1 /* $OpenBSD: fxp.c,v 1.133 2023/11/10 15:51:20 bluhm Exp $ */ 2 /* $NetBSD: if_fxp.c,v 1.2 1997/06/05 02:01:55 thorpej Exp $ */ 3 4 /* 5 * Copyright (c) 1995, David Greenman 6 * All rights reserved. 7 * 8 * Modifications to support NetBSD: 9 * Copyright (c) 1997 Jason R. Thorpe. All rights reserved. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice unmodified, this list of conditions, and the following 16 * disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * Id: if_fxp.c,v 1.55 1998/08/04 08:53:12 dg Exp 34 */ 35 36 /* 37 * Intel EtherExpress Pro/100B PCI Fast Ethernet driver 38 */ 39 40 #include "bpfilter.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/mbuf.h> 45 #include <sys/malloc.h> 46 #include <sys/kernel.h> 47 #include <sys/socket.h> 48 #include <sys/syslog.h> 49 #include <sys/timeout.h> 50 51 #include <net/if.h> 52 #include <net/if_media.h> 53 54 #include <netinet/in.h> 55 56 #if NBPFILTER > 0 57 #include <net/bpf.h> 58 #endif 59 60 #include <sys/ioctl.h> 61 #include <sys/errno.h> 62 #include <sys/device.h> 63 64 #include <netinet/if_ether.h> 65 66 #include <machine/cpu.h> 67 #include <machine/bus.h> 68 #include <machine/intr.h> 69 70 #include <dev/mii/miivar.h> 71 72 #include <dev/ic/fxpreg.h> 73 #include <dev/ic/fxpvar.h> 74 75 /* 76 * NOTE! On the Alpha, we have an alignment constraint. The 77 * card DMAs the packet immediately following the RFA. However, 78 * the first thing in the packet is a 14-byte Ethernet header. 79 * This means that the packet is misaligned. To compensate, 80 * we actually offset the RFA 2 bytes into the cluster. This 81 * aligns the packet after the Ethernet header at a 32-bit 82 * boundary. HOWEVER! This means that the RFA is misaligned! 83 */ 84 #define RFA_ALIGNMENT_FUDGE (2 + sizeof(bus_dmamap_t *)) 85 86 /* 87 * Inline function to copy a 16-bit aligned 32-bit quantity. 88 */ 89 static __inline void fxp_lwcopy(volatile u_int32_t *, 90 volatile u_int32_t *); 91 92 static __inline void 93 fxp_lwcopy(volatile u_int32_t *src, volatile u_int32_t *dst) 94 { 95 volatile u_int16_t *a = (u_int16_t *)src; 96 volatile u_int16_t *b = (u_int16_t *)dst; 97 98 b[0] = a[0]; 99 b[1] = a[1]; 100 } 101 102 /* 103 * Template for default configuration parameters. 104 * See struct fxp_cb_config for the bit definitions. 105 * Note, cb_command is filled in later. 106 */ 107 static u_char fxp_cb_config_template[] = { 108 0x0, 0x0, /* cb_status */ 109 0x0, 0x0, /* cb_command */ 110 0xff, 0xff, 0xff, 0xff, /* link_addr */ 111 0x16, /* 0 Byte count. */ 112 0x08, /* 1 Fifo limit */ 113 0x00, /* 2 Adaptive ifs */ 114 0x00, /* 3 ctrl0 */ 115 0x00, /* 4 rx_dma_bytecount */ 116 0x80, /* 5 tx_dma_bytecount */ 117 0xb2, /* 6 ctrl 1*/ 118 0x03, /* 7 ctrl 2*/ 119 0x01, /* 8 mediatype */ 120 0x00, /* 9 void2 */ 121 0x26, /* 10 ctrl3 */ 122 0x00, /* 11 linear priority */ 123 0x60, /* 12 interfrm_spacing */ 124 0x00, /* 13 void31 */ 125 0xf2, /* 14 void32 */ 126 0x48, /* 15 promiscuous */ 127 0x00, /* 16 void41 */ 128 0x40, /* 17 void42 */ 129 0xf3, /* 18 stripping */ 130 0x00, /* 19 fdx_pin */ 131 0x3f, /* 20 multi_ia */ 132 0x05 /* 21 mc_all */ 133 }; 134 135 void fxp_eeprom_shiftin(struct fxp_softc *, int, int); 136 void fxp_eeprom_putword(struct fxp_softc *, int, u_int16_t); 137 void fxp_write_eeprom(struct fxp_softc *, u_short *, int, int); 138 int fxp_mediachange(struct ifnet *); 139 void fxp_mediastatus(struct ifnet *, struct ifmediareq *); 140 void fxp_scb_wait(struct fxp_softc *); 141 void fxp_start(struct ifnet *); 142 int fxp_ioctl(struct ifnet *, u_long, caddr_t); 143 void fxp_load_ucode(struct fxp_softc *); 144 void fxp_watchdog(struct ifnet *); 145 int fxp_add_rfabuf(struct fxp_softc *, struct mbuf *); 146 int fxp_mdi_read(struct device *, int, int); 147 void fxp_mdi_write(struct device *, int, int, int); 148 void fxp_autosize_eeprom(struct fxp_softc *); 149 void fxp_statchg(struct device *); 150 void fxp_read_eeprom(struct fxp_softc *, u_int16_t *, 151 int, int); 152 void fxp_stats_update(void *); 153 void fxp_mc_setup(struct fxp_softc *, int); 154 void fxp_scb_cmd(struct fxp_softc *, u_int16_t); 155 156 /* 157 * Set initial transmit threshold at 64 (512 bytes). This is 158 * increased by 64 (512 bytes) at a time, to maximum of 192 159 * (1536 bytes), if an underrun occurs. 160 */ 161 static int tx_threshold = 64; 162 163 /* 164 * Interrupts coalescing code params 165 */ 166 int fxp_int_delay = FXP_INT_DELAY; 167 int fxp_bundle_max = FXP_BUNDLE_MAX; 168 int fxp_min_size_mask = FXP_MIN_SIZE_MASK; 169 170 /* 171 * TxCB list index mask. This is used to do list wrap-around. 172 */ 173 #define FXP_TXCB_MASK (FXP_NTXCB - 1) 174 175 /* 176 * Maximum number of seconds that the receiver can be idle before we 177 * assume it's dead and attempt to reset it by reprogramming the 178 * multicast filter. This is part of a work-around for a bug in the 179 * NIC. See fxp_stats_update(). 180 */ 181 #define FXP_MAX_RX_IDLE 15 182 183 /* 184 * Wait for the previous command to be accepted (but not necessarily 185 * completed). 186 */ 187 void 188 fxp_scb_wait(struct fxp_softc *sc) 189 { 190 int i = FXP_CMD_TMO; 191 192 while ((CSR_READ_2(sc, FXP_CSR_SCB_COMMAND) & 0xff) && --i) 193 DELAY(2); 194 if (i == 0) 195 printf("%s: warning: SCB timed out\n", sc->sc_dev.dv_xname); 196 } 197 198 void 199 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length) 200 { 201 u_int16_t reg; 202 int x; 203 204 /* 205 * Shift in data. 206 */ 207 for (x = 1 << (length - 1); x; x >>= 1) { 208 if (data & x) 209 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI; 210 else 211 reg = FXP_EEPROM_EECS; 212 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 213 DELAY(1); 214 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); 215 DELAY(1); 216 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 217 DELAY(1); 218 } 219 } 220 221 void 222 fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data) 223 { 224 int i; 225 226 /* 227 * Erase/write enable. 228 */ 229 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 230 fxp_eeprom_shiftin(sc, 0x4, 3); 231 fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size); 232 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 233 DELAY(1); 234 /* 235 * Shift in write opcode, address, data. 236 */ 237 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 238 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3); 239 fxp_eeprom_shiftin(sc, offset, sc->eeprom_size); 240 fxp_eeprom_shiftin(sc, data, 16); 241 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 242 DELAY(1); 243 /* 244 * Wait for EEPROM to finish up. 245 */ 246 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 247 DELAY(1); 248 for (i = 0; i < 1000; i++) { 249 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO) 250 break; 251 DELAY(50); 252 } 253 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 254 DELAY(1); 255 /* 256 * Erase/write disable. 257 */ 258 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 259 fxp_eeprom_shiftin(sc, 0x4, 3); 260 fxp_eeprom_shiftin(sc, 0, sc->eeprom_size); 261 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 262 DELAY(1); 263 } 264 265 void 266 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words) 267 { 268 int i; 269 270 for (i = 0; i < words; i++) 271 fxp_eeprom_putword(sc, offset + i, data[i]); 272 } 273 274 /************************************************************* 275 * Operating system-specific autoconfiguration glue 276 *************************************************************/ 277 278 struct cfdriver fxp_cd = { 279 NULL, "fxp", DV_IFNET 280 }; 281 282 int 283 fxp_activate(struct device *self, int act) 284 { 285 struct fxp_softc *sc = (struct fxp_softc *)self; 286 struct ifnet *ifp = &sc->sc_arpcom.ac_if; 287 int rv = 0; 288 289 switch (act) { 290 case DVACT_SUSPEND: 291 if (ifp->if_flags & IFF_RUNNING) 292 fxp_stop(sc, 1, 0); 293 rv = config_activate_children(self, act); 294 break; 295 case DVACT_WAKEUP: 296 if (ifp->if_flags & IFF_UP) 297 fxp_wakeup(sc); 298 break; 299 default: 300 rv = config_activate_children(self, act); 301 break; 302 } 303 return (rv); 304 } 305 306 void 307 fxp_wakeup(struct fxp_softc *sc) 308 { 309 int s = splnet(); 310 311 /* force reload of the microcode */ 312 sc->sc_flags &= ~FXPF_UCODELOADED; 313 314 fxp_init(sc); 315 splx(s); 316 } 317 318 /************************************************************* 319 * End of operating system-specific autoconfiguration glue 320 *************************************************************/ 321 322 /* 323 * Do generic parts of attach. 324 */ 325 int 326 fxp_attach(struct fxp_softc *sc, const char *intrstr) 327 { 328 struct ifnet *ifp; 329 struct mbuf *m; 330 bus_dmamap_t rxmap; 331 u_int16_t data; 332 u_int8_t enaddr[6]; 333 int i, err; 334 335 /* 336 * Reset to a stable state. 337 */ 338 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET); 339 DELAY(10); 340 341 if (bus_dmamem_alloc(sc->sc_dmat, sizeof(struct fxp_ctrl), 342 PAGE_SIZE, 0, &sc->sc_cb_seg, 1, &sc->sc_cb_nseg, 343 BUS_DMA_NOWAIT | BUS_DMA_ZERO)) 344 goto fail; 345 if (bus_dmamem_map(sc->sc_dmat, &sc->sc_cb_seg, sc->sc_cb_nseg, 346 sizeof(struct fxp_ctrl), (caddr_t *)&sc->sc_ctrl, 347 BUS_DMA_NOWAIT)) { 348 bus_dmamem_free(sc->sc_dmat, &sc->sc_cb_seg, sc->sc_cb_nseg); 349 goto fail; 350 } 351 if (bus_dmamap_create(sc->sc_dmat, sizeof(struct fxp_ctrl), 352 1, sizeof(struct fxp_ctrl), 0, BUS_DMA_NOWAIT, 353 &sc->tx_cb_map)) { 354 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_ctrl, 355 sizeof(struct fxp_ctrl)); 356 bus_dmamem_free(sc->sc_dmat, &sc->sc_cb_seg, sc->sc_cb_nseg); 357 goto fail; 358 } 359 if (bus_dmamap_load(sc->sc_dmat, sc->tx_cb_map, (caddr_t)sc->sc_ctrl, 360 sizeof(struct fxp_ctrl), NULL, BUS_DMA_NOWAIT)) { 361 bus_dmamap_destroy(sc->sc_dmat, sc->tx_cb_map); 362 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_ctrl, 363 sizeof(struct fxp_ctrl)); 364 bus_dmamem_free(sc->sc_dmat, &sc->sc_cb_seg, sc->sc_cb_nseg); 365 goto fail; 366 } 367 368 for (i = 0; i < FXP_NTXCB; i++) { 369 if ((err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 370 FXP_NTXSEG, MCLBYTES, 0, 0, &sc->txs[i].tx_map)) != 0) { 371 printf("%s: unable to create tx dma map %d, error %d\n", 372 sc->sc_dev.dv_xname, i, err); 373 goto fail; 374 } 375 sc->txs[i].tx_mbuf = NULL; 376 sc->txs[i].tx_cb = sc->sc_ctrl->tx_cb + i; 377 sc->txs[i].tx_off = offsetof(struct fxp_ctrl, tx_cb[i]); 378 sc->txs[i].tx_next = &sc->txs[(i + 1) & FXP_TXCB_MASK]; 379 } 380 381 /* 382 * Pre-allocate some receive buffers. 383 */ 384 sc->sc_rxfree = 0; 385 for (i = 0; i < FXP_NRFABUFS_MIN; i++) { 386 if ((err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, 387 MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) { 388 printf("%s: unable to create rx dma map %d, error %d\n", 389 sc->sc_dev.dv_xname, i, err); 390 goto fail; 391 } 392 sc->rx_bufs++; 393 } 394 for (i = 0; i < FXP_NRFABUFS_MIN; i++) 395 if (fxp_add_rfabuf(sc, NULL) != 0) 396 goto fail; 397 398 /* 399 * Find out how large of an SEEPROM we have. 400 */ 401 fxp_autosize_eeprom(sc); 402 403 /* 404 * Get info about the primary PHY 405 */ 406 fxp_read_eeprom(sc, (u_int16_t *)&data, FXP_EEPROM_REG_PHY, 1); 407 sc->phy_primary_addr = data & 0xff; 408 sc->phy_primary_device = (data >> 8) & 0x3f; 409 sc->phy_10Mbps_only = data >> 15; 410 411 /* 412 * Only 82558 and newer cards can do this. 413 */ 414 if (sc->sc_revision >= FXP_REV_82558_A4) { 415 sc->sc_int_delay = fxp_int_delay; 416 sc->sc_bundle_max = fxp_bundle_max; 417 sc->sc_min_size_mask = fxp_min_size_mask; 418 } 419 /* 420 * Read MAC address. 421 */ 422 fxp_read_eeprom(sc, (u_int16_t *)enaddr, FXP_EEPROM_REG_MAC, 3); 423 424 ifp = &sc->sc_arpcom.ac_if; 425 bcopy(enaddr, sc->sc_arpcom.ac_enaddr, ETHER_ADDR_LEN); 426 bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ); 427 ifp->if_softc = sc; 428 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 429 ifp->if_ioctl = fxp_ioctl; 430 ifp->if_start = fxp_start; 431 ifp->if_watchdog = fxp_watchdog; 432 ifq_init_maxlen(&ifp->if_snd, FXP_NTXCB - 1); 433 434 ifp->if_capabilities = IFCAP_VLAN_MTU; 435 436 printf(": %s, address %s\n", intrstr, 437 ether_sprintf(sc->sc_arpcom.ac_enaddr)); 438 439 if (sc->sc_flags & FXPF_DISABLE_STANDBY) { 440 fxp_read_eeprom(sc, &data, FXP_EEPROM_REG_ID, 1); 441 if (data & FXP_EEPROM_REG_ID_STB) { 442 u_int16_t cksum; 443 444 printf("%s: Disabling dynamic standby mode in EEPROM", 445 sc->sc_dev.dv_xname); 446 data &= ~FXP_EEPROM_REG_ID_STB; 447 fxp_write_eeprom(sc, &data, FXP_EEPROM_REG_ID, 1); 448 printf(", New ID 0x%x", data); 449 cksum = 0; 450 for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) { 451 fxp_read_eeprom(sc, &data, i, 1); 452 cksum += data; 453 } 454 i = (1 << sc->eeprom_size) - 1; 455 cksum = 0xBABA - cksum; 456 fxp_read_eeprom(sc, &data, i, 1); 457 fxp_write_eeprom(sc, &cksum, i, 1); 458 printf(", cksum @ 0x%x: 0x%x -> 0x%x\n", 459 i, data, cksum); 460 } 461 } 462 463 /* Receiver lock-up workaround detection. */ 464 fxp_read_eeprom(sc, &data, FXP_EEPROM_REG_COMPAT, 1); 465 if ((data & (FXP_EEPROM_REG_COMPAT_MC10|FXP_EEPROM_REG_COMPAT_MC100)) 466 != (FXP_EEPROM_REG_COMPAT_MC10|FXP_EEPROM_REG_COMPAT_MC100)) 467 sc->sc_flags |= FXPF_RECV_WORKAROUND; 468 469 /* 470 * Initialize our media structures and probe the MII. 471 */ 472 sc->sc_mii.mii_ifp = ifp; 473 sc->sc_mii.mii_readreg = fxp_mdi_read; 474 sc->sc_mii.mii_writereg = fxp_mdi_write; 475 sc->sc_mii.mii_statchg = fxp_statchg; 476 ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_mediachange, 477 fxp_mediastatus); 478 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, 479 MII_OFFSET_ANY, MIIF_NOISOLATE); 480 /* If no phy found, just use auto mode */ 481 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) { 482 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 483 0, NULL); 484 printf("%s: no phy found, using manual mode\n", 485 sc->sc_dev.dv_xname); 486 } 487 488 if (ifmedia_match(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0)) 489 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL); 490 else if (ifmedia_match(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO, 0)) 491 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO); 492 else 493 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_10_T); 494 495 /* 496 * Attach the interface. 497 */ 498 if_attach(ifp); 499 ether_ifattach(ifp); 500 501 /* 502 * Initialize timeout for statistics update. 503 */ 504 timeout_set(&sc->stats_update_to, fxp_stats_update, sc); 505 506 return (0); 507 508 fail: 509 printf("%s: Failed to malloc memory\n", sc->sc_dev.dv_xname); 510 if (sc->tx_cb_map != NULL) { 511 bus_dmamap_unload(sc->sc_dmat, sc->tx_cb_map); 512 bus_dmamap_destroy(sc->sc_dmat, sc->tx_cb_map); 513 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_ctrl, 514 sizeof(struct fxp_cb_tx) * FXP_NTXCB); 515 bus_dmamem_free(sc->sc_dmat, &sc->sc_cb_seg, sc->sc_cb_nseg); 516 } 517 m = sc->rfa_headm; 518 while (m != NULL) { 519 rxmap = *((bus_dmamap_t *)m->m_ext.ext_buf); 520 bus_dmamap_unload(sc->sc_dmat, rxmap); 521 FXP_RXMAP_PUT(sc, rxmap); 522 m = m_free(m); 523 } 524 return (ENOMEM); 525 } 526 527 /* 528 * From NetBSD: 529 * 530 * Figure out EEPROM size. 531 * 532 * 559's can have either 64-word or 256-word EEPROMs, the 558 533 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet 534 * talks about the existence of 16 to 256 word EEPROMs. 535 * 536 * The only known sizes are 64 and 256, where the 256 version is used 537 * by CardBus cards to store CIS information. 538 * 539 * The address is shifted in msb-to-lsb, and after the last 540 * address-bit the EEPROM is supposed to output a `dummy zero' bit, 541 * after which follows the actual data. We try to detect this zero, by 542 * probing the data-out bit in the EEPROM control register just after 543 * having shifted in a bit. If the bit is zero, we assume we've 544 * shifted enough address bits. The data-out should be tri-state, 545 * before this, which should translate to a logical one. 546 * 547 * Other ways to do this would be to try to read a register with known 548 * contents with a varying number of address bits, but no such 549 * register seem to be available. The high bits of register 10 are 01 550 * on the 558 and 559, but apparently not on the 557. 551 * 552 * The Linux driver computes a checksum on the EEPROM data, but the 553 * value of this checksum is not very well documented. 554 */ 555 void 556 fxp_autosize_eeprom(struct fxp_softc *sc) 557 { 558 u_int16_t reg; 559 int x; 560 561 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 562 /* 563 * Shift in read opcode. 564 */ 565 for (x = 3; x > 0; x--) { 566 if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) { 567 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI; 568 } else { 569 reg = FXP_EEPROM_EECS; 570 } 571 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 572 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 573 reg | FXP_EEPROM_EESK); 574 DELAY(4); 575 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 576 DELAY(4); 577 } 578 /* 579 * Shift in address. 580 * Wait for the dummy zero following a correct address shift. 581 */ 582 for (x = 1; x <= 8; x++) { 583 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 584 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 585 FXP_EEPROM_EECS | FXP_EEPROM_EESK); 586 DELAY(4); 587 if ((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO) == 0) 588 break; 589 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 590 DELAY(4); 591 } 592 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 593 DELAY(4); 594 sc->eeprom_size = x; 595 } 596 597 /* 598 * Read from the serial EEPROM. Basically, you manually shift in 599 * the read opcode (one bit at a time) and then shift in the address, 600 * and then you shift out the data (all of this one bit at a time). 601 * The word size is 16 bits, so you have to provide the address for 602 * every 16 bits of data. 603 */ 604 void 605 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, 606 int words) 607 { 608 u_int16_t reg; 609 int i, x; 610 611 for (i = 0; i < words; i++) { 612 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); 613 /* 614 * Shift in read opcode. 615 */ 616 for (x = 3; x > 0; x--) { 617 if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) { 618 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI; 619 } else { 620 reg = FXP_EEPROM_EECS; 621 } 622 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 623 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 624 reg | FXP_EEPROM_EESK); 625 DELAY(4); 626 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 627 DELAY(4); 628 } 629 /* 630 * Shift in address. 631 */ 632 for (x = sc->eeprom_size; x > 0; x--) { 633 if ((i + offset) & (1 << (x - 1))) { 634 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI; 635 } else { 636 reg = FXP_EEPROM_EECS; 637 } 638 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 639 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 640 reg | FXP_EEPROM_EESK); 641 DELAY(4); 642 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 643 DELAY(4); 644 } 645 reg = FXP_EEPROM_EECS; 646 data[i] = 0; 647 /* 648 * Shift out data. 649 */ 650 for (x = 16; x > 0; x--) { 651 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 652 reg | FXP_EEPROM_EESK); 653 DELAY(4); 654 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & 655 FXP_EEPROM_EEDO) 656 data[i] |= (1 << (x - 1)); 657 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); 658 DELAY(4); 659 } 660 data[i] = letoh16(data[i]); 661 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); 662 DELAY(4); 663 } 664 } 665 666 /* 667 * Start packet transmission on the interface. 668 */ 669 void 670 fxp_start(struct ifnet *ifp) 671 { 672 struct fxp_softc *sc = ifp->if_softc; 673 struct fxp_txsw *txs = sc->sc_cbt_prod; 674 struct fxp_cb_tx *txc; 675 struct mbuf *m0; 676 int cnt = sc->sc_cbt_cnt, seg, error; 677 678 if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd)) 679 return; 680 681 while (1) { 682 if (cnt >= (FXP_NTXCB - 2)) { 683 ifq_set_oactive(&ifp->if_snd); 684 break; 685 } 686 687 txs = txs->tx_next; 688 689 m0 = ifq_dequeue(&ifp->if_snd); 690 if (m0 == NULL) 691 break; 692 693 error = bus_dmamap_load_mbuf(sc->sc_dmat, txs->tx_map, 694 m0, BUS_DMA_NOWAIT); 695 switch (error) { 696 case 0: 697 break; 698 case EFBIG: 699 if (m_defrag(m0, M_DONTWAIT) == 0 && 700 bus_dmamap_load_mbuf(sc->sc_dmat, txs->tx_map, 701 m0, BUS_DMA_NOWAIT) == 0) 702 break; 703 /* FALLTHROUGH */ 704 default: 705 ifp->if_oerrors++; 706 m_freem(m0); 707 /* try next packet */ 708 continue; 709 } 710 711 txs->tx_mbuf = m0; 712 713 #if NBPFILTER > 0 714 if (ifp->if_bpf) 715 bpf_mtap(ifp->if_bpf, m0, BPF_DIRECTION_OUT); 716 #endif 717 718 FXP_MBUF_SYNC(sc, txs->tx_map, BUS_DMASYNC_PREWRITE); 719 720 txc = txs->tx_cb; 721 txc->tbd_number = txs->tx_map->dm_nsegs; 722 txc->cb_status = 0; 723 txc->cb_command = htole16(FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF); 724 txc->tx_threshold = tx_threshold; 725 for (seg = 0; seg < txs->tx_map->dm_nsegs; seg++) { 726 txc->tbd[seg].tb_addr = 727 htole32(txs->tx_map->dm_segs[seg].ds_addr); 728 txc->tbd[seg].tb_size = 729 htole32(txs->tx_map->dm_segs[seg].ds_len); 730 } 731 FXP_TXCB_SYNC(sc, txs, 732 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 733 734 ++cnt; 735 sc->sc_cbt_prod = txs; 736 } 737 738 if (cnt != sc->sc_cbt_cnt) { 739 /* We enqueued at least one. */ 740 ifp->if_timer = 5; 741 742 txs = sc->sc_cbt_prod; 743 txs = txs->tx_next; 744 sc->sc_cbt_prod = txs; 745 txs->tx_cb->cb_command = 746 htole16(FXP_CB_COMMAND_I | FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S); 747 FXP_TXCB_SYNC(sc, txs, 748 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 749 750 FXP_TXCB_SYNC(sc, sc->sc_cbt_prev, 751 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 752 sc->sc_cbt_prev->tx_cb->cb_command &= 753 htole16(~(FXP_CB_COMMAND_S | FXP_CB_COMMAND_I)); 754 FXP_TXCB_SYNC(sc, sc->sc_cbt_prev, 755 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 756 757 sc->sc_cbt_prev = txs; 758 759 fxp_scb_wait(sc); 760 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME); 761 762 sc->sc_cbt_cnt = cnt + 1; 763 } 764 } 765 766 /* 767 * Process interface interrupts. 768 */ 769 int 770 fxp_intr(void *arg) 771 { 772 struct fxp_softc *sc = arg; 773 struct ifnet *ifp = &sc->sc_arpcom.ac_if; 774 struct mbuf_list ml = MBUF_LIST_INITIALIZER(); 775 u_int16_t statack; 776 bus_dmamap_t rxmap; 777 int claimed = 0; 778 int rnr = 0; 779 780 /* 781 * If the interface isn't running, don't try to 782 * service the interrupt.. just ack it and bail. 783 */ 784 if ((ifp->if_flags & IFF_RUNNING) == 0) { 785 statack = CSR_READ_2(sc, FXP_CSR_SCB_STATUS); 786 if (statack) { 787 claimed = 1; 788 CSR_WRITE_2(sc, FXP_CSR_SCB_STATUS, 789 statack & FXP_SCB_STATACK_MASK); 790 } 791 return claimed; 792 } 793 794 while ((statack = CSR_READ_2(sc, FXP_CSR_SCB_STATUS)) & 795 FXP_SCB_STATACK_MASK) { 796 claimed = 1; 797 rnr = (statack & (FXP_SCB_STATACK_RNR | 798 FXP_SCB_STATACK_SWI)) ? 1 : 0; 799 /* 800 * First ACK all the interrupts in this pass. 801 */ 802 CSR_WRITE_2(sc, FXP_CSR_SCB_STATUS, 803 statack & FXP_SCB_STATACK_MASK); 804 805 /* 806 * Free any finished transmit mbuf chains. 807 */ 808 if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) { 809 int txcnt = sc->sc_cbt_cnt; 810 struct fxp_txsw *txs = sc->sc_cbt_cons; 811 812 FXP_TXCB_SYNC(sc, txs, 813 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 814 815 while ((txcnt > 0) && 816 ((txs->tx_cb->cb_status & htole16(FXP_CB_STATUS_C)) || 817 (txs->tx_cb->cb_command & htole16(FXP_CB_COMMAND_NOP)))) { 818 if (txs->tx_mbuf != NULL) { 819 FXP_MBUF_SYNC(sc, txs->tx_map, 820 BUS_DMASYNC_POSTWRITE); 821 bus_dmamap_unload(sc->sc_dmat, 822 txs->tx_map); 823 m_freem(txs->tx_mbuf); 824 txs->tx_mbuf = NULL; 825 } 826 --txcnt; 827 txs = txs->tx_next; 828 FXP_TXCB_SYNC(sc, txs, 829 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 830 } 831 sc->sc_cbt_cnt = txcnt; 832 /* Did we transmit any packets? */ 833 if (sc->sc_cbt_cons != txs) 834 ifq_clr_oactive(&ifp->if_snd); 835 ifp->if_timer = sc->sc_cbt_cnt ? 5 : 0; 836 sc->sc_cbt_cons = txs; 837 838 if (!ifq_empty(&ifp->if_snd)) { 839 /* 840 * Try to start more packets transmitting. 841 */ 842 fxp_start(ifp); 843 } 844 } 845 /* 846 * Process receiver interrupts. If a Receive Unit 847 * not ready (RNR) condition exists, get whatever 848 * packets we can and re-start the receiver. 849 */ 850 if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR | 851 FXP_SCB_STATACK_SWI)) { 852 struct mbuf *m; 853 u_int8_t *rfap; 854 rcvloop: 855 m = sc->rfa_headm; 856 rfap = m->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE; 857 rxmap = *((bus_dmamap_t *)m->m_ext.ext_buf); 858 bus_dmamap_sync(sc->sc_dmat, rxmap, 859 0, MCLBYTES, BUS_DMASYNC_POSTREAD | 860 BUS_DMASYNC_POSTWRITE); 861 862 if (*(u_int16_t *)(rfap + 863 offsetof(struct fxp_rfa, rfa_status)) & 864 htole16(FXP_RFA_STATUS_C)) { 865 if (*(u_int16_t *)(rfap + 866 offsetof(struct fxp_rfa, rfa_status)) & 867 htole16(FXP_RFA_STATUS_RNR)) 868 rnr = 1; 869 870 /* 871 * Remove first packet from the chain. 872 */ 873 sc->rfa_headm = m->m_next; 874 m->m_next = NULL; 875 876 /* 877 * Add a new buffer to the receive chain. 878 * If this fails, the old buffer is recycled 879 * instead. 880 */ 881 if (fxp_add_rfabuf(sc, m) == 0) { 882 u_int16_t total_len; 883 884 total_len = htole16(*(u_int16_t *)(rfap + 885 offsetof(struct fxp_rfa, 886 actual_size))) & 887 (MCLBYTES - 1); 888 if (total_len < 889 sizeof(struct ether_header)) { 890 m_freem(m); 891 goto rcvloop; 892 } 893 if (*(u_int16_t *)(rfap + 894 offsetof(struct fxp_rfa, 895 rfa_status)) & 896 htole16(FXP_RFA_STATUS_CRC)) { 897 m_freem(m); 898 goto rcvloop; 899 } 900 901 m->m_pkthdr.len = m->m_len = total_len; 902 ml_enqueue(&ml, m); 903 } 904 goto rcvloop; 905 } 906 } 907 if (rnr) { 908 rxmap = *((bus_dmamap_t *) 909 sc->rfa_headm->m_ext.ext_buf); 910 fxp_scb_wait(sc); 911 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 912 rxmap->dm_segs[0].ds_addr + 913 RFA_ALIGNMENT_FUDGE); 914 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START); 915 916 } 917 } 918 919 if_input(ifp, &ml); 920 921 return (claimed); 922 } 923 924 /* 925 * Update packet in/out/collision statistics. The i82557 doesn't 926 * allow you to access these counters without doing a fairly 927 * expensive DMA to get _all_ of the statistics it maintains, so 928 * we do this operation here only once per second. The statistics 929 * counters in the kernel are updated from the previous dump-stats 930 * DMA and then a new dump-stats DMA is started. The on-chip 931 * counters are zeroed when the DMA completes. If we can't start 932 * the DMA immediately, we don't wait - we just prepare to read 933 * them again next time. 934 */ 935 void 936 fxp_stats_update(void *arg) 937 { 938 struct fxp_softc *sc = arg; 939 struct ifnet *ifp = &sc->sc_arpcom.ac_if; 940 struct fxp_stats *sp = &sc->sc_ctrl->stats; 941 int s; 942 943 FXP_STATS_SYNC(sc, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 944 ifp->if_collisions += letoh32(sp->tx_total_collisions); 945 if (sp->rx_good) { 946 sc->rx_idle_secs = 0; 947 } else if (sc->sc_flags & FXPF_RECV_WORKAROUND) 948 sc->rx_idle_secs++; 949 ifp->if_ierrors += 950 letoh32(sp->rx_crc_errors) + 951 letoh32(sp->rx_alignment_errors) + 952 letoh32(sp->rx_rnr_errors) + 953 letoh32(sp->rx_overrun_errors); 954 /* 955 * If any transmit underruns occurred, bump up the transmit 956 * threshold by another 512 bytes (64 * 8). 957 */ 958 if (sp->tx_underruns) { 959 ifp->if_oerrors += letoh32(sp->tx_underruns); 960 if (tx_threshold < 192) 961 tx_threshold += 64; 962 } 963 s = splnet(); 964 /* 965 * If we haven't received any packets in FXP_MAX_RX_IDLE seconds, 966 * then assume the receiver has locked up and attempt to clear 967 * the condition by reprogramming the multicast filter. This is 968 * a work-around for a bug in the 82557 where the receiver locks 969 * up if it gets certain types of garbage in the synchronization 970 * bits prior to the packet header. This bug is supposed to only 971 * occur in 10Mbps mode, but has been seen to occur in 100Mbps 972 * mode as well (perhaps due to a 10/100 speed transition). 973 */ 974 if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) { 975 sc->rx_idle_secs = 0; 976 fxp_init(sc); 977 splx(s); 978 return; 979 } 980 /* 981 * If there is no pending command, start another stats 982 * dump. Otherwise punt for now. 983 */ 984 FXP_STATS_SYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 985 if (!(CSR_READ_2(sc, FXP_CSR_SCB_COMMAND) & 0xff)) { 986 /* 987 * Start another stats dump. 988 */ 989 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET); 990 } else { 991 /* 992 * A previous command is still waiting to be accepted. 993 * Just zero our copy of the stats and wait for the 994 * next timer event to update them. 995 */ 996 sp->tx_good = 0; 997 sp->tx_underruns = 0; 998 sp->tx_total_collisions = 0; 999 1000 sp->rx_good = 0; 1001 sp->rx_crc_errors = 0; 1002 sp->rx_alignment_errors = 0; 1003 sp->rx_rnr_errors = 0; 1004 sp->rx_overrun_errors = 0; 1005 } 1006 1007 /* Tick the MII clock. */ 1008 mii_tick(&sc->sc_mii); 1009 1010 splx(s); 1011 /* 1012 * Schedule another timeout one second from now. 1013 */ 1014 timeout_add_sec(&sc->stats_update_to, 1); 1015 } 1016 1017 void 1018 fxp_detach(struct fxp_softc *sc) 1019 { 1020 struct ifnet *ifp = &sc->sc_arpcom.ac_if; 1021 1022 /* Get rid of our timeouts and mbufs */ 1023 fxp_stop(sc, 1, 1); 1024 1025 /* Detach any PHYs we might have. */ 1026 if (LIST_FIRST(&sc->sc_mii.mii_phys) != NULL) 1027 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY); 1028 1029 /* Delete any remaining media. */ 1030 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY); 1031 1032 ether_ifdetach(ifp); 1033 if_detach(ifp); 1034 1035 #ifndef SMALL_KERNEL 1036 if (sc->sc_ucodebuf) 1037 free(sc->sc_ucodebuf, M_DEVBUF, sc->sc_ucodelen); 1038 #endif 1039 } 1040 1041 /* 1042 * Stop the interface. Cancels the statistics updater and resets 1043 * the interface. 1044 */ 1045 void 1046 fxp_stop(struct fxp_softc *sc, int drain, int softonly) 1047 { 1048 struct ifnet *ifp = &sc->sc_arpcom.ac_if; 1049 int i; 1050 1051 /* 1052 * Cancel stats updater. 1053 */ 1054 timeout_del(&sc->stats_update_to); 1055 1056 /* 1057 * Turn down interface (done early to avoid bad interactions 1058 * between panics, and the watchdog timer) 1059 */ 1060 ifp->if_timer = 0; 1061 ifp->if_flags &= ~IFF_RUNNING; 1062 ifq_clr_oactive(&ifp->if_snd); 1063 1064 if (!softonly) 1065 mii_down(&sc->sc_mii); 1066 1067 /* 1068 * Issue software reset. 1069 */ 1070 if (!softonly) { 1071 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET); 1072 DELAY(10); 1073 } 1074 1075 /* 1076 * Release any xmit buffers. 1077 */ 1078 for (i = 0; i < FXP_NTXCB; i++) { 1079 if (sc->txs[i].tx_mbuf != NULL) { 1080 bus_dmamap_unload(sc->sc_dmat, sc->txs[i].tx_map); 1081 m_freem(sc->txs[i].tx_mbuf); 1082 sc->txs[i].tx_mbuf = NULL; 1083 } 1084 } 1085 sc->sc_cbt_cnt = 0; 1086 1087 if (drain) { 1088 bus_dmamap_t rxmap; 1089 struct mbuf *m; 1090 1091 /* 1092 * Free all the receive buffers then reallocate/reinitialize 1093 */ 1094 m = sc->rfa_headm; 1095 while (m != NULL) { 1096 rxmap = *((bus_dmamap_t *)m->m_ext.ext_buf); 1097 bus_dmamap_unload(sc->sc_dmat, rxmap); 1098 FXP_RXMAP_PUT(sc, rxmap); 1099 m = m_free(m); 1100 sc->rx_bufs--; 1101 } 1102 sc->rfa_headm = NULL; 1103 sc->rfa_tailm = NULL; 1104 for (i = 0; i < FXP_NRFABUFS_MIN; i++) { 1105 if (fxp_add_rfabuf(sc, NULL) != 0) { 1106 /* 1107 * This "can't happen" - we're at splnet() 1108 * and we just freed all the buffers we need 1109 * above. 1110 */ 1111 panic("fxp_stop: no buffers!"); 1112 } 1113 sc->rx_bufs++; 1114 } 1115 } 1116 } 1117 1118 /* 1119 * Watchdog/transmission transmit timeout handler. Called when a 1120 * transmission is started on the interface, but no interrupt is 1121 * received before the timeout. This usually indicates that the 1122 * card has wedged for some reason. 1123 */ 1124 void 1125 fxp_watchdog(struct ifnet *ifp) 1126 { 1127 struct fxp_softc *sc = ifp->if_softc; 1128 1129 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname); 1130 ifp->if_oerrors++; 1131 1132 fxp_init(sc); 1133 } 1134 1135 /* 1136 * Submit a command to the i82557. 1137 */ 1138 void 1139 fxp_scb_cmd(struct fxp_softc *sc, u_int16_t cmd) 1140 { 1141 CSR_WRITE_2(sc, FXP_CSR_SCB_COMMAND, cmd); 1142 } 1143 1144 void 1145 fxp_init(void *xsc) 1146 { 1147 struct fxp_softc *sc = xsc; 1148 struct ifnet *ifp = &sc->sc_arpcom.ac_if; 1149 struct fxp_cb_config *cbp; 1150 struct fxp_cb_ias *cb_ias; 1151 struct fxp_cb_tx *txp; 1152 bus_dmamap_t rxmap; 1153 int i, prm, save_bf, lrxen, allm, bufs; 1154 1155 splassert(IPL_NET); 1156 1157 /* 1158 * Cancel any pending I/O 1159 */ 1160 fxp_stop(sc, 0, 0); 1161 1162 /* 1163 * Initialize base of CBL and RFA memory. Loading with zero 1164 * sets it up for regular linear addressing. 1165 */ 1166 fxp_scb_wait(sc); 1167 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0); 1168 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE); 1169 1170 fxp_scb_wait(sc); 1171 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0); 1172 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE); 1173 1174 #ifndef SMALL_KERNEL 1175 fxp_load_ucode(sc); 1176 #endif 1177 /* Once through to set flags */ 1178 fxp_mc_setup(sc, 0); 1179 1180 /* 1181 * In order to support receiving 802.1Q VLAN frames, we have to 1182 * enable "save bad frames", since they are 4 bytes larger than 1183 * the normal Ethernet maximum frame length. On i82558 and later, 1184 * we have a better mechanism for this. 1185 */ 1186 save_bf = 0; 1187 lrxen = 0; 1188 1189 if (sc->sc_revision >= FXP_REV_82558_A4) 1190 lrxen = 1; 1191 else 1192 save_bf = 1; 1193 1194 /* 1195 * Initialize base of dump-stats buffer. 1196 */ 1197 fxp_scb_wait(sc); 1198 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 1199 sc->tx_cb_map->dm_segs->ds_addr + 1200 offsetof(struct fxp_ctrl, stats)); 1201 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR); 1202 1203 cbp = &sc->sc_ctrl->u.cfg; 1204 /* 1205 * This bcopy is kind of disgusting, but there are a bunch of must be 1206 * zero and must be one bits in this structure and this is the easiest 1207 * way to initialize them all to proper values. 1208 */ 1209 bcopy(fxp_cb_config_template, (void *)&cbp->cb_status, 1210 sizeof(fxp_cb_config_template)); 1211 1212 prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0; 1213 allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0; 1214 1215 #if 0 1216 cbp->cb_status = 0; 1217 cbp->cb_command = FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL; 1218 cbp->link_addr = 0xffffffff; /* (no) next command */ 1219 cbp->byte_count = 22; /* (22) bytes to config */ 1220 cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */ 1221 cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */ 1222 cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */ 1223 cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */ 1224 cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */ 1225 cbp->dma_bce = 0; /* (disable) dma max counters */ 1226 cbp->late_scb = 0; /* (don't) defer SCB update */ 1227 cbp->tno_int = 0; /* (disable) tx not okay interrupt */ 1228 cbp->ci_int = 1; /* interrupt on CU idle */ 1229 cbp->save_bf = save_bf ? 1 : prm; /* save bad frames */ 1230 cbp->disc_short_rx = !prm; /* discard short packets */ 1231 cbp->underrun_retry = 1; /* retry mode (1) on DMA underrun */ 1232 cbp->mediatype = !sc->phy_10Mbps_only; /* interface mode */ 1233 cbp->nsai = 1; /* (don't) disable source addr insert */ 1234 cbp->preamble_length = 2; /* (7 byte) preamble */ 1235 cbp->loopback = 0; /* (don't) loopback */ 1236 cbp->linear_priority = 0; /* (normal CSMA/CD operation) */ 1237 cbp->linear_pri_mode = 0; /* (wait after xmit only) */ 1238 cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */ 1239 cbp->promiscuous = prm; /* promiscuous mode */ 1240 cbp->bcast_disable = 0; /* (don't) disable broadcasts */ 1241 cbp->crscdt = 0; /* (CRS only) */ 1242 cbp->stripping = !prm; /* truncate rx packet to byte count */ 1243 cbp->padding = 1; /* (do) pad short tx packets */ 1244 cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */ 1245 cbp->long_rx = lrxen; /* (enable) long packets */ 1246 cbp->force_fdx = 0; /* (don't) force full duplex */ 1247 cbp->fdx_pin_en = 1; /* (enable) FDX# pin */ 1248 cbp->multi_ia = 0; /* (don't) accept multiple IAs */ 1249 cbp->mc_all = allm; 1250 #else 1251 cbp->cb_command = htole16(FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL); 1252 1253 if (allm && !prm) 1254 cbp->mc_all |= 0x08; /* accept all multicasts */ 1255 else 1256 cbp->mc_all &= ~0x08; /* reject all multicasts */ 1257 1258 if (prm) { 1259 cbp->promiscuous |= 1; /* promiscuous mode */ 1260 cbp->ctrl2 &= ~0x01; /* save short packets */ 1261 cbp->stripping &= ~0x01; /* don't truncate rx packets */ 1262 } else { 1263 cbp->promiscuous &= ~1; /* no promiscuous mode */ 1264 cbp->ctrl2 |= 0x01; /* discard short packets */ 1265 cbp->stripping |= 0x01; /* truncate rx packets */ 1266 } 1267 1268 if (prm || save_bf) 1269 cbp->ctrl1 |= 0x80; /* save bad frames */ 1270 else 1271 cbp->ctrl1 &= ~0x80; /* discard bad frames */ 1272 1273 if (sc->sc_flags & FXPF_MWI_ENABLE) 1274 cbp->ctrl0 |= 0x01; /* enable PCI MWI command */ 1275 1276 if(!sc->phy_10Mbps_only) /* interface mode */ 1277 cbp->mediatype |= 0x01; 1278 else 1279 cbp->mediatype &= ~0x01; 1280 1281 if(lrxen) /* long packets */ 1282 cbp->stripping |= 0x08; 1283 else 1284 cbp->stripping &= ~0x08; 1285 1286 cbp->tx_dma_bytecount = 0; /* (no) tx DMA max, dma_dce = 0 ??? */ 1287 cbp->ctrl1 |= 0x08; /* ci_int = 1 */ 1288 cbp->ctrl3 |= 0x08; /* nsai */ 1289 cbp->fifo_limit = 0x08; /* tx and rx fifo limit */ 1290 cbp->fdx_pin |= 0x80; /* Enable full duplex setting by pin */ 1291 #endif 1292 1293 /* 1294 * Start the config command/DMA. 1295 */ 1296 fxp_scb_wait(sc); 1297 FXP_CFG_SYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1298 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->tx_cb_map->dm_segs->ds_addr + 1299 offsetof(struct fxp_ctrl, u.cfg)); 1300 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 1301 /* ...and wait for it to complete. */ 1302 i = FXP_CMD_TMO; 1303 do { 1304 DELAY(1); 1305 FXP_CFG_SYNC(sc, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 1306 } while ((cbp->cb_status & htole16(FXP_CB_STATUS_C)) == 0 && i--); 1307 1308 FXP_CFG_SYNC(sc, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 1309 if (!(cbp->cb_status & htole16(FXP_CB_STATUS_C))) { 1310 printf("%s: config command timeout\n", sc->sc_dev.dv_xname); 1311 return; 1312 } 1313 1314 /* 1315 * Now initialize the station address. 1316 */ 1317 cb_ias = &sc->sc_ctrl->u.ias; 1318 cb_ias->cb_status = htole16(0); 1319 cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL); 1320 cb_ias->link_addr = htole32(0xffffffff); 1321 bcopy(sc->sc_arpcom.ac_enaddr, (void *)cb_ias->macaddr, 1322 sizeof(sc->sc_arpcom.ac_enaddr)); 1323 1324 /* 1325 * Start the IAS (Individual Address Setup) command/DMA. 1326 */ 1327 fxp_scb_wait(sc); 1328 FXP_IAS_SYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1329 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->tx_cb_map->dm_segs->ds_addr + 1330 offsetof(struct fxp_ctrl, u.ias)); 1331 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 1332 /* ...and wait for it to complete. */ 1333 i = FXP_CMD_TMO; 1334 do { 1335 DELAY(1); 1336 FXP_IAS_SYNC(sc, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 1337 } while (!(cb_ias->cb_status & htole16(FXP_CB_STATUS_C)) && i--); 1338 1339 FXP_IAS_SYNC(sc, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 1340 if (!(cb_ias->cb_status & htole16(FXP_CB_STATUS_C))) { 1341 printf("%s: IAS command timeout\n", sc->sc_dev.dv_xname); 1342 return; 1343 } 1344 1345 /* Again, this time really upload the multicast addresses */ 1346 fxp_mc_setup(sc, 1); 1347 1348 /* 1349 * Initialize transmit control block (TxCB) list. 1350 */ 1351 bzero(sc->sc_ctrl->tx_cb, sizeof(struct fxp_cb_tx) * FXP_NTXCB); 1352 txp = sc->sc_ctrl->tx_cb; 1353 for (i = 0; i < FXP_NTXCB; i++) { 1354 txp[i].cb_command = htole16(FXP_CB_COMMAND_NOP); 1355 txp[i].link_addr = htole32(sc->tx_cb_map->dm_segs->ds_addr + 1356 offsetof(struct fxp_ctrl, tx_cb[(i + 1) & FXP_TXCB_MASK])); 1357 txp[i].tbd_array_addr =htole32(sc->tx_cb_map->dm_segs->ds_addr + 1358 offsetof(struct fxp_ctrl, tx_cb[i].tbd[0])); 1359 } 1360 /* 1361 * Set the suspend flag on the first TxCB and start the control 1362 * unit. It will execute the NOP and then suspend. 1363 */ 1364 sc->sc_cbt_prev = sc->sc_cbt_prod = sc->sc_cbt_cons = sc->txs; 1365 sc->sc_cbt_cnt = 1; 1366 sc->sc_ctrl->tx_cb[0].cb_command = htole16(FXP_CB_COMMAND_NOP | 1367 FXP_CB_COMMAND_S | FXP_CB_COMMAND_I); 1368 bus_dmamap_sync(sc->sc_dmat, sc->tx_cb_map, 0, 1369 sc->tx_cb_map->dm_mapsize, 1370 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1371 1372 fxp_scb_wait(sc); 1373 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->tx_cb_map->dm_segs->ds_addr + 1374 offsetof(struct fxp_ctrl, tx_cb[0])); 1375 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 1376 1377 /* 1378 * Initialize receiver buffer area - RFA. 1379 */ 1380 if (ifp->if_flags & IFF_UP) 1381 bufs = FXP_NRFABUFS_MAX; 1382 else 1383 bufs = FXP_NRFABUFS_MIN; 1384 if (sc->rx_bufs > bufs) { 1385 while (sc->rfa_headm != NULL && sc->rx_bufs-- > bufs) { 1386 rxmap = *((bus_dmamap_t *)sc->rfa_headm->m_ext.ext_buf); 1387 bus_dmamap_unload(sc->sc_dmat, rxmap); 1388 FXP_RXMAP_PUT(sc, rxmap); 1389 sc->rfa_headm = m_free(sc->rfa_headm); 1390 } 1391 } else if (sc->rx_bufs < bufs) { 1392 int err, tmp_rx_bufs = sc->rx_bufs; 1393 for (i = sc->rx_bufs; i < bufs; i++) { 1394 if ((err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, 1395 MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) { 1396 printf("%s: unable to create rx dma map %d, " 1397 "error %d\n", sc->sc_dev.dv_xname, i, err); 1398 break; 1399 } 1400 sc->rx_bufs++; 1401 } 1402 for (i = tmp_rx_bufs; i < sc->rx_bufs; i++) 1403 if (fxp_add_rfabuf(sc, NULL) != 0) 1404 break; 1405 } 1406 fxp_scb_wait(sc); 1407 1408 /* 1409 * Set current media. 1410 */ 1411 mii_mediachg(&sc->sc_mii); 1412 1413 ifp->if_flags |= IFF_RUNNING; 1414 ifq_clr_oactive(&ifp->if_snd); 1415 1416 /* 1417 * Request a software generated interrupt that will be used to 1418 * (re)start the RU processing. If we direct the chip to start 1419 * receiving from the start of queue now, instead of letting the 1420 * interrupt handler first process all received packets, we run 1421 * the risk of having it overwrite mbuf clusters while they are 1422 * being processed or after they have been returned to the pool. 1423 */ 1424 CSR_WRITE_2(sc, FXP_CSR_SCB_COMMAND, 1425 CSR_READ_2(sc, FXP_CSR_SCB_COMMAND) | 1426 FXP_SCB_INTRCNTL_REQUEST_SWI); 1427 1428 /* 1429 * Start stats updater. 1430 */ 1431 timeout_add_sec(&sc->stats_update_to, 1); 1432 } 1433 1434 /* 1435 * Change media according to request. 1436 */ 1437 int 1438 fxp_mediachange(struct ifnet *ifp) 1439 { 1440 struct fxp_softc *sc = ifp->if_softc; 1441 struct mii_data *mii = &sc->sc_mii; 1442 1443 if (mii->mii_instance) { 1444 struct mii_softc *miisc; 1445 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 1446 mii_phy_reset(miisc); 1447 } 1448 mii_mediachg(&sc->sc_mii); 1449 return (0); 1450 } 1451 1452 /* 1453 * Notify the world which media we're using. 1454 */ 1455 void 1456 fxp_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) 1457 { 1458 struct fxp_softc *sc = ifp->if_softc; 1459 1460 mii_pollstat(&sc->sc_mii); 1461 ifmr->ifm_status = sc->sc_mii.mii_media_status; 1462 ifmr->ifm_active = sc->sc_mii.mii_media_active; 1463 } 1464 1465 /* 1466 * Add a buffer to the end of the RFA buffer list. 1467 * Return 0 if successful, 1 for failure. A failure results in 1468 * adding the 'oldm' (if non-NULL) on to the end of the list - 1469 * tossing out its old contents and recycling it. 1470 * The RFA struct is stuck at the beginning of mbuf cluster and the 1471 * data pointer is fixed up to point just past it. 1472 */ 1473 int 1474 fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm) 1475 { 1476 u_int32_t v; 1477 struct mbuf *m; 1478 u_int8_t *rfap; 1479 bus_dmamap_t rxmap = NULL; 1480 1481 MGETHDR(m, M_DONTWAIT, MT_DATA); 1482 if (m != NULL) { 1483 MCLGET(m, M_DONTWAIT); 1484 if ((m->m_flags & M_EXT) == 0) { 1485 m_freem(m); 1486 if (oldm == NULL) 1487 return 1; 1488 m = oldm; 1489 m->m_data = m->m_ext.ext_buf; 1490 } 1491 if (oldm == NULL) { 1492 rxmap = FXP_RXMAP_GET(sc); 1493 *((bus_dmamap_t *)m->m_ext.ext_buf) = rxmap; 1494 bus_dmamap_load(sc->sc_dmat, rxmap, 1495 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, 1496 BUS_DMA_NOWAIT); 1497 } else if (oldm == m) 1498 rxmap = *((bus_dmamap_t *)oldm->m_ext.ext_buf); 1499 else { 1500 rxmap = *((bus_dmamap_t *)oldm->m_ext.ext_buf); 1501 bus_dmamap_unload(sc->sc_dmat, rxmap); 1502 bus_dmamap_load(sc->sc_dmat, rxmap, 1503 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, 1504 BUS_DMA_NOWAIT); 1505 *mtod(m, bus_dmamap_t *) = rxmap; 1506 } 1507 } else { 1508 if (oldm == NULL) 1509 return 1; 1510 m = oldm; 1511 m->m_data = m->m_ext.ext_buf; 1512 rxmap = *mtod(m, bus_dmamap_t *); 1513 } 1514 1515 /* 1516 * Move the data pointer up so that the incoming data packet 1517 * will be 32-bit aligned. 1518 */ 1519 m->m_data += RFA_ALIGNMENT_FUDGE; 1520 1521 /* 1522 * Get a pointer to the base of the mbuf cluster and move 1523 * data start past it. 1524 */ 1525 rfap = m->m_data; 1526 m->m_data += sizeof(struct fxp_rfa); 1527 *(u_int16_t *)(rfap + offsetof(struct fxp_rfa, size)) = 1528 htole16(MCLBYTES - sizeof(struct fxp_rfa) - RFA_ALIGNMENT_FUDGE); 1529 1530 /* 1531 * Initialize the rest of the RFA. Note that since the RFA 1532 * is misaligned, we cannot store values directly. Instead, 1533 * we use an optimized, inline copy. 1534 */ 1535 *(u_int16_t *)(rfap + offsetof(struct fxp_rfa, rfa_status)) = 0; 1536 *(u_int16_t *)(rfap + offsetof(struct fxp_rfa, rfa_control)) = 1537 htole16(FXP_RFA_CONTROL_EL); 1538 *(u_int16_t *)(rfap + offsetof(struct fxp_rfa, actual_size)) = 0; 1539 1540 v = -1; 1541 fxp_lwcopy(&v, 1542 (u_int32_t *)(rfap + offsetof(struct fxp_rfa, link_addr))); 1543 fxp_lwcopy(&v, 1544 (u_int32_t *)(rfap + offsetof(struct fxp_rfa, rbd_addr))); 1545 1546 bus_dmamap_sync(sc->sc_dmat, rxmap, 0, MCLBYTES, 1547 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1548 1549 /* 1550 * If there are other buffers already on the list, attach this 1551 * one to the end by fixing up the tail to point to this one. 1552 */ 1553 if (sc->rfa_headm != NULL) { 1554 sc->rfa_tailm->m_next = m; 1555 v = htole32(rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE); 1556 rfap = sc->rfa_tailm->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE; 1557 fxp_lwcopy(&v, 1558 (u_int32_t *)(rfap + offsetof(struct fxp_rfa, link_addr))); 1559 *(u_int16_t *)(rfap + offsetof(struct fxp_rfa, rfa_control)) &= 1560 htole16((u_int16_t)~FXP_RFA_CONTROL_EL); 1561 /* XXX we only need to sync the control struct */ 1562 bus_dmamap_sync(sc->sc_dmat, 1563 *((bus_dmamap_t *)sc->rfa_tailm->m_ext.ext_buf), 0, 1564 MCLBYTES, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1565 } else 1566 sc->rfa_headm = m; 1567 1568 sc->rfa_tailm = m; 1569 1570 return (m == oldm); 1571 } 1572 1573 int 1574 fxp_mdi_read(struct device *self, int phy, int reg) 1575 { 1576 struct fxp_softc *sc = (struct fxp_softc *)self; 1577 int count = FXP_CMD_TMO; 1578 int value; 1579 1580 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL, 1581 (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21)); 1582 1583 while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0 1584 && count--) 1585 DELAY(10); 1586 1587 if (count <= 0) 1588 printf("%s: fxp_mdi_read: timed out\n", sc->sc_dev.dv_xname); 1589 1590 return (value & 0xffff); 1591 } 1592 1593 void 1594 fxp_statchg(struct device *self) 1595 { 1596 /* Nothing to do. */ 1597 } 1598 1599 void 1600 fxp_mdi_write(struct device *self, int phy, int reg, int value) 1601 { 1602 struct fxp_softc *sc = (struct fxp_softc *)self; 1603 int count = FXP_CMD_TMO; 1604 1605 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL, 1606 (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) | 1607 (value & 0xffff)); 1608 1609 while((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 && 1610 count--) 1611 DELAY(10); 1612 1613 if (count <= 0) 1614 printf("%s: fxp_mdi_write: timed out\n", sc->sc_dev.dv_xname); 1615 } 1616 1617 int 1618 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 1619 { 1620 struct fxp_softc *sc = ifp->if_softc; 1621 struct ifreq *ifr = (struct ifreq *)data; 1622 int s, error = 0; 1623 1624 s = splnet(); 1625 1626 switch (command) { 1627 case SIOCSIFADDR: 1628 ifp->if_flags |= IFF_UP; 1629 if (!(ifp->if_flags & IFF_RUNNING)) 1630 fxp_init(sc); 1631 break; 1632 1633 case SIOCSIFFLAGS: 1634 if (ifp->if_flags & IFF_UP) { 1635 if (ifp->if_flags & IFF_RUNNING) 1636 error = ENETRESET; 1637 else 1638 fxp_init(sc); 1639 } else { 1640 if (ifp->if_flags & IFF_RUNNING) 1641 fxp_stop(sc, 1, 0); 1642 } 1643 break; 1644 1645 case SIOCSIFMEDIA: 1646 case SIOCGIFMEDIA: 1647 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command); 1648 break; 1649 1650 default: 1651 error = ether_ioctl(ifp, &sc->sc_arpcom, command, data); 1652 } 1653 1654 if (error == ENETRESET) { 1655 if (ifp->if_flags & IFF_RUNNING) 1656 fxp_init(sc); 1657 error = 0; 1658 } 1659 1660 splx(s); 1661 return (error); 1662 } 1663 1664 /* 1665 * Program the multicast filter. 1666 * 1667 * We have an artificial restriction that the multicast setup command 1668 * must be the first command in the chain, so we take steps to ensure 1669 * this. By requiring this, it allows us to keep up the performance of 1670 * the pre-initialized command ring (esp. link pointers) by not actually 1671 * inserting the mcsetup command in the ring - i.e. its link pointer 1672 * points to the TxCB ring, but the mcsetup descriptor itself is not part 1673 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it 1674 * lead into the regular TxCB ring when it completes. 1675 * 1676 * This function must be called at splnet. 1677 */ 1678 void 1679 fxp_mc_setup(struct fxp_softc *sc, int doit) 1680 { 1681 struct ifnet *ifp = &sc->sc_arpcom.ac_if; 1682 struct arpcom *ac = &sc->sc_arpcom; 1683 struct fxp_cb_mcs *mcsp = &sc->sc_ctrl->u.mcs; 1684 struct ether_multistep step; 1685 struct ether_multi *enm; 1686 int i, nmcasts = 0; 1687 1688 splassert(IPL_NET); 1689 1690 ifp->if_flags &= ~IFF_ALLMULTI; 1691 1692 if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0 || 1693 ac->ac_multicnt >= MAXMCADDR) { 1694 ifp->if_flags |= IFF_ALLMULTI; 1695 } else { 1696 ETHER_FIRST_MULTI(step, &sc->sc_arpcom, enm); 1697 while (enm != NULL) { 1698 bcopy(enm->enm_addrlo, 1699 (void *)&mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN); 1700 1701 nmcasts++; 1702 1703 ETHER_NEXT_MULTI(step, enm); 1704 } 1705 } 1706 1707 if (doit == 0) 1708 return; 1709 1710 /* 1711 * Initialize multicast setup descriptor. 1712 */ 1713 mcsp->cb_status = htole16(0); 1714 mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL); 1715 mcsp->link_addr = htole32(-1); 1716 mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN); 1717 1718 /* 1719 * Wait until command unit is not active. This should never 1720 * be the case when nothing is queued, but make sure anyway. 1721 */ 1722 for (i = FXP_CMD_TMO; (CSR_READ_2(sc, FXP_CSR_SCB_STATUS) & 1723 FXP_SCB_CUS_MASK) != FXP_SCB_CUS_IDLE && i--; DELAY(1)); 1724 1725 if ((CSR_READ_2(sc, FXP_CSR_SCB_STATUS) & 1726 FXP_SCB_CUS_MASK) != FXP_SCB_CUS_IDLE) { 1727 printf("%s: timeout waiting for CU ready\n", 1728 sc->sc_dev.dv_xname); 1729 return; 1730 } 1731 1732 /* 1733 * Start the multicast setup command. 1734 */ 1735 fxp_scb_wait(sc); 1736 FXP_MCS_SYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1737 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->tx_cb_map->dm_segs->ds_addr + 1738 offsetof(struct fxp_ctrl, u.mcs)); 1739 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 1740 1741 i = FXP_CMD_TMO; 1742 do { 1743 DELAY(1); 1744 FXP_MCS_SYNC(sc, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 1745 } while (!(mcsp->cb_status & htole16(FXP_CB_STATUS_C)) && i--); 1746 1747 FXP_MCS_SYNC(sc, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 1748 if (!(mcsp->cb_status & htole16(FXP_CB_STATUS_C))) { 1749 printf("%s: multicast command timeout\n", sc->sc_dev.dv_xname); 1750 return; 1751 } 1752 1753 } 1754 1755 #ifndef SMALL_KERNEL 1756 #include <dev/microcode/fxp/rcvbundl.h> 1757 struct ucode { 1758 u_int16_t revision; 1759 u_int16_t int_delay_offset; 1760 u_int16_t bundle_max_offset; 1761 u_int16_t min_size_mask_offset; 1762 const char *uname; 1763 } const ucode_table[] = { 1764 { FXP_REV_82558_A4, D101_CPUSAVER_DWORD, 1765 0, 0, 1766 "fxp-d101a" }, 1767 1768 { FXP_REV_82558_B0, D101_CPUSAVER_DWORD, 1769 0, 0, 1770 "fxp-d101b0" }, 1771 1772 { FXP_REV_82559_A0, D101M_CPUSAVER_DWORD, 1773 D101M_CPUSAVER_BUNDLE_MAX_DWORD, D101M_CPUSAVER_MIN_SIZE_DWORD, 1774 "fxp-d101ma" }, 1775 1776 { FXP_REV_82559S_A, D101S_CPUSAVER_DWORD, 1777 D101S_CPUSAVER_BUNDLE_MAX_DWORD, D101S_CPUSAVER_MIN_SIZE_DWORD, 1778 "fxp-d101s" }, 1779 1780 { FXP_REV_82550, D102_B_CPUSAVER_DWORD, 1781 D102_B_CPUSAVER_BUNDLE_MAX_DWORD, D102_B_CPUSAVER_MIN_SIZE_DWORD, 1782 "fxp-d102" }, 1783 1784 { FXP_REV_82550_C, D102_C_CPUSAVER_DWORD, 1785 D102_C_CPUSAVER_BUNDLE_MAX_DWORD, D102_C_CPUSAVER_MIN_SIZE_DWORD, 1786 "fxp-d102c" }, 1787 1788 { FXP_REV_82551_F, D102_E_CPUSAVER_DWORD, 1789 D102_E_CPUSAVER_BUNDLE_MAX_DWORD, D102_E_CPUSAVER_MIN_SIZE_DWORD, 1790 "fxp-d102e" }, 1791 1792 { FXP_REV_82551_10, D102_E_CPUSAVER_DWORD, 1793 D102_E_CPUSAVER_BUNDLE_MAX_DWORD, D102_E_CPUSAVER_MIN_SIZE_DWORD, 1794 "fxp-d102e" }, 1795 1796 { 0, 0, 1797 0, 0, 1798 NULL } 1799 }; 1800 1801 void 1802 fxp_load_ucode(struct fxp_softc *sc) 1803 { 1804 const struct ucode *uc; 1805 struct fxp_cb_ucode *cbp = &sc->sc_ctrl->u.code; 1806 int i, error; 1807 1808 if (sc->sc_flags & FXPF_NOUCODE) 1809 return; 1810 1811 for (uc = ucode_table; uc->revision != 0; uc++) 1812 if (sc->sc_revision == uc->revision) 1813 break; 1814 if (uc->revision == 0) { 1815 sc->sc_flags |= FXPF_NOUCODE; 1816 return; /* no ucode for this chip is found */ 1817 } 1818 1819 if (sc->sc_ucodebuf) 1820 goto reloadit; 1821 1822 if (sc->sc_revision == FXP_REV_82550_C) { 1823 u_int16_t data; 1824 1825 /* 1826 * 82550C without the server extensions 1827 * locks up with the microcode patch. 1828 */ 1829 fxp_read_eeprom(sc, &data, FXP_EEPROM_REG_COMPAT, 1); 1830 if ((data & FXP_EEPROM_REG_COMPAT_SRV) == 0) { 1831 sc->sc_flags |= FXPF_NOUCODE; 1832 return; 1833 } 1834 } 1835 1836 error = loadfirmware(uc->uname, (u_char **)&sc->sc_ucodebuf, 1837 &sc->sc_ucodelen); 1838 if (error) { 1839 printf("%s: error %d, could not read firmware %s\n", 1840 sc->sc_dev.dv_xname, error, uc->uname); 1841 return; 1842 } 1843 1844 reloadit: 1845 if (sc->sc_flags & FXPF_UCODELOADED) 1846 return; 1847 1848 cbp->cb_status = 0; 1849 cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE|FXP_CB_COMMAND_EL); 1850 cbp->link_addr = 0xffffffff; /* (no) next command */ 1851 for (i = 0; i < (sc->sc_ucodelen / sizeof(u_int32_t)); i++) 1852 cbp->ucode[i] = sc->sc_ucodebuf[i]; 1853 1854 if (uc->int_delay_offset) 1855 *((u_int16_t *)&cbp->ucode[uc->int_delay_offset]) = 1856 htole16(sc->sc_int_delay + sc->sc_int_delay / 2); 1857 1858 if (uc->bundle_max_offset) 1859 *((u_int16_t *)&cbp->ucode[uc->bundle_max_offset]) = 1860 htole16(sc->sc_bundle_max); 1861 1862 if (uc->min_size_mask_offset) 1863 *((u_int16_t *)&cbp->ucode[uc->min_size_mask_offset]) = 1864 htole16(sc->sc_min_size_mask); 1865 1866 FXP_UCODE_SYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1867 1868 /* 1869 * Download the ucode to the chip. 1870 */ 1871 fxp_scb_wait(sc); 1872 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->tx_cb_map->dm_segs->ds_addr 1873 + offsetof(struct fxp_ctrl, u.code)); 1874 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); 1875 1876 /* ...and wait for it to complete. */ 1877 i = FXP_CMD_TMO; 1878 do { 1879 DELAY(2); 1880 FXP_UCODE_SYNC(sc, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 1881 } while (((cbp->cb_status & htole16(FXP_CB_STATUS_C)) == 0) && --i); 1882 if (i == 0) { 1883 printf("%s: timeout loading microcode\n", sc->sc_dev.dv_xname); 1884 return; 1885 } 1886 sc->sc_flags |= FXPF_UCODELOADED; 1887 1888 #ifdef DEBUG 1889 printf("%s: microcode loaded, int_delay: %d usec", 1890 sc->sc_dev.dv_xname, sc->sc_int_delay); 1891 1892 if (uc->bundle_max_offset) 1893 printf(", bundle_max %d\n", sc->sc_bundle_max); 1894 else 1895 printf("\n"); 1896 #endif 1897 } 1898 #endif /* SMALL_KERNEL */ 1899