1 /* $OpenBSD: ar9287.c,v 1.28 2019/03/31 11:00:11 kevlo Exp $ */ 2 3 /*- 4 * Copyright (c) 2009 Damien Bergamini <damien.bergamini@free.fr> 5 * Copyright (c) 2008-2009 Atheros Communications Inc. 6 * 7 * Permission to use, copy, modify, and/or distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 /* 21 * Driver for Atheros 802.11a/g/n chipsets. 22 * Routines for AR9227 and AR9287 chipsets. 23 */ 24 25 #include "bpfilter.h" 26 27 #include <sys/param.h> 28 #include <sys/sockio.h> 29 #include <sys/mbuf.h> 30 #include <sys/kernel.h> 31 #include <sys/socket.h> 32 #include <sys/systm.h> 33 #include <sys/malloc.h> 34 #include <sys/queue.h> 35 #include <sys/timeout.h> 36 #include <sys/conf.h> 37 #include <sys/device.h> 38 #include <sys/endian.h> 39 40 #include <machine/bus.h> 41 #include <machine/intr.h> 42 43 #if NBPFILTER > 0 44 #include <net/bpf.h> 45 #endif 46 #include <net/if.h> 47 #include <net/if_media.h> 48 49 #include <netinet/in.h> 50 #include <netinet/if_ether.h> 51 52 #include <net80211/ieee80211_var.h> 53 #include <net80211/ieee80211_amrr.h> 54 #include <net80211/ieee80211_mira.h> 55 #include <net80211/ieee80211_radiotap.h> 56 57 #include <dev/ic/athnreg.h> 58 #include <dev/ic/athnvar.h> 59 60 #include <dev/ic/ar5008reg.h> 61 #include <dev/ic/ar9280reg.h> 62 #include <dev/ic/ar9287reg.h> 63 64 int ar9287_attach(struct athn_softc *); 65 void ar9287_setup(struct athn_softc *); 66 void ar9287_swap_rom(struct athn_softc *); 67 const struct ar_spur_chan *ar9287_get_spur_chans(struct athn_softc *, int); 68 void ar9287_init_from_rom(struct athn_softc *, struct ieee80211_channel *, 69 struct ieee80211_channel *); 70 void ar9287_get_pdadcs(struct athn_softc *, struct ieee80211_channel *, 71 int, int, uint8_t, uint8_t *, uint8_t *); 72 void ar9287_olpc_get_pdgain(struct athn_softc *, struct ieee80211_channel *, 73 int, int8_t *); 74 void ar9287_set_power_calib(struct athn_softc *, 75 struct ieee80211_channel *); 76 void ar9287_set_txpower(struct athn_softc *, struct ieee80211_channel *, 77 struct ieee80211_channel *); 78 void ar9287_olpc_init(struct athn_softc *); 79 void ar9287_olpc_temp_compensation(struct athn_softc *); 80 void ar9287_1_3_enable_async_fifo(struct athn_softc *); 81 void ar9287_1_3_setup_async_fifo(struct athn_softc *); 82 83 /* Extern functions. */ 84 uint8_t athn_chan2fbin(struct ieee80211_channel *); 85 void athn_get_pier_ival(uint8_t, const uint8_t *, int, int *, int *); 86 int ar5008_attach(struct athn_softc *); 87 void ar5008_write_txpower(struct athn_softc *, int16_t power[]); 88 void ar5008_get_pdadcs(struct athn_softc *, uint8_t, struct athn_pier *, 89 struct athn_pier *, int, int, uint8_t, uint8_t *, uint8_t *); 90 void ar5008_get_lg_tpow(struct athn_softc *, struct ieee80211_channel *, 91 uint8_t, const struct ar_cal_target_power_leg *, int, uint8_t[]); 92 void ar5008_get_ht_tpow(struct athn_softc *, struct ieee80211_channel *, 93 uint8_t, const struct ar_cal_target_power_ht *, int, uint8_t[]); 94 int ar9280_set_synth(struct athn_softc *, struct ieee80211_channel *, 95 struct ieee80211_channel *); 96 void ar9280_spur_mitigate(struct athn_softc *, struct ieee80211_channel *, 97 struct ieee80211_channel *); 98 99 100 int 101 ar9287_attach(struct athn_softc *sc) 102 { 103 sc->eep_base = (sc->flags & ATHN_FLAG_USB) ? 104 AR9287_HTC_EEP_START_LOC : AR9287_EEP_START_LOC; 105 sc->eep_size = sizeof(struct ar9287_eeprom); 106 sc->ngpiopins = (sc->flags & ATHN_FLAG_USB) ? 16 : 11; 107 sc->led_pin = (sc->flags & ATHN_FLAG_USB) ? 10 : 8; 108 sc->workaround = AR9285_WA_DEFAULT; 109 sc->ops.setup = ar9287_setup; 110 sc->ops.swap_rom = ar9287_swap_rom; 111 sc->ops.init_from_rom = ar9287_init_from_rom; 112 sc->ops.set_txpower = ar9287_set_txpower; 113 sc->ops.set_synth = ar9280_set_synth; 114 sc->ops.spur_mitigate = ar9280_spur_mitigate; 115 sc->ops.get_spur_chans = ar9287_get_spur_chans; 116 sc->ops.olpc_init = ar9287_olpc_init; 117 sc->ops.olpc_temp_compensation = ar9287_olpc_temp_compensation; 118 sc->cca_min_2g = AR9287_PHY_CCA_MIN_GOOD_VAL_2GHZ; 119 sc->cca_max_2g = AR9287_PHY_CCA_MAX_GOOD_VAL_2GHZ; 120 sc->ini = &ar9287_1_1_ini; 121 sc->serdes = &ar9280_2_0_serdes; 122 123 return (ar5008_attach(sc)); 124 } 125 126 void 127 ar9287_setup(struct athn_softc *sc) 128 { 129 const struct ar9287_eeprom *eep = sc->eep; 130 131 /* Determine if open loop power control should be used. */ 132 if (eep->baseEepHeader.openLoopPwrCntl) 133 sc->flags |= ATHN_FLAG_OLPC; 134 135 sc->rx_gain = &ar9287_1_1_rx_gain; 136 sc->tx_gain = &ar9287_1_1_tx_gain; 137 } 138 139 void 140 ar9287_swap_rom(struct athn_softc *sc) 141 { 142 struct ar9287_eeprom *eep = sc->eep; 143 int i; 144 145 eep->modalHeader.antCtrlCommon = 146 swap32(eep->modalHeader.antCtrlCommon); 147 148 for (i = 0; i < AR9287_MAX_CHAINS; i++) { 149 eep->modalHeader.antCtrlChain[i] = 150 swap32(eep->modalHeader.antCtrlChain[i]); 151 } 152 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) { 153 eep->modalHeader.spurChans[i].spurChan = 154 swap16(eep->modalHeader.spurChans[i].spurChan); 155 } 156 } 157 158 const struct ar_spur_chan * 159 ar9287_get_spur_chans(struct athn_softc *sc, int is2ghz) 160 { 161 const struct ar9287_eeprom *eep = sc->eep; 162 163 KASSERT(is2ghz); 164 return (eep->modalHeader.spurChans); 165 } 166 167 void 168 ar9287_init_from_rom(struct athn_softc *sc, struct ieee80211_channel *c, 169 struct ieee80211_channel *extc) 170 { 171 const struct ar9287_eeprom *eep = sc->eep; 172 const struct ar9287_modal_eep_header *modal = &eep->modalHeader; 173 uint32_t reg, offset; 174 int i; 175 176 AR_WRITE(sc, AR_PHY_SWITCH_COM, modal->antCtrlCommon); 177 178 for (i = 0; i < AR9287_MAX_CHAINS; i++) { 179 offset = i * 0x1000; 180 181 AR_WRITE(sc, AR_PHY_SWITCH_CHAIN_0 + offset, 182 modal->antCtrlChain[i]); 183 184 reg = AR_READ(sc, AR_PHY_TIMING_CTRL4_0 + offset); 185 reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF, 186 modal->iqCalICh[i]); 187 reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF, 188 modal->iqCalQCh[i]); 189 AR_WRITE(sc, AR_PHY_TIMING_CTRL4_0 + offset, reg); 190 191 reg = AR_READ(sc, AR_PHY_GAIN_2GHZ + offset); 192 reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, 193 modal->bswMargin[i]); 194 reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN1_DB, 195 modal->bswAtten[i]); 196 AR_WRITE(sc, AR_PHY_GAIN_2GHZ + offset, reg); 197 198 reg = AR_READ(sc, AR_PHY_RXGAIN + offset); 199 reg = RW(reg, AR9280_PHY_RXGAIN_TXRX_MARGIN, 200 modal->rxTxMarginCh[i]); 201 reg = RW(reg, AR9280_PHY_RXGAIN_TXRX_ATTEN, 202 modal->txRxAttenCh[i]); 203 AR_WRITE(sc, AR_PHY_RXGAIN + offset, reg); 204 } 205 206 reg = AR_READ(sc, AR_PHY_SETTLING); 207 if (extc != NULL) 208 reg = RW(reg, AR_PHY_SETTLING_SWITCH, modal->swSettleHt40); 209 else 210 reg = RW(reg, AR_PHY_SETTLING_SWITCH, modal->switchSettling); 211 AR_WRITE(sc, AR_PHY_SETTLING, reg); 212 213 reg = AR_READ(sc, AR_PHY_DESIRED_SZ); 214 reg = RW(reg, AR_PHY_DESIRED_SZ_ADC, modal->adcDesiredSize); 215 AR_WRITE(sc, AR_PHY_DESIRED_SZ, reg); 216 217 reg = SM(AR_PHY_RF_CTL4_TX_END_XPAA_OFF, modal->txEndToXpaOff); 218 reg |= SM(AR_PHY_RF_CTL4_TX_END_XPAB_OFF, modal->txEndToXpaOff); 219 reg |= SM(AR_PHY_RF_CTL4_FRAME_XPAA_ON, modal->txFrameToXpaOn); 220 reg |= SM(AR_PHY_RF_CTL4_FRAME_XPAB_ON, modal->txFrameToXpaOn); 221 AR_WRITE(sc, AR_PHY_RF_CTL4, reg); 222 223 reg = AR_READ(sc, AR_PHY_RF_CTL3); 224 reg = RW(reg, AR_PHY_TX_END_TO_A2_RX_ON, modal->txEndToRxOn); 225 AR_WRITE(sc, AR_PHY_RF_CTL3, reg); 226 227 reg = AR_READ(sc, AR_PHY_CCA(0)); 228 reg = RW(reg, AR9280_PHY_CCA_THRESH62, modal->thresh62); 229 AR_WRITE(sc, AR_PHY_CCA(0), reg); 230 231 reg = AR_READ(sc, AR_PHY_EXT_CCA0); 232 reg = RW(reg, AR_PHY_EXT_CCA0_THRESH62, modal->thresh62); 233 AR_WRITE(sc, AR_PHY_EXT_CCA0, reg); 234 235 reg = AR_READ(sc, AR9287_AN_RF2G3_CH0); 236 reg = RW(reg, AR9287_AN_RF2G3_DB1, modal->db1); 237 reg = RW(reg, AR9287_AN_RF2G3_DB2, modal->db2); 238 reg = RW(reg, AR9287_AN_RF2G3_OB_CCK, modal->ob_cck); 239 reg = RW(reg, AR9287_AN_RF2G3_OB_PSK, modal->ob_psk); 240 reg = RW(reg, AR9287_AN_RF2G3_OB_QAM, modal->ob_qam); 241 reg = RW(reg, AR9287_AN_RF2G3_OB_PAL_OFF, modal->ob_pal_off); 242 AR_WRITE(sc, AR9287_AN_RF2G3_CH0, reg); 243 AR_WRITE_BARRIER(sc); 244 DELAY(100); 245 246 reg = AR_READ(sc, AR9287_AN_RF2G3_CH1); 247 reg = RW(reg, AR9287_AN_RF2G3_DB1, modal->db1); 248 reg = RW(reg, AR9287_AN_RF2G3_DB2, modal->db2); 249 reg = RW(reg, AR9287_AN_RF2G3_OB_CCK, modal->ob_cck); 250 reg = RW(reg, AR9287_AN_RF2G3_OB_PSK, modal->ob_psk); 251 reg = RW(reg, AR9287_AN_RF2G3_OB_QAM, modal->ob_qam); 252 reg = RW(reg, AR9287_AN_RF2G3_OB_PAL_OFF, modal->ob_pal_off); 253 AR_WRITE(sc, AR9287_AN_RF2G3_CH1, reg); 254 AR_WRITE_BARRIER(sc); 255 DELAY(100); 256 257 reg = AR_READ(sc, AR_PHY_RF_CTL2); 258 reg = RW(reg, AR_PHY_TX_END_DATA_START, modal->txFrameToDataStart); 259 reg = RW(reg, AR_PHY_TX_END_PA_ON, modal->txFrameToPaOn); 260 AR_WRITE(sc, AR_PHY_RF_CTL2, reg); 261 262 reg = AR_READ(sc, AR9287_AN_TOP2); 263 reg = RW(reg, AR9287_AN_TOP2_XPABIAS_LVL, modal->xpaBiasLvl); 264 AR_WRITE(sc, AR9287_AN_TOP2, reg); 265 AR_WRITE_BARRIER(sc); 266 DELAY(100); 267 } 268 269 void 270 ar9287_get_pdadcs(struct athn_softc *sc, struct ieee80211_channel *c, 271 int chain, int nxpdgains, uint8_t overlap, uint8_t *boundaries, 272 uint8_t *pdadcs) 273 { 274 const struct ar9287_eeprom *eep = sc->eep; 275 const struct ar9287_cal_data_per_freq *pierdata; 276 const uint8_t *pierfreq; 277 struct athn_pier lopier, hipier; 278 int16_t delta; 279 uint8_t fbin; 280 int i, lo, hi, npiers; 281 282 pierfreq = eep->calFreqPier2G; 283 pierdata = (const struct ar9287_cal_data_per_freq *) 284 eep->calPierData2G[chain]; 285 npiers = AR9287_NUM_2G_CAL_PIERS; 286 287 /* Find channel in ROM pier table. */ 288 fbin = athn_chan2fbin(c); 289 athn_get_pier_ival(fbin, pierfreq, npiers, &lo, &hi); 290 291 lopier.fbin = pierfreq[lo]; 292 hipier.fbin = pierfreq[hi]; 293 for (i = 0; i < nxpdgains; i++) { 294 lopier.pwr[i] = pierdata[lo].pwrPdg[i]; 295 lopier.vpd[i] = pierdata[lo].vpdPdg[i]; 296 hipier.pwr[i] = pierdata[lo].pwrPdg[i]; 297 hipier.vpd[i] = pierdata[lo].vpdPdg[i]; 298 } 299 ar5008_get_pdadcs(sc, fbin, &lopier, &hipier, nxpdgains, 300 AR9287_PD_GAIN_ICEPTS, overlap, boundaries, pdadcs); 301 302 delta = (eep->baseEepHeader.pwrTableOffset - 303 AR_PWR_TABLE_OFFSET_DB) * 2; /* In half dB. */ 304 if (delta != 0) { 305 /* Shift the PDADC table to start at the new offset. */ 306 /* XXX Our padding value differs from Linux. */ 307 for (i = 0; i < AR_NUM_PDADC_VALUES; i++) 308 pdadcs[i] = pdadcs[MIN(i + delta, 309 AR_NUM_PDADC_VALUES - 1)]; 310 } 311 } 312 313 void 314 ar9287_olpc_get_pdgain(struct athn_softc *sc, struct ieee80211_channel *c, 315 int chain, int8_t *pwr) 316 { 317 const struct ar9287_eeprom *eep = sc->eep; 318 const struct ar_cal_data_per_freq_olpc *pierdata; 319 const uint8_t *pierfreq; 320 uint8_t fbin; 321 int lo, hi, npiers; 322 323 pierfreq = eep->calFreqPier2G; 324 pierdata = (const struct ar_cal_data_per_freq_olpc *) 325 eep->calPierData2G[chain]; 326 npiers = AR9287_NUM_2G_CAL_PIERS; 327 328 /* Find channel in ROM pier table. */ 329 fbin = athn_chan2fbin(c); 330 athn_get_pier_ival(fbin, pierfreq, npiers, &lo, &hi); 331 332 #if 0 333 *pwr = athn_interpolate(fbin, 334 pierfreq[lo], pierdata[lo].pwrPdg[0][0], 335 pierfreq[hi], pierdata[hi].pwrPdg[0][0]); 336 #else 337 *pwr = (pierdata[lo].pwrPdg[0][0] + pierdata[hi].pwrPdg[0][0]) / 2; 338 #endif 339 } 340 341 void 342 ar9287_set_power_calib(struct athn_softc *sc, struct ieee80211_channel *c) 343 { 344 const struct ar9287_eeprom *eep = sc->eep; 345 uint8_t boundaries[AR_PD_GAINS_IN_MASK]; 346 uint8_t pdadcs[AR_NUM_PDADC_VALUES]; 347 uint8_t xpdgains[AR9287_NUM_PD_GAINS]; 348 int8_t txpower; 349 uint8_t overlap; 350 uint32_t reg, offset; 351 int i, j, nxpdgains; 352 353 if (sc->eep_rev < AR_EEP_MINOR_VER_2) { 354 overlap = MS(AR_READ(sc, AR_PHY_TPCRG5), 355 AR_PHY_TPCRG5_PD_GAIN_OVERLAP); 356 } else 357 overlap = eep->modalHeader.pdGainOverlap; 358 359 if (sc->flags & ATHN_FLAG_OLPC) { 360 /* XXX not here. */ 361 sc->pdadc = 362 ((const struct ar_cal_data_per_freq_olpc *) 363 eep->calPierData2G[0])->vpdPdg[0][0]; 364 } 365 366 nxpdgains = 0; 367 memset(xpdgains, 0, sizeof(xpdgains)); 368 for (i = AR9287_PD_GAINS_IN_MASK - 1; i >= 0; i--) { 369 if (nxpdgains >= AR9287_NUM_PD_GAINS) 370 break; /* Can't happen. */ 371 if (eep->modalHeader.xpdGain & (1 << i)) 372 xpdgains[nxpdgains++] = i; 373 } 374 reg = AR_READ(sc, AR_PHY_TPCRG1); 375 reg = RW(reg, AR_PHY_TPCRG1_NUM_PD_GAIN, nxpdgains - 1); 376 reg = RW(reg, AR_PHY_TPCRG1_PD_GAIN_1, xpdgains[0]); 377 reg = RW(reg, AR_PHY_TPCRG1_PD_GAIN_2, xpdgains[1]); 378 AR_WRITE(sc, AR_PHY_TPCRG1, reg); 379 AR_WRITE_BARRIER(sc); 380 381 for (i = 0; i < AR9287_MAX_CHAINS; i++) { 382 if (!(sc->txchainmask & (1 << i))) 383 continue; 384 385 offset = i * 0x1000; 386 387 if (sc->flags & ATHN_FLAG_OLPC) { 388 ar9287_olpc_get_pdgain(sc, c, i, &txpower); 389 390 reg = AR_READ(sc, AR_PHY_TX_PWRCTRL6_0); 391 reg = RW(reg, AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3); 392 AR_WRITE(sc, AR_PHY_TX_PWRCTRL6_0, reg); 393 394 reg = AR_READ(sc, AR_PHY_TX_PWRCTRL6_1); 395 reg = RW(reg, AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3); 396 AR_WRITE(sc, AR_PHY_TX_PWRCTRL6_1, reg); 397 398 /* NB: txpower is in half dB. */ 399 reg = AR_READ(sc, AR_PHY_CH0_TX_PWRCTRL11 + offset); 400 reg = RW(reg, AR_PHY_TX_PWRCTRL_OLPC_PWR, txpower); 401 AR_WRITE(sc, AR_PHY_CH0_TX_PWRCTRL11 + offset, reg); 402 403 AR_WRITE_BARRIER(sc); 404 continue; /* That's it for open loop mode. */ 405 } 406 407 /* Closed loop power control. */ 408 ar9287_get_pdadcs(sc, c, i, nxpdgains, overlap, 409 boundaries, pdadcs); 410 411 /* Write boundaries. */ 412 if (i == 0) { 413 reg = SM(AR_PHY_TPCRG5_PD_GAIN_OVERLAP, 414 overlap); 415 reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1, 416 boundaries[0]); 417 reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2, 418 boundaries[1]); 419 reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3, 420 boundaries[2]); 421 reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4, 422 boundaries[3]); 423 AR_WRITE(sc, AR_PHY_TPCRG5 + offset, reg); 424 } 425 /* Write PDADC values. */ 426 for (j = 0; j < AR_NUM_PDADC_VALUES; j += 4) { 427 AR_WRITE(sc, AR_PHY_PDADC_TBL_BASE + offset + j, 428 pdadcs[j + 0] << 0 | 429 pdadcs[j + 1] << 8 | 430 pdadcs[j + 2] << 16 | 431 pdadcs[j + 3] << 24); 432 } 433 AR_WRITE_BARRIER(sc); 434 } 435 } 436 437 void 438 ar9287_set_txpower(struct athn_softc *sc, struct ieee80211_channel *c, 439 struct ieee80211_channel *extc) 440 { 441 const struct ar9287_eeprom *eep = sc->eep; 442 const struct ar9287_modal_eep_header *modal = &eep->modalHeader; 443 uint8_t tpow_cck[4], tpow_ofdm[4]; 444 uint8_t tpow_cck_ext[4], tpow_ofdm_ext[4]; 445 uint8_t tpow_ht20[8], tpow_ht40[8]; 446 uint8_t ht40inc; 447 int16_t pwr = 0, max_ant_gain, power[ATHN_POWER_COUNT]; 448 int i; 449 450 ar9287_set_power_calib(sc, c); 451 452 /* Compute transmit power reduction due to antenna gain. */ 453 max_ant_gain = MAX(modal->antennaGainCh[0], modal->antennaGainCh[1]); 454 /* XXX */ 455 456 /* 457 * Reduce scaled power by number of active chains to get per-chain 458 * transmit power level. 459 */ 460 if (sc->ntxchains == 2) 461 pwr -= AR_PWR_DECREASE_FOR_2_CHAIN; 462 if (pwr < 0) 463 pwr = 0; 464 465 /* Get CCK target powers. */ 466 ar5008_get_lg_tpow(sc, c, AR_CTL_11B, eep->calTargetPowerCck, 467 AR9287_NUM_2G_CCK_TARGET_POWERS, tpow_cck); 468 469 /* Get OFDM target powers. */ 470 ar5008_get_lg_tpow(sc, c, AR_CTL_11G, eep->calTargetPower2G, 471 AR9287_NUM_2G_20_TARGET_POWERS, tpow_ofdm); 472 473 /* Get HT-20 target powers. */ 474 ar5008_get_ht_tpow(sc, c, AR_CTL_2GHT20, eep->calTargetPower2GHT20, 475 AR9287_NUM_2G_20_TARGET_POWERS, tpow_ht20); 476 477 if (extc != NULL) { 478 /* Get HT-40 target powers. */ 479 ar5008_get_ht_tpow(sc, c, AR_CTL_2GHT40, 480 eep->calTargetPower2GHT40, AR9287_NUM_2G_40_TARGET_POWERS, 481 tpow_ht40); 482 483 /* Get secondary channel CCK target powers. */ 484 ar5008_get_lg_tpow(sc, extc, AR_CTL_11B, 485 eep->calTargetPowerCck, AR9287_NUM_2G_CCK_TARGET_POWERS, 486 tpow_cck_ext); 487 488 /* Get secondary channel OFDM target powers. */ 489 ar5008_get_lg_tpow(sc, extc, AR_CTL_11G, 490 eep->calTargetPower2G, AR9287_NUM_2G_20_TARGET_POWERS, 491 tpow_ofdm_ext); 492 } 493 494 memset(power, 0, sizeof(power)); 495 /* Shuffle target powers accross transmit rates. */ 496 power[ATHN_POWER_OFDM6 ] = 497 power[ATHN_POWER_OFDM9 ] = 498 power[ATHN_POWER_OFDM12 ] = 499 power[ATHN_POWER_OFDM18 ] = 500 power[ATHN_POWER_OFDM24 ] = tpow_ofdm[0]; 501 power[ATHN_POWER_OFDM36 ] = tpow_ofdm[1]; 502 power[ATHN_POWER_OFDM48 ] = tpow_ofdm[2]; 503 power[ATHN_POWER_OFDM54 ] = tpow_ofdm[3]; 504 power[ATHN_POWER_XR ] = tpow_ofdm[0]; 505 power[ATHN_POWER_CCK1_LP ] = tpow_cck[0]; 506 power[ATHN_POWER_CCK2_LP ] = 507 power[ATHN_POWER_CCK2_SP ] = tpow_cck[1]; 508 power[ATHN_POWER_CCK55_LP] = 509 power[ATHN_POWER_CCK55_SP] = tpow_cck[2]; 510 power[ATHN_POWER_CCK11_LP] = 511 power[ATHN_POWER_CCK11_SP] = tpow_cck[3]; 512 for (i = 0; i < nitems(tpow_ht20); i++) 513 power[ATHN_POWER_HT20(i)] = tpow_ht20[i]; 514 if (extc != NULL) { 515 /* Correct PAR difference between HT40 and HT20/Legacy. */ 516 if (sc->eep_rev >= AR_EEP_MINOR_VER_2) 517 ht40inc = modal->ht40PowerIncForPdadc; 518 else 519 ht40inc = AR_HT40_POWER_INC_FOR_PDADC; 520 for (i = 0; i < nitems(tpow_ht40); i++) 521 power[ATHN_POWER_HT40(i)] = tpow_ht40[i] + ht40inc; 522 power[ATHN_POWER_OFDM_DUP] = tpow_ht40[0]; 523 power[ATHN_POWER_CCK_DUP ] = tpow_ht40[0]; 524 power[ATHN_POWER_OFDM_EXT] = tpow_ofdm_ext[0]; 525 if (IEEE80211_IS_CHAN_2GHZ(c)) 526 power[ATHN_POWER_CCK_EXT] = tpow_cck_ext[0]; 527 } 528 529 for (i = 0; i < ATHN_POWER_COUNT; i++) { 530 power[i] -= AR_PWR_TABLE_OFFSET_DB * 2; /* In half dB. */ 531 if (power[i] > AR_MAX_RATE_POWER) 532 power[i] = AR_MAX_RATE_POWER; 533 } 534 /* Commit transmit power values to hardware. */ 535 ar5008_write_txpower(sc, power); 536 } 537 538 void 539 ar9287_olpc_init(struct athn_softc *sc) 540 { 541 uint32_t reg; 542 543 AR_SETBITS(sc, AR_PHY_TX_PWRCTRL9, AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL); 544 545 reg = AR_READ(sc, AR9287_AN_TXPC0); 546 reg = RW(reg, AR9287_AN_TXPC0_TXPCMODE, 547 AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE); 548 AR_WRITE(sc, AR9287_AN_TXPC0, reg); 549 AR_WRITE_BARRIER(sc); 550 DELAY(100); 551 } 552 553 void 554 ar9287_olpc_temp_compensation(struct athn_softc *sc) 555 { 556 const struct ar9287_eeprom *eep = sc->eep; 557 int8_t pdadc, slope, tcomp; 558 uint32_t reg; 559 560 reg = AR_READ(sc, AR_PHY_TX_PWRCTRL4); 561 pdadc = MS(reg, AR_PHY_TX_PWRCTRL_PD_AVG_OUT); 562 DPRINTFN(3, ("PD Avg Out=%d\n", pdadc)); 563 564 if (sc->pdadc == 0 || pdadc == 0) 565 return; /* No frames transmitted yet. */ 566 567 /* Compute Tx gain temperature compensation. */ 568 if (sc->eep_rev >= AR_EEP_MINOR_VER_2) 569 slope = eep->baseEepHeader.tempSensSlope; 570 else 571 slope = 0; 572 if (slope != 0) /* Prevents division by zero. */ 573 tcomp = ((pdadc - sc->pdadc) * 4) / slope; 574 else 575 tcomp = 0; 576 DPRINTFN(3, ("OLPC temp compensation=%d\n", tcomp)); 577 578 /* Write compensation value for both Tx chains. */ 579 reg = AR_READ(sc, AR_PHY_CH0_TX_PWRCTRL11); 580 reg = RW(reg, AR_PHY_TX_PWRCTRL_OLPC_TEMP_COMP, tcomp); 581 AR_WRITE(sc, AR_PHY_CH0_TX_PWRCTRL11, reg); 582 583 reg = AR_READ(sc, AR_PHY_CH1_TX_PWRCTRL11); 584 reg = RW(reg, AR_PHY_TX_PWRCTRL_OLPC_TEMP_COMP, tcomp); 585 AR_WRITE(sc, AR_PHY_CH1_TX_PWRCTRL11, reg); 586 AR_WRITE_BARRIER(sc); 587 } 588 589 void 590 ar9287_1_3_enable_async_fifo(struct athn_softc *sc) 591 { 592 /* Enable ASYNC FIFO. */ 593 AR_SETBITS(sc, AR_MAC_PCU_ASYNC_FIFO_REG3, 594 AR_MAC_PCU_ASYNC_FIFO_REG3_DATAPATH_SEL); 595 AR_SETBITS(sc, AR_PHY_MODE, AR_PHY_MODE_ASYNCFIFO); 596 AR_CLRBITS(sc, AR_MAC_PCU_ASYNC_FIFO_REG3, 597 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET); 598 AR_SETBITS(sc, AR_MAC_PCU_ASYNC_FIFO_REG3, 599 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET); 600 AR_WRITE_BARRIER(sc); 601 } 602 603 void 604 ar9287_1_3_setup_async_fifo(struct athn_softc *sc) 605 { 606 uint32_t reg; 607 608 /* 609 * MAC runs at 117MHz (instead of 88/44MHz) when ASYNC FIFO is 610 * enabled, so the following counters have to be changed. 611 */ 612 AR_WRITE(sc, AR_D_GBL_IFS_SIFS, AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR); 613 AR_WRITE(sc, AR_D_GBL_IFS_SLOT, AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR); 614 AR_WRITE(sc, AR_D_GBL_IFS_EIFS, AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR); 615 616 AR_WRITE(sc, AR_TIME_OUT, AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR); 617 AR_WRITE(sc, AR_USEC, AR_USEC_ASYNC_FIFO_DUR); 618 619 AR_SETBITS(sc, AR_MAC_PCU_LOGIC_ANALYZER, 620 AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768); 621 622 reg = AR_READ(sc, AR_AHB_MODE); 623 reg = RW(reg, AR_AHB_CUSTOM_BURST, AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL); 624 AR_WRITE(sc, AR_AHB_MODE, reg); 625 626 AR_SETBITS(sc, AR_PCU_MISC_MODE2, AR_PCU_MISC_MODE2_ENABLE_AGGWEP); 627 AR_WRITE_BARRIER(sc); 628 } 629