1 /* $OpenBSD: ath.c,v 1.122 2020/10/11 07:05:28 mpi Exp $ */ 2 /* $NetBSD: ath.c,v 1.37 2004/08/18 21:59:39 dyoung Exp $ */ 3 4 /*- 5 * Copyright (c) 2002-2004 Sam Leffler, Errno Consulting 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer, 13 * without modification. 14 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 15 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 16 * redistribution must be conditioned upon including a substantially 17 * similar Disclaimer requirement for further binary redistribution. 18 * 3. Neither the names of the above-listed copyright holders nor the names 19 * of any contributors may be used to endorse or promote products derived 20 * from this software without specific prior written permission. 21 * 22 * NO WARRANTY 23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 25 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 26 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 27 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 28 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 31 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 33 * THE POSSIBILITY OF SUCH DAMAGES. 34 */ 35 36 /* 37 * Driver for the Atheros Wireless LAN controller. 38 * 39 * This software is derived from work of Atsushi Onoe; his contribution 40 * is greatly appreciated. It has been modified for OpenBSD to use an 41 * open source HAL instead of the original binary-only HAL. 42 */ 43 44 #include "bpfilter.h" 45 46 #include <sys/param.h> 47 #include <sys/systm.h> 48 #include <sys/mbuf.h> 49 #include <sys/malloc.h> 50 #include <sys/lock.h> 51 #include <sys/kernel.h> 52 #include <sys/socket.h> 53 #include <sys/sockio.h> 54 #include <sys/device.h> 55 #include <sys/errno.h> 56 #include <sys/timeout.h> 57 #include <sys/gpio.h> 58 #include <sys/endian.h> 59 60 #include <machine/bus.h> 61 62 #include <net/if.h> 63 #include <net/if_dl.h> 64 #include <net/if_media.h> 65 #if NBPFILTER > 0 66 #include <net/bpf.h> 67 #endif 68 #include <netinet/in.h> 69 #include <netinet/if_ether.h> 70 71 #include <net80211/ieee80211_var.h> 72 #include <net80211/ieee80211_rssadapt.h> 73 74 #include <dev/pci/pcidevs.h> 75 #include <dev/gpio/gpiovar.h> 76 77 #include <dev/ic/athvar.h> 78 79 int ath_init(struct ifnet *); 80 int ath_init1(struct ath_softc *); 81 int ath_intr1(struct ath_softc *); 82 void ath_stop(struct ifnet *); 83 void ath_start(struct ifnet *); 84 void ath_reset(struct ath_softc *, int); 85 int ath_media_change(struct ifnet *); 86 void ath_watchdog(struct ifnet *); 87 int ath_ioctl(struct ifnet *, u_long, caddr_t); 88 void ath_fatal_proc(void *, int); 89 void ath_rxorn_proc(void *, int); 90 void ath_bmiss_proc(void *, int); 91 int ath_initkeytable(struct ath_softc *); 92 void ath_mcastfilter_accum(caddr_t, u_int32_t (*)[2]); 93 void ath_mcastfilter_compute(struct ath_softc *, u_int32_t (*)[2]); 94 u_int32_t ath_calcrxfilter(struct ath_softc *); 95 void ath_mode_init(struct ath_softc *); 96 #ifndef IEEE80211_STA_ONLY 97 int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *); 98 void ath_beacon_proc(void *, int); 99 void ath_beacon_free(struct ath_softc *); 100 #endif 101 void ath_beacon_config(struct ath_softc *); 102 int ath_desc_alloc(struct ath_softc *); 103 void ath_desc_free(struct ath_softc *); 104 struct ieee80211_node *ath_node_alloc(struct ieee80211com *); 105 struct mbuf *ath_getmbuf(int, int, u_int); 106 void ath_node_free(struct ieee80211com *, struct ieee80211_node *); 107 void ath_node_copy(struct ieee80211com *, 108 struct ieee80211_node *, const struct ieee80211_node *); 109 u_int8_t ath_node_getrssi(struct ieee80211com *, 110 const struct ieee80211_node *); 111 int ath_rxbuf_init(struct ath_softc *, struct ath_buf *); 112 void ath_rx_proc(void *, int); 113 int ath_tx_start(struct ath_softc *, struct ieee80211_node *, 114 struct ath_buf *, struct mbuf *); 115 void ath_tx_proc(void *, int); 116 int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 117 void ath_draintxq(struct ath_softc *); 118 void ath_stoprecv(struct ath_softc *); 119 int ath_startrecv(struct ath_softc *); 120 void ath_next_scan(void *); 121 int ath_set_slot_time(struct ath_softc *); 122 void ath_calibrate(void *); 123 void ath_ledstate(struct ath_softc *, enum ieee80211_state); 124 int ath_newstate(struct ieee80211com *, enum ieee80211_state, int); 125 void ath_newassoc(struct ieee80211com *, 126 struct ieee80211_node *, int); 127 int ath_getchannels(struct ath_softc *, HAL_BOOL outdoor, 128 HAL_BOOL xchanmode); 129 int ath_rate_setup(struct ath_softc *sc, u_int mode); 130 void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 131 void ath_rssadapt_updatenode(void *, struct ieee80211_node *); 132 void ath_rssadapt_updatestats(void *); 133 #ifndef IEEE80211_STA_ONLY 134 void ath_recv_mgmt(struct ieee80211com *, struct mbuf *, 135 struct ieee80211_node *, struct ieee80211_rxinfo *, int); 136 #endif 137 void ath_disable(struct ath_softc *); 138 139 int ath_gpio_attach(struct ath_softc *, u_int16_t); 140 int ath_gpio_pin_read(void *, int); 141 void ath_gpio_pin_write(void *, int, int); 142 void ath_gpio_pin_ctl(void *, int, int); 143 144 #ifdef AR_DEBUG 145 void ath_printrxbuf(struct ath_buf *, int); 146 void ath_printtxbuf(struct ath_buf *, int); 147 int ath_debug = 0; 148 #endif 149 150 int ath_dwelltime = 200; /* 5 channels/second */ 151 int ath_calinterval = 30; /* calibrate every 30 secs */ 152 int ath_outdoor = AH_TRUE; /* outdoor operation */ 153 int ath_xchanmode = AH_TRUE; /* enable extended channels */ 154 int ath_softcrypto = 1; /* 1=enable software crypto */ 155 156 struct cfdriver ath_cd = { 157 NULL, "ath", DV_IFNET 158 }; 159 160 int 161 ath_activate(struct device *self, int act) 162 { 163 struct ath_softc *sc = (struct ath_softc *)self; 164 struct ifnet *ifp = &sc->sc_ic.ic_if; 165 166 switch (act) { 167 case DVACT_SUSPEND: 168 if (ifp->if_flags & IFF_RUNNING) { 169 ath_stop(ifp); 170 if (sc->sc_power != NULL) 171 (*sc->sc_power)(sc, act); 172 } 173 break; 174 case DVACT_RESUME: 175 if (ifp->if_flags & IFF_UP) { 176 ath_init(ifp); 177 if (ifp->if_flags & IFF_RUNNING) 178 ath_start(ifp); 179 } 180 break; 181 } 182 return 0; 183 } 184 185 int 186 ath_enable(struct ath_softc *sc) 187 { 188 if (ATH_IS_ENABLED(sc) == 0) { 189 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) { 190 printf("%s: device enable failed\n", 191 sc->sc_dev.dv_xname); 192 return (EIO); 193 } 194 sc->sc_flags |= ATH_ENABLED; 195 } 196 return (0); 197 } 198 199 void 200 ath_disable(struct ath_softc *sc) 201 { 202 if (!ATH_IS_ENABLED(sc)) 203 return; 204 if (sc->sc_disable != NULL) 205 (*sc->sc_disable)(sc); 206 sc->sc_flags &= ~ATH_ENABLED; 207 } 208 209 int 210 ath_attach(u_int16_t devid, struct ath_softc *sc) 211 { 212 struct ieee80211com *ic = &sc->sc_ic; 213 struct ifnet *ifp = &ic->ic_if; 214 struct ath_hal *ah; 215 HAL_STATUS status; 216 HAL_TXQ_INFO qinfo; 217 int error = 0, i; 218 219 DPRINTF(ATH_DEBUG_ANY, ("%s: devid 0x%x\n", __func__, devid)); 220 221 bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ); 222 sc->sc_flags &= ~ATH_ATTACHED; /* make sure that it's not attached */ 223 224 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, 225 sc->sc_pcie, &status); 226 if (ah == NULL) { 227 printf("%s: unable to attach hardware; HAL status %d\n", 228 ifp->if_xname, status); 229 error = ENXIO; 230 goto bad; 231 } 232 if (ah->ah_abi != HAL_ABI_VERSION) { 233 printf("%s: HAL ABI mismatch detected (0x%x != 0x%x)\n", 234 ifp->if_xname, ah->ah_abi, HAL_ABI_VERSION); 235 error = ENXIO; 236 goto bad; 237 } 238 239 if (ah->ah_single_chip == AH_TRUE) { 240 printf("%s: AR%s %u.%u phy %u.%u rf %u.%u", ifp->if_xname, 241 ar5k_printver(AR5K_VERSION_DEV, devid), 242 ah->ah_mac_version, ah->ah_mac_revision, 243 ah->ah_phy_revision >> 4, ah->ah_phy_revision & 0xf, 244 ah->ah_radio_5ghz_revision >> 4, 245 ah->ah_radio_5ghz_revision & 0xf); 246 } else { 247 printf("%s: AR%s %u.%u phy %u.%u", ifp->if_xname, 248 ar5k_printver(AR5K_VERSION_VER, ah->ah_mac_srev), 249 ah->ah_mac_version, ah->ah_mac_revision, 250 ah->ah_phy_revision >> 4, ah->ah_phy_revision & 0xf); 251 printf(" rf%s %u.%u", 252 ar5k_printver(AR5K_VERSION_RAD, ah->ah_radio_5ghz_revision), 253 ah->ah_radio_5ghz_revision >> 4, 254 ah->ah_radio_5ghz_revision & 0xf); 255 if (ah->ah_radio_2ghz_revision != 0) { 256 printf(" rf%s %u.%u", 257 ar5k_printver(AR5K_VERSION_RAD, 258 ah->ah_radio_2ghz_revision), 259 ah->ah_radio_2ghz_revision >> 4, 260 ah->ah_radio_2ghz_revision & 0xf); 261 } 262 } 263 if (ah->ah_ee_version == AR5K_EEPROM_VERSION_4_7) 264 printf(" eeprom 4.7"); 265 else 266 printf(" eeprom %1x.%1x", ah->ah_ee_version >> 12, 267 ah->ah_ee_version & 0xff); 268 269 #if 0 270 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_UNSUPP || 271 ah->ah_radio_2ghz_revision >= AR5K_SREV_RAD_UNSUPP) { 272 printf(": RF radio not supported\n"); 273 error = EOPNOTSUPP; 274 goto bad; 275 } 276 #endif 277 278 sc->sc_ah = ah; 279 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 280 281 /* 282 * Get regulation domain either stored in the EEPROM or defined 283 * as the default value. Some devices are known to have broken 284 * regulation domain values in their EEPROM. 285 */ 286 ath_hal_get_regdomain(ah, &ah->ah_regdomain); 287 288 /* 289 * Construct channel list based on the current regulation domain. 290 */ 291 error = ath_getchannels(sc, ath_outdoor, ath_xchanmode); 292 if (error != 0) 293 goto bad; 294 295 /* 296 * Setup rate tables for all potential media types. 297 */ 298 ath_rate_setup(sc, IEEE80211_MODE_11A); 299 ath_rate_setup(sc, IEEE80211_MODE_11B); 300 ath_rate_setup(sc, IEEE80211_MODE_11G); 301 302 error = ath_desc_alloc(sc); 303 if (error != 0) { 304 printf(": failed to allocate descriptors: %d\n", error); 305 goto bad; 306 } 307 timeout_set(&sc->sc_scan_to, ath_next_scan, sc); 308 timeout_set(&sc->sc_cal_to, ath_calibrate, sc); 309 timeout_set(&sc->sc_rssadapt_to, ath_rssadapt_updatestats, sc); 310 311 #ifdef __FreeBSD__ 312 ATH_TXBUF_LOCK_INIT(sc); 313 ATH_TXQ_LOCK_INIT(sc); 314 #endif 315 316 ATH_TASK_INIT(&sc->sc_txtask, ath_tx_proc, sc); 317 ATH_TASK_INIT(&sc->sc_rxtask, ath_rx_proc, sc); 318 ATH_TASK_INIT(&sc->sc_rxorntask, ath_rxorn_proc, sc); 319 ATH_TASK_INIT(&sc->sc_fataltask, ath_fatal_proc, sc); 320 ATH_TASK_INIT(&sc->sc_bmisstask, ath_bmiss_proc, sc); 321 #ifndef IEEE80211_STA_ONLY 322 ATH_TASK_INIT(&sc->sc_swbatask, ath_beacon_proc, sc); 323 #endif 324 325 /* 326 * For now just pre-allocate one data queue and one 327 * beacon queue. Note that the HAL handles resetting 328 * them at the needed time. Eventually we'll want to 329 * allocate more tx queues for splitting management 330 * frames and for QOS support. 331 */ 332 sc->sc_bhalq = ath_hal_setup_tx_queue(ah, HAL_TX_QUEUE_BEACON, NULL); 333 if (sc->sc_bhalq == (u_int) -1) { 334 printf(": unable to setup a beacon xmit queue!\n"); 335 goto bad2; 336 } 337 338 for (i = 0; i <= HAL_TX_QUEUE_ID_DATA_MAX; i++) { 339 bzero(&qinfo, sizeof(qinfo)); 340 qinfo.tqi_type = HAL_TX_QUEUE_DATA; 341 qinfo.tqi_subtype = i; /* should be mapped to WME types */ 342 sc->sc_txhalq[i] = ath_hal_setup_tx_queue(ah, 343 HAL_TX_QUEUE_DATA, &qinfo); 344 if (sc->sc_txhalq[i] == (u_int) -1) { 345 printf(": unable to setup a data xmit queue %u!\n", i); 346 goto bad2; 347 } 348 } 349 350 ifp->if_softc = sc; 351 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 352 ifp->if_start = ath_start; 353 ifp->if_watchdog = ath_watchdog; 354 ifp->if_ioctl = ath_ioctl; 355 #ifndef __OpenBSD__ 356 ifp->if_stop = ath_stop; /* XXX */ 357 #endif 358 ifq_set_maxlen(&ifp->if_snd, ATH_TXBUF * ATH_TXDESC); 359 360 ic->ic_softc = sc; 361 ic->ic_newassoc = ath_newassoc; 362 /* XXX not right but it's not used anywhere important */ 363 ic->ic_phytype = IEEE80211_T_OFDM; 364 ic->ic_opmode = IEEE80211_M_STA; 365 ic->ic_caps = IEEE80211_C_WEP /* wep supported */ 366 | IEEE80211_C_PMGT /* power management */ 367 #ifndef IEEE80211_STA_ONLY 368 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 369 | IEEE80211_C_HOSTAP /* hostap mode */ 370 #endif 371 | IEEE80211_C_MONITOR /* monitor mode */ 372 | IEEE80211_C_SHSLOT /* short slot time supported */ 373 | IEEE80211_C_SHPREAMBLE; /* short preamble supported */ 374 if (ath_softcrypto) 375 ic->ic_caps |= IEEE80211_C_RSN; /* wpa/rsn supported */ 376 377 /* 378 * Not all chips have the VEOL support we want to use with 379 * IBSS beacon; check here for it. 380 */ 381 sc->sc_veol = ath_hal_has_veol(ah); 382 383 /* get mac address from hardware */ 384 ath_hal_get_lladdr(ah, ic->ic_myaddr); 385 386 if_attach(ifp); 387 388 /* call MI attach routine. */ 389 ieee80211_ifattach(ifp); 390 391 /* override default methods */ 392 ic->ic_node_alloc = ath_node_alloc; 393 sc->sc_node_free = ic->ic_node_free; 394 ic->ic_node_free = ath_node_free; 395 sc->sc_node_copy = ic->ic_node_copy; 396 ic->ic_node_copy = ath_node_copy; 397 ic->ic_node_getrssi = ath_node_getrssi; 398 sc->sc_newstate = ic->ic_newstate; 399 ic->ic_newstate = ath_newstate; 400 #ifndef IEEE80211_STA_ONLY 401 sc->sc_recv_mgmt = ic->ic_recv_mgmt; 402 ic->ic_recv_mgmt = ath_recv_mgmt; 403 #endif 404 ic->ic_max_rssi = AR5K_MAX_RSSI; 405 bcopy(etherbroadcastaddr, sc->sc_broadcast_addr, IEEE80211_ADDR_LEN); 406 407 /* complete initialization */ 408 ieee80211_media_init(ifp, ath_media_change, ieee80211_media_status); 409 410 #if NBPFILTER > 0 411 bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO, 412 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN); 413 414 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu); 415 bzero(&sc->sc_rxtapu, sc->sc_rxtap_len); 416 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 417 sc->sc_rxtap.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT); 418 419 sc->sc_txtap_len = sizeof(sc->sc_txtapu); 420 bzero(&sc->sc_txtapu, sc->sc_txtap_len); 421 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 422 sc->sc_txtap.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT); 423 #endif 424 425 sc->sc_flags |= ATH_ATTACHED; 426 427 /* 428 * Print regulation domain and the mac address. The regulation domain 429 * will be marked with a * if the EEPROM value has been overwritten. 430 */ 431 printf(", %s%s, address %s\n", 432 ieee80211_regdomain2name(ah->ah_regdomain), 433 ah->ah_regdomain != ah->ah_regdomain_hw ? "*" : "", 434 ether_sprintf(ic->ic_myaddr)); 435 436 if (ath_gpio_attach(sc, devid) == 0) 437 sc->sc_flags |= ATH_GPIO; 438 439 return 0; 440 bad2: 441 ath_desc_free(sc); 442 bad: 443 if (ah) 444 ath_hal_detach(ah); 445 sc->sc_invalid = 1; 446 return error; 447 } 448 449 int 450 ath_detach(struct ath_softc *sc, int flags) 451 { 452 struct ifnet *ifp = &sc->sc_ic.ic_if; 453 int s; 454 455 if ((sc->sc_flags & ATH_ATTACHED) == 0) 456 return (0); 457 458 config_detach_children(&sc->sc_dev, flags); 459 460 DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags)); 461 462 timeout_del(&sc->sc_scan_to); 463 timeout_del(&sc->sc_cal_to); 464 timeout_del(&sc->sc_rssadapt_to); 465 466 s = splnet(); 467 ath_stop(ifp); 468 ath_desc_free(sc); 469 ath_hal_detach(sc->sc_ah); 470 471 ieee80211_ifdetach(ifp); 472 if_detach(ifp); 473 474 splx(s); 475 #ifdef __FreeBSD__ 476 ATH_TXBUF_LOCK_DESTROY(sc); 477 ATH_TXQ_LOCK_DESTROY(sc); 478 #endif 479 480 return 0; 481 } 482 483 int 484 ath_intr(void *arg) 485 { 486 return ath_intr1((struct ath_softc *)arg); 487 } 488 489 int 490 ath_intr1(struct ath_softc *sc) 491 { 492 struct ieee80211com *ic = &sc->sc_ic; 493 struct ifnet *ifp = &ic->ic_if; 494 struct ath_hal *ah = sc->sc_ah; 495 HAL_INT status; 496 497 if (sc->sc_invalid) { 498 /* 499 * The hardware is not ready/present, don't touch anything. 500 * Note this can happen early on if the IRQ is shared. 501 */ 502 DPRINTF(ATH_DEBUG_ANY, ("%s: invalid; ignored\n", __func__)); 503 return 0; 504 } 505 if (!ath_hal_is_intr_pending(ah)) /* shared irq, not for us */ 506 return 0; 507 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) { 508 DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags 0x%x\n", 509 __func__, ifp->if_flags)); 510 ath_hal_get_isr(ah, &status); /* clear ISR */ 511 ath_hal_set_intr(ah, 0); /* disable further intr's */ 512 return 1; /* XXX */ 513 } 514 ath_hal_get_isr(ah, &status); /* NB: clears ISR too */ 515 DPRINTF(ATH_DEBUG_INTR, ("%s: status 0x%x\n", __func__, status)); 516 status &= sc->sc_imask; /* discard unasked for bits */ 517 if (status & HAL_INT_FATAL) { 518 sc->sc_stats.ast_hardware++; 519 ath_hal_set_intr(ah, 0); /* disable intr's until reset */ 520 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask); 521 } else if (status & HAL_INT_RXORN) { 522 sc->sc_stats.ast_rxorn++; 523 ath_hal_set_intr(ah, 0); /* disable intr's until reset */ 524 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask); 525 } else if (status & HAL_INT_MIB) { 526 DPRINTF(ATH_DEBUG_INTR, 527 ("%s: resetting MIB counters\n", __func__)); 528 sc->sc_stats.ast_mib++; 529 ath_hal_update_mib_counters(ah, &sc->sc_mib_stats); 530 } else { 531 if (status & HAL_INT_RXEOL) { 532 /* 533 * NB: the hardware should re-read the link when 534 * RXE bit is written, but it doesn't work at 535 * least on older hardware revs. 536 */ 537 sc->sc_stats.ast_rxeol++; 538 sc->sc_rxlink = NULL; 539 } 540 if (status & HAL_INT_TXURN) { 541 sc->sc_stats.ast_txurn++; 542 /* bump tx trigger level */ 543 ath_hal_update_tx_triglevel(ah, AH_TRUE); 544 } 545 if (status & HAL_INT_RX) 546 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask); 547 if (status & HAL_INT_TX) 548 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_txtask); 549 if (status & HAL_INT_SWBA) 550 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_swbatask); 551 if (status & HAL_INT_BMISS) { 552 sc->sc_stats.ast_bmiss++; 553 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask); 554 } 555 } 556 return 1; 557 } 558 559 void 560 ath_fatal_proc(void *arg, int pending) 561 { 562 struct ath_softc *sc = arg; 563 struct ieee80211com *ic = &sc->sc_ic; 564 struct ifnet *ifp = &ic->ic_if; 565 566 if (ifp->if_flags & IFF_DEBUG) 567 printf("%s: hardware error; resetting\n", ifp->if_xname); 568 ath_reset(sc, 1); 569 } 570 571 void 572 ath_rxorn_proc(void *arg, int pending) 573 { 574 struct ath_softc *sc = arg; 575 struct ieee80211com *ic = &sc->sc_ic; 576 struct ifnet *ifp = &ic->ic_if; 577 578 if (ifp->if_flags & IFF_DEBUG) 579 printf("%s: rx FIFO overrun; resetting\n", ifp->if_xname); 580 ath_reset(sc, 1); 581 } 582 583 void 584 ath_bmiss_proc(void *arg, int pending) 585 { 586 struct ath_softc *sc = arg; 587 struct ieee80211com *ic = &sc->sc_ic; 588 589 DPRINTF(ATH_DEBUG_ANY, ("%s: pending %u\n", __func__, pending)); 590 if (ic->ic_opmode != IEEE80211_M_STA) 591 return; 592 if (ic->ic_state == IEEE80211_S_RUN) { 593 /* 594 * Rather than go directly to scan state, try to 595 * reassociate first. If that fails then the state 596 * machine will drop us into scanning after timing 597 * out waiting for a probe response. 598 */ 599 ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1); 600 } 601 } 602 603 int 604 ath_init(struct ifnet *ifp) 605 { 606 return ath_init1((struct ath_softc *)ifp->if_softc); 607 } 608 609 int 610 ath_init1(struct ath_softc *sc) 611 { 612 struct ieee80211com *ic = &sc->sc_ic; 613 struct ifnet *ifp = &ic->ic_if; 614 struct ieee80211_node *ni; 615 enum ieee80211_phymode mode; 616 struct ath_hal *ah = sc->sc_ah; 617 HAL_STATUS status; 618 HAL_CHANNEL hchan; 619 int error = 0, s; 620 621 DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags 0x%x\n", 622 __func__, ifp->if_flags)); 623 624 if ((error = ath_enable(sc)) != 0) 625 return error; 626 627 s = splnet(); 628 /* 629 * Stop anything previously setup. This is safe 630 * whether this is the first time through or not. 631 */ 632 ath_stop(ifp); 633 634 /* 635 * Reset the link layer address to the latest value. 636 */ 637 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl)); 638 ath_hal_set_lladdr(ah, ic->ic_myaddr); 639 640 /* 641 * The basic interface to setting the hardware in a good 642 * state is ``reset''. On return the hardware is known to 643 * be powered up and with interrupts disabled. This must 644 * be followed by initialization of the appropriate bits 645 * and then setup of the interrupt mask. 646 */ 647 hchan.channel = ic->ic_ibss_chan->ic_freq; 648 hchan.channelFlags = ic->ic_ibss_chan->ic_flags; 649 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) { 650 printf("%s: unable to reset hardware; hal status %u\n", 651 ifp->if_xname, status); 652 error = EIO; 653 goto done; 654 } 655 ath_set_slot_time(sc); 656 657 if ((error = ath_initkeytable(sc)) != 0) { 658 printf("%s: unable to reset the key cache\n", 659 ifp->if_xname); 660 goto done; 661 } 662 663 if ((error = ath_startrecv(sc)) != 0) { 664 printf("%s: unable to start recv logic\n", ifp->if_xname); 665 goto done; 666 } 667 668 /* 669 * Enable interrupts. 670 */ 671 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 672 | HAL_INT_RXEOL | HAL_INT_RXORN 673 | HAL_INT_FATAL | HAL_INT_GLOBAL; 674 #ifndef IEEE80211_STA_ONLY 675 if (ic->ic_opmode == IEEE80211_M_HOSTAP) 676 sc->sc_imask |= HAL_INT_MIB; 677 #endif 678 ath_hal_set_intr(ah, sc->sc_imask); 679 680 ifp->if_flags |= IFF_RUNNING; 681 ic->ic_state = IEEE80211_S_INIT; 682 683 /* 684 * The hardware should be ready to go now so it's safe 685 * to kick the 802.11 state machine as it's likely to 686 * immediately call back to us to send mgmt frames. 687 */ 688 ni = ic->ic_bss; 689 ni->ni_chan = ic->ic_ibss_chan; 690 mode = ieee80211_chan2mode(ic, ni->ni_chan); 691 if (mode != sc->sc_curmode) 692 ath_setcurmode(sc, mode); 693 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 694 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 695 } else { 696 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 697 } 698 done: 699 splx(s); 700 return error; 701 } 702 703 void 704 ath_stop(struct ifnet *ifp) 705 { 706 struct ieee80211com *ic = (struct ieee80211com *) ifp; 707 struct ath_softc *sc = ifp->if_softc; 708 struct ath_hal *ah = sc->sc_ah; 709 int s; 710 711 DPRINTF(ATH_DEBUG_ANY, ("%s: invalid %u if_flags 0x%x\n", 712 __func__, sc->sc_invalid, ifp->if_flags)); 713 714 s = splnet(); 715 if (ifp->if_flags & IFF_RUNNING) { 716 /* 717 * Shutdown the hardware and driver: 718 * disable interrupts 719 * turn off timers 720 * clear transmit machinery 721 * clear receive machinery 722 * drain and release tx queues 723 * reclaim beacon resources 724 * reset 802.11 state machine 725 * power down hardware 726 * 727 * Note that some of this work is not possible if the 728 * hardware is gone (invalid). 729 */ 730 ifp->if_flags &= ~IFF_RUNNING; 731 ifp->if_timer = 0; 732 if (!sc->sc_invalid) 733 ath_hal_set_intr(ah, 0); 734 ath_draintxq(sc); 735 if (!sc->sc_invalid) { 736 ath_stoprecv(sc); 737 } else { 738 sc->sc_rxlink = NULL; 739 } 740 ifq_purge(&ifp->if_snd); 741 #ifndef IEEE80211_STA_ONLY 742 ath_beacon_free(sc); 743 #endif 744 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 745 if (!sc->sc_invalid) { 746 ath_hal_set_power(ah, HAL_PM_FULL_SLEEP, 0); 747 } 748 ath_disable(sc); 749 } 750 splx(s); 751 } 752 753 /* 754 * Reset the hardware w/o losing operational state. This is 755 * basically a more efficient way of doing ath_stop, ath_init, 756 * followed by state transitions to the current 802.11 757 * operational state. Used to recover from errors rx overrun 758 * and to reset the hardware when rf gain settings must be reset. 759 */ 760 void 761 ath_reset(struct ath_softc *sc, int full) 762 { 763 struct ieee80211com *ic = &sc->sc_ic; 764 struct ifnet *ifp = &ic->ic_if; 765 struct ath_hal *ah = sc->sc_ah; 766 struct ieee80211_channel *c; 767 HAL_STATUS status; 768 HAL_CHANNEL hchan; 769 770 /* 771 * Convert to a HAL channel description. 772 */ 773 c = ic->ic_ibss_chan; 774 hchan.channel = c->ic_freq; 775 hchan.channelFlags = c->ic_flags; 776 777 ath_hal_set_intr(ah, 0); /* disable interrupts */ 778 ath_draintxq(sc); /* stop xmit side */ 779 ath_stoprecv(sc); /* stop recv side */ 780 /* NB: indicate channel change so we do a full reset */ 781 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, 782 full ? AH_TRUE : AH_FALSE, &status)) { 783 printf("%s: %s: unable to reset hardware; hal status %u\n", 784 ifp->if_xname, __func__, status); 785 } 786 ath_set_slot_time(sc); 787 /* In case channel changed, save as a node channel */ 788 ic->ic_bss->ni_chan = ic->ic_ibss_chan; 789 ath_hal_set_intr(ah, sc->sc_imask); 790 if (ath_startrecv(sc) != 0) /* restart recv */ 791 printf("%s: %s: unable to start recv logic\n", ifp->if_xname, 792 __func__); 793 ath_start(ifp); /* restart xmit */ 794 if (ic->ic_state == IEEE80211_S_RUN) 795 ath_beacon_config(sc); /* restart beacons */ 796 } 797 798 void 799 ath_start(struct ifnet *ifp) 800 { 801 struct ath_softc *sc = ifp->if_softc; 802 struct ath_hal *ah = sc->sc_ah; 803 struct ieee80211com *ic = &sc->sc_ic; 804 struct ieee80211_node *ni; 805 struct ath_buf *bf; 806 struct mbuf *m; 807 struct ieee80211_frame *wh; 808 int s; 809 810 if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd) || 811 sc->sc_invalid) 812 return; 813 for (;;) { 814 /* 815 * Grab a TX buffer and associated resources. 816 */ 817 s = splnet(); 818 bf = TAILQ_FIRST(&sc->sc_txbuf); 819 if (bf != NULL) 820 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list); 821 splx(s); 822 if (bf == NULL) { 823 DPRINTF(ATH_DEBUG_ANY, ("%s: out of xmit buffers\n", 824 __func__)); 825 sc->sc_stats.ast_tx_qstop++; 826 ifq_set_oactive(&ifp->if_snd); 827 break; 828 } 829 /* 830 * Poll the management queue for frames; they 831 * have priority over normal data frames. 832 */ 833 m = mq_dequeue(&ic->ic_mgtq); 834 if (m == NULL) { 835 /* 836 * No data frames go out unless we're associated. 837 */ 838 if (ic->ic_state != IEEE80211_S_RUN) { 839 DPRINTF(ATH_DEBUG_ANY, 840 ("%s: ignore data packet, state %u\n", 841 __func__, ic->ic_state)); 842 sc->sc_stats.ast_tx_discard++; 843 s = splnet(); 844 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 845 splx(s); 846 break; 847 } 848 m = ifq_dequeue(&ifp->if_snd); 849 if (m == NULL) { 850 s = splnet(); 851 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 852 splx(s); 853 break; 854 } 855 856 #if NBPFILTER > 0 857 if (ifp->if_bpf) 858 bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT); 859 #endif 860 861 /* 862 * Encapsulate the packet in prep for transmission. 863 */ 864 m = ieee80211_encap(ifp, m, &ni); 865 if (m == NULL) { 866 DPRINTF(ATH_DEBUG_ANY, 867 ("%s: encapsulation failure\n", 868 __func__)); 869 sc->sc_stats.ast_tx_encap++; 870 goto bad; 871 } 872 wh = mtod(m, struct ieee80211_frame *); 873 } else { 874 ni = m->m_pkthdr.ph_cookie; 875 876 wh = mtod(m, struct ieee80211_frame *); 877 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 878 IEEE80211_FC0_SUBTYPE_PROBE_RESP) { 879 /* fill time stamp */ 880 u_int64_t tsf; 881 u_int32_t *tstamp; 882 883 tsf = ath_hal_get_tsf64(ah); 884 /* XXX: adjust 100us delay to xmit */ 885 tsf += 100; 886 tstamp = (u_int32_t *)&wh[1]; 887 tstamp[0] = htole32(tsf & 0xffffffff); 888 tstamp[1] = htole32(tsf >> 32); 889 } 890 sc->sc_stats.ast_tx_mgmt++; 891 } 892 893 if (ath_tx_start(sc, ni, bf, m)) { 894 bad: 895 s = splnet(); 896 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 897 splx(s); 898 ifp->if_oerrors++; 899 if (ni != NULL) 900 ieee80211_release_node(ic, ni); 901 continue; 902 } 903 904 sc->sc_tx_timer = 5; 905 ifp->if_timer = 1; 906 } 907 } 908 909 int 910 ath_media_change(struct ifnet *ifp) 911 { 912 int error; 913 914 error = ieee80211_media_change(ifp); 915 if (error == ENETRESET) { 916 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == 917 (IFF_RUNNING|IFF_UP)) 918 ath_init(ifp); /* XXX lose error */ 919 error = 0; 920 } 921 return error; 922 } 923 924 void 925 ath_watchdog(struct ifnet *ifp) 926 { 927 struct ath_softc *sc = ifp->if_softc; 928 929 ifp->if_timer = 0; 930 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid) 931 return; 932 if (sc->sc_tx_timer) { 933 if (--sc->sc_tx_timer == 0) { 934 printf("%s: device timeout\n", ifp->if_xname); 935 ath_reset(sc, 1); 936 ifp->if_oerrors++; 937 sc->sc_stats.ast_watchdog++; 938 return; 939 } 940 ifp->if_timer = 1; 941 } 942 943 ieee80211_watchdog(ifp); 944 } 945 946 int 947 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 948 { 949 struct ath_softc *sc = ifp->if_softc; 950 struct ieee80211com *ic = &sc->sc_ic; 951 struct ifreq *ifr = (struct ifreq *)data; 952 int error = 0, s; 953 954 s = splnet(); 955 switch (cmd) { 956 case SIOCSIFADDR: 957 ifp->if_flags |= IFF_UP; 958 /* FALLTHROUGH */ 959 case SIOCSIFFLAGS: 960 if (ifp->if_flags & IFF_UP) { 961 if (ifp->if_flags & IFF_RUNNING) { 962 /* 963 * To avoid rescanning another access point, 964 * do not call ath_init() here. Instead, 965 * only reflect promisc mode settings. 966 */ 967 ath_mode_init(sc); 968 } else { 969 /* 970 * Beware of being called during detach to 971 * reset promiscuous mode. In that case we 972 * will still be marked UP but not RUNNING. 973 * However trying to re-init the interface 974 * is the wrong thing to do as we've already 975 * torn down much of our state. There's 976 * probably a better way to deal with this. 977 */ 978 if (!sc->sc_invalid) 979 ath_init(ifp); /* XXX lose error */ 980 } 981 } else 982 ath_stop(ifp); 983 break; 984 case SIOCADDMULTI: 985 case SIOCDELMULTI: 986 #ifdef __FreeBSD__ 987 /* 988 * The upper layer has already installed/removed 989 * the multicast address(es), just recalculate the 990 * multicast filter for the card. 991 */ 992 if (ifp->if_flags & IFF_RUNNING) 993 ath_mode_init(sc); 994 #endif 995 error = (cmd == SIOCADDMULTI) ? 996 ether_addmulti(ifr, &sc->sc_ic.ic_ac) : 997 ether_delmulti(ifr, &sc->sc_ic.ic_ac); 998 if (error == ENETRESET) { 999 if (ifp->if_flags & IFF_RUNNING) 1000 ath_mode_init(sc); 1001 error = 0; 1002 } 1003 break; 1004 case SIOCGATHSTATS: 1005 error = copyout(&sc->sc_stats, 1006 ifr->ifr_data, sizeof (sc->sc_stats)); 1007 break; 1008 default: 1009 error = ieee80211_ioctl(ifp, cmd, data); 1010 if (error == ENETRESET) { 1011 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == 1012 (IFF_RUNNING|IFF_UP)) { 1013 if (ic->ic_opmode != IEEE80211_M_MONITOR) 1014 ath_init(ifp); /* XXX lose error */ 1015 else 1016 ath_reset(sc, 1); 1017 } 1018 error = 0; 1019 } 1020 break; 1021 } 1022 splx(s); 1023 return error; 1024 } 1025 1026 /* 1027 * Fill the hardware key cache with key entries. 1028 */ 1029 int 1030 ath_initkeytable(struct ath_softc *sc) 1031 { 1032 struct ieee80211com *ic = &sc->sc_ic; 1033 struct ath_hal *ah = sc->sc_ah; 1034 int i; 1035 1036 if (ath_softcrypto) { 1037 /* 1038 * Disable the hardware crypto engine and reset the key cache 1039 * to allow software crypto operation for WEP/RSN/WPA2 1040 */ 1041 if (ic->ic_flags & (IEEE80211_F_WEPON|IEEE80211_F_RSNON)) 1042 (void)ath_hal_softcrypto(ah, AH_TRUE); 1043 else 1044 (void)ath_hal_softcrypto(ah, AH_FALSE); 1045 return (0); 1046 } 1047 1048 /* WEP is disabled, we only support WEP in hardware yet */ 1049 if ((ic->ic_flags & IEEE80211_F_WEPON) == 0) 1050 return (0); 1051 1052 /* 1053 * Setup the hardware after reset: the key cache is filled as 1054 * needed and the receive engine is set going. Frame transmit 1055 * is handled entirely in the frame output path; there's nothing 1056 * to do here except setup the interrupt mask. 1057 */ 1058 1059 /* XXX maybe should reset all keys when !WEPON */ 1060 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 1061 struct ieee80211_key *k = &ic->ic_nw_keys[i]; 1062 if (k->k_len == 0) 1063 ath_hal_reset_key(ah, i); 1064 else { 1065 HAL_KEYVAL hk; 1066 1067 bzero(&hk, sizeof(hk)); 1068 /* 1069 * Pad the key to a supported key length. It 1070 * is always a good idea to use full-length 1071 * keys without padded zeros but this seems 1072 * to be the default behaviour used by many 1073 * implementations. 1074 */ 1075 if (k->k_cipher == IEEE80211_CIPHER_WEP40) 1076 hk.wk_len = AR5K_KEYVAL_LENGTH_40; 1077 else if (k->k_cipher == IEEE80211_CIPHER_WEP104) 1078 hk.wk_len = AR5K_KEYVAL_LENGTH_104; 1079 else 1080 return (EINVAL); 1081 bcopy(k->k_key, hk.wk_key, hk.wk_len); 1082 1083 if (ath_hal_set_key(ah, i, &hk) != AH_TRUE) 1084 return (EINVAL); 1085 } 1086 } 1087 1088 return (0); 1089 } 1090 1091 void 1092 ath_mcastfilter_accum(caddr_t dl, u_int32_t (*mfilt)[2]) 1093 { 1094 u_int32_t val; 1095 u_int8_t pos; 1096 1097 val = LE_READ_4(dl + 0); 1098 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 1099 val = LE_READ_4(dl + 3); 1100 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 1101 pos &= 0x3f; 1102 (*mfilt)[pos / 32] |= (1 << (pos % 32)); 1103 } 1104 1105 void 1106 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t (*mfilt)[2]) 1107 { 1108 struct arpcom *ac = &sc->sc_ic.ic_ac; 1109 struct ifnet *ifp = &sc->sc_ic.ic_if; 1110 struct ether_multi *enm; 1111 struct ether_multistep estep; 1112 1113 if (ac->ac_multirangecnt > 0) { 1114 /* XXX Punt on ranges. */ 1115 (*mfilt)[0] = (*mfilt)[1] = ~((u_int32_t)0); 1116 ifp->if_flags |= IFF_ALLMULTI; 1117 return; 1118 } 1119 1120 ETHER_FIRST_MULTI(estep, ac, enm); 1121 while (enm != NULL) { 1122 ath_mcastfilter_accum(enm->enm_addrlo, mfilt); 1123 ETHER_NEXT_MULTI(estep, enm); 1124 } 1125 ifp->if_flags &= ~IFF_ALLMULTI; 1126 } 1127 1128 /* 1129 * Calculate the receive filter according to the 1130 * operating mode and state: 1131 * 1132 * o always accept unicast, broadcast, and multicast traffic 1133 * o maintain current state of phy error reception 1134 * o probe request frames are accepted only when operating in 1135 * hostap, adhoc, or monitor modes 1136 * o enable promiscuous mode according to the interface state 1137 * o accept beacons: 1138 * - when operating in adhoc mode so the 802.11 layer creates 1139 * node table entries for peers, 1140 * - when operating in station mode for collecting rssi data when 1141 * the station is otherwise quiet, or 1142 * - when scanning 1143 */ 1144 u_int32_t 1145 ath_calcrxfilter(struct ath_softc *sc) 1146 { 1147 struct ieee80211com *ic = &sc->sc_ic; 1148 struct ath_hal *ah = sc->sc_ah; 1149 struct ifnet *ifp = &ic->ic_if; 1150 u_int32_t rfilt; 1151 1152 rfilt = (ath_hal_get_rx_filter(ah) & HAL_RX_FILTER_PHYERR) 1153 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST; 1154 if (ic->ic_opmode != IEEE80211_M_STA) 1155 rfilt |= HAL_RX_FILTER_PROBEREQ; 1156 #ifndef IEEE80211_STA_ONLY 1157 if (ic->ic_opmode != IEEE80211_M_AHDEMO) 1158 #endif 1159 rfilt |= HAL_RX_FILTER_BEACON; 1160 if (ifp->if_flags & IFF_PROMISC) 1161 rfilt |= HAL_RX_FILTER_PROM; 1162 return rfilt; 1163 } 1164 1165 void 1166 ath_mode_init(struct ath_softc *sc) 1167 { 1168 struct ath_hal *ah = sc->sc_ah; 1169 u_int32_t rfilt, mfilt[2]; 1170 1171 /* configure rx filter */ 1172 rfilt = ath_calcrxfilter(sc); 1173 ath_hal_set_rx_filter(ah, rfilt); 1174 1175 /* configure operational mode */ 1176 ath_hal_set_opmode(ah); 1177 1178 /* calculate and install multicast filter */ 1179 mfilt[0] = mfilt[1] = 0; 1180 ath_mcastfilter_compute(sc, &mfilt); 1181 ath_hal_set_mcast_filter(ah, mfilt[0], mfilt[1]); 1182 DPRINTF(ATH_DEBUG_MODE, ("%s: RX filter 0x%x, MC filter %08x:%08x\n", 1183 __func__, rfilt, mfilt[0], mfilt[1])); 1184 } 1185 1186 struct mbuf * 1187 ath_getmbuf(int flags, int type, u_int pktlen) 1188 { 1189 struct mbuf *m; 1190 1191 KASSERT(pktlen <= MCLBYTES, ("802.11 packet too large: %u", pktlen)); 1192 #ifdef __FreeBSD__ 1193 if (pktlen <= MHLEN) { 1194 MGETHDR(m, flags, type); 1195 } else { 1196 m = m_getcl(flags, type, M_PKTHDR); 1197 } 1198 #else 1199 MGETHDR(m, flags, type); 1200 if (m != NULL && pktlen > MHLEN) { 1201 MCLGET(m, flags); 1202 if ((m->m_flags & M_EXT) == 0) { 1203 m_free(m); 1204 m = NULL; 1205 } 1206 } 1207 #endif 1208 return m; 1209 } 1210 1211 #ifndef IEEE80211_STA_ONLY 1212 int 1213 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni) 1214 { 1215 struct ieee80211com *ic = &sc->sc_ic; 1216 struct ath_hal *ah = sc->sc_ah; 1217 struct ath_buf *bf; 1218 struct ath_desc *ds; 1219 struct mbuf *m; 1220 int error; 1221 u_int8_t rate; 1222 const HAL_RATE_TABLE *rt; 1223 u_int flags = 0; 1224 1225 bf = sc->sc_bcbuf; 1226 if (bf->bf_m != NULL) { 1227 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 1228 m_freem(bf->bf_m); 1229 bf->bf_m = NULL; 1230 bf->bf_node = NULL; 1231 } 1232 /* 1233 * NB: the beacon data buffer must be 32-bit aligned; 1234 * we assume the mbuf routines will return us something 1235 * with this alignment (perhaps should assert). 1236 */ 1237 m = ieee80211_beacon_alloc(ic, ni); 1238 if (m == NULL) { 1239 DPRINTF(ATH_DEBUG_BEACON, ("%s: cannot get mbuf/cluster\n", 1240 __func__)); 1241 sc->sc_stats.ast_be_nombuf++; 1242 return ENOMEM; 1243 } 1244 1245 DPRINTF(ATH_DEBUG_BEACON, ("%s: m %p len %u\n", __func__, m, m->m_len)); 1246 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m, 1247 BUS_DMA_NOWAIT); 1248 if (error != 0) { 1249 m_freem(m); 1250 return error; 1251 } 1252 KASSERT(bf->bf_nseg == 1, 1253 ("%s: multi-segment packet; nseg %u", __func__, bf->bf_nseg)); 1254 bf->bf_m = m; 1255 1256 /* setup descriptors */ 1257 ds = bf->bf_desc; 1258 bzero(ds, sizeof(struct ath_desc)); 1259 1260 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_veol) { 1261 ds->ds_link = bf->bf_daddr; /* link to self */ 1262 flags |= HAL_TXDESC_VEOL; 1263 } else { 1264 ds->ds_link = 0; 1265 } 1266 ds->ds_data = bf->bf_segs[0].ds_addr; 1267 1268 DPRINTF(ATH_DEBUG_ANY, ("%s: segaddr %p seglen %u\n", __func__, 1269 (caddr_t)bf->bf_segs[0].ds_addr, (u_int)bf->bf_segs[0].ds_len)); 1270 1271 /* 1272 * Calculate rate code. 1273 * XXX everything at min xmit rate 1274 */ 1275 rt = sc->sc_currates; 1276 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); 1277 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) { 1278 rate = rt->info[0].rateCode | rt->info[0].shortPreamble; 1279 } else { 1280 rate = rt->info[0].rateCode; 1281 } 1282 1283 flags = HAL_TXDESC_NOACK; 1284 if (ic->ic_opmode == IEEE80211_M_IBSS) 1285 flags |= HAL_TXDESC_VEOL; 1286 1287 if (!ath_hal_setup_tx_desc(ah, ds 1288 , m->m_pkthdr.len + IEEE80211_CRC_LEN /* packet length */ 1289 , sizeof(struct ieee80211_frame) /* header length */ 1290 , HAL_PKT_TYPE_BEACON /* Atheros packet type */ 1291 , 60 /* txpower XXX */ 1292 , rate, 1 /* series 0 rate/tries */ 1293 , HAL_TXKEYIX_INVALID /* no encryption */ 1294 , 0 /* antenna mode */ 1295 , flags /* no ack for beacons */ 1296 , 0 /* rts/cts rate */ 1297 , 0 /* rts/cts duration */ 1298 )) { 1299 printf("%s: ath_hal_setup_tx_desc failed\n", __func__); 1300 return -1; 1301 } 1302 /* NB: beacon's BufLen must be a multiple of 4 bytes */ 1303 /* XXX verify mbuf data area covers this roundup */ 1304 if (!ath_hal_fill_tx_desc(ah, ds 1305 , roundup(bf->bf_segs[0].ds_len, 4) /* buffer length */ 1306 , AH_TRUE /* first segment */ 1307 , AH_TRUE /* last segment */ 1308 )) { 1309 printf("%s: ath_hal_fill_tx_desc failed\n", __func__); 1310 return -1; 1311 } 1312 1313 /* XXX it is not appropriate to bus_dmamap_sync? -dcy */ 1314 1315 return 0; 1316 } 1317 1318 void 1319 ath_beacon_proc(void *arg, int pending) 1320 { 1321 struct ath_softc *sc = arg; 1322 struct ieee80211com *ic = &sc->sc_ic; 1323 struct ath_buf *bf = sc->sc_bcbuf; 1324 struct ath_hal *ah = sc->sc_ah; 1325 1326 DPRINTF(ATH_DEBUG_BEACON_PROC, ("%s: pending %u\n", __func__, pending)); 1327 if (ic->ic_opmode == IEEE80211_M_STA || 1328 bf == NULL || bf->bf_m == NULL) { 1329 DPRINTF(ATH_DEBUG_ANY, ("%s: ic_flags=%x bf=%p bf_m=%p\n", 1330 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL)); 1331 return; 1332 } 1333 /* TODO: update beacon to reflect PS poll state */ 1334 if (!ath_hal_stop_tx_dma(ah, sc->sc_bhalq)) { 1335 DPRINTF(ATH_DEBUG_ANY, ("%s: beacon queue %u did not stop?\n", 1336 __func__, sc->sc_bhalq)); 1337 } 1338 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0, 1339 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE); 1340 1341 ath_hal_put_tx_buf(ah, sc->sc_bhalq, bf->bf_daddr); 1342 ath_hal_tx_start(ah, sc->sc_bhalq); 1343 DPRINTF(ATH_DEBUG_BEACON_PROC, 1344 ("%s: TXDP%u = %p (%p)\n", __func__, 1345 sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc)); 1346 } 1347 1348 void 1349 ath_beacon_free(struct ath_softc *sc) 1350 { 1351 struct ath_buf *bf = sc->sc_bcbuf; 1352 1353 if (bf->bf_m != NULL) { 1354 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 1355 m_freem(bf->bf_m); 1356 bf->bf_m = NULL; 1357 bf->bf_node = NULL; 1358 } 1359 } 1360 #endif /* IEEE80211_STA_ONLY */ 1361 1362 /* 1363 * Configure the beacon and sleep timers. 1364 * 1365 * When operating as an AP this resets the TSF and sets 1366 * up the hardware to notify us when we need to issue beacons. 1367 * 1368 * When operating in station mode this sets up the beacon 1369 * timers according to the timestamp of the last received 1370 * beacon and the current TSF, configures PCF and DTIM 1371 * handling, programs the sleep registers so the hardware 1372 * will wakeup in time to receive beacons, and configures 1373 * the beacon miss handling so we'll receive a BMISS 1374 * interrupt when we stop seeing beacons from the AP 1375 * we've associated with. 1376 */ 1377 void 1378 ath_beacon_config(struct ath_softc *sc) 1379 { 1380 #define MS_TO_TU(x) (((x) * 1000) / 1024) 1381 struct ath_hal *ah = sc->sc_ah; 1382 struct ieee80211com *ic = &sc->sc_ic; 1383 struct ieee80211_node *ni = ic->ic_bss; 1384 u_int32_t nexttbtt, intval; 1385 1386 nexttbtt = (LE_READ_4(ni->ni_tstamp + 4) << 22) | 1387 (LE_READ_4(ni->ni_tstamp) >> 10); 1388 intval = MAX(1, ni->ni_intval) & HAL_BEACON_PERIOD; 1389 if (nexttbtt == 0) { /* e.g. for ap mode */ 1390 nexttbtt = intval; 1391 } else if (intval) { 1392 nexttbtt = roundup(nexttbtt, intval); 1393 } 1394 DPRINTF(ATH_DEBUG_BEACON, ("%s: intval %u nexttbtt %u\n", 1395 __func__, ni->ni_intval, nexttbtt)); 1396 if (ic->ic_opmode == IEEE80211_M_STA) { 1397 HAL_BEACON_STATE bs; 1398 1399 /* NB: no PCF support right now */ 1400 bzero(&bs, sizeof(bs)); 1401 bs.bs_intval = intval; 1402 bs.bs_nexttbtt = nexttbtt; 1403 bs.bs_dtimperiod = bs.bs_intval; 1404 bs.bs_nextdtim = nexttbtt; 1405 /* 1406 * Calculate the number of consecutive beacons to miss 1407 * before taking a BMISS interrupt. 1408 * Note that we clamp the result to at most 7 beacons. 1409 */ 1410 bs.bs_bmissthreshold = ic->ic_bmissthres; 1411 if (bs.bs_bmissthreshold > 7) { 1412 bs.bs_bmissthreshold = 7; 1413 } else if (bs.bs_bmissthreshold <= 0) { 1414 bs.bs_bmissthreshold = 1; 1415 } 1416 1417 /* 1418 * Calculate sleep duration. The configuration is 1419 * given in ms. We insure a multiple of the beacon 1420 * period is used. Also, if the sleep duration is 1421 * greater than the DTIM period then it makes senses 1422 * to make it a multiple of that. 1423 * 1424 * XXX fixed at 100ms 1425 */ 1426 bs.bs_sleepduration = 1427 roundup(MS_TO_TU(100), bs.bs_intval); 1428 if (bs.bs_sleepduration > bs.bs_dtimperiod) { 1429 bs.bs_sleepduration = 1430 roundup(bs.bs_sleepduration, bs.bs_dtimperiod); 1431 } 1432 1433 DPRINTF(ATH_DEBUG_BEACON, 1434 ("%s: intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u" 1435 " sleep %u\n" 1436 , __func__ 1437 , bs.bs_intval 1438 , bs.bs_nexttbtt 1439 , bs.bs_dtimperiod 1440 , bs.bs_nextdtim 1441 , bs.bs_bmissthreshold 1442 , bs.bs_sleepduration 1443 )); 1444 ath_hal_set_intr(ah, 0); 1445 ath_hal_set_beacon_timers(ah, &bs, 0/*XXX*/, 0, 0); 1446 sc->sc_imask |= HAL_INT_BMISS; 1447 ath_hal_set_intr(ah, sc->sc_imask); 1448 } 1449 #ifndef IEEE80211_STA_ONLY 1450 else { 1451 ath_hal_set_intr(ah, 0); 1452 if (nexttbtt == intval) 1453 intval |= HAL_BEACON_RESET_TSF; 1454 if (ic->ic_opmode == IEEE80211_M_IBSS) { 1455 /* 1456 * In IBSS mode enable the beacon timers but only 1457 * enable SWBA interrupts if we need to manually 1458 * prepare beacon frames. Otherwise we use a 1459 * self-linked tx descriptor and let the hardware 1460 * deal with things. 1461 */ 1462 intval |= HAL_BEACON_ENA; 1463 if (!sc->sc_veol) 1464 sc->sc_imask |= HAL_INT_SWBA; 1465 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 1466 /* 1467 * In AP mode we enable the beacon timers and 1468 * SWBA interrupts to prepare beacon frames. 1469 */ 1470 intval |= HAL_BEACON_ENA; 1471 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */ 1472 } 1473 ath_hal_init_beacon(ah, nexttbtt, intval); 1474 ath_hal_set_intr(ah, sc->sc_imask); 1475 /* 1476 * When using a self-linked beacon descriptor in IBBS 1477 * mode load it once here. 1478 */ 1479 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_veol) 1480 ath_beacon_proc(sc, 0); 1481 } 1482 #endif 1483 } 1484 1485 int 1486 ath_desc_alloc(struct ath_softc *sc) 1487 { 1488 int i, bsize, error = -1; 1489 struct ath_desc *ds; 1490 struct ath_buf *bf; 1491 1492 /* allocate descriptors */ 1493 sc->sc_desc_len = sizeof(struct ath_desc) * 1494 (ATH_TXBUF * ATH_TXDESC + ATH_RXBUF + 1); 1495 if ((error = bus_dmamem_alloc(sc->sc_dmat, sc->sc_desc_len, PAGE_SIZE, 1496 0, &sc->sc_dseg, 1, &sc->sc_dnseg, 0)) != 0) { 1497 printf("%s: unable to allocate control data, error = %d\n", 1498 sc->sc_dev.dv_xname, error); 1499 goto fail0; 1500 } 1501 1502 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg, 1503 sc->sc_desc_len, (caddr_t *)&sc->sc_desc, BUS_DMA_COHERENT)) != 0) { 1504 printf("%s: unable to map control data, error = %d\n", 1505 sc->sc_dev.dv_xname, error); 1506 goto fail1; 1507 } 1508 1509 if ((error = bus_dmamap_create(sc->sc_dmat, sc->sc_desc_len, 1, 1510 sc->sc_desc_len, 0, 0, &sc->sc_ddmamap)) != 0) { 1511 printf("%s: unable to create control data DMA map, " 1512 "error = %d\n", sc->sc_dev.dv_xname, error); 1513 goto fail2; 1514 } 1515 1516 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_ddmamap, sc->sc_desc, 1517 sc->sc_desc_len, NULL, 0)) != 0) { 1518 printf("%s: unable to load control data DMA map, error = %d\n", 1519 sc->sc_dev.dv_xname, error); 1520 goto fail3; 1521 } 1522 1523 ds = sc->sc_desc; 1524 sc->sc_desc_paddr = sc->sc_ddmamap->dm_segs[0].ds_addr; 1525 1526 DPRINTF(ATH_DEBUG_XMIT_DESC|ATH_DEBUG_RECV_DESC, 1527 ("ath_desc_alloc: DMA map: %p (%lu) -> %p (%lu)\n", 1528 ds, (u_long)sc->sc_desc_len, 1529 (caddr_t) sc->sc_desc_paddr, /*XXX*/ (u_long) sc->sc_desc_len)); 1530 1531 /* allocate buffers */ 1532 bsize = sizeof(struct ath_buf) * (ATH_TXBUF + ATH_RXBUF + 1); 1533 bf = malloc(bsize, M_DEVBUF, M_NOWAIT | M_ZERO); 1534 if (bf == NULL) { 1535 printf("%s: unable to allocate Tx/Rx buffers\n", 1536 sc->sc_dev.dv_xname); 1537 error = ENOMEM; 1538 goto fail3; 1539 } 1540 sc->sc_bufptr = bf; 1541 1542 TAILQ_INIT(&sc->sc_rxbuf); 1543 for (i = 0; i < ATH_RXBUF; i++, bf++, ds++) { 1544 bf->bf_desc = ds; 1545 bf->bf_daddr = sc->sc_desc_paddr + 1546 ((caddr_t)ds - (caddr_t)sc->sc_desc); 1547 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, 1548 MCLBYTES, 0, 0, &bf->bf_dmamap)) != 0) { 1549 printf("%s: unable to create Rx dmamap, error = %d\n", 1550 sc->sc_dev.dv_xname, error); 1551 goto fail4; 1552 } 1553 TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list); 1554 } 1555 1556 TAILQ_INIT(&sc->sc_txbuf); 1557 for (i = 0; i < ATH_TXBUF; i++, bf++, ds += ATH_TXDESC) { 1558 bf->bf_desc = ds; 1559 bf->bf_daddr = sc->sc_desc_paddr + 1560 ((caddr_t)ds - (caddr_t)sc->sc_desc); 1561 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1562 ATH_TXDESC, MCLBYTES, 0, 0, &bf->bf_dmamap)) != 0) { 1563 printf("%s: unable to create Tx dmamap, error = %d\n", 1564 sc->sc_dev.dv_xname, error); 1565 goto fail5; 1566 } 1567 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1568 } 1569 TAILQ_INIT(&sc->sc_txq); 1570 1571 /* beacon buffer */ 1572 bf->bf_desc = ds; 1573 bf->bf_daddr = sc->sc_desc_paddr + ((caddr_t)ds - (caddr_t)sc->sc_desc); 1574 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0, 1575 &bf->bf_dmamap)) != 0) { 1576 printf("%s: unable to create beacon dmamap, error = %d\n", 1577 sc->sc_dev.dv_xname, error); 1578 goto fail5; 1579 } 1580 sc->sc_bcbuf = bf; 1581 return 0; 1582 1583 fail5: 1584 for (i = ATH_RXBUF; i < ATH_RXBUF + ATH_TXBUF; i++) { 1585 if (sc->sc_bufptr[i].bf_dmamap == NULL) 1586 continue; 1587 bus_dmamap_destroy(sc->sc_dmat, sc->sc_bufptr[i].bf_dmamap); 1588 } 1589 fail4: 1590 for (i = 0; i < ATH_RXBUF; i++) { 1591 if (sc->sc_bufptr[i].bf_dmamap == NULL) 1592 continue; 1593 bus_dmamap_destroy(sc->sc_dmat, sc->sc_bufptr[i].bf_dmamap); 1594 } 1595 fail3: 1596 bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap); 1597 fail2: 1598 bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap); 1599 sc->sc_ddmamap = NULL; 1600 fail1: 1601 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_desc, sc->sc_desc_len); 1602 fail0: 1603 bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg); 1604 return error; 1605 } 1606 1607 void 1608 ath_desc_free(struct ath_softc *sc) 1609 { 1610 struct ath_buf *bf; 1611 1612 bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap); 1613 bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap); 1614 bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg); 1615 1616 TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) { 1617 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 1618 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 1619 m_freem(bf->bf_m); 1620 } 1621 TAILQ_FOREACH(bf, &sc->sc_txbuf, bf_list) 1622 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 1623 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 1624 if (bf->bf_m) { 1625 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 1626 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 1627 m_freem(bf->bf_m); 1628 bf->bf_m = NULL; 1629 } 1630 } 1631 if (sc->sc_bcbuf != NULL) { 1632 bus_dmamap_unload(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap); 1633 bus_dmamap_destroy(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap); 1634 sc->sc_bcbuf = NULL; 1635 } 1636 1637 TAILQ_INIT(&sc->sc_rxbuf); 1638 TAILQ_INIT(&sc->sc_txbuf); 1639 TAILQ_INIT(&sc->sc_txq); 1640 free(sc->sc_bufptr, M_DEVBUF, 0); 1641 sc->sc_bufptr = NULL; 1642 } 1643 1644 struct ieee80211_node * 1645 ath_node_alloc(struct ieee80211com *ic) 1646 { 1647 struct ath_node *an; 1648 1649 an = malloc(sizeof(*an), M_DEVBUF, M_NOWAIT | M_ZERO); 1650 if (an) { 1651 int i; 1652 for (i = 0; i < ATH_RHIST_SIZE; i++) 1653 an->an_rx_hist[i].arh_ticks = ATH_RHIST_NOTIME; 1654 an->an_rx_hist_next = ATH_RHIST_SIZE-1; 1655 return &an->an_node; 1656 } else 1657 return NULL; 1658 } 1659 1660 void 1661 ath_node_free(struct ieee80211com *ic, struct ieee80211_node *ni) 1662 { 1663 struct ath_softc *sc = ic->ic_if.if_softc; 1664 struct ath_buf *bf; 1665 1666 TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) { 1667 if (bf->bf_node == ni) 1668 bf->bf_node = NULL; 1669 } 1670 (*sc->sc_node_free)(ic, ni); 1671 } 1672 1673 void 1674 ath_node_copy(struct ieee80211com *ic, 1675 struct ieee80211_node *dst, const struct ieee80211_node *src) 1676 { 1677 struct ath_softc *sc = ic->ic_if.if_softc; 1678 1679 bcopy(&src[1], &dst[1], 1680 sizeof(struct ath_node) - sizeof(struct ieee80211_node)); 1681 (*sc->sc_node_copy)(ic, dst, src); 1682 } 1683 1684 u_int8_t 1685 ath_node_getrssi(struct ieee80211com *ic, const struct ieee80211_node *ni) 1686 { 1687 const struct ath_node *an = ATH_NODE(ni); 1688 int i, now, nsamples, rssi; 1689 1690 /* 1691 * Calculate the average over the last second of sampled data. 1692 */ 1693 now = ATH_TICKS(); 1694 nsamples = 0; 1695 rssi = 0; 1696 i = an->an_rx_hist_next; 1697 do { 1698 const struct ath_recv_hist *rh = &an->an_rx_hist[i]; 1699 if (rh->arh_ticks == ATH_RHIST_NOTIME) 1700 goto done; 1701 if (now - rh->arh_ticks > hz) 1702 goto done; 1703 rssi += rh->arh_rssi; 1704 nsamples++; 1705 if (i == 0) { 1706 i = ATH_RHIST_SIZE-1; 1707 } else { 1708 i--; 1709 } 1710 } while (i != an->an_rx_hist_next); 1711 done: 1712 /* 1713 * Return either the average or the last known 1714 * value if there is no recent data. 1715 */ 1716 return (nsamples ? rssi / nsamples : an->an_rx_hist[i].arh_rssi); 1717 } 1718 1719 int 1720 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf) 1721 { 1722 struct ath_hal *ah = sc->sc_ah; 1723 int error; 1724 struct mbuf *m; 1725 struct ath_desc *ds; 1726 1727 m = bf->bf_m; 1728 if (m == NULL) { 1729 /* 1730 * NB: by assigning a page to the rx dma buffer we 1731 * implicitly satisfy the Atheros requirement that 1732 * this buffer be cache-line-aligned and sized to be 1733 * multiple of the cache line size. Not doing this 1734 * causes weird stuff to happen (for the 5210 at least). 1735 */ 1736 m = ath_getmbuf(M_DONTWAIT, MT_DATA, MCLBYTES); 1737 if (m == NULL) { 1738 DPRINTF(ATH_DEBUG_ANY, 1739 ("%s: no mbuf/cluster\n", __func__)); 1740 sc->sc_stats.ast_rx_nombuf++; 1741 return ENOMEM; 1742 } 1743 bf->bf_m = m; 1744 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size; 1745 1746 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m, 1747 BUS_DMA_NOWAIT); 1748 if (error != 0) { 1749 DPRINTF(ATH_DEBUG_ANY, 1750 ("%s: ath_bus_dmamap_load_mbuf failed;" 1751 " error %d\n", __func__, error)); 1752 sc->sc_stats.ast_rx_busdma++; 1753 return error; 1754 } 1755 KASSERT(bf->bf_nseg == 1, 1756 ("ath_rxbuf_init: multi-segment packet; nseg %u", 1757 bf->bf_nseg)); 1758 } 1759 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0, 1760 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 1761 1762 /* 1763 * Setup descriptors. For receive we always terminate 1764 * the descriptor list with a self-linked entry so we'll 1765 * not get overrun under high load (as can happen with a 1766 * 5212 when ANI processing enables PHY errors). 1767 * 1768 * To insure the last descriptor is self-linked we create 1769 * each descriptor as self-linked and add it to the end. As 1770 * each additional descriptor is added the previous self-linked 1771 * entry is ``fixed'' naturally. This should be safe even 1772 * if DMA is happening. When processing RX interrupts we 1773 * never remove/process the last, self-linked, entry on the 1774 * descriptor list. This insures the hardware always has 1775 * someplace to write a new frame. 1776 */ 1777 ds = bf->bf_desc; 1778 bzero(ds, sizeof(struct ath_desc)); 1779 #ifndef IEEE80211_STA_ONLY 1780 if (sc->sc_ic.ic_opmode != IEEE80211_M_HOSTAP) 1781 ds->ds_link = bf->bf_daddr; /* link to self */ 1782 #endif 1783 ds->ds_data = bf->bf_segs[0].ds_addr; 1784 ath_hal_setup_rx_desc(ah, ds 1785 , m->m_len /* buffer size */ 1786 , 0 1787 ); 1788 1789 if (sc->sc_rxlink != NULL) 1790 *sc->sc_rxlink = bf->bf_daddr; 1791 sc->sc_rxlink = &ds->ds_link; 1792 return 0; 1793 } 1794 1795 void 1796 ath_rx_proc(void *arg, int npending) 1797 { 1798 struct mbuf_list ml = MBUF_LIST_INITIALIZER(); 1799 #define PA2DESC(_sc, _pa) \ 1800 ((struct ath_desc *)((caddr_t)(_sc)->sc_desc + \ 1801 ((_pa) - (_sc)->sc_desc_paddr))) 1802 struct ath_softc *sc = arg; 1803 struct ath_buf *bf; 1804 struct ieee80211com *ic = &sc->sc_ic; 1805 struct ifnet *ifp = &ic->ic_if; 1806 struct ath_hal *ah = sc->sc_ah; 1807 struct ath_desc *ds; 1808 struct mbuf *m; 1809 struct ieee80211_frame *wh; 1810 struct ieee80211_frame whbuf; 1811 struct ieee80211_rxinfo rxi; 1812 struct ieee80211_node *ni; 1813 struct ath_node *an; 1814 struct ath_recv_hist *rh; 1815 int len; 1816 u_int phyerr; 1817 HAL_STATUS status; 1818 1819 DPRINTF(ATH_DEBUG_RX_PROC, ("%s: pending %u\n", __func__, npending)); 1820 do { 1821 bf = TAILQ_FIRST(&sc->sc_rxbuf); 1822 if (bf == NULL) { /* NB: shouldn't happen */ 1823 printf("%s: ath_rx_proc: no buffer!\n", ifp->if_xname); 1824 break; 1825 } 1826 ds = bf->bf_desc; 1827 if (ds->ds_link == bf->bf_daddr) { 1828 /* NB: never process the self-linked entry at the end */ 1829 break; 1830 } 1831 m = bf->bf_m; 1832 if (m == NULL) { /* NB: shouldn't happen */ 1833 printf("%s: ath_rx_proc: no mbuf!\n", ifp->if_xname); 1834 continue; 1835 } 1836 /* XXX sync descriptor memory */ 1837 /* 1838 * Must provide the virtual address of the current 1839 * descriptor, the physical address, and the virtual 1840 * address of the next descriptor in the h/w chain. 1841 * This allows the HAL to look ahead to see if the 1842 * hardware is done with a descriptor by checking the 1843 * done bit in the following descriptor and the address 1844 * of the current descriptor the DMA engine is working 1845 * on. All this is necessary because of our use of 1846 * a self-linked list to avoid rx overruns. 1847 */ 1848 status = ath_hal_proc_rx_desc(ah, ds, 1849 bf->bf_daddr, PA2DESC(sc, ds->ds_link)); 1850 #ifdef AR_DEBUG 1851 if (ath_debug & ATH_DEBUG_RECV_DESC) 1852 ath_printrxbuf(bf, status == HAL_OK); 1853 #endif 1854 if (status == HAL_EINPROGRESS) 1855 break; 1856 TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list); 1857 1858 if (ds->ds_rxstat.rs_more) { 1859 /* 1860 * Frame spans multiple descriptors; this 1861 * cannot happen yet as we don't support 1862 * jumbograms. If not in monitor mode, 1863 * discard the frame. 1864 */ 1865 1866 /* 1867 * Enable this if you want to see error 1868 * frames in Monitor mode. 1869 */ 1870 #ifdef ERROR_FRAMES 1871 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 1872 /* XXX statistic */ 1873 goto rx_next; 1874 } 1875 #endif 1876 /* fall thru for monitor mode handling... */ 1877 1878 } else if (ds->ds_rxstat.rs_status != 0) { 1879 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC) 1880 sc->sc_stats.ast_rx_crcerr++; 1881 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO) 1882 sc->sc_stats.ast_rx_fifoerr++; 1883 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) 1884 sc->sc_stats.ast_rx_badcrypt++; 1885 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) { 1886 sc->sc_stats.ast_rx_phyerr++; 1887 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f; 1888 sc->sc_stats.ast_rx_phy[phyerr]++; 1889 } 1890 1891 /* 1892 * reject error frames, we normally don't want 1893 * to see them in monitor mode. 1894 */ 1895 if ((ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT ) || 1896 (ds->ds_rxstat.rs_status & HAL_RXERR_PHY)) 1897 goto rx_next; 1898 1899 /* 1900 * In monitor mode, allow through packets that 1901 * cannot be decrypted 1902 */ 1903 if ((ds->ds_rxstat.rs_status & ~HAL_RXERR_DECRYPT) || 1904 sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR) 1905 goto rx_next; 1906 } 1907 1908 len = ds->ds_rxstat.rs_datalen; 1909 if (len < IEEE80211_MIN_LEN) { 1910 DPRINTF(ATH_DEBUG_RECV, ("%s: short packet %d\n", 1911 __func__, len)); 1912 sc->sc_stats.ast_rx_tooshort++; 1913 goto rx_next; 1914 } 1915 1916 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0, 1917 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); 1918 1919 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 1920 bf->bf_m = NULL; 1921 m->m_pkthdr.len = m->m_len = len; 1922 1923 #if NBPFILTER > 0 1924 if (sc->sc_drvbpf) { 1925 sc->sc_rxtap.wr_flags = IEEE80211_RADIOTAP_F_FCS; 1926 sc->sc_rxtap.wr_rate = 1927 sc->sc_hwmap[ds->ds_rxstat.rs_rate] & 1928 IEEE80211_RATE_VAL; 1929 sc->sc_rxtap.wr_antenna = ds->ds_rxstat.rs_antenna; 1930 sc->sc_rxtap.wr_rssi = ds->ds_rxstat.rs_rssi; 1931 sc->sc_rxtap.wr_max_rssi = ic->ic_max_rssi; 1932 1933 bpf_mtap_hdr(sc->sc_drvbpf, &sc->sc_rxtap, 1934 sc->sc_rxtap_len, m, BPF_DIRECTION_IN); 1935 } 1936 #endif 1937 m_adj(m, -IEEE80211_CRC_LEN); 1938 wh = mtod(m, struct ieee80211_frame *); 1939 rxi.rxi_flags = 0; 1940 if (!ath_softcrypto && (wh->i_fc[1] & IEEE80211_FC1_WEP)) { 1941 /* 1942 * WEP is decrypted by hardware. Clear WEP bit 1943 * and trim WEP header for ieee80211_inputm(). 1944 */ 1945 wh->i_fc[1] &= ~IEEE80211_FC1_WEP; 1946 bcopy(wh, &whbuf, sizeof(whbuf)); 1947 m_adj(m, IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN); 1948 wh = mtod(m, struct ieee80211_frame *); 1949 bcopy(&whbuf, wh, sizeof(whbuf)); 1950 /* 1951 * Also trim WEP ICV from the tail. 1952 */ 1953 m_adj(m, -IEEE80211_WEP_CRCLEN); 1954 /* 1955 * The header has probably moved. 1956 */ 1957 wh = mtod(m, struct ieee80211_frame *); 1958 1959 rxi.rxi_flags |= IEEE80211_RXI_HWDEC; 1960 } 1961 1962 /* 1963 * Locate the node for sender, track state, and 1964 * then pass this node (referenced) up to the 802.11 1965 * layer for its use. 1966 */ 1967 ni = ieee80211_find_rxnode(ic, wh); 1968 1969 /* 1970 * Record driver-specific state. 1971 */ 1972 an = ATH_NODE(ni); 1973 if (++(an->an_rx_hist_next) == ATH_RHIST_SIZE) 1974 an->an_rx_hist_next = 0; 1975 rh = &an->an_rx_hist[an->an_rx_hist_next]; 1976 rh->arh_ticks = ATH_TICKS(); 1977 rh->arh_rssi = ds->ds_rxstat.rs_rssi; 1978 rh->arh_antenna = ds->ds_rxstat.rs_antenna; 1979 1980 /* 1981 * Send frame up for processing. 1982 */ 1983 rxi.rxi_rssi = ds->ds_rxstat.rs_rssi; 1984 rxi.rxi_tstamp = ds->ds_rxstat.rs_tstamp; 1985 ieee80211_inputm(ifp, m, ni, &rxi, &ml); 1986 1987 /* Handle the rate adaption */ 1988 ieee80211_rssadapt_input(ic, ni, &an->an_rssadapt, 1989 ds->ds_rxstat.rs_rssi); 1990 1991 /* 1992 * The frame may have caused the node to be marked for 1993 * reclamation (e.g. in response to a DEAUTH message) 1994 * so use release_node here instead of unref_node. 1995 */ 1996 ieee80211_release_node(ic, ni); 1997 1998 rx_next: 1999 TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list); 2000 } while (ath_rxbuf_init(sc, bf) == 0); 2001 2002 if_input(ifp, &ml); 2003 2004 ath_hal_set_rx_signal(ah); /* rx signal state monitoring */ 2005 ath_hal_start_rx(ah); /* in case of RXEOL */ 2006 #undef PA2DESC 2007 } 2008 2009 /* 2010 * XXX Size of an ACK control frame in bytes. 2011 */ 2012 #define IEEE80211_ACK_SIZE (2+2+IEEE80211_ADDR_LEN+4) 2013 2014 int 2015 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, 2016 struct ath_buf *bf, struct mbuf *m0) 2017 { 2018 struct ieee80211com *ic = &sc->sc_ic; 2019 struct ath_hal *ah = sc->sc_ah; 2020 struct ifnet *ifp = &sc->sc_ic.ic_if; 2021 int i, error, iswep, hdrlen, pktlen, len, s, tries; 2022 u_int8_t rix, cix, txrate, ctsrate; 2023 struct ath_desc *ds; 2024 struct ieee80211_frame *wh; 2025 struct ieee80211_key *k; 2026 u_int32_t iv; 2027 u_int8_t *ivp; 2028 u_int8_t hdrbuf[sizeof(struct ieee80211_frame) + 2029 IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN]; 2030 u_int subtype, flags, ctsduration, antenna; 2031 HAL_PKT_TYPE atype; 2032 const HAL_RATE_TABLE *rt; 2033 HAL_BOOL shortPreamble; 2034 struct ath_node *an; 2035 u_int8_t hwqueue = HAL_TX_QUEUE_ID_DATA_MIN; 2036 2037 wh = mtod(m0, struct ieee80211_frame *); 2038 iswep = wh->i_fc[1] & IEEE80211_FC1_PROTECTED; 2039 hdrlen = sizeof(struct ieee80211_frame); 2040 pktlen = m0->m_pkthdr.len; 2041 2042 if (ath_softcrypto && iswep) { 2043 k = ieee80211_get_txkey(ic, wh, ni); 2044 if ((m0 = ieee80211_encrypt(ic, m0, k)) == NULL) 2045 return ENOMEM; 2046 wh = mtod(m0, struct ieee80211_frame *); 2047 2048 /* reset len in case we got a new mbuf */ 2049 pktlen = m0->m_pkthdr.len; 2050 } else if (!ath_softcrypto && iswep) { 2051 bcopy(mtod(m0, caddr_t), hdrbuf, hdrlen); 2052 m_adj(m0, hdrlen); 2053 M_PREPEND(m0, sizeof(hdrbuf), M_DONTWAIT); 2054 if (m0 == NULL) { 2055 sc->sc_stats.ast_tx_nombuf++; 2056 return ENOMEM; 2057 } 2058 ivp = hdrbuf + hdrlen; 2059 wh = mtod(m0, struct ieee80211_frame *); 2060 /* 2061 * XXX 2062 * IV must not duplicate during the lifetime of the key. 2063 * But no mechanism to renew keys is defined in IEEE 802.11 2064 * for WEP. And the IV may be duplicated at other stations 2065 * because the session key itself is shared. So we use a 2066 * pseudo random IV for now, though it is not the right way. 2067 * 2068 * NB: Rather than use a strictly random IV we select a 2069 * random one to start and then increment the value for 2070 * each frame. This is an explicit tradeoff between 2071 * overhead and security. Given the basic insecurity of 2072 * WEP this seems worthwhile. 2073 */ 2074 2075 /* 2076 * Skip 'bad' IVs from Fluhrer/Mantin/Shamir: 2077 * (B, 255, N) with 3 <= B < 16 and 0 <= N <= 255 2078 */ 2079 iv = ic->ic_iv; 2080 if ((iv & 0xff00) == 0xff00) { 2081 int B = (iv & 0xff0000) >> 16; 2082 if (3 <= B && B < 16) 2083 iv = (B+1) << 16; 2084 } 2085 ic->ic_iv = iv + 1; 2086 2087 /* 2088 * NB: Preserve byte order of IV for packet 2089 * sniffers; it doesn't matter otherwise. 2090 */ 2091 #if BYTE_ORDER == BIG_ENDIAN 2092 ivp[0] = iv >> 0; 2093 ivp[1] = iv >> 8; 2094 ivp[2] = iv >> 16; 2095 #else 2096 ivp[2] = iv >> 0; 2097 ivp[1] = iv >> 8; 2098 ivp[0] = iv >> 16; 2099 #endif 2100 ivp[3] = ic->ic_wep_txkey << 6; /* Key ID and pad */ 2101 bcopy(hdrbuf, mtod(m0, caddr_t), sizeof(hdrbuf)); 2102 /* 2103 * The length of hdrlen and pktlen must be increased for WEP 2104 */ 2105 len = IEEE80211_WEP_IVLEN + 2106 IEEE80211_WEP_KIDLEN + 2107 IEEE80211_WEP_CRCLEN; 2108 hdrlen += len; 2109 pktlen += len; 2110 } 2111 pktlen += IEEE80211_CRC_LEN; 2112 2113 /* 2114 * Load the DMA map so any coalescing is done. This 2115 * also calculates the number of descriptors we need. 2116 */ 2117 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0, 2118 BUS_DMA_NOWAIT); 2119 /* 2120 * Discard null packets and check for packets that 2121 * require too many TX descriptors. We try to convert 2122 * the latter to a cluster. 2123 */ 2124 if (error == EFBIG) { /* too many desc's, linearize */ 2125 sc->sc_stats.ast_tx_linear++; 2126 if (m_defrag(m0, M_DONTWAIT)) { 2127 sc->sc_stats.ast_tx_nomcl++; 2128 m_freem(m0); 2129 return ENOMEM; 2130 } 2131 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0, 2132 BUS_DMA_NOWAIT); 2133 if (error != 0) { 2134 sc->sc_stats.ast_tx_busdma++; 2135 m_freem(m0); 2136 return error; 2137 } 2138 KASSERT(bf->bf_nseg == 1, 2139 ("ath_tx_start: packet not one segment; nseg %u", 2140 bf->bf_nseg)); 2141 } else if (error != 0) { 2142 sc->sc_stats.ast_tx_busdma++; 2143 m_freem(m0); 2144 return error; 2145 } else if (bf->bf_nseg == 0) { /* null packet, discard */ 2146 sc->sc_stats.ast_tx_nodata++; 2147 m_freem(m0); 2148 return EIO; 2149 } 2150 DPRINTF(ATH_DEBUG_XMIT, ("%s: m %p len %u\n", __func__, m0, pktlen)); 2151 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0, 2152 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE); 2153 bf->bf_m = m0; 2154 bf->bf_node = ni; /* NB: held reference */ 2155 an = ATH_NODE(ni); 2156 2157 /* setup descriptors */ 2158 ds = bf->bf_desc; 2159 rt = sc->sc_currates; 2160 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); 2161 2162 /* 2163 * Calculate Atheros packet type from IEEE80211 packet header 2164 * and setup for rate calculations. 2165 */ 2166 bf->bf_id.id_node = NULL; 2167 atype = HAL_PKT_TYPE_NORMAL; /* default */ 2168 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { 2169 case IEEE80211_FC0_TYPE_MGT: 2170 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 2171 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON) { 2172 atype = HAL_PKT_TYPE_BEACON; 2173 } else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) { 2174 atype = HAL_PKT_TYPE_PROBE_RESP; 2175 } else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM) { 2176 atype = HAL_PKT_TYPE_ATIM; 2177 } 2178 rix = 0; /* XXX lowest rate */ 2179 break; 2180 case IEEE80211_FC0_TYPE_CTL: 2181 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 2182 if (subtype == IEEE80211_FC0_SUBTYPE_PS_POLL) 2183 atype = HAL_PKT_TYPE_PSPOLL; 2184 rix = 0; /* XXX lowest rate */ 2185 break; 2186 default: 2187 /* remember link conditions for rate adaptation algorithm */ 2188 if (ic->ic_fixed_rate == -1) { 2189 bf->bf_id.id_len = m0->m_pkthdr.len; 2190 bf->bf_id.id_rateidx = ni->ni_txrate; 2191 bf->bf_id.id_node = ni; 2192 bf->bf_id.id_rssi = ath_node_getrssi(ic, ni); 2193 } 2194 ni->ni_txrate = ieee80211_rssadapt_choose(&an->an_rssadapt, 2195 &ni->ni_rates, wh, m0->m_pkthdr.len, ic->ic_fixed_rate, 2196 ifp->if_xname, 0); 2197 rix = sc->sc_rixmap[ni->ni_rates.rs_rates[ni->ni_txrate] & 2198 IEEE80211_RATE_VAL]; 2199 if (rix == 0xff) { 2200 printf("%s: bogus xmit rate 0x%x (idx 0x%x)\n", 2201 ifp->if_xname, ni->ni_rates.rs_rates[ni->ni_txrate], 2202 ni->ni_txrate); 2203 sc->sc_stats.ast_tx_badrate++; 2204 m_freem(m0); 2205 return EIO; 2206 } 2207 break; 2208 } 2209 2210 /* 2211 * NB: the 802.11 layer marks whether or not we should 2212 * use short preamble based on the current mode and 2213 * negotiated parameters. 2214 */ 2215 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2216 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) { 2217 txrate = rt->info[rix].rateCode | rt->info[rix].shortPreamble; 2218 shortPreamble = AH_TRUE; 2219 sc->sc_stats.ast_tx_shortpre++; 2220 } else { 2221 txrate = rt->info[rix].rateCode; 2222 shortPreamble = AH_FALSE; 2223 } 2224 2225 /* 2226 * Calculate miscellaneous flags. 2227 */ 2228 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for wep errors */ 2229 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 2230 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */ 2231 sc->sc_stats.ast_tx_noack++; 2232 } else if (pktlen > ic->ic_rtsthreshold) { 2233 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */ 2234 sc->sc_stats.ast_tx_rts++; 2235 } 2236 2237 /* 2238 * Calculate duration. This logically belongs in the 802.11 2239 * layer but it lacks sufficient information to calculate it. 2240 */ 2241 if ((flags & HAL_TXDESC_NOACK) == 0 && 2242 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) { 2243 u_int16_t dur; 2244 /* 2245 * XXX not right with fragmentation. 2246 */ 2247 dur = ath_hal_computetxtime(ah, rt, IEEE80211_ACK_SIZE, 2248 rix, shortPreamble); 2249 *((u_int16_t*) wh->i_dur) = htole16(dur); 2250 } 2251 2252 /* 2253 * Calculate RTS/CTS rate and duration if needed. 2254 */ 2255 ctsduration = 0; 2256 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) { 2257 /* 2258 * CTS transmit rate is derived from the transmit rate 2259 * by looking in the h/w rate table. We must also factor 2260 * in whether or not a short preamble is to be used. 2261 */ 2262 cix = rt->info[rix].controlRate; 2263 ctsrate = rt->info[cix].rateCode; 2264 if (shortPreamble) 2265 ctsrate |= rt->info[cix].shortPreamble; 2266 /* 2267 * Compute the transmit duration based on the size 2268 * of an ACK frame. We call into the HAL to do the 2269 * computation since it depends on the characteristics 2270 * of the actual PHY being used. 2271 */ 2272 if (flags & HAL_TXDESC_RTSENA) { /* SIFS + CTS */ 2273 ctsduration += ath_hal_computetxtime(ah, 2274 rt, IEEE80211_ACK_SIZE, cix, shortPreamble); 2275 } 2276 /* SIFS + data */ 2277 ctsduration += ath_hal_computetxtime(ah, 2278 rt, pktlen, rix, shortPreamble); 2279 if ((flags & HAL_TXDESC_NOACK) == 0) { /* SIFS + ACK */ 2280 ctsduration += ath_hal_computetxtime(ah, 2281 rt, IEEE80211_ACK_SIZE, cix, shortPreamble); 2282 } 2283 } else 2284 ctsrate = 0; 2285 2286 /* 2287 * For now use the antenna on which the last good 2288 * frame was received on. We assume this field is 2289 * initialized to 0 which gives us ``auto'' or the 2290 * ``default'' antenna. 2291 */ 2292 if (an->an_tx_antenna) { 2293 antenna = an->an_tx_antenna; 2294 } else { 2295 antenna = an->an_rx_hist[an->an_rx_hist_next].arh_antenna; 2296 } 2297 2298 #if NBPFILTER > 0 2299 if (ic->ic_rawbpf) 2300 bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT); 2301 2302 if (sc->sc_drvbpf) { 2303 sc->sc_txtap.wt_flags = 0; 2304 if (shortPreamble) 2305 sc->sc_txtap.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 2306 if (!ath_softcrypto && iswep) 2307 sc->sc_txtap.wt_flags |= IEEE80211_RADIOTAP_F_WEP; 2308 sc->sc_txtap.wt_rate = ni->ni_rates.rs_rates[ni->ni_txrate] & 2309 IEEE80211_RATE_VAL; 2310 sc->sc_txtap.wt_txpower = 30; 2311 sc->sc_txtap.wt_antenna = antenna; 2312 2313 bpf_mtap_hdr(sc->sc_drvbpf, &sc->sc_txtap, sc->sc_txtap_len, 2314 m0, BPF_DIRECTION_OUT); 2315 } 2316 #endif 2317 2318 /* 2319 * Formulate first tx descriptor with tx controls. 2320 */ 2321 tries = IEEE80211_IS_MULTICAST(wh->i_addr1) ? 1 : 15; 2322 /* XXX check return value? */ 2323 ath_hal_setup_tx_desc(ah, ds 2324 , pktlen /* packet length */ 2325 , hdrlen /* header length */ 2326 , atype /* Atheros packet type */ 2327 , 60 /* txpower XXX */ 2328 , txrate, tries /* series 0 rate/tries */ 2329 , iswep ? sc->sc_ic.ic_wep_txkey : HAL_TXKEYIX_INVALID 2330 , antenna /* antenna mode */ 2331 , flags /* flags */ 2332 , ctsrate /* rts/cts rate */ 2333 , ctsduration /* rts/cts duration */ 2334 ); 2335 #ifdef notyet 2336 ath_hal_setup_xtx_desc(ah, ds 2337 , AH_FALSE /* short preamble */ 2338 , 0, 0 /* series 1 rate/tries */ 2339 , 0, 0 /* series 2 rate/tries */ 2340 , 0, 0 /* series 3 rate/tries */ 2341 ); 2342 #endif 2343 /* 2344 * Fillin the remainder of the descriptor info. 2345 */ 2346 for (i = 0; i < bf->bf_nseg; i++, ds++) { 2347 ds->ds_data = bf->bf_segs[i].ds_addr; 2348 if (i == bf->bf_nseg - 1) { 2349 ds->ds_link = 0; 2350 } else { 2351 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1); 2352 } 2353 ath_hal_fill_tx_desc(ah, ds 2354 , bf->bf_segs[i].ds_len /* segment length */ 2355 , i == 0 /* first segment */ 2356 , i == bf->bf_nseg - 1 /* last segment */ 2357 ); 2358 DPRINTF(ATH_DEBUG_XMIT, 2359 ("%s: %d: %08x %08x %08x %08x %08x %08x\n", 2360 __func__, i, ds->ds_link, ds->ds_data, 2361 ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1])); 2362 } 2363 2364 /* 2365 * Insert the frame on the outbound list and 2366 * pass it on to the hardware. 2367 */ 2368 s = splnet(); 2369 TAILQ_INSERT_TAIL(&sc->sc_txq, bf, bf_list); 2370 if (sc->sc_txlink == NULL) { 2371 ath_hal_put_tx_buf(ah, sc->sc_txhalq[hwqueue], bf->bf_daddr); 2372 DPRINTF(ATH_DEBUG_XMIT, ("%s: TXDP0 = %p (%p)\n", __func__, 2373 (caddr_t)bf->bf_daddr, bf->bf_desc)); 2374 } else { 2375 *sc->sc_txlink = bf->bf_daddr; 2376 DPRINTF(ATH_DEBUG_XMIT, ("%s: link(%p)=%p (%p)\n", __func__, 2377 sc->sc_txlink, (caddr_t)bf->bf_daddr, bf->bf_desc)); 2378 } 2379 sc->sc_txlink = &bf->bf_desc[bf->bf_nseg - 1].ds_link; 2380 splx(s); 2381 2382 ath_hal_tx_start(ah, sc->sc_txhalq[hwqueue]); 2383 return 0; 2384 } 2385 2386 void 2387 ath_tx_proc(void *arg, int npending) 2388 { 2389 struct ath_softc *sc = arg; 2390 struct ath_hal *ah = sc->sc_ah; 2391 struct ath_buf *bf; 2392 struct ieee80211com *ic = &sc->sc_ic; 2393 struct ifnet *ifp = &ic->ic_if; 2394 struct ath_desc *ds; 2395 struct ieee80211_node *ni; 2396 struct ath_node *an; 2397 int sr, lr, s; 2398 HAL_STATUS status; 2399 2400 for (;;) { 2401 s = splnet(); 2402 bf = TAILQ_FIRST(&sc->sc_txq); 2403 if (bf == NULL) { 2404 sc->sc_txlink = NULL; 2405 splx(s); 2406 break; 2407 } 2408 /* only the last descriptor is needed */ 2409 ds = &bf->bf_desc[bf->bf_nseg - 1]; 2410 status = ath_hal_proc_tx_desc(ah, ds); 2411 #ifdef AR_DEBUG 2412 if (ath_debug & ATH_DEBUG_XMIT_DESC) 2413 ath_printtxbuf(bf, status == HAL_OK); 2414 #endif 2415 if (status == HAL_EINPROGRESS) { 2416 splx(s); 2417 break; 2418 } 2419 TAILQ_REMOVE(&sc->sc_txq, bf, bf_list); 2420 splx(s); 2421 2422 ni = bf->bf_node; 2423 if (ni != NULL) { 2424 an = (struct ath_node *) ni; 2425 if (ds->ds_txstat.ts_status == 0) { 2426 if (bf->bf_id.id_node != NULL) 2427 ieee80211_rssadapt_raise_rate(ic, 2428 &an->an_rssadapt, &bf->bf_id); 2429 an->an_tx_antenna = ds->ds_txstat.ts_antenna; 2430 } else { 2431 if (bf->bf_id.id_node != NULL) 2432 ieee80211_rssadapt_lower_rate(ic, ni, 2433 &an->an_rssadapt, &bf->bf_id); 2434 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY) 2435 sc->sc_stats.ast_tx_xretries++; 2436 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO) 2437 sc->sc_stats.ast_tx_fifoerr++; 2438 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT) 2439 sc->sc_stats.ast_tx_filtered++; 2440 an->an_tx_antenna = 0; /* invalidate */ 2441 } 2442 sr = ds->ds_txstat.ts_shortretry; 2443 lr = ds->ds_txstat.ts_longretry; 2444 sc->sc_stats.ast_tx_shortretry += sr; 2445 sc->sc_stats.ast_tx_longretry += lr; 2446 /* 2447 * Reclaim reference to node. 2448 * 2449 * NB: the node may be reclaimed here if, for example 2450 * this is a DEAUTH message that was sent and the 2451 * node was timed out due to inactivity. 2452 */ 2453 ieee80211_release_node(ic, ni); 2454 } 2455 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0, 2456 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); 2457 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2458 m_freem(bf->bf_m); 2459 bf->bf_m = NULL; 2460 bf->bf_node = NULL; 2461 2462 s = splnet(); 2463 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 2464 splx(s); 2465 } 2466 ifq_clr_oactive(&ifp->if_snd); 2467 sc->sc_tx_timer = 0; 2468 2469 ath_start(ifp); 2470 } 2471 2472 /* 2473 * Drain the transmit queue and reclaim resources. 2474 */ 2475 void 2476 ath_draintxq(struct ath_softc *sc) 2477 { 2478 struct ath_hal *ah = sc->sc_ah; 2479 struct ieee80211com *ic = &sc->sc_ic; 2480 struct ifnet *ifp = &ic->ic_if; 2481 struct ieee80211_node *ni; 2482 struct ath_buf *bf; 2483 int s, i; 2484 2485 /* XXX return value */ 2486 if (!sc->sc_invalid) { 2487 for (i = 0; i <= HAL_TX_QUEUE_ID_DATA_MAX; i++) { 2488 /* don't touch the hardware if marked invalid */ 2489 (void) ath_hal_stop_tx_dma(ah, sc->sc_txhalq[i]); 2490 DPRINTF(ATH_DEBUG_RESET, 2491 ("%s: tx queue %d (%p), link %p\n", __func__, i, 2492 (caddr_t)(u_intptr_t)ath_hal_get_tx_buf(ah, 2493 sc->sc_txhalq[i]), sc->sc_txlink)); 2494 } 2495 (void) ath_hal_stop_tx_dma(ah, sc->sc_bhalq); 2496 DPRINTF(ATH_DEBUG_RESET, 2497 ("%s: beacon queue (%p)\n", __func__, 2498 (caddr_t)(u_intptr_t)ath_hal_get_tx_buf(ah, sc->sc_bhalq))); 2499 } 2500 for (;;) { 2501 s = splnet(); 2502 bf = TAILQ_FIRST(&sc->sc_txq); 2503 if (bf == NULL) { 2504 sc->sc_txlink = NULL; 2505 splx(s); 2506 break; 2507 } 2508 TAILQ_REMOVE(&sc->sc_txq, bf, bf_list); 2509 splx(s); 2510 #ifdef AR_DEBUG 2511 if (ath_debug & ATH_DEBUG_RESET) { 2512 ath_printtxbuf(bf, 2513 ath_hal_proc_tx_desc(ah, bf->bf_desc) == HAL_OK); 2514 } 2515 #endif /* AR_DEBUG */ 2516 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2517 m_freem(bf->bf_m); 2518 bf->bf_m = NULL; 2519 ni = bf->bf_node; 2520 bf->bf_node = NULL; 2521 s = splnet(); 2522 if (ni != NULL) { 2523 /* 2524 * Reclaim node reference. 2525 */ 2526 ieee80211_release_node(ic, ni); 2527 } 2528 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 2529 splx(s); 2530 } 2531 ifq_clr_oactive(&ifp->if_snd); 2532 sc->sc_tx_timer = 0; 2533 } 2534 2535 /* 2536 * Disable the receive h/w in preparation for a reset. 2537 */ 2538 void 2539 ath_stoprecv(struct ath_softc *sc) 2540 { 2541 #define PA2DESC(_sc, _pa) \ 2542 ((struct ath_desc *)((caddr_t)(_sc)->sc_desc + \ 2543 ((_pa) - (_sc)->sc_desc_paddr))) 2544 struct ath_hal *ah = sc->sc_ah; 2545 2546 ath_hal_stop_pcu_recv(ah); /* disable PCU */ 2547 ath_hal_set_rx_filter(ah, 0); /* clear recv filter */ 2548 ath_hal_stop_rx_dma(ah); /* disable DMA engine */ 2549 #ifdef AR_DEBUG 2550 if (ath_debug & ATH_DEBUG_RESET) { 2551 struct ath_buf *bf; 2552 2553 printf("%s: rx queue %p, link %p\n", __func__, 2554 (caddr_t)(u_intptr_t)ath_hal_get_rx_buf(ah), sc->sc_rxlink); 2555 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 2556 struct ath_desc *ds = bf->bf_desc; 2557 if (ath_hal_proc_rx_desc(ah, ds, bf->bf_daddr, 2558 PA2DESC(sc, ds->ds_link)) == HAL_OK) 2559 ath_printrxbuf(bf, 1); 2560 } 2561 } 2562 #endif 2563 sc->sc_rxlink = NULL; /* just in case */ 2564 #undef PA2DESC 2565 } 2566 2567 /* 2568 * Enable the receive h/w following a reset. 2569 */ 2570 int 2571 ath_startrecv(struct ath_softc *sc) 2572 { 2573 struct ath_hal *ah = sc->sc_ah; 2574 struct ath_buf *bf; 2575 2576 sc->sc_rxlink = NULL; 2577 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 2578 int error = ath_rxbuf_init(sc, bf); 2579 if (error != 0) { 2580 DPRINTF(ATH_DEBUG_RECV, 2581 ("%s: ath_rxbuf_init failed %d\n", 2582 __func__, error)); 2583 return error; 2584 } 2585 } 2586 2587 bf = TAILQ_FIRST(&sc->sc_rxbuf); 2588 ath_hal_put_rx_buf(ah, bf->bf_daddr); 2589 ath_hal_start_rx(ah); /* enable recv descriptors */ 2590 ath_mode_init(sc); /* set filters, etc. */ 2591 ath_hal_start_rx_pcu(ah); /* re-enable PCU/DMA engine */ 2592 return 0; 2593 } 2594 2595 /* 2596 * Set/change channels. If the channel is really being changed, 2597 * it's done by resetting the chip. To accomplish this we must 2598 * first cleanup any pending DMA, then restart stuff after a la 2599 * ath_init. 2600 */ 2601 int 2602 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 2603 { 2604 struct ath_hal *ah = sc->sc_ah; 2605 struct ieee80211com *ic = &sc->sc_ic; 2606 struct ifnet *ifp = &ic->ic_if; 2607 2608 DPRINTF(ATH_DEBUG_ANY, ("%s: %u (%u MHz) -> %u (%u MHz)\n", __func__, 2609 ieee80211_chan2ieee(ic, ic->ic_ibss_chan), 2610 ic->ic_ibss_chan->ic_freq, 2611 ieee80211_chan2ieee(ic, chan), chan->ic_freq)); 2612 if (chan != ic->ic_ibss_chan) { 2613 HAL_STATUS status; 2614 HAL_CHANNEL hchan; 2615 enum ieee80211_phymode mode; 2616 2617 /* 2618 * To switch channels clear any pending DMA operations; 2619 * wait long enough for the RX fifo to drain, reset the 2620 * hardware at the new frequency, and then re-enable 2621 * the relevant bits of the h/w. 2622 */ 2623 ath_hal_set_intr(ah, 0); /* disable interrupts */ 2624 ath_draintxq(sc); /* clear pending tx frames */ 2625 ath_stoprecv(sc); /* turn off frame recv */ 2626 /* 2627 * Convert to a HAL channel description. 2628 */ 2629 hchan.channel = chan->ic_freq; 2630 hchan.channelFlags = chan->ic_flags; 2631 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, 2632 &status)) { 2633 printf("%s: ath_chan_set: unable to reset " 2634 "channel %u (%u MHz)\n", ifp->if_xname, 2635 ieee80211_chan2ieee(ic, chan), chan->ic_freq); 2636 return EIO; 2637 } 2638 ath_set_slot_time(sc); 2639 /* 2640 * Re-enable rx framework. 2641 */ 2642 if (ath_startrecv(sc) != 0) { 2643 printf("%s: ath_chan_set: unable to restart recv " 2644 "logic\n", ifp->if_xname); 2645 return EIO; 2646 } 2647 2648 #if NBPFILTER > 0 2649 /* 2650 * Update BPF state. 2651 */ 2652 sc->sc_txtap.wt_chan_freq = sc->sc_rxtap.wr_chan_freq = 2653 htole16(chan->ic_freq); 2654 sc->sc_txtap.wt_chan_flags = sc->sc_rxtap.wr_chan_flags = 2655 htole16(chan->ic_flags); 2656 #endif 2657 2658 /* 2659 * Change channels and update the h/w rate map 2660 * if we're switching; e.g. 11a to 11b/g. 2661 */ 2662 ic->ic_ibss_chan = chan; 2663 mode = ieee80211_chan2mode(ic, chan); 2664 if (mode != sc->sc_curmode) 2665 ath_setcurmode(sc, mode); 2666 2667 /* 2668 * Re-enable interrupts. 2669 */ 2670 ath_hal_set_intr(ah, sc->sc_imask); 2671 } 2672 return 0; 2673 } 2674 2675 void 2676 ath_next_scan(void *arg) 2677 { 2678 struct ath_softc *sc = arg; 2679 struct ieee80211com *ic = &sc->sc_ic; 2680 struct ifnet *ifp = &ic->ic_if; 2681 int s; 2682 2683 /* don't call ath_start w/o network interrupts blocked */ 2684 s = splnet(); 2685 2686 if (ic->ic_state == IEEE80211_S_SCAN) 2687 ieee80211_next_scan(ifp); 2688 splx(s); 2689 } 2690 2691 int 2692 ath_set_slot_time(struct ath_softc *sc) 2693 { 2694 struct ath_hal *ah = sc->sc_ah; 2695 struct ieee80211com *ic = &sc->sc_ic; 2696 2697 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2698 return (ath_hal_set_slot_time(ah, HAL_SLOT_TIME_9)); 2699 2700 return (0); 2701 } 2702 2703 /* 2704 * Periodically recalibrate the PHY to account 2705 * for temperature/environment changes. 2706 */ 2707 void 2708 ath_calibrate(void *arg) 2709 { 2710 struct ath_softc *sc = arg; 2711 struct ath_hal *ah = sc->sc_ah; 2712 struct ieee80211com *ic = &sc->sc_ic; 2713 struct ieee80211_channel *c; 2714 HAL_CHANNEL hchan; 2715 int s; 2716 2717 sc->sc_stats.ast_per_cal++; 2718 2719 /* 2720 * Convert to a HAL channel description. 2721 */ 2722 c = ic->ic_ibss_chan; 2723 hchan.channel = c->ic_freq; 2724 hchan.channelFlags = c->ic_flags; 2725 2726 s = splnet(); 2727 DPRINTF(ATH_DEBUG_CALIBRATE, 2728 ("%s: channel %u/%x\n", __func__, c->ic_freq, c->ic_flags)); 2729 2730 if (ath_hal_get_rf_gain(ah) == HAL_RFGAIN_NEED_CHANGE) { 2731 /* 2732 * Rfgain is out of bounds, reset the chip 2733 * to load new gain values. 2734 */ 2735 sc->sc_stats.ast_per_rfgain++; 2736 ath_reset(sc, 1); 2737 } 2738 if (!ath_hal_calibrate(ah, &hchan)) { 2739 DPRINTF(ATH_DEBUG_ANY, 2740 ("%s: calibration of channel %u failed\n", 2741 __func__, c->ic_freq)); 2742 sc->sc_stats.ast_per_calfail++; 2743 } 2744 timeout_add_sec(&sc->sc_cal_to, ath_calinterval); 2745 splx(s); 2746 } 2747 2748 void 2749 ath_ledstate(struct ath_softc *sc, enum ieee80211_state state) 2750 { 2751 HAL_LED_STATE led = HAL_LED_INIT; 2752 u_int32_t softled = AR5K_SOFTLED_OFF; 2753 2754 switch (state) { 2755 case IEEE80211_S_INIT: 2756 break; 2757 case IEEE80211_S_SCAN: 2758 led = HAL_LED_SCAN; 2759 break; 2760 case IEEE80211_S_AUTH: 2761 led = HAL_LED_AUTH; 2762 break; 2763 case IEEE80211_S_ASSOC: 2764 led = HAL_LED_ASSOC; 2765 softled = AR5K_SOFTLED_ON; 2766 break; 2767 case IEEE80211_S_RUN: 2768 led = HAL_LED_RUN; 2769 softled = AR5K_SOFTLED_ON; 2770 break; 2771 } 2772 2773 ath_hal_set_ledstate(sc->sc_ah, led); 2774 if (sc->sc_softled) { 2775 ath_hal_set_gpio_output(sc->sc_ah, AR5K_SOFTLED_PIN); 2776 ath_hal_set_gpio(sc->sc_ah, AR5K_SOFTLED_PIN, softled); 2777 } 2778 } 2779 2780 int 2781 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 2782 { 2783 struct ifnet *ifp = &ic->ic_if; 2784 struct ath_softc *sc = ifp->if_softc; 2785 struct ath_hal *ah = sc->sc_ah; 2786 struct ieee80211_node *ni; 2787 const u_int8_t *bssid; 2788 int error, i; 2789 2790 u_int32_t rfilt; 2791 2792 DPRINTF(ATH_DEBUG_ANY, ("%s: %s -> %s\n", __func__, 2793 ieee80211_state_name[ic->ic_state], 2794 ieee80211_state_name[nstate])); 2795 2796 timeout_del(&sc->sc_scan_to); 2797 timeout_del(&sc->sc_cal_to); 2798 ath_ledstate(sc, nstate); 2799 2800 if (nstate == IEEE80211_S_INIT) { 2801 timeout_del(&sc->sc_rssadapt_to); 2802 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 2803 ath_hal_set_intr(ah, sc->sc_imask); 2804 return (*sc->sc_newstate)(ic, nstate, arg); 2805 } 2806 ni = ic->ic_bss; 2807 error = ath_chan_set(sc, ni->ni_chan); 2808 if (error != 0) 2809 goto bad; 2810 rfilt = ath_calcrxfilter(sc); 2811 if (nstate == IEEE80211_S_SCAN || 2812 ic->ic_opmode == IEEE80211_M_MONITOR) { 2813 bssid = sc->sc_broadcast_addr; 2814 } else { 2815 bssid = ni->ni_bssid; 2816 } 2817 ath_hal_set_rx_filter(ah, rfilt); 2818 DPRINTF(ATH_DEBUG_ANY, ("%s: RX filter 0x%x bssid %s\n", 2819 __func__, rfilt, ether_sprintf((u_char*)bssid))); 2820 2821 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA) { 2822 ath_hal_set_associd(ah, bssid, ni->ni_associd); 2823 } else { 2824 ath_hal_set_associd(ah, bssid, 0); 2825 } 2826 2827 if (!ath_softcrypto && (ic->ic_flags & IEEE80211_F_WEPON)) { 2828 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 2829 if (ath_hal_is_key_valid(ah, i)) 2830 ath_hal_set_key_lladdr(ah, i, bssid); 2831 } 2832 } 2833 2834 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 2835 /* nothing to do */ 2836 } else if (nstate == IEEE80211_S_RUN) { 2837 DPRINTF(ATH_DEBUG_ANY, ("%s(RUN): " 2838 "ic_flags=0x%08x iv=%d bssid=%s " 2839 "capinfo=0x%04x chan=%d\n", 2840 __func__, 2841 ic->ic_flags, 2842 ni->ni_intval, 2843 ether_sprintf(ni->ni_bssid), 2844 ni->ni_capinfo, 2845 ieee80211_chan2ieee(ic, ni->ni_chan))); 2846 2847 /* 2848 * Allocate and setup the beacon frame for AP or adhoc mode. 2849 */ 2850 #ifndef IEEE80211_STA_ONLY 2851 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 2852 ic->ic_opmode == IEEE80211_M_IBSS) { 2853 error = ath_beacon_alloc(sc, ni); 2854 if (error != 0) 2855 goto bad; 2856 } 2857 #endif 2858 /* 2859 * Configure the beacon and sleep timers. 2860 */ 2861 ath_beacon_config(sc); 2862 } else { 2863 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 2864 ath_hal_set_intr(ah, sc->sc_imask); 2865 } 2866 2867 /* 2868 * Invoke the parent method to complete the work. 2869 */ 2870 error = (*sc->sc_newstate)(ic, nstate, arg); 2871 2872 if (nstate == IEEE80211_S_RUN) { 2873 /* start periodic recalibration timer */ 2874 timeout_add_sec(&sc->sc_cal_to, ath_calinterval); 2875 2876 if (ic->ic_opmode != IEEE80211_M_MONITOR) 2877 timeout_add_msec(&sc->sc_rssadapt_to, 100); 2878 } else if (nstate == IEEE80211_S_SCAN) { 2879 /* start ap/neighbor scan timer */ 2880 timeout_add_msec(&sc->sc_scan_to, ath_dwelltime); 2881 } 2882 bad: 2883 return error; 2884 } 2885 2886 #ifndef IEEE80211_STA_ONLY 2887 void 2888 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m, 2889 struct ieee80211_node *ni, struct ieee80211_rxinfo *rxi, int subtype) 2890 { 2891 struct ath_softc *sc = (struct ath_softc*)ic->ic_softc; 2892 struct ath_hal *ah = sc->sc_ah; 2893 2894 (*sc->sc_recv_mgmt)(ic, m, ni, rxi, subtype); 2895 2896 switch (subtype) { 2897 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 2898 case IEEE80211_FC0_SUBTYPE_BEACON: 2899 if (ic->ic_opmode != IEEE80211_M_IBSS || 2900 ic->ic_state != IEEE80211_S_RUN) 2901 break; 2902 if (ieee80211_ibss_merge(ic, ni, ath_hal_get_tsf64(ah)) == 2903 ENETRESET) 2904 ath_hal_set_associd(ah, ic->ic_bss->ni_bssid, 0); 2905 break; 2906 default: 2907 break; 2908 } 2909 return; 2910 } 2911 #endif 2912 2913 /* 2914 * Setup driver-specific state for a newly associated node. 2915 * Note that we're called also on a re-associate, the isnew 2916 * param tells us if this is the first time or not. 2917 */ 2918 void 2919 ath_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew) 2920 { 2921 if (ic->ic_opmode == IEEE80211_M_MONITOR) 2922 return; 2923 } 2924 2925 int 2926 ath_getchannels(struct ath_softc *sc, HAL_BOOL outdoor, HAL_BOOL xchanmode) 2927 { 2928 struct ieee80211com *ic = &sc->sc_ic; 2929 struct ifnet *ifp = &ic->ic_if; 2930 struct ath_hal *ah = sc->sc_ah; 2931 HAL_CHANNEL *chans; 2932 int i, ix, nchan; 2933 2934 sc->sc_nchan = 0; 2935 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL), 2936 M_TEMP, M_NOWAIT); 2937 if (chans == NULL) { 2938 printf("%s: unable to allocate channel table\n", ifp->if_xname); 2939 return ENOMEM; 2940 } 2941 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan, 2942 HAL_MODE_ALL, outdoor, xchanmode)) { 2943 printf("%s: unable to collect channel list from hal\n", 2944 ifp->if_xname); 2945 free(chans, M_TEMP, 0); 2946 return EINVAL; 2947 } 2948 2949 /* 2950 * Convert HAL channels to ieee80211 ones and insert 2951 * them in the table according to their channel number. 2952 */ 2953 for (i = 0; i < nchan; i++) { 2954 HAL_CHANNEL *c = &chans[i]; 2955 ix = ieee80211_mhz2ieee(c->channel, c->channelFlags); 2956 if (ix > IEEE80211_CHAN_MAX) { 2957 printf("%s: bad hal channel %u (%u/%x) ignored\n", 2958 ifp->if_xname, ix, c->channel, c->channelFlags); 2959 continue; 2960 } 2961 DPRINTF(ATH_DEBUG_ANY, 2962 ("%s: HAL channel %d/%d freq %d flags %#04x idx %d\n", 2963 sc->sc_dev.dv_xname, i, nchan, c->channel, c->channelFlags, 2964 ix)); 2965 /* NB: flags are known to be compatible */ 2966 if (ic->ic_channels[ix].ic_freq == 0) { 2967 ic->ic_channels[ix].ic_freq = c->channel; 2968 ic->ic_channels[ix].ic_flags = c->channelFlags; 2969 } else { 2970 /* channels overlap; e.g. 11g and 11b */ 2971 ic->ic_channels[ix].ic_flags |= c->channelFlags; 2972 } 2973 /* count valid channels */ 2974 sc->sc_nchan++; 2975 } 2976 free(chans, M_TEMP, 0); 2977 2978 if (sc->sc_nchan < 1) { 2979 printf("%s: no valid channels for regdomain %s(%u)\n", 2980 ifp->if_xname, ieee80211_regdomain2name(ah->ah_regdomain), 2981 ah->ah_regdomain); 2982 return ENOENT; 2983 } 2984 2985 /* set an initial channel */ 2986 ic->ic_ibss_chan = &ic->ic_channels[0]; 2987 2988 return 0; 2989 } 2990 2991 int 2992 ath_rate_setup(struct ath_softc *sc, u_int mode) 2993 { 2994 struct ath_hal *ah = sc->sc_ah; 2995 struct ieee80211com *ic = &sc->sc_ic; 2996 const HAL_RATE_TABLE *rt; 2997 struct ieee80211_rateset *rs; 2998 int i, maxrates; 2999 3000 switch (mode) { 3001 case IEEE80211_MODE_11A: 3002 sc->sc_rates[mode] = ath_hal_get_rate_table(ah, HAL_MODE_11A); 3003 break; 3004 case IEEE80211_MODE_11B: 3005 sc->sc_rates[mode] = ath_hal_get_rate_table(ah, HAL_MODE_11B); 3006 break; 3007 case IEEE80211_MODE_11G: 3008 sc->sc_rates[mode] = ath_hal_get_rate_table(ah, HAL_MODE_11G); 3009 break; 3010 default: 3011 DPRINTF(ATH_DEBUG_ANY, 3012 ("%s: invalid mode %u\n", __func__, mode)); 3013 return 0; 3014 } 3015 rt = sc->sc_rates[mode]; 3016 if (rt == NULL) 3017 return 0; 3018 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) { 3019 DPRINTF(ATH_DEBUG_ANY, 3020 ("%s: rate table too small (%u > %u)\n", 3021 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE)); 3022 maxrates = IEEE80211_RATE_MAXSIZE; 3023 } else { 3024 maxrates = rt->rateCount; 3025 } 3026 rs = &ic->ic_sup_rates[mode]; 3027 for (i = 0; i < maxrates; i++) 3028 rs->rs_rates[i] = rt->info[i].dot11Rate; 3029 rs->rs_nrates = maxrates; 3030 return 1; 3031 } 3032 3033 void 3034 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 3035 { 3036 const HAL_RATE_TABLE *rt; 3037 struct ieee80211com *ic = &sc->sc_ic; 3038 struct ieee80211_node *ni; 3039 int i; 3040 3041 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 3042 rt = sc->sc_rates[mode]; 3043 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 3044 for (i = 0; i < rt->rateCount; i++) 3045 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i; 3046 bzero(sc->sc_hwmap, sizeof(sc->sc_hwmap)); 3047 for (i = 0; i < 32; i++) 3048 sc->sc_hwmap[i] = rt->info[rt->rateCodeToIndex[i]].dot11Rate; 3049 sc->sc_currates = rt; 3050 sc->sc_curmode = mode; 3051 ni = ic->ic_bss; 3052 ni->ni_rates.rs_nrates = sc->sc_currates->rateCount; 3053 if (ni->ni_txrate >= ni->ni_rates.rs_nrates) 3054 ni->ni_txrate = 0; 3055 } 3056 3057 void 3058 ath_rssadapt_updatenode(void *arg, struct ieee80211_node *ni) 3059 { 3060 struct ath_node *an = ATH_NODE(ni); 3061 3062 ieee80211_rssadapt_updatestats(&an->an_rssadapt); 3063 } 3064 3065 void 3066 ath_rssadapt_updatestats(void *arg) 3067 { 3068 struct ath_softc *sc = (struct ath_softc *)arg; 3069 struct ieee80211com *ic = &sc->sc_ic; 3070 3071 if (ic->ic_opmode == IEEE80211_M_STA) { 3072 ath_rssadapt_updatenode(arg, ic->ic_bss); 3073 } else { 3074 ieee80211_iterate_nodes(ic, ath_rssadapt_updatenode, arg); 3075 } 3076 3077 timeout_add_msec(&sc->sc_rssadapt_to, 100); 3078 } 3079 3080 #ifdef AR_DEBUG 3081 void 3082 ath_printrxbuf(struct ath_buf *bf, int done) 3083 { 3084 struct ath_desc *ds; 3085 int i; 3086 3087 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) { 3088 printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n", 3089 i, ds, (struct ath_desc *)bf->bf_daddr + i, 3090 ds->ds_link, ds->ds_data, 3091 ds->ds_ctl0, ds->ds_ctl1, 3092 ds->ds_hw[0], ds->ds_hw[1], 3093 !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!'); 3094 } 3095 } 3096 3097 void 3098 ath_printtxbuf(struct ath_buf *bf, int done) 3099 { 3100 struct ath_desc *ds; 3101 int i; 3102 3103 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) { 3104 printf("T%d (%p %p) " 3105 "%08x %08x %08x %08x %08x %08x %08x %08x %c\n", 3106 i, ds, (struct ath_desc *)bf->bf_daddr + i, 3107 ds->ds_link, ds->ds_data, 3108 ds->ds_ctl0, ds->ds_ctl1, 3109 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3], 3110 !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!'); 3111 } 3112 } 3113 #endif /* AR_DEBUG */ 3114 3115 int 3116 ath_gpio_attach(struct ath_softc *sc, u_int16_t devid) 3117 { 3118 struct ath_hal *ah = sc->sc_ah; 3119 struct gpiobus_attach_args gba; 3120 int i; 3121 3122 if (ah->ah_gpio_npins < 1) 3123 return 0; 3124 3125 /* Initialize gpio pins array */ 3126 for (i = 0; i < ah->ah_gpio_npins && i < AR5K_MAX_GPIO; i++) { 3127 sc->sc_gpio_pins[i].pin_num = i; 3128 sc->sc_gpio_pins[i].pin_caps = GPIO_PIN_INPUT | 3129 GPIO_PIN_OUTPUT; 3130 3131 /* Set pin mode to input */ 3132 ath_hal_set_gpio_input(ah, i); 3133 sc->sc_gpio_pins[i].pin_flags = GPIO_PIN_INPUT; 3134 3135 /* Get pin input */ 3136 sc->sc_gpio_pins[i].pin_state = ath_hal_get_gpio(ah, i) ? 3137 GPIO_PIN_HIGH : GPIO_PIN_LOW; 3138 } 3139 3140 /* Enable GPIO-controlled software LED if available */ 3141 if ((ah->ah_version == AR5K_AR5211) || 3142 (devid == PCI_PRODUCT_ATHEROS_AR5212_IBM)) { 3143 sc->sc_softled = 1; 3144 ath_hal_set_gpio_output(ah, AR5K_SOFTLED_PIN); 3145 ath_hal_set_gpio(ah, AR5K_SOFTLED_PIN, AR5K_SOFTLED_OFF); 3146 } 3147 3148 /* Create gpio controller tag */ 3149 sc->sc_gpio_gc.gp_cookie = sc; 3150 sc->sc_gpio_gc.gp_pin_read = ath_gpio_pin_read; 3151 sc->sc_gpio_gc.gp_pin_write = ath_gpio_pin_write; 3152 sc->sc_gpio_gc.gp_pin_ctl = ath_gpio_pin_ctl; 3153 3154 gba.gba_name = "gpio"; 3155 gba.gba_gc = &sc->sc_gpio_gc; 3156 gba.gba_pins = sc->sc_gpio_pins; 3157 gba.gba_npins = ah->ah_gpio_npins; 3158 3159 #ifdef notyet 3160 #if NGPIO > 0 3161 if (config_found(&sc->sc_dev, &gba, gpiobus_print) == NULL) 3162 return (ENODEV); 3163 #endif 3164 #endif 3165 3166 return (0); 3167 } 3168 3169 int 3170 ath_gpio_pin_read(void *arg, int pin) 3171 { 3172 struct ath_softc *sc = arg; 3173 struct ath_hal *ah = sc->sc_ah; 3174 return (ath_hal_get_gpio(ah, pin) ? GPIO_PIN_HIGH : GPIO_PIN_LOW); 3175 } 3176 3177 void 3178 ath_gpio_pin_write(void *arg, int pin, int value) 3179 { 3180 struct ath_softc *sc = arg; 3181 struct ath_hal *ah = sc->sc_ah; 3182 ath_hal_set_gpio(ah, pin, value ? GPIO_PIN_HIGH : GPIO_PIN_LOW); 3183 } 3184 3185 void 3186 ath_gpio_pin_ctl(void *arg, int pin, int flags) 3187 { 3188 struct ath_softc *sc = arg; 3189 struct ath_hal *ah = sc->sc_ah; 3190 3191 if (flags & GPIO_PIN_INPUT) { 3192 ath_hal_set_gpio_input(ah, pin); 3193 } else if (flags & GPIO_PIN_OUTPUT) { 3194 ath_hal_set_gpio_output(ah, pin); 3195 } 3196 } 3197