	AR5K_PRINT_REGISTER(MISC);
1501 	AR5K_PRINT_REGISTER(PISR);
1502 	AR5K_PRINT_REGISTER(SISR0);
1503 	AR5K_PRINT_REGISTER(SISR1);
1504 	AR5K_PRINT_REGISTER(SISR3);
1505 	AR5K_PRINT_REGISTER(SISR4);
1506 	AR5K_PRINT_REGISTER(QCU_TXE);
1507 	AR5K_PRINT_REGISTER(QCU_TXD);
1508 	AR5K_PRINT_REGISTER(DCU_GBL_IFS_SIFS);
1509 	AR5K_PRINT_REGISTER(DCU_GBL_IFS_SLOT);
1510 	AR5K_PRINT_REGISTER(DCU_FP);
1511 	AR5K_PRINT_REGISTER(DCU_TXP);
1512 	AR5K_PRINT_REGISTER(DCU_TX_FILTER);
1513 	AR5K_PRINT_REGISTER(RC);
1514 	AR5K_PRINT_REGISTER(SCR);
1515 	AR5K_PRINT_REGISTER(INTPEND);
1516 	AR5K_PRINT_REGISTER(PCICFG);
1517 	AR5K_PRINT_REGISTER(GPIOCR);
1518 	AR5K_PRINT_REGISTER(GPIODO);
1519 	AR5K_PRINT_REGISTER(SREV);
1520 	AR5K_PRINT_REGISTER(EEPROM_BASE);
1521 	AR5K_PRINT_REGISTER(EEPROM_DATA);
1522 	AR5K_PRINT_REGISTER(EEPROM_CMD);
1523 	AR5K_PRINT_REGISTER(EEPROM_CFG);
1524 	AR5K_PRINT_REGISTER(PCU_MIN);
1525 	AR5K_PRINT_REGISTER(STA_ID0);
1526 	AR5K_PRINT_REGISTER(STA_ID1);
1527 	AR5K_PRINT_REGISTER(BSS_ID0);
1528 	AR5K_PRINT_REGISTER(SLOT_TIME);
1529 	AR5K_PRINT_REGISTER(TIME_OUT);
1530 	AR5K_PRINT_REGISTER(RSSI_THR);
1531 	AR5K_PRINT_REGISTER(BEACON);
1532 	AR5K_PRINT_REGISTER(CFP_PERIOD);
1533 	AR5K_PRINT_REGISTER(TIMER0);
1534 	AR5K_PRINT_REGISTER(TIMER2);
1535 	AR5K_PRINT_REGISTER(TIMER3);
1536 	AR5K_PRINT_REGISTER(CFP_DUR);
1537 	AR5K_PRINT_REGISTER(MCAST_FIL0);
1538 	AR5K_PRINT_REGISTER(MCAST_FIL1);
1539 	AR5K_PRINT_REGISTER(DIAG_SW);
1540 	AR5K_PRINT_REGISTER(TSF_U32);
1541 	AR5K_PRINT_REGISTER(ADDAC_TEST);
1542 	AR5K_PRINT_REGISTER(DEFAULT_ANTENNA);
1543 	AR5K_PRINT_REGISTER(LAST_TSTP);
1544 	AR5K_PRINT_REGISTER(NAV);
1545 	AR5K_PRINT_REGISTER(RTS_OK);
1546 	AR5K_PRINT_REGISTER(ACK_FAIL);
1547 	AR5K_PRINT_REGISTER(FCS_FAIL);
1548 	AR5K_PRINT_REGISTER(BEACON_CNT);
1549 	AR5K_PRINT_REGISTER(KEYTABLE_0);
1550 	printf("\n");
1551 
1552 	printf("PHY registers:\n");
1553 	AR5K_PRINT_REGISTER(PHY_TURBO);
1554 	AR5K_PRINT_REGISTER(PHY_AGC);
1555 	AR5K_PRINT_REGISTER(PHY_CHIP_ID);
1556 	AR5K_PRINT_REGISTER(PHY_AGCCTL);
1557 	AR5K_PRINT_REGISTER(PHY_NF);
1558 	AR5K_PRINT_REGISTER(PHY_RX_DELAY);
1559 	AR5K_PRINT_REGISTER(PHY_IQ);
1560 	AR5K_PRINT_REGISTER(PHY_PAPD_PROBE);
1561 	AR5K_PRINT_REGISTER(PHY_FC);
1562 	AR5K_PRINT_REGISTER(PHY_RADAR);
1563 	AR5K_PRINT_REGISTER(PHY_ANT_SWITCH_TABLE_0);
1564 	AR5K_PRINT_REGISTER(PHY_ANT_SWITCH_TABLE_1);
1565 	printf("\n");
1566 #endif
1567 }
1568 
1569 HAL_BOOL
1570 ar5k_ar5211_get_diag_state(struct ath_hal *hal, int id, void **device,
1571     u_int *size)
1572 {
1573 	/*
1574 	 * We'll ignore this right now. This seems to be some kind of an obscure
1575 	 * debugging interface for the binary-only HAL.
1576 	 */
1577 	return (AH_FALSE);
1578 }
1579 
1580 void
1581 ar5k_ar5211_get_lladdr(struct ath_hal *hal, u_int8_t *mac)
1582 {
1583 	bcopy(hal->ah_sta_id, mac, IEEE80211_ADDR_LEN);
1584 }
1585 
1586 HAL_BOOL
1587 ar5k_ar5211_set_lladdr(struct ath_hal *hal, const u_int8_t *mac)
1588 {
1589 	u_int32_t low_id, high_id;
1590 
1591 	/* Set new station ID */
1592 	bcopy(mac, hal->ah_sta_id, IEEE80211_ADDR_LEN);
1593 
1594 	low_id = AR5K_LOW_ID(mac);
1595 	high_id = 0x0000ffff & AR5K_HIGH_ID(mac);
1596 
1597 	AR5K_REG_WRITE(AR5K_AR5211_STA_ID0, low_id);
1598 	AR5K_REG_WRITE(AR5K_AR5211_STA_ID1, high_id);
1599 
1600 	return (AH_TRUE);
1601 }
1602 
1603 HAL_BOOL
1604 ar5k_ar5211_set_regdomain(struct ath_hal *hal, u_int16_t regdomain,
1605     HAL_STATUS *status)
1606 {
1607 	ieee80211_regdomain_t ieee_regdomain;
1608 
1609 	ieee_regdomain = ar5k_regdomain_to_ieee(regdomain);
1610 
1611 	if (ar5k_eeprom_regulation_domain(hal, AH_TRUE,
1612 		&ieee_regdomain) == AH_TRUE) {
1613 		*status = HAL_OK;
1614 		return (AH_TRUE);
1615 	}
1616 
1617 	*status = EIO;
1618 
1619 	return (AH_FALSE);
1620 }
1621 
1622 void
1623 ar5k_ar5211_set_ledstate(struct ath_hal *hal, HAL_LED_STATE state)
1624 {
1625 	u_int32_t led;
1626 
1627 	AR5K_REG_DISABLE_BITS(AR5K_AR5211_PCICFG,
1628 	    AR5K_AR5211_PCICFG_LEDMODE |  AR5K_AR5211_PCICFG_LED);
1629 
1630 	/*
1631 	 * Some blinking values, define at your wish
1632 	 */
1633 	switch (state) {
1634 	case IEEE80211_S_SCAN:
1635 	case IEEE80211_S_AUTH:
1636 		led = AR5K_AR5211_PCICFG_LEDMODE_PROP |
1637 		    AR5K_AR5211_PCICFG_LED_PEND;
1638 		break;
1639 
1640 	case IEEE80211_S_INIT:
1641 		led = AR5K_AR5211_PCICFG_LEDMODE_PROP |
1642 		    AR5K_AR5211_PCICFG_LED_NONE;
1643 		break;
1644 
1645 	case IEEE80211_S_ASSOC:
1646 	case IEEE80211_S_RUN:
1647 		led = AR5K_AR5211_PCICFG_LEDMODE_PROP |
1648 		    AR5K_AR5211_PCICFG_LED_ASSOC;
1649 		break;
1650 
1651 	default:
1652 		led = AR5K_AR5211_PCICFG_LEDMODE_PROM |
1653 		    AR5K_AR5211_PCICFG_LED_NONE;
1654 		break;
1655 	}
1656 
1657 	AR5K_REG_ENABLE_BITS(AR5K_AR5211_PCICFG, led);
1658 }
1659 
1660 void
1661 ar5k_ar5211_set_associd(struct ath_hal *hal, const u_int8_t *bssid,
1662     u_int16_t assoc_id, u_int16_t tim_offset)
1663 {
1664 	u_int32_t low_id, high_id;
1665 
1666 	/*
1667 	 * Set BSSID which triggers the "SME Join" operation
1668 	 */
1669 	low_id = AR5K_LOW_ID(bssid);
1670 	high_id = AR5K_HIGH_ID(bssid);
1671 	AR5K_REG_WRITE(AR5K_AR5211_BSS_ID0, low_id);
1672 	AR5K_REG_WRITE(AR5K_AR5211_BSS_ID1, high_id |
1673 	    ((assoc_id & 0x3fff) << AR5K_AR5211_BSS_ID1_AID_S));
1674 	bcopy(bssid, hal->ah_bssid, IEEE80211_ADDR_LEN);
1675 
1676 	if (assoc_id == 0) {
1677 		ar5k_ar5211_disable_pspoll(hal);
1678 		return;
1679 	}
1680 
1681 	AR5K_REG_WRITE(AR5K_AR5211_BEACON,
1682 	    (AR5K_REG_READ(AR5K_AR5211_BEACON) &
1683 	    ~AR5K_AR5211_BEACON_TIM) |
1684 	    (((tim_offset ? tim_offset + 4 : 0) <<
1685 	    AR5K_AR5211_BEACON_TIM_S) &
1686 	    AR5K_AR5211_BEACON_TIM));
1687 
1688 	ar5k_ar5211_enable_pspoll(hal, NULL, 0);
1689 }
1690 
1691 HAL_BOOL
1692 ar5k_ar5211_set_bssid_mask(struct ath_hal *hal, const u_int8_t* mask)
1693 {
1694 	/* Not supported in 5211 */
1695 	return (AH_FALSE);
1696 }
1697 
1698 HAL_BOOL
1699 ar5k_ar5211_set_gpio_output(struct ath_hal *hal, u_int32_t gpio)
1700 {
1701 	if (gpio > AR5K_AR5211_NUM_GPIO)
1702 		return (AH_FALSE);
1703 
1704 	AR5K_REG_WRITE(AR5K_AR5211_GPIOCR,
1705 	    (AR5K_REG_READ(AR5K_AR5211_GPIOCR) &~ AR5K_AR5211_GPIOCR_ALL(gpio))
1706 	    | AR5K_AR5211_GPIOCR_ALL(gpio));
1707 
1708 	return (AH_TRUE);
1709 }
1710 
1711 HAL_BOOL
1712 ar5k_ar5211_set_gpio_input(struct ath_hal *hal, u_int32_t gpio)
1713 {
1714 	if (gpio > AR5K_AR5211_NUM_GPIO)
1715 		return (AH_FALSE);
1716 
1717 	AR5K_REG_WRITE(AR5K_AR5211_GPIOCR,
1718 	    (AR5K_REG_READ(AR5K_AR5211_GPIOCR) &~ AR5K_AR5211_GPIOCR_ALL(gpio))
1719 	    | AR5K_AR5211_GPIOCR_NONE(gpio));
1720 
1721 	return (AH_TRUE);
1722 }
1723 
1724 u_int32_t
1725 ar5k_ar5211_get_gpio(struct ath_hal *hal, u_int32_t gpio)
1726 {
1727 	if (gpio > AR5K_AR5211_NUM_GPIO)
1728 		return (0xffffffff);
1729 
1730 	/* GPIO input magic */
1731 	return (((AR5K_REG_READ(AR5K_AR5211_GPIODI) &
1732 	    AR5K_AR5211_GPIODI_M) >> gpio) & 0x1);
1733 }
1734 
1735 HAL_BOOL
1736 ar5k_ar5211_set_gpio(struct ath_hal *hal, u_int32_t gpio, u_int32_t val)
1737 {
1738 	u_int32_t data;
1739 
1740 	if (gpio > AR5K_AR5211_NUM_GPIO)
1741 		return (0xffffffff);
1742 
1743 	/* GPIO output magic */
1744 	data =  AR5K_REG_READ(AR5K_AR5211_GPIODO);
1745 
1746 	data &= ~(1 << gpio);
1747 	data |= (val&1) << gpio;
1748 
1749 	AR5K_REG_WRITE(AR5K_AR5211_GPIODO, data);
1750 
1751 	return (AH_TRUE);
1752 }
1753 
1754 void
1755 ar5k_ar5211_set_gpio_intr(struct ath_hal *hal, u_int gpio,
1756     u_int32_t interrupt_level)
1757 {
1758 	u_int32_t data;
1759 
1760 	if (gpio > AR5K_AR5211_NUM_GPIO)
1761 		return;
1762 
1763 	/*
1764 	 * Set the GPIO interrupt
1765 	 */
1766 	data = (AR5K_REG_READ(AR5K_AR5211_GPIOCR) &
1767 	    ~(AR5K_AR5211_GPIOCR_INT_SEL(gpio) | AR5K_AR5211_GPIOCR_INT_SELH |
1768 	    AR5K_AR5211_GPIOCR_INT_ENA | AR5K_AR5211_GPIOCR_ALL(gpio))) |
1769 	    (AR5K_AR5211_GPIOCR_INT_SEL(gpio) | AR5K_AR5211_GPIOCR_INT_ENA);
1770 
1771 	AR5K_REG_WRITE(AR5K_AR5211_GPIOCR,
1772 	    interrupt_level ? data : (data | AR5K_AR5211_GPIOCR_INT_SELH));
1773 
1774 	hal->ah_imr |= AR5K_AR5211_PIMR_GPIO;
1775 
1776 	/* Enable GPIO interrupts */
1777 	AR5K_REG_ENABLE_BITS(AR5K_AR5211_PIMR, AR5K_AR5211_PIMR_GPIO);
1778 }
1779 
1780 u_int32_t
1781 ar5k_ar5211_get_tsf32(struct ath_hal *hal)
1782 {
1783 	return (AR5K_REG_READ(AR5K_AR5211_TSF_L32));
1784 }
1785 
1786 u_int64_t
1787 ar5k_ar5211_get_tsf64(struct ath_hal *hal)
1788 {
1789 	u_int64_t tsf = AR5K_REG_READ(AR5K_AR5211_TSF_U32);
1790 
1791 	return (AR5K_REG_READ(AR5K_AR5211_TSF_L32) | (tsf << 32));
1792 }
1793 
1794 void
1795 ar5k_ar5211_reset_tsf(struct ath_hal *hal)
1796 {
1797 	AR5K_REG_ENABLE_BITS(AR5K_AR5211_BEACON,
1798 	    AR5K_AR5211_BEACON_RESET_TSF);
1799 }
1800 
1801 u_int16_t
1802 ar5k_ar5211_get_regdomain(struct ath_hal *hal)
1803 {
1804 	return (ar5k_get_regdomain(hal));
1805 }
1806 
1807 HAL_BOOL
1808 ar5k_ar5211_detect_card_present(struct ath_hal *hal)
1809 {
1810 	u_int16_t magic;
1811 
1812 	/*
1813 	 * Checking the EEPROM's magic value could be an indication
1814 	 * if the card is still present. I didn't find another suitable
1815 	 * way to do this.
1816 	 */
1817 	if (ar5k_ar5211_eeprom_read(hal, AR5K_EEPROM_MAGIC, &magic) != 0)
1818 		return (AH_FALSE);
1819 
1820 	return (magic == AR5K_EEPROM_MAGIC_VALUE ? AH_TRUE : AH_FALSE);
1821 }
1822 
1823 void
1824 ar5k_ar5211_update_mib_counters(struct ath_hal *hal, HAL_MIB_STATS *statistics)
1825 {
1826 	statistics->ackrcv_bad += AR5K_REG_READ(AR5K_AR5211_ACK_FAIL);
1827 	statistics->rts_bad += AR5K_REG_READ(AR5K_AR5211_RTS_FAIL);
1828 	statistics->rts_good += AR5K_REG_READ(AR5K_AR5211_RTS_OK);
1829 	statistics->fcs_bad += AR5K_REG_READ(AR5K_AR5211_FCS_FAIL);
1830 	statistics->beacons += AR5K_REG_READ(AR5K_AR5211_BEACON_CNT);
1831 }
1832 
1833 HAL_RFGAIN
1834 ar5k_ar5211_get_rf_gain(struct ath_hal *hal)
1835 {
1836 	return (HAL_RFGAIN_INACTIVE);
1837 }
1838 
1839 HAL_BOOL
1840 ar5k_ar5211_set_slot_time(struct ath_hal *hal, u_int slot_time)
1841 {
1842 	if (slot_time < HAL_SLOT_TIME_9 || slot_time > HAL_SLOT_TIME_MAX)
1843 		return (AH_FALSE);
1844 
1845 	AR5K_REG_WRITE(AR5K_AR5211_DCU_GBL_IFS_SLOT, slot_time);
1846 
1847 	return (AH_TRUE);
1848 }
1849 
1850 u_int
1851 ar5k_ar5211_get_slot_time(struct ath_hal *hal)
1852 {
1853 	return (AR5K_REG_READ(AR5K_AR5211_DCU_GBL_IFS_SLOT) & 0xffff);
1854 }
1855 
1856 HAL_BOOL
1857 ar5k_ar5211_set_ack_timeout(struct ath_hal *hal, u_int timeout)
1858 {
1859 	if (ar5k_clocktoh(AR5K_REG_MS(0xffffffff, AR5K_AR5211_TIME_OUT_ACK))
1860 	    <= timeout)
1861 		return (AH_FALSE);
1862 
1863 	AR5K_REG_WRITE_BITS(AR5K_AR5211_TIME_OUT, AR5K_AR5211_TIME_OUT_ACK,
1864 	    ar5k_htoclock(timeout));
1865 
1866 	return (AH_TRUE);
1867 }
1868 
1869 u_int
1870 ar5k_ar5211_get_ack_timeout(struct ath_hal *hal)
1871 {
1872 	return (ar5k_clocktoh(AR5K_REG_MS(AR5K_REG_READ(AR5K_AR5211_TIME_OUT),
1873 	    AR5K_AR5211_TIME_OUT_ACK)));
1874 }
1875 
1876 HAL_BOOL
1877 ar5k_ar5211_set_cts_timeout(struct ath_hal *hal, u_int timeout)
1878 {
1879 	if (ar5k_clocktoh(AR5K_REG_MS(0xffffffff, AR5K_AR5211_TIME_OUT_CTS))
1880 	    <= timeout)
1881 		return (AH_FALSE);
1882 
1883 	AR5K_REG_WRITE_BITS(AR5K_AR5211_TIME_OUT, AR5K_AR5211_TIME_OUT_CTS,
1884 	    ar5k_htoclock(timeout));
1885 
1886 	return (AH_TRUE);
1887 }
1888 
1889 u_int
1890 ar5k_ar5211_get_cts_timeout(struct ath_hal *hal)
1891 {
1892 	return (ar5k_clocktoh(AR5K_REG_MS(AR5K_REG_READ(AR5K_AR5211_TIME_OUT),
1893 	    AR5K_AR5211_TIME_OUT_CTS)));
1894 }
1895 
1896 /*
1897  * Key table (WEP) functions
1898  */
1899 
1900 HAL_BOOL
1901 ar5k_ar5211_is_cipher_supported(struct ath_hal *hal, HAL_CIPHER cipher)
1902 {
1903 	/*
1904 	 * The AR5211 only supports WEP
1905 	 */
1906 	if (cipher == HAL_CIPHER_WEP)
1907 		return (AH_TRUE);
1908 
1909 	return (AH_FALSE);
1910 }
1911 
1912 u_int32_t
1913 ar5k_ar5211_get_keycache_size(struct ath_hal *hal)
1914 {
1915 	return (AR5K_AR5211_KEYCACHE_SIZE);
1916 }
1917 
1918 HAL_BOOL
1919 ar5k_ar5211_reset_key(struct ath_hal *hal, u_int16_t entry)
1920 {
1921 	int i;
1922 
1923 	AR5K_ASSERT_ENTRY(entry, AR5K_AR5211_KEYTABLE_SIZE);
1924 
1925 	for (i = 0; i < AR5K_AR5211_KEYCACHE_SIZE; i++)
1926 		AR5K_REG_WRITE(AR5K_AR5211_KEYTABLE_OFF(entry, i), 0);
1927 
1928 	/* Set NULL encryption */
1929 	AR5K_REG_WRITE(AR5K_AR5211_KEYTABLE_TYPE(entry),
1930 	    AR5K_AR5211_KEYTABLE_TYPE_NULL);
1931 
1932 	return (AH_FALSE);
1933 }
1934 
1935 HAL_BOOL
1936 ar5k_ar5211_is_key_valid(struct ath_hal *hal, u_int16_t entry)
1937 {
1938 	AR5K_ASSERT_ENTRY(entry, AR5K_AR5211_KEYTABLE_SIZE);
1939 
1940 	/*
1941 	 * Check the validation flag at the end of the entry
1942 	 */
1943 	if (AR5K_REG_READ(AR5K_AR5211_KEYTABLE_MAC1(entry)) &
1944 	    AR5K_AR5211_KEYTABLE_VALID)
1945 		return (AH_TRUE);
1946 
1947 	return (AH_FALSE);
1948 }
1949 
1950 HAL_BOOL
1951 ar5k_ar5211_set_key(struct ath_hal *hal, u_int16_t entry,
1952     const HAL_KEYVAL *keyval, const u_int8_t *mac, int xor_notused)
1953 {
1954 	int i;
1955 	u_int32_t key_v[AR5K_AR5211_KEYCACHE_SIZE - 2];
1956 
1957 	AR5K_ASSERT_ENTRY(entry, AR5K_AR5211_KEYTABLE_SIZE);
1958 
1959 	bzero(&key_v, sizeof(key_v));
1960 
1961 	switch (keyval->wk_len) {
1962 	case AR5K_KEYVAL_LENGTH_40:
1963 		bcopy(keyval->wk_key, &key_v[0], 4);
1964 		bcopy(keyval->wk_key + 4, &key_v[1], 1);
1965 		key_v[5] = AR5K_AR5211_KEYTABLE_TYPE_40;
1966 		break;
1967 
1968 	case AR5K_KEYVAL_LENGTH_104:
1969 		bcopy(keyval->wk_key, &key_v[0], 4);
1970 		bcopy(keyval->wk_key + 4, &key_v[1], 2);
1971 		bcopy(keyval->wk_key + 6, &key_v[2], 4);
1972 		bcopy(keyval->wk_key + 10, &key_v[3], 2);
1973 		bcopy(keyval->wk_key + 12, &key_v[4], 1);
1974 		key_v[5] = AR5K_AR5211_KEYTABLE_TYPE_104;
1975 		break;
1976 
1977 	case AR5K_KEYVAL_LENGTH_128:
1978 		bcopy(keyval->wk_key, &key_v[0], 4);
1979 		bcopy(keyval->wk_key + 4, &key_v[1], 2);
1980 		bcopy(keyval->wk_key + 6, &key_v[2], 4);
1981 		bcopy(keyval->wk_key + 10, &key_v[3], 2);
1982 		bcopy(keyval->wk_key + 12, &key_v[4], 4);
1983 		key_v[5] = AR5K_AR5211_KEYTABLE_TYPE_128;
1984 		break;
1985 
1986 	default:
1987 		/* Unsupported key length (not WEP40/104/128) */
1988 		return (AH_FALSE);
1989 	}
1990 
1991 	for (i = 0; i < nitems(key_v); i++)
1992 		AR5K_REG_WRITE(AR5K_AR5211_KEYTABLE_OFF(entry, i), key_v[i]);
1993 
1994 	return (ar5k_ar5211_set_key_lladdr(hal, entry, mac));
1995 }
1996 
1997 HAL_BOOL
1998 ar5k_ar5211_set_key_lladdr(struct ath_hal *hal, u_int16_t entry,
1999     const u_int8_t *mac)
2000 {
2001 	u_int32_t low_id, high_id;
2002 	const u_int8_t *mac_v;
2003 
2004 	/*
2005 	 * Invalid entry (key table overflow)
2006 	 */
2007 	AR5K_ASSERT_ENTRY(entry, AR5K_AR5211_KEYTABLE_SIZE);
2008 
2009 	/* MAC may be NULL if it's a broadcast key */
2010 	mac_v = mac == NULL ? etherbroadcastaddr : mac;
2011 
2012 	low_id = AR5K_LOW_ID(mac_v);
2013 	high_id = AR5K_HIGH_ID(mac_v) | AR5K_AR5211_KEYTABLE_VALID;
2014 
2015 	AR5K_REG_WRITE(AR5K_AR5211_KEYTABLE_MAC0(entry), low_id);
2016 	AR5K_REG_WRITE(AR5K_AR5211_KEYTABLE_MAC1(entry), high_id);
2017 
2018 	return (AH_TRUE);
2019 }
2020 
2021 HAL_BOOL
2022 ar5k_ar5211_softcrypto(struct ath_hal *hal, HAL_BOOL enable)
2023 {
2024 	u_int32_t bits;
2025 	int i;
2026 
2027 	bits = AR5K_AR5211_DIAG_SW_DIS_ENC | AR5K_AR5211_DIAG_SW_DIS_DEC;
2028 	if (enable == AH_TRUE) {
2029 		/* Disable the hardware crypto engine */
2030 		AR5K_REG_ENABLE_BITS(AR5K_AR5211_DIAG_SW, bits);
2031 	} else {
2032 		/* Enable the hardware crypto engine */
2033 		AR5K_REG_DISABLE_BITS(AR5K_AR5211_DIAG_SW, bits);
2034 	}
2035 
2036 	/* Reset the key cache */
2037 	for (i = 0; i < AR5K_AR5211_KEYTABLE_SIZE; i++)
2038 		ar5k_ar5211_reset_key(hal, i);
2039 
2040 	return (AH_TRUE);
2041 }
2042 
2043 /*
2044  * Power management functions
2045  */
2046 
2047 HAL_BOOL
2048 ar5k_ar5211_set_power(struct ath_hal *hal, HAL_POWER_MODE mode,
2049     HAL_BOOL set_chip, u_int16_t sleep_duration)
2050 {
2051 	u_int32_t staid;
2052 	int i;
2053 
2054 	staid = AR5K_REG_READ(AR5K_AR5211_STA_ID1);
2055 
2056 	switch (mode) {
2057 	case HAL_PM_AUTO:
2058 		staid &= ~AR5K_AR5211_STA_ID1_DEFAULT_ANTENNA;
2059 		/* FALLTHROUGH */
2060 	case HAL_PM_NETWORK_SLEEP:
2061 		if (set_chip == AH_TRUE) {
2062 			AR5K_REG_WRITE(AR5K_AR5211_SCR,
2063 			    AR5K_AR5211_SCR_SLE | sleep_duration);
2064 		}
2065 		staid |= AR5K_AR5211_STA_ID1_PWR_SV;
2066 		break;
2067 
2068 	case HAL_PM_FULL_SLEEP:
2069 		if (set_chip == AH_TRUE) {
2070 			AR5K_REG_WRITE(AR5K_AR5211_SCR,
2071 			    AR5K_AR5211_SCR_SLE_SLP);
2072 		}
2073 		staid |= AR5K_AR5211_STA_ID1_PWR_SV;
2074 		break;
2075 
2076 	case HAL_PM_AWAKE:
2077 		if (set_chip == AH_FALSE)
2078 			goto commit;
2079 
2080 		AR5K_REG_WRITE(AR5K_AR5211_SCR, AR5K_AR5211_SCR_SLE_WAKE);
2081 
2082 		for (i = 5000; i > 0; i--) {
2083 			/* Check if the AR5211 did wake up */
2084 			if ((AR5K_REG_READ(AR5K_AR5211_PCICFG) &
2085 			    AR5K_AR5211_PCICFG_SPWR_DN) == 0)
2086 				break;
2087 
2088 			/* Wait a bit and retry */
2089 			AR5K_DELAY(200);
2090 			AR5K_REG_WRITE(AR5K_AR5211_SCR,
2091 			    AR5K_AR5211_SCR_SLE_WAKE);
2092 		}
2093 
2094 		/* Fail if the AR5211 didn't wake up */
2095 		if (i <= 0)
2096 			return (AH_FALSE);
2097 
2098 		staid &= ~AR5K_AR5211_STA_ID1_PWR_SV;
2099 		break;
2100 
2101 	default:
2102 		return (AH_FALSE);
2103 	}
2104 
2105  commit:
2106 	hal->ah_power_mode = mode;
2107 
2108 	AR5K_REG_WRITE(AR5K_AR5211_STA_ID1, staid);
2109 
2110 	return (AH_TRUE);
2111 }
2112 
2113 HAL_POWER_MODE
2114 ar5k_ar5211_get_power_mode(struct ath_hal *hal)
2115 {
2116 	return (hal->ah_power_mode);
2117 }
2118 
2119 HAL_BOOL
2120 ar5k_ar5211_query_pspoll_support(struct ath_hal *hal)
2121 {
2122 	/* nope */
2123 	return (AH_FALSE);
2124 }
2125 
2126 HAL_BOOL
2127 ar5k_ar5211_init_pspoll(struct ath_hal *hal)
2128 {
2129 	/*
2130 	 * Not used on the AR5211
2131 	 */
2132 	return (AH_FALSE);
2133 }
2134 
2135 HAL_BOOL
2136 ar5k_ar5211_enable_pspoll(struct ath_hal *hal, u_int8_t *bssid,
2137     u_int16_t assoc_id)
2138 {
2139 	return (AH_FALSE);
2140 }
2141 
2142 HAL_BOOL
2143 ar5k_ar5211_disable_pspoll(struct ath_hal *hal)
2144 {
2145 	return (AH_FALSE);
2146 }
2147 
2148 /*
2149  * Beacon functions
2150  */
2151 
2152 void
2153 ar5k_ar5211_init_beacon(struct ath_hal *hal, u_int32_t next_beacon,
2154     u_int32_t interval)
2155 {
2156 	u_int32_t timer1, timer2, timer3;
2157 
2158 	/*
2159 	 * Set the additional timers by mode
2160 	 */
2161 	switch (hal->ah_op_mode) {
2162 	case HAL_M_STA:
2163 		timer1 = 0x0000ffff;
2164 		timer2 = 0x0007ffff;
2165 		break;
2166 
2167 	default:
2168 		timer1 = (next_beacon - AR5K_TUNE_DMA_BEACON_RESP) <<
2169 		    0x00000003;
2170 		timer2 = (next_beacon - AR5K_TUNE_SW_BEACON_RESP) <<
2171 		    0x00000003;
2172 	}
2173 
2174 	timer3 = next_beacon +
2175 	    (hal->ah_atim_window ? hal->ah_atim_window : 1);
2176 
2177 	/*
2178 	 * Enable all timers and set the beacon register
2179 	 * (next beacon, DMA beacon, software beacon, ATIM window time)
2180 	 */
2181 	AR5K_REG_WRITE(AR5K_AR5211_TIMER0, next_beacon);
2182 	AR5K_REG_WRITE(AR5K_AR5211_TIMER1, timer1);
2183 	AR5K_REG_WRITE(AR5K_AR5211_TIMER2, timer2);
2184 	AR5K_REG_WRITE(AR5K_AR5211_TIMER3, timer3);
2185 
2186 	AR5K_REG_WRITE(AR5K_AR5211_BEACON, interval &
2187 	    (AR5K_AR5211_BEACON_PERIOD | AR5K_AR5211_BEACON_RESET_TSF |
2188 	    AR5K_AR5211_BEACON_ENABLE));
2189 }
2190 
2191 void
2192 ar5k_ar5211_set_beacon_timers(struct ath_hal *hal,
2193     const HAL_BEACON_STATE *state, u_int32_t tsf, u_int32_t dtim_count,
2194     u_int32_t cfp_count)
2195 {
2196 	u_int32_t cfp_period, next_cfp;
2197 
2198 	/* Return on an invalid beacon state */
2199 	if (state->bs_interval < 1)
2200 		return;
2201 
2202 	/*
2203 	 * PCF support?
2204 	 */
2205 	if (state->bs_cfp_period > 0) {
2206 		/* Enable CFP mode and set the CFP and timer registers */
2207 		cfp_period = state->bs_cfp_period * state->bs_dtim_period *
2208 		    state->bs_interval;
2209 		next_cfp = (cfp_count * state->bs_dtim_period + dtim_count) *
2210 		    state->bs_interval;
2211 
2212 		AR5K_REG_DISABLE_BITS(AR5K_AR5211_STA_ID1,
2213 		    AR5K_AR5211_STA_ID1_DEFAULT_ANTENNA |
2214 		    AR5K_AR5211_STA_ID1_PCF);
2215 		AR5K_REG_WRITE(AR5K_AR5211_CFP_PERIOD, cfp_period);
2216 		AR5K_REG_WRITE(AR5K_AR5211_CFP_DUR, state->bs_cfp_max_duration);
2217 		AR5K_REG_WRITE(AR5K_AR5211_TIMER2,
2218 		    (tsf + (next_cfp == 0 ? cfp_period : next_cfp)) << 3);
2219 	} else {
2220 		/* Disable PCF mode */
2221 		AR5K_REG_DISABLE_BITS(AR5K_AR5211_STA_ID1,
2222 		    AR5K_AR5211_STA_ID1_DEFAULT_ANTENNA |
2223 		    AR5K_AR5211_STA_ID1_PCF);
2224 	}
2225 
2226 	/*
2227 	 * Enable the beacon timer register
2228 	 */
2229 	AR5K_REG_WRITE(AR5K_AR5211_TIMER0, state->bs_next_beacon);
2230 
2231 	/*
2232 	 * Start the beacon timers
2233 	 */
2234 	AR5K_REG_WRITE(AR5K_AR5211_BEACON,
2235 	    (AR5K_REG_READ(AR5K_AR5211_BEACON) &~
2236 	    (AR5K_AR5211_BEACON_PERIOD | AR5K_AR5211_BEACON_TIM)) |
2237 	    AR5K_REG_SM(state->bs_tim_offset ? state->bs_tim_offset + 4 : 0,
2238 	    AR5K_AR5211_BEACON_TIM) | AR5K_REG_SM(state->bs_interval,
2239 	    AR5K_AR5211_BEACON_PERIOD));
2240 
2241 	/*
2242 	 * Write new beacon miss threshold, if it appears to be valid
2243 	 */
2244 	if ((AR5K_AR5211_RSSI_THR_BMISS >> AR5K_AR5211_RSSI_THR_BMISS_S) <
2245 	    state->bs_bmiss_threshold)
2246 		return;
2247 
2248 	AR5K_REG_WRITE_BITS(AR5K_AR5211_RSSI_THR_M,
2249 	    AR5K_AR5211_RSSI_THR_BMISS, state->bs_bmiss_threshold);
2250 	AR5K_REG_WRITE_BITS(AR5K_AR5211_SCR, AR5K_AR5211_SCR_SLDUR,
2251 	    (state->bs_sleepduration - 3) << 3);
2252 }
2253 
2254 void
2255 ar5k_ar5211_reset_beacon(struct ath_hal *hal)
2256 {
2257 	/*
2258 	 * Disable beacon timer
2259 	 */
2260 	AR5K_REG_WRITE(AR5K_AR5211_TIMER0, 0);
2261 
2262 	/*
2263 	 * Disable some beacon register values
2264 	 */
2265 	AR5K_REG_DISABLE_BITS(AR5K_AR5211_STA_ID1,
2266 	    AR5K_AR5211_STA_ID1_DEFAULT_ANTENNA | AR5K_AR5211_STA_ID1_PCF);
2267 	AR5K_REG_WRITE(AR5K_AR5211_BEACON, AR5K_AR5211_BEACON_PERIOD);
2268 }
2269 
2270 HAL_BOOL
2271 ar5k_ar5211_wait_for_beacon(struct ath_hal *hal, bus_addr_t phys_addr)
2272 {
2273 	HAL_BOOL ret;
2274 
2275 	/*
2276 	 * Wait for beaconn queue to be done
2277 	 */
2278 	ret = ar5k_register_timeout(hal,
2279 	    AR5K_AR5211_QCU_STS(HAL_TX_QUEUE_ID_BEACON),
2280 	    AR5K_AR5211_QCU_STS_FRMPENDCNT, 0, AH_FALSE);
2281 
2282 	if (AR5K_REG_READ_Q(AR5K_AR5211_QCU_TXE, HAL_TX_QUEUE_ID_BEACON))
2283 		return (AH_FALSE);
2284 
2285 	return (ret);
2286 }
2287 
2288 /*
2289  * Interrupt handling
2290  */
2291 
2292 HAL_BOOL
2293 ar5k_ar5211_is_intr_pending(struct ath_hal *hal)
2294 {
2295 	return (AR5K_REG_READ(AR5K_AR5211_INTPEND) == 0 ? AH_FALSE : AH_TRUE);
2296 }
2297 
2298 HAL_BOOL
2299 ar5k_ar5211_get_isr(struct ath_hal *hal, u_int32_t *interrupt_mask)
2300 {
2301 	u_int32_t data;
2302 
2303 	/*
2304 	 * Read interrupt status from the Read-And-Clear shadow register
2305 	 */
2306 	data = AR5K_REG_READ(AR5K_AR5211_RAC_PISR);
2307 
2308 	/*
2309 	 * Get abstract interrupt mask (HAL-compatible)
2310 	 */
2311 	*interrupt_mask = (data & HAL_INT_COMMON) & hal->ah_imr;
2312 
2313 	if (data == HAL_INT_NOCARD)
2314 		return (AH_FALSE);
2315 
2316 	if (data & (AR5K_AR5211_PISR_RXOK | AR5K_AR5211_PISR_RXERR))
2317 		*interrupt_mask |= HAL_INT_RX;
2318 
2319 	if (data & (AR5K_AR5211_PISR_TXOK | AR5K_AR5211_PISR_TXERR))
2320 		*interrupt_mask |= HAL_INT_TX;
2321 
2322 	if (data & (AR5K_AR5211_PISR_HIUERR))
2323 		*interrupt_mask |= HAL_INT_FATAL;
2324 
2325 	/*
2326 	 * Special interrupt handling (not caught by the driver)
2327 	 */
2328 	if (((*interrupt_mask) & AR5K_AR5211_PISR_RXPHY) &&
2329 	    hal->ah_radar.r_enabled == AH_TRUE)
2330 		ar5k_radar_alert(hal);
2331 
2332 	return (AH_TRUE);
2333 }
2334 
2335 u_int32_t
2336 ar5k_ar5211_get_intr(struct ath_hal *hal)
2337 {
2338 	/* Return the interrupt mask stored previously */
2339 	return (hal->ah_imr);
2340 }
2341 
2342 HAL_INT
2343 ar5k_ar5211_set_intr(struct ath_hal *hal, HAL_INT new_mask)
2344 {
2345 	HAL_INT old_mask, int_mask;
2346 
2347 	/*
2348 	 * Disable card interrupts to prevent any race conditions
2349 	 * (they will be re-enabled afterwards).
2350 	 */
2351 	AR5K_REG_WRITE(AR5K_AR5211_IER, AR5K_AR5211_IER_DISABLE);
2352 
2353 	old_mask = hal->ah_imr;
2354 
2355 	/*
2356 	 * Add additional, chipset-dependent interrupt mask flags
2357 	 * and write them to the IMR (interrupt mask register).
2358 	 */
2359 	int_mask = new_mask & HAL_INT_COMMON;
2360 
2361 	if (new_mask & HAL_INT_RX)
2362 		int_mask |=
2363 		    AR5K_AR5211_PIMR_RXOK |
2364 		    AR5K_AR5211_PIMR_RXERR |
2365 		    AR5K_AR5211_PIMR_RXORN |
2366 		    AR5K_AR5211_PIMR_RXDESC;
2367 
2368 	if (new_mask & HAL_INT_TX)
2369 		int_mask |=
2370 		    AR5K_AR5211_PIMR_TXOK |
2371 		    AR5K_AR5211_PIMR_TXERR |
2372 		    AR5K_AR5211_PIMR_TXDESC |
2373 		    AR5K_AR5211_PIMR_TXURN;
2374 
2375 	if (new_mask & HAL_INT_FATAL) {
2376 		int_mask |= AR5K_AR5211_PIMR_HIUERR;
2377 		AR5K_REG_ENABLE_BITS(AR5K_AR5211_SIMR2,
2378 		    AR5K_AR5211_SIMR2_MCABT |
2379 		    AR5K_AR5211_SIMR2_SSERR |
2380 		    AR5K_AR5211_SIMR2_DPERR);
2381 	}
2382 
2383 	AR5K_REG_WRITE(AR5K_AR5211_PIMR, int_mask);
2384 
2385 	/* Store new interrupt mask */
2386 	hal->ah_imr = new_mask;
2387 
2388 	/* ..re-enable interrupts */
2389 	AR5K_REG_WRITE(AR5K_AR5211_IER, AR5K_AR5211_IER_ENABLE);
2390 
2391 	return (old_mask);
2392 }
2393 
2394 /*
2395  * Misc internal functions
2396  */
2397 
2398 HAL_BOOL
2399 ar5k_ar5211_get_capabilities(struct ath_hal *hal)
2400 {
2401 	u_int16_t ee_header;
2402 	u_int a, b, g;
2403 
2404 	/* Capabilities stored in the EEPROM */
2405 	ee_header = hal->ah_capabilities.cap_eeprom.ee_header;
2406 
2407 	a = AR5K_EEPROM_HDR_11A(ee_header);
2408 	b = AR5K_EEPROM_HDR_11B(ee_header);
2409 	g = AR5K_EEPROM_HDR_11G(ee_header);
2410 
2411 	/*
2412 	 * If the EEPROM is not reporting any mode, we try 11b.
2413 	 * This might fix a few broken devices with invalid EEPROM.
2414 	 */
2415 	if (!a && !b && !g)
2416 		b = 1;
2417 
2418 	/*
2419 	 * XXX The AR5211 tranceiver supports frequencies from 4920 to 6100GHz
2420 	 * XXX and from 2312 to 2732GHz. There are problems with the current
2421 	 * XXX ieee80211 implementation because the IEEE channel mapping
2422 	 * XXX does not support negative channel numbers (2312MHz is channel
2423 	 * XXX -19). Of course, this doesn't matter because these channels
2424 	 * XXX are out of range but some regulation domains like MKK (Japan)
2425 	 * XXX will support frequencies somewhere around 4.8GHz.
2426 	 */
2427 
2428 	/*
2429 	 * Set radio capabilities
2430 	 */
2431 
2432 	if (a) {
2433 		hal->ah_capabilities.cap_range.range_5ghz_min = 5005; /* 4920 */
2434 		hal->ah_capabilities.cap_range.range_5ghz_max = 6100;
2435 
2436 		/* Set supported modes */
2437 		hal->ah_capabilities.cap_mode = HAL_MODE_11A | HAL_MODE_TURBO;
2438 	}
2439 
2440 	/* This chip will support 802.11b if the 2GHz radio is connected */
2441 	if (b || g) {
2442 		hal->ah_capabilities.cap_range.range_2ghz_min = 2412; /* 2312 */
2443 		hal->ah_capabilities.cap_range.range_2ghz_max = 2732;
2444 
2445 		if (b)
2446 			hal->ah_capabilities.cap_mode |= HAL_MODE_11B;
2447 #if 0
2448 		if (g)
2449 			hal->ah_capabilities.cap_mode |= HAL_MODE_11G;
2450 #endif
2451 	}
2452 
2453 	/* GPIO */
2454 	hal->ah_gpio_npins = AR5K_AR5211_NUM_GPIO;
2455 
2456 	/* Set number of supported TX queues */
2457 	hal->ah_capabilities.cap_queues.q_tx_num = AR5K_AR5211_TX_NUM_QUEUES;
2458 
2459 	return (AH_TRUE);
2460 }
2461 
2462 void
2463 ar5k_ar5211_radar_alert(struct ath_hal *hal, HAL_BOOL enable)
2464 {
2465 	/*
2466 	 * Enable radar detection
2467 	 */
2468 	AR5K_REG_WRITE(AR5K_AR5211_IER, AR5K_AR5211_IER_DISABLE);
2469 
2470 	if (enable == AH_TRUE) {
2471 		AR5K_REG_WRITE(AR5K_AR5211_PHY_RADAR,
2472 		    AR5K_AR5211_PHY_RADAR_ENABLE);
2473 		AR5K_REG_ENABLE_BITS(AR5K_AR5211_PIMR,
2474 		    AR5K_AR5211_PIMR_RXPHY);
2475 	} else {
2476 		AR5K_REG_WRITE(AR5K_AR5211_PHY_RADAR,
2477 		    AR5K_AR5211_PHY_RADAR_DISABLE);
2478 		AR5K_REG_DISABLE_BITS(AR5K_AR5211_PIMR,
2479 		    AR5K_AR5211_PIMR_RXPHY);
2480 	}
2481 
2482 	AR5K_REG_WRITE(AR5K_AR5211_IER, AR5K_AR5211_IER_ENABLE);
2483 }
2484 
2485 /*
2486  * EEPROM access functions
2487  */
2488 
2489 HAL_BOOL
2490 ar5k_ar5211_eeprom_is_busy(struct ath_hal *hal)
2491 {
2492 	return (AR5K_REG_READ(AR5K_AR5211_CFG) & AR5K_AR5211_CFG_EEBS ?
2493 	    AH_TRUE : AH_FALSE);
2494 }
2495 
2496 int
2497 ar5k_ar5211_eeprom_read(struct ath_hal *hal, u_int32_t offset, u_int16_t *data)
2498 {
2499 	u_int32_t status, i;
2500 
2501 	/*
2502 	 * Initialize EEPROM access
2503 	 */
2504 	AR5K_REG_WRITE(AR5K_AR5211_EEPROM_BASE, (u_int8_t)offset);
2505 	AR5K_REG_ENABLE_BITS(AR5K_AR5211_EEPROM_CMD,
2506 	    AR5K_AR5211_EEPROM_CMD_READ);
2507 
2508 	for (i = AR5K_TUNE_REGISTER_TIMEOUT; i > 0; i--) {
2509 		status = AR5K_REG_READ(AR5K_AR5211_EEPROM_STATUS);
2510 		if (status & AR5K_AR5211_EEPROM_STAT_RDDONE) {
2511 			if (status & AR5K_AR5211_EEPROM_STAT_RDERR)
2512 				return (EIO);
2513 			*data = (u_int16_t)
2514 			    (AR5K_REG_READ(AR5K_AR5211_EEPROM_DATA) & 0xffff);
2515 			return (0);
2516 		}
2517 		AR5K_DELAY(15);
2518 	}
2519 
2520 	return (ETIMEDOUT);
2521 }
2522 
2523 int
2524 ar5k_ar5211_eeprom_write(struct ath_hal *hal, u_int32_t offset, u_int16_t data)
2525 {
2526 	u_int32_t status, timeout;
2527 
2528 	/* Enable eeprom access */
2529 	AR5K_REG_ENABLE_BITS(AR5K_AR5211_EEPROM_CMD,
2530 	    AR5K_AR5211_EEPROM_CMD_RESET);
2531 	AR5K_REG_ENABLE_BITS(AR5K_AR5211_EEPROM_CMD,
2532 	    AR5K_AR5211_EEPROM_CMD_WRITE);
2533 
2534 	/*
2535 	 * Prime write pump
2536 	 */
2537 	AR5K_REG_WRITE(AR5K_AR5211_EEPROM_BASE, (u_int8_t)offset - 1);
2538 
2539 	for (timeout = 10000; timeout > 0; timeout--) {
2540 		AR5K_DELAY(1);
2541 		status = AR5K_REG_READ(AR5K_AR5211_EEPROM_STATUS);
2542 		if (status & AR5K_AR5211_EEPROM_STAT_WRDONE) {
2543 			if (status & AR5K_AR5211_EEPROM_STAT_WRERR)
2544 				return (EIO);
2545 			return (0);
2546 		}
2547 	}
2548 
2549 	return (ETIMEDOUT);
2550 }
2551 
2552 /*
2553  * RF register settings
2554  */
2555 
2556 HAL_BOOL
2557 ar5k_ar5211_rfregs(struct ath_hal *hal, HAL_CHANNEL *channel, u_int freq,
2558     u_int ee_mode)
2559 {
2560 	struct ar5k_eeprom_info *ee = &hal->ah_capabilities.cap_eeprom;
2561 	struct ar5k_ar5211_ini_rf rf[nitems(ar5211_rf)];
2562 	u_int32_t ob, db, xpds, xpdp, x_gain;
2563 	u_int i;
2564 	int obdb;
2565 
2566 	bcopy(ar5211_rf, rf, sizeof(rf));
2567 	obdb = 0;
2568 
2569 	if (freq == AR5K_INI_RFGAIN_2GHZ &&
2570 	    hal->ah_ee_version >= AR5K_EEPROM_VERSION_3_1) {
2571 		ob = ar5k_bitswap(ee->ee_ob[ee_mode][0], 3);
2572 		db = ar5k_bitswap(ee->ee_db[ee_mode][0], 3);
2573 		rf[25].rf_value[freq] =
2574 		    ((ob << 6) & 0xc0) | (rf[25].rf_value[freq] & ~0xc0);
2575 		rf[26].rf_value[freq] =
2576 		    (((ob >> 2) & 0x1) | ((db << 1) & 0xe)) |
2577 		    (rf[26].rf_value[freq] & ~0xf);
2578 	}
2579 
2580 	if (freq == AR5K_INI_RFGAIN_5GHZ) {
2581 		/* For 11a and Turbo */
2582 		obdb = channel->c_channel >= 5725 ? 3 :
2583 		    (channel->c_channel >= 5500 ? 2 :
2584 			(channel->c_channel >= 5260 ? 1 :
2585 			    (channel->c_channel > 4000 ? 0 : -1)));
2586 	}
2587 
2588 	/* bogus channel: bad beacon? */
2589 	if (obdb < 0)
2590 		return (AH_FALSE);
2591 
2592 	ob = ee->ee_ob[ee_mode][obdb];
2593 	db = ee->ee_db[ee_mode][obdb];
2594 	x_gain = ee->ee_x_gain[ee_mode];
2595 	xpds = ee->ee_xpd[ee_mode];
2596 	xpdp = !xpds;
2597 
2598 	rf[11].rf_value[freq] = (rf[11].rf_value[freq] & ~0xc0) |
2599 		(((ar5k_bitswap(x_gain, 4) << 7) | (xpdp << 6)) & 0xc0);
2600 	rf[12].rf_value[freq] = (rf[12].rf_value[freq] & ~0x7) |
2601 		((ar5k_bitswap(x_gain, 4) >> 1) & 0x7);
2602 	rf[12].rf_value[freq] = (rf[12].rf_value[freq] & ~0x80) |
2603 		((ar5k_bitswap(ob, 3) << 7) & 0x80);
2604 	rf[13].rf_value[freq] = (rf[13].rf_value[freq] & ~0x3) |
2605 		((ar5k_bitswap(ob, 3) >> 1) & 0x3);
2606 	rf[13].rf_value[freq] = (rf[13].rf_value[freq] & ~0x1c) |
2607 		((ar5k_bitswap(db, 3) << 2) & 0x1c);
2608 	rf[17].rf_value[freq] = (rf[17].rf_value[freq] & ~0x8) |
2609 		((xpds << 3) & 0x8);
2610 
2611 	for (i = 0; i < nitems(rf); i++) {
2612 		AR5K_REG_WAIT(i);
2613 		AR5K_REG_WRITE((u_int32_t)rf[i].rf_register,
2614 		    rf[i].rf_value[freq]);
2615 	}
2616 
2617 	hal->ah_rf_gain = HAL_RFGAIN_INACTIVE;
2618 
2619 	return (AH_TRUE);
2620 }
2621 
2622 HAL_BOOL
2623 ar5k_ar5211_set_txpower_limit(struct ath_hal *hal, u_int power)
2624 {
2625 	/* Not implemented */
2626 	return (AH_FALSE);
2627 }
2628