xref: /openbsd/sys/dev/pci/drm/amd/amdgpu/amdgpu_ttm.c (revision 3484b12e)
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/hmm.h>
36 #include <linux/pagemap.h>
37 #include <linux/sched/task.h>
38 #include <linux/sched/mm.h>
39 #include <linux/seq_file.h>
40 #include <linux/slab.h>
41 #include <linux/swap.h>
42 #include <linux/swiotlb.h>
43 #include <linux/dma-buf.h>
44 #include <linux/sizes.h>
45 
46 #include <drm/ttm/ttm_bo_api.h>
47 #include <drm/ttm/ttm_bo_driver.h>
48 #include <drm/ttm/ttm_placement.h>
49 #include <drm/ttm/ttm_module.h>
50 #include <drm/ttm/ttm_page_alloc.h>
51 
52 #include <drm/drm_debugfs.h>
53 #include <drm/amdgpu_drm.h>
54 
55 #include "amdgpu.h"
56 #include "amdgpu_object.h"
57 #include "amdgpu_trace.h"
58 #include "amdgpu_amdkfd.h"
59 #include "amdgpu_sdma.h"
60 #include "amdgpu_ras.h"
61 #include "bif/bif_4_1_d.h"
62 
63 #define AMDGPU_TTM_VRAM_MAX_DW_READ	(size_t)128
64 
65 #define DRM_FILE_PAGE_OFFSET (0x100000000ULL >> PAGE_SHIFT)
66 
67 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
68 			     struct ttm_mem_reg *mem, unsigned num_pages,
69 			     uint64_t offset, unsigned window,
70 			     struct amdgpu_ring *ring,
71 			     uint64_t *addr);
72 
73 /**
74  * amdgpu_init_mem_type - Initialize a memory manager for a specific type of
75  * memory request.
76  *
77  * @bdev: The TTM BO device object (contains a reference to amdgpu_device)
78  * @type: The type of memory requested
79  * @man: The memory type manager for each domain
80  *
81  * This is called by ttm_bo_init_mm() when a buffer object is being
82  * initialized.
83  */
84 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
85 				struct ttm_mem_type_manager *man)
86 {
87 	struct amdgpu_device *adev;
88 
89 	adev = amdgpu_ttm_adev(bdev);
90 
91 	switch (type) {
92 	case TTM_PL_SYSTEM:
93 		/* System memory */
94 		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
95 		man->available_caching = TTM_PL_MASK_CACHING;
96 		man->default_caching = TTM_PL_FLAG_CACHED;
97 		break;
98 	case TTM_PL_TT:
99 		/* GTT memory  */
100 		man->func = &amdgpu_gtt_mgr_func;
101 		man->gpu_offset = adev->gmc.gart_start;
102 		man->available_caching = TTM_PL_MASK_CACHING;
103 		man->default_caching = TTM_PL_FLAG_CACHED;
104 		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA;
105 		break;
106 	case TTM_PL_VRAM:
107 		/* "On-card" video ram */
108 		man->func = &amdgpu_vram_mgr_func;
109 		man->gpu_offset = adev->gmc.vram_start;
110 		man->flags = TTM_MEMTYPE_FLAG_FIXED |
111 			     TTM_MEMTYPE_FLAG_MAPPABLE;
112 		man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC;
113 		man->default_caching = TTM_PL_FLAG_WC;
114 		break;
115 	case AMDGPU_PL_GDS:
116 	case AMDGPU_PL_GWS:
117 	case AMDGPU_PL_OA:
118 		/* On-chip GDS memory*/
119 		man->func = &ttm_bo_manager_func;
120 		man->gpu_offset = 0;
121 		man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA;
122 		man->available_caching = TTM_PL_FLAG_UNCACHED;
123 		man->default_caching = TTM_PL_FLAG_UNCACHED;
124 		break;
125 	default:
126 		DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
127 		return -EINVAL;
128 	}
129 	return 0;
130 }
131 
132 /**
133  * amdgpu_evict_flags - Compute placement flags
134  *
135  * @bo: The buffer object to evict
136  * @placement: Possible destination(s) for evicted BO
137  *
138  * Fill in placement data when ttm_bo_evict() is called
139  */
140 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
141 				struct ttm_placement *placement)
142 {
143 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
144 	struct amdgpu_bo *abo;
145 	static const struct ttm_place placements = {
146 		.fpfn = 0,
147 		.lpfn = 0,
148 		.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM
149 	};
150 
151 	/* Don't handle scatter gather BOs */
152 	if (bo->type == ttm_bo_type_sg) {
153 		placement->num_placement = 0;
154 		placement->num_busy_placement = 0;
155 		return;
156 	}
157 
158 	/* Object isn't an AMDGPU object so ignore */
159 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
160 		placement->placement = &placements;
161 		placement->busy_placement = &placements;
162 		placement->num_placement = 1;
163 		placement->num_busy_placement = 1;
164 		return;
165 	}
166 
167 	abo = ttm_to_amdgpu_bo(bo);
168 	switch (bo->mem.mem_type) {
169 	case AMDGPU_PL_GDS:
170 	case AMDGPU_PL_GWS:
171 	case AMDGPU_PL_OA:
172 		placement->num_placement = 0;
173 		placement->num_busy_placement = 0;
174 		return;
175 
176 	case TTM_PL_VRAM:
177 		if (!adev->mman.buffer_funcs_enabled) {
178 			/* Move to system memory */
179 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
180 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
181 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
182 			   amdgpu_bo_in_cpu_visible_vram(abo)) {
183 
184 			/* Try evicting to the CPU inaccessible part of VRAM
185 			 * first, but only set GTT as busy placement, so this
186 			 * BO will be evicted to GTT rather than causing other
187 			 * BOs to be evicted from VRAM
188 			 */
189 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
190 							 AMDGPU_GEM_DOMAIN_GTT);
191 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
192 			abo->placements[0].lpfn = 0;
193 			abo->placement.busy_placement = &abo->placements[1];
194 			abo->placement.num_busy_placement = 1;
195 		} else {
196 			/* Move to GTT memory */
197 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
198 		}
199 		break;
200 	case TTM_PL_TT:
201 	default:
202 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
203 		break;
204 	}
205 	*placement = abo->placement;
206 }
207 
208 /**
209  * amdgpu_verify_access - Verify access for a mmap call
210  *
211  * @bo:	The buffer object to map
212  * @filp: The file pointer from the process performing the mmap
213  *
214  * This is called by ttm_bo_mmap() to verify whether a process
215  * has the right to mmap a BO to their process space.
216  */
217 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
218 {
219 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
220 	struct drm_file *file_priv = (void *)filp;
221 
222 	/*
223 	 * Don't verify access for KFD BOs. They don't have a GEM
224 	 * object associated with them.
225 	 */
226 	if (abo->kfd_bo)
227 		return 0;
228 
229 	if (amdgpu_ttm_tt_get_usermm(bo->ttm))
230 		return -EPERM;
231 	return drm_vma_node_verify_access(&abo->tbo.base.vma_node, file_priv);
232 }
233 
234 /**
235  * amdgpu_move_null - Register memory for a buffer object
236  *
237  * @bo: The bo to assign the memory to
238  * @new_mem: The memory to be assigned.
239  *
240  * Assign the memory from new_mem to the memory of the buffer object bo.
241  */
242 static void amdgpu_move_null(struct ttm_buffer_object *bo,
243 			     struct ttm_mem_reg *new_mem)
244 {
245 	struct ttm_mem_reg *old_mem = &bo->mem;
246 
247 	BUG_ON(old_mem->mm_node != NULL);
248 	*old_mem = *new_mem;
249 	new_mem->mm_node = NULL;
250 }
251 
252 /**
253  * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
254  *
255  * @bo: The bo to assign the memory to.
256  * @mm_node: Memory manager node for drm allocator.
257  * @mem: The region where the bo resides.
258  *
259  */
260 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
261 				    struct drm_mm_node *mm_node,
262 				    struct ttm_mem_reg *mem)
263 {
264 	uint64_t addr = 0;
265 
266 	if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) {
267 		addr = mm_node->start << PAGE_SHIFT;
268 		addr += bo->bdev->man[mem->mem_type].gpu_offset;
269 	}
270 	return addr;
271 }
272 
273 /**
274  * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
275  * @offset. It also modifies the offset to be within the drm_mm_node returned
276  *
277  * @mem: The region where the bo resides.
278  * @offset: The offset that drm_mm_node is used for finding.
279  *
280  */
281 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem,
282 					       unsigned long *offset)
283 {
284 	struct drm_mm_node *mm_node = mem->mm_node;
285 
286 	while (*offset >= (mm_node->size << PAGE_SHIFT)) {
287 		*offset -= (mm_node->size << PAGE_SHIFT);
288 		++mm_node;
289 	}
290 	return mm_node;
291 }
292 
293 /**
294  * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
295  *
296  * The function copies @size bytes from {src->mem + src->offset} to
297  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
298  * move and different for a BO to BO copy.
299  *
300  * @f: Returns the last fence if multiple jobs are submitted.
301  */
302 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
303 			       struct amdgpu_copy_mem *src,
304 			       struct amdgpu_copy_mem *dst,
305 			       uint64_t size,
306 			       struct dma_resv *resv,
307 			       struct dma_fence **f)
308 {
309 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
310 	struct drm_mm_node *src_mm, *dst_mm;
311 	uint64_t src_node_start, dst_node_start, src_node_size,
312 		 dst_node_size, src_page_offset, dst_page_offset;
313 	struct dma_fence *fence = NULL;
314 	int r = 0;
315 	const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
316 					AMDGPU_GPU_PAGE_SIZE);
317 
318 	if (!adev->mman.buffer_funcs_enabled) {
319 		DRM_ERROR("Trying to move memory with ring turned off.\n");
320 		return -EINVAL;
321 	}
322 
323 	src_mm = amdgpu_find_mm_node(src->mem, &src->offset);
324 	src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) +
325 					     src->offset;
326 	src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset;
327 	src_page_offset = src_node_start & (PAGE_SIZE - 1);
328 
329 	dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset);
330 	dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) +
331 					     dst->offset;
332 	dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset;
333 	dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
334 
335 	mutex_lock(&adev->mman.gtt_window_lock);
336 
337 	while (size) {
338 		unsigned long cur_size;
339 		uint64_t from = src_node_start, to = dst_node_start;
340 		struct dma_fence *next;
341 
342 		/* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
343 		 * begins at an offset, then adjust the size accordingly
344 		 */
345 		cur_size = min3(min(src_node_size, dst_node_size), size,
346 				GTT_MAX_BYTES);
347 		if (cur_size + src_page_offset > GTT_MAX_BYTES ||
348 		    cur_size + dst_page_offset > GTT_MAX_BYTES)
349 			cur_size -= max(src_page_offset, dst_page_offset);
350 
351 		/* Map only what needs to be accessed. Map src to window 0 and
352 		 * dst to window 1
353 		 */
354 		if (src->mem->start == AMDGPU_BO_INVALID_OFFSET) {
355 			r = amdgpu_map_buffer(src->bo, src->mem,
356 					PFN_UP(cur_size + src_page_offset),
357 					src_node_start, 0, ring,
358 					&from);
359 			if (r)
360 				goto error;
361 			/* Adjust the offset because amdgpu_map_buffer returns
362 			 * start of mapped page
363 			 */
364 			from += src_page_offset;
365 		}
366 
367 		if (dst->mem->start == AMDGPU_BO_INVALID_OFFSET) {
368 			r = amdgpu_map_buffer(dst->bo, dst->mem,
369 					PFN_UP(cur_size + dst_page_offset),
370 					dst_node_start, 1, ring,
371 					&to);
372 			if (r)
373 				goto error;
374 			to += dst_page_offset;
375 		}
376 
377 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
378 				       resv, &next, false, true);
379 		if (r)
380 			goto error;
381 
382 		dma_fence_put(fence);
383 		fence = next;
384 
385 		size -= cur_size;
386 		if (!size)
387 			break;
388 
389 		src_node_size -= cur_size;
390 		if (!src_node_size) {
391 			src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm,
392 							     src->mem);
393 			src_node_size = (src_mm->size << PAGE_SHIFT);
394 			src_page_offset = 0;
395 		} else {
396 			src_node_start += cur_size;
397 			src_page_offset = src_node_start & (PAGE_SIZE - 1);
398 		}
399 		dst_node_size -= cur_size;
400 		if (!dst_node_size) {
401 			dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm,
402 							     dst->mem);
403 			dst_node_size = (dst_mm->size << PAGE_SHIFT);
404 			dst_page_offset = 0;
405 		} else {
406 			dst_node_start += cur_size;
407 			dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
408 		}
409 	}
410 error:
411 	mutex_unlock(&adev->mman.gtt_window_lock);
412 	if (f)
413 		*f = dma_fence_get(fence);
414 	dma_fence_put(fence);
415 	return r;
416 }
417 
418 /**
419  * amdgpu_move_blit - Copy an entire buffer to another buffer
420  *
421  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
422  * help move buffers to and from VRAM.
423  */
424 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
425 			    bool evict, bool no_wait_gpu,
426 			    struct ttm_mem_reg *new_mem,
427 			    struct ttm_mem_reg *old_mem)
428 {
429 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
430 	struct amdgpu_copy_mem src, dst;
431 	struct dma_fence *fence = NULL;
432 	int r;
433 
434 	src.bo = bo;
435 	dst.bo = bo;
436 	src.mem = old_mem;
437 	dst.mem = new_mem;
438 	src.offset = 0;
439 	dst.offset = 0;
440 
441 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
442 				       new_mem->num_pages << PAGE_SHIFT,
443 				       bo->base.resv, &fence);
444 	if (r)
445 		goto error;
446 
447 	/* clear the space being freed */
448 	if (old_mem->mem_type == TTM_PL_VRAM &&
449 	    (ttm_to_amdgpu_bo(bo)->flags &
450 	     AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
451 		struct dma_fence *wipe_fence = NULL;
452 
453 		r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
454 				       NULL, &wipe_fence);
455 		if (r) {
456 			goto error;
457 		} else if (wipe_fence) {
458 			dma_fence_put(fence);
459 			fence = wipe_fence;
460 		}
461 	}
462 
463 	/* Always block for VM page tables before committing the new location */
464 	if (bo->type == ttm_bo_type_kernel)
465 		r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem);
466 	else
467 		r = ttm_bo_pipeline_move(bo, fence, evict, new_mem);
468 	dma_fence_put(fence);
469 	return r;
470 
471 error:
472 	if (fence)
473 		dma_fence_wait(fence, false);
474 	dma_fence_put(fence);
475 	return r;
476 }
477 
478 /**
479  * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
480  *
481  * Called by amdgpu_bo_move().
482  */
483 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
484 				struct ttm_operation_ctx *ctx,
485 				struct ttm_mem_reg *new_mem)
486 {
487 	struct ttm_mem_reg *old_mem = &bo->mem;
488 	struct ttm_mem_reg tmp_mem;
489 	struct ttm_place placements;
490 	struct ttm_placement placement;
491 	int r;
492 
493 	/* create space/pages for new_mem in GTT space */
494 	tmp_mem = *new_mem;
495 	tmp_mem.mm_node = NULL;
496 	placement.num_placement = 1;
497 	placement.placement = &placements;
498 	placement.num_busy_placement = 1;
499 	placement.busy_placement = &placements;
500 	placements.fpfn = 0;
501 	placements.lpfn = 0;
502 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
503 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
504 	if (unlikely(r)) {
505 		pr_err("Failed to find GTT space for blit from VRAM\n");
506 		return r;
507 	}
508 
509 	/* set caching flags */
510 	r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
511 	if (unlikely(r)) {
512 		goto out_cleanup;
513 	}
514 
515 	/* Bind the memory to the GTT space */
516 	r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx);
517 	if (unlikely(r)) {
518 		goto out_cleanup;
519 	}
520 
521 	/* blit VRAM to GTT */
522 	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem);
523 	if (unlikely(r)) {
524 		goto out_cleanup;
525 	}
526 
527 	/* move BO (in tmp_mem) to new_mem */
528 	r = ttm_bo_move_ttm(bo, ctx, new_mem);
529 out_cleanup:
530 	ttm_bo_mem_put(bo, &tmp_mem);
531 	return r;
532 }
533 
534 /**
535  * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
536  *
537  * Called by amdgpu_bo_move().
538  */
539 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
540 				struct ttm_operation_ctx *ctx,
541 				struct ttm_mem_reg *new_mem)
542 {
543 	struct ttm_mem_reg *old_mem = &bo->mem;
544 	struct ttm_mem_reg tmp_mem;
545 	struct ttm_placement placement;
546 	struct ttm_place placements;
547 	int r;
548 
549 	/* make space in GTT for old_mem buffer */
550 	tmp_mem = *new_mem;
551 	tmp_mem.mm_node = NULL;
552 	placement.num_placement = 1;
553 	placement.placement = &placements;
554 	placement.num_busy_placement = 1;
555 	placement.busy_placement = &placements;
556 	placements.fpfn = 0;
557 	placements.lpfn = 0;
558 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
559 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
560 	if (unlikely(r)) {
561 		pr_err("Failed to find GTT space for blit to VRAM\n");
562 		return r;
563 	}
564 
565 	/* move/bind old memory to GTT space */
566 	r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
567 	if (unlikely(r)) {
568 		goto out_cleanup;
569 	}
570 
571 	/* copy to VRAM */
572 	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem);
573 	if (unlikely(r)) {
574 		goto out_cleanup;
575 	}
576 out_cleanup:
577 	ttm_bo_mem_put(bo, &tmp_mem);
578 	return r;
579 }
580 
581 /**
582  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
583  *
584  * Called by amdgpu_bo_move()
585  */
586 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
587 			       struct ttm_mem_reg *mem)
588 {
589 	struct drm_mm_node *nodes = mem->mm_node;
590 
591 	if (mem->mem_type == TTM_PL_SYSTEM ||
592 	    mem->mem_type == TTM_PL_TT)
593 		return true;
594 	if (mem->mem_type != TTM_PL_VRAM)
595 		return false;
596 
597 	/* ttm_mem_reg_ioremap only supports contiguous memory */
598 	if (nodes->size != mem->num_pages)
599 		return false;
600 
601 	return ((nodes->start + nodes->size) << PAGE_SHIFT)
602 		<= adev->gmc.visible_vram_size;
603 }
604 
605 /**
606  * amdgpu_bo_move - Move a buffer object to a new memory location
607  *
608  * Called by ttm_bo_handle_move_mem()
609  */
610 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
611 			  struct ttm_operation_ctx *ctx,
612 			  struct ttm_mem_reg *new_mem)
613 {
614 	struct amdgpu_device *adev;
615 	struct amdgpu_bo *abo;
616 	struct ttm_mem_reg *old_mem = &bo->mem;
617 	int r;
618 
619 	/* Can't move a pinned BO */
620 	abo = ttm_to_amdgpu_bo(bo);
621 	if (WARN_ON_ONCE(abo->pin_count > 0))
622 		return -EINVAL;
623 
624 	adev = amdgpu_ttm_adev(bo->bdev);
625 
626 	if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
627 		amdgpu_move_null(bo, new_mem);
628 		return 0;
629 	}
630 	if ((old_mem->mem_type == TTM_PL_TT &&
631 	     new_mem->mem_type == TTM_PL_SYSTEM) ||
632 	    (old_mem->mem_type == TTM_PL_SYSTEM &&
633 	     new_mem->mem_type == TTM_PL_TT)) {
634 		/* bind is enough */
635 		amdgpu_move_null(bo, new_mem);
636 		return 0;
637 	}
638 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
639 	    old_mem->mem_type == AMDGPU_PL_GWS ||
640 	    old_mem->mem_type == AMDGPU_PL_OA ||
641 	    new_mem->mem_type == AMDGPU_PL_GDS ||
642 	    new_mem->mem_type == AMDGPU_PL_GWS ||
643 	    new_mem->mem_type == AMDGPU_PL_OA) {
644 		/* Nothing to save here */
645 		amdgpu_move_null(bo, new_mem);
646 		return 0;
647 	}
648 
649 	if (!adev->mman.buffer_funcs_enabled) {
650 		r = -ENODEV;
651 		goto memcpy;
652 	}
653 
654 	if (old_mem->mem_type == TTM_PL_VRAM &&
655 	    new_mem->mem_type == TTM_PL_SYSTEM) {
656 		r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
657 	} else if (old_mem->mem_type == TTM_PL_SYSTEM &&
658 		   new_mem->mem_type == TTM_PL_VRAM) {
659 		r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
660 	} else {
661 		r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu,
662 				     new_mem, old_mem);
663 	}
664 
665 	if (r) {
666 memcpy:
667 		/* Check that all memory is CPU accessible */
668 		if (!amdgpu_mem_visible(adev, old_mem) ||
669 		    !amdgpu_mem_visible(adev, new_mem)) {
670 			pr_err("Move buffer fallback to memcpy unavailable\n");
671 			return r;
672 		}
673 
674 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
675 		if (r)
676 			return r;
677 	}
678 
679 	if (bo->type == ttm_bo_type_device &&
680 	    new_mem->mem_type == TTM_PL_VRAM &&
681 	    old_mem->mem_type != TTM_PL_VRAM) {
682 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
683 		 * accesses the BO after it's moved.
684 		 */
685 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
686 	}
687 
688 	/* update statistics */
689 	atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
690 	return 0;
691 }
692 
693 /**
694  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
695  *
696  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
697  */
698 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
699 {
700 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
701 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
702 	struct drm_mm_node *mm_node = mem->mm_node;
703 
704 	mem->bus.addr = NULL;
705 	mem->bus.offset = 0;
706 	mem->bus.size = mem->num_pages << PAGE_SHIFT;
707 	mem->bus.base = 0;
708 	mem->bus.is_iomem = false;
709 	if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
710 		return -EINVAL;
711 	switch (mem->mem_type) {
712 	case TTM_PL_SYSTEM:
713 		/* system memory */
714 		return 0;
715 	case TTM_PL_TT:
716 		break;
717 	case TTM_PL_VRAM:
718 		mem->bus.offset = mem->start << PAGE_SHIFT;
719 		/* check if it's visible */
720 		if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size)
721 			return -EINVAL;
722 		/* Only physically contiguous buffers apply. In a contiguous
723 		 * buffer, size of the first mm_node would match the number of
724 		 * pages in ttm_mem_reg.
725 		 */
726 		if (adev->mman.aper_base_kaddr &&
727 		    (mm_node->size == mem->num_pages))
728 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
729 					mem->bus.offset;
730 
731 		mem->bus.base = adev->gmc.aper_base;
732 		mem->bus.is_iomem = true;
733 		break;
734 	default:
735 		return -EINVAL;
736 	}
737 	return 0;
738 }
739 
740 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
741 {
742 }
743 
744 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
745 					   unsigned long page_offset)
746 {
747 	struct drm_mm_node *mm;
748 	unsigned long offset = (page_offset << PAGE_SHIFT);
749 
750 	mm = amdgpu_find_mm_node(&bo->mem, &offset);
751 	return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start +
752 		(offset >> PAGE_SHIFT);
753 }
754 
755 /*
756  * TTM backend functions.
757  */
758 struct amdgpu_ttm_tt {
759 	struct ttm_dma_tt	ttm;
760 	struct drm_gem_object	*gobj;
761 	u64			offset;
762 	uint64_t		userptr;
763 	struct task_struct	*usertask;
764 	uint32_t		userflags;
765 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
766 	struct hmm_range	*range;
767 #endif
768 };
769 
770 #ifdef CONFIG_DRM_AMDGPU_USERPTR
771 /* flags used by HMM internal, not related to CPU/GPU PTE flags */
772 static const uint64_t hmm_range_flags[HMM_PFN_FLAG_MAX] = {
773 	(1 << 0), /* HMM_PFN_VALID */
774 	(1 << 1), /* HMM_PFN_WRITE */
775 };
776 
777 static const uint64_t hmm_range_values[HMM_PFN_VALUE_MAX] = {
778 	0xfffffffffffffffeUL, /* HMM_PFN_ERROR */
779 	0, /* HMM_PFN_NONE */
780 	0xfffffffffffffffcUL /* HMM_PFN_SPECIAL */
781 };
782 
783 /**
784  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
785  * memory and start HMM tracking CPU page table update
786  *
787  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
788  * once afterwards to stop HMM tracking
789  */
790 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct vm_page **pages)
791 {
792 	struct ttm_tt *ttm = bo->tbo.ttm;
793 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
794 	unsigned long start = gtt->userptr;
795 	struct vm_area_struct *vma;
796 	struct hmm_range *range;
797 	unsigned long timeout;
798 	struct mm_struct *mm;
799 	unsigned long i;
800 	int r = 0;
801 
802 	mm = bo->notifier.mm;
803 	if (unlikely(!mm)) {
804 		DRM_DEBUG_DRIVER("BO is not registered?\n");
805 		return -EFAULT;
806 	}
807 
808 	/* Another get_user_pages is running at the same time?? */
809 	if (WARN_ON(gtt->range))
810 		return -EFAULT;
811 
812 	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
813 		return -ESRCH;
814 
815 	range = kzalloc(sizeof(*range), GFP_KERNEL);
816 	if (unlikely(!range)) {
817 		r = -ENOMEM;
818 		goto out;
819 	}
820 	range->notifier = &bo->notifier;
821 	range->flags = hmm_range_flags;
822 	range->values = hmm_range_values;
823 	range->pfn_shift = PAGE_SHIFT;
824 	range->start = bo->notifier.interval_tree.start;
825 	range->end = bo->notifier.interval_tree.last + 1;
826 	range->default_flags = hmm_range_flags[HMM_PFN_VALID];
827 	if (!amdgpu_ttm_tt_is_readonly(ttm))
828 		range->default_flags |= range->flags[HMM_PFN_WRITE];
829 
830 	range->pfns = kvmalloc_array(ttm->num_pages, sizeof(*range->pfns),
831 				     GFP_KERNEL);
832 	if (unlikely(!range->pfns)) {
833 		r = -ENOMEM;
834 		goto out_free_ranges;
835 	}
836 
837 	down_read(&mm->mmap_sem);
838 	vma = find_vma(mm, start);
839 	if (unlikely(!vma || start < vma->vm_start)) {
840 		r = -EFAULT;
841 		goto out_unlock;
842 	}
843 	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
844 		vma->vm_file)) {
845 		r = -EPERM;
846 		goto out_unlock;
847 	}
848 	up_read(&mm->mmap_sem);
849 	timeout = jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
850 
851 retry:
852 	range->notifier_seq = mmu_interval_read_begin(&bo->notifier);
853 
854 	down_read(&mm->mmap_sem);
855 	r = hmm_range_fault(range);
856 	up_read(&mm->mmap_sem);
857 	if (unlikely(r <= 0)) {
858 		/*
859 		 * FIXME: This timeout should encompass the retry from
860 		 * mmu_interval_read_retry() as well.
861 		 */
862 		if ((r == 0 || r == -EBUSY) && !time_after(jiffies, timeout))
863 			goto retry;
864 		goto out_free_pfns;
865 	}
866 
867 	for (i = 0; i < ttm->num_pages; i++) {
868 		/* FIXME: The pages cannot be touched outside the notifier_lock */
869 		pages[i] = hmm_device_entry_to_page(range, range->pfns[i]);
870 		if (unlikely(!pages[i])) {
871 			pr_err("Page fault failed for pfn[%lu] = 0x%llx\n",
872 			       i, range->pfns[i]);
873 			r = -ENOMEM;
874 
875 			goto out_free_pfns;
876 		}
877 	}
878 
879 	gtt->range = range;
880 	mmput(mm);
881 
882 	return 0;
883 
884 out_unlock:
885 	up_read(&mm->mmap_sem);
886 out_free_pfns:
887 	kvfree(range->pfns);
888 out_free_ranges:
889 	kfree(range);
890 out:
891 	mmput(mm);
892 	return r;
893 }
894 
895 /**
896  * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
897  * Check if the pages backing this ttm range have been invalidated
898  *
899  * Returns: true if pages are still valid
900  */
901 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
902 {
903 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
904 	bool r = false;
905 
906 	if (!gtt || !gtt->userptr)
907 		return false;
908 
909 	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n",
910 		gtt->userptr, ttm->num_pages);
911 
912 	WARN_ONCE(!gtt->range || !gtt->range->pfns,
913 		"No user pages to check\n");
914 
915 	if (gtt->range) {
916 		/*
917 		 * FIXME: Must always hold notifier_lock for this, and must
918 		 * not ignore the return code.
919 		 */
920 		r = mmu_interval_read_retry(gtt->range->notifier,
921 					 gtt->range->notifier_seq);
922 		kvfree(gtt->range->pfns);
923 		kfree(gtt->range);
924 		gtt->range = NULL;
925 	}
926 
927 	return !r;
928 }
929 #endif
930 
931 /**
932  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
933  *
934  * Called by amdgpu_cs_list_validate(). This creates the page list
935  * that backs user memory and will ultimately be mapped into the device
936  * address space.
937  */
938 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct vm_page **pages)
939 {
940 	unsigned long i;
941 
942 	for (i = 0; i < ttm->num_pages; ++i)
943 		ttm->pages[i] = pages ? pages[i] : NULL;
944 }
945 
946 /**
947  * amdgpu_ttm_tt_pin_userptr - 	prepare the sg table with the user pages
948  *
949  * Called by amdgpu_ttm_backend_bind()
950  **/
951 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm)
952 {
953 	STUB();
954 	return -ENOSYS;
955 #ifdef notyet
956 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
957 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
958 	unsigned nents;
959 	int r;
960 
961 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
962 	enum dma_data_direction direction = write ?
963 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
964 
965 	/* Allocate an SG array and squash pages into it */
966 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
967 				      ttm->num_pages << PAGE_SHIFT,
968 				      GFP_KERNEL);
969 	if (r)
970 		goto release_sg;
971 
972 	/* Map SG to device */
973 	r = -ENOMEM;
974 	nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
975 	if (nents == 0)
976 		goto release_sg;
977 
978 	/* convert SG to linear array of pages and dma addresses */
979 	drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
980 					 gtt->ttm.dma_address, ttm->num_pages);
981 
982 	return 0;
983 
984 release_sg:
985 	kfree(ttm->sg);
986 	return r;
987 #endif
988 }
989 
990 /**
991  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
992  */
993 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm)
994 {
995 	STUB();
996 #ifdef notyet
997 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
998 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
999 
1000 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1001 	enum dma_data_direction direction = write ?
1002 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
1003 
1004 	/* double check that we don't free the table twice */
1005 	if (!ttm->sg->sgl)
1006 		return;
1007 
1008 	/* unmap the pages mapped to the device */
1009 	dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
1010 
1011 	sg_free_table(ttm->sg);
1012 
1013 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
1014 	if (gtt->range) {
1015 		unsigned long i;
1016 
1017 		for (i = 0; i < ttm->num_pages; i++) {
1018 			if (ttm->pages[i] !=
1019 				hmm_device_entry_to_page(gtt->range,
1020 					      gtt->range->pfns[i]))
1021 				break;
1022 		}
1023 
1024 		WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
1025 	}
1026 #endif
1027 #endif
1028 }
1029 
1030 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
1031 				struct ttm_buffer_object *tbo,
1032 				uint64_t flags)
1033 {
1034 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
1035 	struct ttm_tt *ttm = tbo->ttm;
1036 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1037 	int r;
1038 
1039 	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
1040 		uint64_t page_idx = 1;
1041 
1042 		r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
1043 				ttm->pages, gtt->ttm.dma_address, flags);
1044 		if (r)
1045 			goto gart_bind_fail;
1046 
1047 		/* The memory type of the first page defaults to UC. Now
1048 		 * modify the memory type to NC from the second page of
1049 		 * the BO onward.
1050 		 */
1051 		flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
1052 		flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
1053 
1054 		r = amdgpu_gart_bind(adev,
1055 				gtt->offset + (page_idx << PAGE_SHIFT),
1056 				ttm->num_pages - page_idx,
1057 				&ttm->pages[page_idx],
1058 				&(gtt->ttm.dma_address[page_idx]), flags);
1059 	} else {
1060 		r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1061 				     ttm->pages, gtt->ttm.dma_address, flags);
1062 	}
1063 
1064 gart_bind_fail:
1065 	if (r)
1066 		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1067 			  ttm->num_pages, gtt->offset);
1068 
1069 	return r;
1070 }
1071 
1072 /**
1073  * amdgpu_ttm_backend_bind - Bind GTT memory
1074  *
1075  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
1076  * This handles binding GTT memory to the device address space.
1077  */
1078 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm,
1079 				   struct ttm_mem_reg *bo_mem)
1080 {
1081 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1082 	struct amdgpu_ttm_tt *gtt = (void*)ttm;
1083 	uint64_t flags;
1084 	int r = 0;
1085 
1086 	if (gtt->userptr) {
1087 		r = amdgpu_ttm_tt_pin_userptr(ttm);
1088 		if (r) {
1089 			DRM_ERROR("failed to pin userptr\n");
1090 			return r;
1091 		}
1092 	}
1093 	if (!ttm->num_pages) {
1094 		WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
1095 		     ttm->num_pages, bo_mem, ttm);
1096 	}
1097 
1098 	if (bo_mem->mem_type == AMDGPU_PL_GDS ||
1099 	    bo_mem->mem_type == AMDGPU_PL_GWS ||
1100 	    bo_mem->mem_type == AMDGPU_PL_OA)
1101 		return -EINVAL;
1102 
1103 	if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
1104 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
1105 		return 0;
1106 	}
1107 
1108 	/* compute PTE flags relevant to this BO memory */
1109 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
1110 
1111 	/* bind pages into GART page tables */
1112 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
1113 	r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1114 		ttm->pages, gtt->ttm.dma_address, flags);
1115 
1116 	if (r)
1117 		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1118 			  ttm->num_pages, gtt->offset);
1119 	return r;
1120 }
1121 
1122 /**
1123  * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object
1124  */
1125 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1126 {
1127 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1128 	struct ttm_operation_ctx ctx = { false, false };
1129 	struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
1130 	struct ttm_mem_reg tmp;
1131 	struct ttm_placement placement;
1132 	struct ttm_place placements;
1133 	uint64_t addr, flags;
1134 	int r;
1135 
1136 	if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET)
1137 		return 0;
1138 
1139 	addr = amdgpu_gmc_agp_addr(bo);
1140 	if (addr != AMDGPU_BO_INVALID_OFFSET) {
1141 		bo->mem.start = addr >> PAGE_SHIFT;
1142 	} else {
1143 
1144 		/* allocate GART space */
1145 		tmp = bo->mem;
1146 		tmp.mm_node = NULL;
1147 		placement.num_placement = 1;
1148 		placement.placement = &placements;
1149 		placement.num_busy_placement = 1;
1150 		placement.busy_placement = &placements;
1151 		placements.fpfn = 0;
1152 		placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1153 		placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) |
1154 			TTM_PL_FLAG_TT;
1155 
1156 		r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1157 		if (unlikely(r))
1158 			return r;
1159 
1160 		/* compute PTE flags for this buffer object */
1161 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1162 
1163 		/* Bind pages */
1164 		gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1165 		r = amdgpu_ttm_gart_bind(adev, bo, flags);
1166 		if (unlikely(r)) {
1167 			ttm_bo_mem_put(bo, &tmp);
1168 			return r;
1169 		}
1170 
1171 		ttm_bo_mem_put(bo, &bo->mem);
1172 		bo->mem = tmp;
1173 	}
1174 
1175 	bo->offset = (bo->mem.start << PAGE_SHIFT) +
1176 		bo->bdev->man[bo->mem.mem_type].gpu_offset;
1177 
1178 	return 0;
1179 }
1180 
1181 /**
1182  * amdgpu_ttm_recover_gart - Rebind GTT pages
1183  *
1184  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1185  * rebind GTT pages during a GPU reset.
1186  */
1187 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1188 {
1189 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1190 	uint64_t flags;
1191 	int r;
1192 
1193 	if (!tbo->ttm)
1194 		return 0;
1195 
1196 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1197 	r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1198 
1199 	return r;
1200 }
1201 
1202 /**
1203  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1204  *
1205  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1206  * ttm_tt_destroy().
1207  */
1208 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm)
1209 {
1210 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1211 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1212 	int r;
1213 
1214 	/* if the pages have userptr pinning then clear that first */
1215 	if (gtt->userptr)
1216 		amdgpu_ttm_tt_unpin_userptr(ttm);
1217 
1218 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1219 		return 0;
1220 
1221 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1222 	r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1223 	if (r)
1224 		DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n",
1225 			  gtt->ttm.ttm.num_pages, gtt->offset);
1226 	return r;
1227 }
1228 
1229 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm)
1230 {
1231 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1232 
1233 #ifdef notyet
1234 	if (gtt->usertask)
1235 		put_task_struct(gtt->usertask);
1236 #endif
1237 
1238 	ttm_dma_tt_fini(&gtt->ttm);
1239 	kfree(gtt);
1240 }
1241 
1242 static struct ttm_backend_func amdgpu_backend_func = {
1243 	.bind = &amdgpu_ttm_backend_bind,
1244 	.unbind = &amdgpu_ttm_backend_unbind,
1245 	.destroy = &amdgpu_ttm_backend_destroy,
1246 };
1247 
1248 /**
1249  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1250  *
1251  * @bo: The buffer object to create a GTT ttm_tt object around
1252  *
1253  * Called by ttm_tt_create().
1254  */
1255 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1256 					   uint32_t page_flags)
1257 {
1258 	struct amdgpu_ttm_tt *gtt;
1259 
1260 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1261 	if (gtt == NULL) {
1262 		return NULL;
1263 	}
1264 	gtt->ttm.ttm.func = &amdgpu_backend_func;
1265 	gtt->gobj = &bo->base;
1266 
1267 	/* allocate space for the uninitialized page entries */
1268 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags)) {
1269 		kfree(gtt);
1270 		return NULL;
1271 	}
1272 	return &gtt->ttm.ttm;
1273 }
1274 
1275 /**
1276  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1277  *
1278  * Map the pages of a ttm_tt object to an address space visible
1279  * to the underlying device.
1280  */
1281 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm,
1282 			struct ttm_operation_ctx *ctx)
1283 {
1284 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1285 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1286 
1287 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1288 	if (gtt && gtt->userptr) {
1289 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1290 		if (!ttm->sg)
1291 			return -ENOMEM;
1292 
1293 		ttm->page_flags |= TTM_PAGE_FLAG_SG;
1294 		ttm->state = tt_unbound;
1295 		return 0;
1296 	}
1297 
1298 	if (ttm->page_flags & TTM_PAGE_FLAG_SG) {
1299 		if (!ttm->sg) {
1300 			struct dma_buf_attachment *attach;
1301 			struct sg_table *sgt;
1302 
1303 			attach = gtt->gobj->import_attach;
1304 #ifdef notyet
1305 			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
1306 			if (IS_ERR(sgt))
1307 				return PTR_ERR(sgt);
1308 #else
1309 			STUB();
1310 			return -ENOSYS;
1311 #endif
1312 
1313 			ttm->sg = sgt;
1314 		}
1315 
1316 		drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1317 						 gtt->ttm.dma_address,
1318 						 ttm->num_pages);
1319 		ttm->state = tt_unbound;
1320 		return 0;
1321 	}
1322 
1323 #ifdef CONFIG_SWIOTLB
1324 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1325 		return ttm_dma_populate(&gtt->ttm, adev->dev, ctx);
1326 	}
1327 #endif
1328 
1329 	/* fall back to generic helper to populate the page array
1330 	 * and map them to the device */
1331 	return ttm_populate_and_map_pages(adev->dev, &gtt->ttm, ctx);
1332 }
1333 
1334 /**
1335  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1336  *
1337  * Unmaps pages of a ttm_tt object from the device address space and
1338  * unpopulates the page array backing it.
1339  */
1340 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm)
1341 {
1342 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1343 	struct amdgpu_device *adev;
1344 
1345 	if (gtt && gtt->userptr) {
1346 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1347 		kfree(ttm->sg);
1348 		ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1349 		return;
1350 	}
1351 
1352 	if (ttm->sg && gtt->gobj->import_attach) {
1353 		struct dma_buf_attachment *attach;
1354 
1355 		attach = gtt->gobj->import_attach;
1356 #ifdef notyet
1357 		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1358 #else
1359 		STUB();
1360 #endif
1361 		ttm->sg = NULL;
1362 		return;
1363 	}
1364 
1365 	if (ttm->page_flags & TTM_PAGE_FLAG_SG)
1366 		return;
1367 
1368 	adev = amdgpu_ttm_adev(ttm->bdev);
1369 
1370 #ifdef CONFIG_SWIOTLB
1371 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1372 		ttm_dma_unpopulate(&gtt->ttm, adev->dev);
1373 		return;
1374 	}
1375 #endif
1376 
1377 	/* fall back to generic helper to unmap and unpopulate array */
1378 	ttm_unmap_and_unpopulate_pages(adev->dev, &gtt->ttm);
1379 }
1380 
1381 /**
1382  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1383  * task
1384  *
1385  * @ttm: The ttm_tt object to bind this userptr object to
1386  * @addr:  The address in the current tasks VM space to use
1387  * @flags: Requirements of userptr object.
1388  *
1389  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1390  * to current task
1391  */
1392 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr,
1393 			      uint32_t flags)
1394 {
1395 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1396 
1397 	if (gtt == NULL)
1398 		return -EINVAL;
1399 
1400 	gtt->userptr = addr;
1401 	gtt->userflags = flags;
1402 
1403 #ifdef notyet
1404 	if (gtt->usertask)
1405 		put_task_struct(gtt->usertask);
1406 	gtt->usertask = current->group_leader;
1407 	get_task_struct(gtt->usertask);
1408 #endif
1409 
1410 	return 0;
1411 }
1412 
1413 /**
1414  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1415  */
1416 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1417 {
1418 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1419 
1420 	if (gtt == NULL)
1421 		return NULL;
1422 
1423 	if (gtt->usertask == NULL)
1424 		return NULL;
1425 
1426 #ifdef notyet
1427 	return gtt->usertask->mm;
1428 #else
1429 	STUB();
1430 	return NULL;
1431 #endif
1432 }
1433 
1434 /**
1435  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1436  * address range for the current task.
1437  *
1438  */
1439 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1440 				  unsigned long end)
1441 {
1442 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1443 	unsigned long size;
1444 
1445 	if (gtt == NULL || !gtt->userptr)
1446 		return false;
1447 
1448 	/* Return false if no part of the ttm_tt object lies within
1449 	 * the range
1450 	 */
1451 	size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
1452 	if (gtt->userptr > end || gtt->userptr + size <= start)
1453 		return false;
1454 
1455 	return true;
1456 }
1457 
1458 /**
1459  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1460  */
1461 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1462 {
1463 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1464 
1465 	if (gtt == NULL || !gtt->userptr)
1466 		return false;
1467 
1468 	return true;
1469 }
1470 
1471 /**
1472  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1473  */
1474 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1475 {
1476 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1477 
1478 	if (gtt == NULL)
1479 		return false;
1480 
1481 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1482 }
1483 
1484 /**
1485  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1486  *
1487  * @ttm: The ttm_tt object to compute the flags for
1488  * @mem: The memory registry backing this ttm_tt object
1489  *
1490  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1491  */
1492 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem)
1493 {
1494 	uint64_t flags = 0;
1495 
1496 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1497 		flags |= AMDGPU_PTE_VALID;
1498 
1499 	if (mem && mem->mem_type == TTM_PL_TT) {
1500 		flags |= AMDGPU_PTE_SYSTEM;
1501 
1502 		if (ttm->caching_state == tt_cached)
1503 			flags |= AMDGPU_PTE_SNOOPED;
1504 	}
1505 
1506 	return flags;
1507 }
1508 
1509 /**
1510  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1511  *
1512  * @ttm: The ttm_tt object to compute the flags for
1513  * @mem: The memory registry backing this ttm_tt object
1514 
1515  * Figure out the flags to use for a VM PTE (Page Table Entry).
1516  */
1517 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1518 				 struct ttm_mem_reg *mem)
1519 {
1520 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1521 
1522 	flags |= adev->gart.gart_pte_flags;
1523 	flags |= AMDGPU_PTE_READABLE;
1524 
1525 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1526 		flags |= AMDGPU_PTE_WRITEABLE;
1527 
1528 	return flags;
1529 }
1530 
1531 /**
1532  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1533  * object.
1534  *
1535  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1536  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1537  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1538  * used to clean out a memory space.
1539  */
1540 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1541 					    const struct ttm_place *place)
1542 {
1543 	unsigned long num_pages = bo->mem.num_pages;
1544 	struct drm_mm_node *node = bo->mem.mm_node;
1545 	struct dma_resv_list *flist;
1546 	struct dma_fence *f;
1547 	int i;
1548 
1549 	if (bo->type == ttm_bo_type_kernel &&
1550 	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1551 		return false;
1552 
1553 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1554 	 * If true, then return false as any KFD process needs all its BOs to
1555 	 * be resident to run successfully
1556 	 */
1557 	flist = dma_resv_get_list(bo->base.resv);
1558 	if (flist) {
1559 		for (i = 0; i < flist->shared_count; ++i) {
1560 			f = rcu_dereference_protected(flist->shared[i],
1561 				dma_resv_held(bo->base.resv));
1562 #ifdef notyet
1563 			if (amdkfd_fence_check_mm(f, current->mm))
1564 				return false;
1565 #endif
1566 		}
1567 	}
1568 
1569 	switch (bo->mem.mem_type) {
1570 	case TTM_PL_TT:
1571 		return true;
1572 
1573 	case TTM_PL_VRAM:
1574 		/* Check each drm MM node individually */
1575 		while (num_pages) {
1576 			if (place->fpfn < (node->start + node->size) &&
1577 			    !(place->lpfn && place->lpfn <= node->start))
1578 				return true;
1579 
1580 			num_pages -= node->size;
1581 			++node;
1582 		}
1583 		return false;
1584 
1585 	default:
1586 		break;
1587 	}
1588 
1589 	return ttm_bo_eviction_valuable(bo, place);
1590 }
1591 
1592 /**
1593  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1594  *
1595  * @bo:  The buffer object to read/write
1596  * @offset:  Offset into buffer object
1597  * @buf:  Secondary buffer to write/read from
1598  * @len: Length in bytes of access
1599  * @write:  true if writing
1600  *
1601  * This is used to access VRAM that backs a buffer object via MMIO
1602  * access for debugging purposes.
1603  */
1604 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1605 				    unsigned long offset,
1606 				    void *buf, int len, int write)
1607 {
1608 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1609 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1610 	struct drm_mm_node *nodes;
1611 	uint32_t value = 0;
1612 	int ret = 0;
1613 	uint64_t pos;
1614 	unsigned long flags;
1615 
1616 	if (bo->mem.mem_type != TTM_PL_VRAM)
1617 		return -EIO;
1618 
1619 	nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset);
1620 	pos = (nodes->start << PAGE_SHIFT) + offset;
1621 
1622 	while (len && pos < adev->gmc.mc_vram_size) {
1623 		uint64_t aligned_pos = pos & ~(uint64_t)3;
1624 		uint64_t bytes = 4 - (pos & 3);
1625 		uint32_t shift = (pos & 3) * 8;
1626 		uint32_t mask = 0xffffffff << shift;
1627 
1628 		if (len < bytes) {
1629 			mask &= 0xffffffff >> (bytes - len) * 8;
1630 			bytes = len;
1631 		}
1632 
1633 		if (mask != 0xffffffff) {
1634 			spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1635 			WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1636 			WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1637 			if (!write || mask != 0xffffffff)
1638 				value = RREG32_NO_KIQ(mmMM_DATA);
1639 			if (write) {
1640 				value &= ~mask;
1641 				value |= (*(uint32_t *)buf << shift) & mask;
1642 				WREG32_NO_KIQ(mmMM_DATA, value);
1643 			}
1644 			spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1645 			if (!write) {
1646 				value = (value & mask) >> shift;
1647 				memcpy(buf, &value, bytes);
1648 			}
1649 		} else {
1650 			bytes = (nodes->start + nodes->size) << PAGE_SHIFT;
1651 			bytes = min(bytes - pos, (uint64_t)len & ~0x3ull);
1652 
1653 			amdgpu_device_vram_access(adev, pos, (uint32_t *)buf,
1654 						  bytes, write);
1655 		}
1656 
1657 		ret += bytes;
1658 		buf = (uint8_t *)buf + bytes;
1659 		pos += bytes;
1660 		len -= bytes;
1661 		if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
1662 			++nodes;
1663 			pos = (nodes->start << PAGE_SHIFT);
1664 		}
1665 	}
1666 
1667 	return ret;
1668 }
1669 
1670 static struct ttm_bo_driver amdgpu_bo_driver = {
1671 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1672 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1673 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1674 	.init_mem_type = &amdgpu_init_mem_type,
1675 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1676 	.evict_flags = &amdgpu_evict_flags,
1677 	.move = &amdgpu_bo_move,
1678 	.verify_access = &amdgpu_verify_access,
1679 	.move_notify = &amdgpu_bo_move_notify,
1680 	.release_notify = &amdgpu_bo_release_notify,
1681 	.fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
1682 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1683 	.io_mem_free = &amdgpu_ttm_io_mem_free,
1684 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1685 	.access_memory = &amdgpu_ttm_access_memory,
1686 	.del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1687 };
1688 
1689 /*
1690  * Firmware Reservation functions
1691  */
1692 /**
1693  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1694  *
1695  * @adev: amdgpu_device pointer
1696  *
1697  * free fw reserved vram if it has been reserved.
1698  */
1699 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1700 {
1701 	amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo,
1702 		NULL, &adev->fw_vram_usage.va);
1703 }
1704 
1705 /**
1706  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1707  *
1708  * @adev: amdgpu_device pointer
1709  *
1710  * create bo vram reservation from fw.
1711  */
1712 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1713 {
1714 	uint64_t vram_size = adev->gmc.visible_vram_size;
1715 
1716 	adev->fw_vram_usage.va = NULL;
1717 	adev->fw_vram_usage.reserved_bo = NULL;
1718 
1719 	if (adev->fw_vram_usage.size == 0 ||
1720 	    adev->fw_vram_usage.size > vram_size)
1721 		return 0;
1722 
1723 	return amdgpu_bo_create_kernel_at(adev,
1724 					  adev->fw_vram_usage.start_offset,
1725 					  adev->fw_vram_usage.size,
1726 					  AMDGPU_GEM_DOMAIN_VRAM,
1727 					  &adev->fw_vram_usage.reserved_bo,
1728 					  &adev->fw_vram_usage.va);
1729 }
1730 
1731 /*
1732  * Memoy training reservation functions
1733  */
1734 
1735 /**
1736  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1737  *
1738  * @adev: amdgpu_device pointer
1739  *
1740  * free memory training reserved vram if it has been reserved.
1741  */
1742 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1743 {
1744 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1745 
1746 	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1747 	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1748 	ctx->c2p_bo = NULL;
1749 
1750 	return 0;
1751 }
1752 
1753 static u64 amdgpu_ttm_training_get_c2p_offset(u64 vram_size)
1754 {
1755        if ((vram_size & (SZ_1M - 1)) < (SZ_4K + 1) )
1756                vram_size -= SZ_1M;
1757 
1758        return roundup2(vram_size, SZ_1M);
1759 }
1760 
1761 /**
1762  * amdgpu_ttm_training_reserve_vram_init - create bo vram reservation from memory training
1763  *
1764  * @adev: amdgpu_device pointer
1765  *
1766  * create bo vram reservation from memory training.
1767  */
1768 static int amdgpu_ttm_training_reserve_vram_init(struct amdgpu_device *adev)
1769 {
1770 	int ret;
1771 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1772 
1773 	memset(ctx, 0, sizeof(*ctx));
1774 	if (!adev->fw_vram_usage.mem_train_support) {
1775 		DRM_DEBUG("memory training does not support!\n");
1776 		return 0;
1777 	}
1778 
1779 	ctx->c2p_train_data_offset = amdgpu_ttm_training_get_c2p_offset(adev->gmc.mc_vram_size);
1780 	ctx->p2c_train_data_offset = (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1781 	ctx->train_data_size = GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1782 
1783 	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1784 		  ctx->train_data_size,
1785 		  ctx->p2c_train_data_offset,
1786 		  ctx->c2p_train_data_offset);
1787 
1788 	ret = amdgpu_bo_create_kernel_at(adev,
1789 					 ctx->c2p_train_data_offset,
1790 					 ctx->train_data_size,
1791 					 AMDGPU_GEM_DOMAIN_VRAM,
1792 					 &ctx->c2p_bo,
1793 					 NULL);
1794 	if (ret) {
1795 		DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1796 		amdgpu_ttm_training_reserve_vram_fini(adev);
1797 		return ret;
1798 	}
1799 
1800 	ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1801 	return 0;
1802 }
1803 
1804 /**
1805  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1806  * gtt/vram related fields.
1807  *
1808  * This initializes all of the memory space pools that the TTM layer
1809  * will need such as the GTT space (system memory mapped to the device),
1810  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1811  * can be mapped per VMID.
1812  */
1813 int amdgpu_ttm_init(struct amdgpu_device *adev)
1814 {
1815 	uint64_t gtt_size;
1816 	int r;
1817 	u64 vis_vram_limit;
1818 	void *stolen_vga_buf;
1819 
1820 	rw_init(&adev->mman.gtt_window_lock, "gttwin");
1821 
1822 	/* No others user of address space so set it to 0 */
1823 #ifdef notyet
1824 	r = ttm_bo_device_init(&adev->mman.bdev,
1825 			       &amdgpu_bo_driver,
1826 			       adev->ddev->anon_inode->i_mapping,
1827 			       adev->ddev->vma_offset_manager,
1828 			       dma_addressing_limited(adev->dev));
1829 #else
1830 	r = ttm_bo_device_init(&adev->mman.bdev,
1831 			       &amdgpu_bo_driver,
1832 			       /*adev->ddev->anon_inode->i_mapping*/ NULL,
1833 			       adev->ddev->vma_offset_manager,
1834 			       dma_addressing_limited(adev->dev));
1835 #endif
1836 	if (r) {
1837 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1838 		return r;
1839 	}
1840 	adev->mman.bdev.iot = adev->iot;
1841 	adev->mman.bdev.memt = adev->memt;
1842 	adev->mman.bdev.dmat = adev->dmat;
1843 	adev->mman.initialized = true;
1844 
1845 	/* We opt to avoid OOM on system pages allocations */
1846 	adev->mman.bdev.no_retry = true;
1847 
1848 	/* Initialize VRAM pool with all of VRAM divided into pages */
1849 	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM,
1850 				adev->gmc.real_vram_size >> PAGE_SHIFT);
1851 	if (r) {
1852 		DRM_ERROR("Failed initializing VRAM heap.\n");
1853 		return r;
1854 	}
1855 
1856 	/* Reduce size of CPU-visible VRAM if requested */
1857 	vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1858 	if (amdgpu_vis_vram_limit > 0 &&
1859 	    vis_vram_limit <= adev->gmc.visible_vram_size)
1860 		adev->gmc.visible_vram_size = vis_vram_limit;
1861 
1862 	/* Change the size here instead of the init above so only lpfn is affected */
1863 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1864 #ifdef CONFIG_64BIT
1865 #ifdef __linux__
1866 	adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1867 						adev->gmc.visible_vram_size);
1868 #else
1869 	if (bus_space_map(adev->memt, adev->gmc.aper_base,
1870 	    adev->gmc.visible_vram_size,
1871 	    BUS_SPACE_MAP_LINEAR | BUS_SPACE_MAP_PREFETCHABLE,
1872 	    &adev->mman.aper_bsh)) {
1873 		adev->mman.aper_base_kaddr = NULL;
1874 	} else {
1875 		adev->mman.aper_base_kaddr = bus_space_vaddr(adev->memt,
1876 		    adev->mman.aper_bsh);
1877 	}
1878 #endif
1879 #endif
1880 
1881 	/*
1882 	 *The reserved vram for firmware must be pinned to the specified
1883 	 *place on the VRAM, so reserve it early.
1884 	 */
1885 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1886 	if (r) {
1887 		return r;
1888 	}
1889 
1890 	/*
1891 	 *The reserved vram for memory training must be pinned to the specified
1892 	 *place on the VRAM, so reserve it early.
1893 	 */
1894 	if (!amdgpu_sriov_vf(adev)) {
1895 		r = amdgpu_ttm_training_reserve_vram_init(adev);
1896 		if (r)
1897 			return r;
1898 	}
1899 
1900 	/* allocate memory as required for VGA
1901 	 * This is used for VGA emulation and pre-OS scanout buffers to
1902 	 * avoid display artifacts while transitioning between pre-OS
1903 	 * and driver.  */
1904 	r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE,
1905 				    AMDGPU_GEM_DOMAIN_VRAM,
1906 				    &adev->stolen_vga_memory,
1907 				    NULL, &stolen_vga_buf);
1908 	if (r)
1909 		return r;
1910 
1911 	/*
1912 	 * reserve one TMR (64K) memory at the top of VRAM which holds
1913 	 * IP Discovery data and is protected by PSP.
1914 	 */
1915 	r = amdgpu_bo_create_kernel_at(adev,
1916 				       adev->gmc.real_vram_size - DISCOVERY_TMR_SIZE,
1917 				       DISCOVERY_TMR_SIZE,
1918 				       AMDGPU_GEM_DOMAIN_VRAM,
1919 				       &adev->discovery_memory,
1920 				       NULL);
1921 	if (r)
1922 		return r;
1923 
1924 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1925 		 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1926 
1927 	/* Compute GTT size, either bsaed on 3/4th the size of RAM size
1928 	 * or whatever the user passed on module init */
1929 	if (amdgpu_gtt_size == -1) {
1930 #ifdef __linux__
1931 		struct sysinfo si;
1932 
1933 		si_meminfo(&si);
1934 		gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1935 			       adev->gmc.mc_vram_size),
1936 			       ((uint64_t)si.totalram * si.mem_unit * 3/4));
1937 #else
1938 		gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1939 			       adev->gmc.mc_vram_size),
1940 			       ((uint64_t)ptoa(physmem) * 3/4));
1941 #endif
1942 	}
1943 	else
1944 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1945 
1946 	/* Initialize GTT memory pool */
1947 	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT);
1948 	if (r) {
1949 		DRM_ERROR("Failed initializing GTT heap.\n");
1950 		return r;
1951 	}
1952 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1953 		 (unsigned)(gtt_size / (1024 * 1024)));
1954 
1955 	/* Initialize various on-chip memory pools */
1956 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS,
1957 			   adev->gds.gds_size);
1958 	if (r) {
1959 		DRM_ERROR("Failed initializing GDS heap.\n");
1960 		return r;
1961 	}
1962 
1963 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS,
1964 			   adev->gds.gws_size);
1965 	if (r) {
1966 		DRM_ERROR("Failed initializing gws heap.\n");
1967 		return r;
1968 	}
1969 
1970 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA,
1971 			   adev->gds.oa_size);
1972 	if (r) {
1973 		DRM_ERROR("Failed initializing oa heap.\n");
1974 		return r;
1975 	}
1976 
1977 	return 0;
1978 }
1979 
1980 /**
1981  * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm
1982  */
1983 void amdgpu_ttm_late_init(struct amdgpu_device *adev)
1984 {
1985 	void *stolen_vga_buf;
1986 	/* return the VGA stolen memory (if any) back to VRAM */
1987 	amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, &stolen_vga_buf);
1988 }
1989 
1990 /**
1991  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1992  */
1993 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1994 {
1995 	if (!adev->mman.initialized)
1996 		return;
1997 
1998 	amdgpu_ttm_training_reserve_vram_fini(adev);
1999 	/* return the IP Discovery TMR memory back to VRAM */
2000 	amdgpu_bo_free_kernel(&adev->discovery_memory, NULL, NULL);
2001 	amdgpu_ttm_fw_reserve_vram_fini(adev);
2002 
2003 #ifdef __linux__
2004 	if (adev->mman.aper_base_kaddr)
2005 		iounmap(adev->mman.aper_base_kaddr);
2006 #else
2007 	if (adev->mman.aper_base_kaddr)
2008 		bus_space_unmap(adev->memt, adev->mman.aper_bsh,
2009 		    adev->gmc.visible_vram_size);
2010 #endif
2011 	adev->mman.aper_base_kaddr = NULL;
2012 
2013 	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM);
2014 	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT);
2015 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS);
2016 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS);
2017 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA);
2018 	ttm_bo_device_release(&adev->mman.bdev);
2019 	adev->mman.initialized = false;
2020 	DRM_INFO("amdgpu: ttm finalized\n");
2021 }
2022 
2023 /**
2024  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2025  *
2026  * @adev: amdgpu_device pointer
2027  * @enable: true when we can use buffer functions.
2028  *
2029  * Enable/disable use of buffer functions during suspend/resume. This should
2030  * only be called at bootup or when userspace isn't running.
2031  */
2032 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2033 {
2034 	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM];
2035 	uint64_t size;
2036 	int r;
2037 
2038 	if (!adev->mman.initialized || adev->in_gpu_reset ||
2039 	    adev->mman.buffer_funcs_enabled == enable)
2040 		return;
2041 
2042 	if (enable) {
2043 		struct amdgpu_ring *ring;
2044 		struct drm_gpu_scheduler *sched;
2045 
2046 		ring = adev->mman.buffer_funcs_ring;
2047 		sched = &ring->sched;
2048 		r = drm_sched_entity_init(&adev->mman.entity,
2049 				          DRM_SCHED_PRIORITY_KERNEL, &sched,
2050 					  1, NULL);
2051 		if (r) {
2052 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2053 				  r);
2054 			return;
2055 		}
2056 	} else {
2057 		drm_sched_entity_destroy(&adev->mman.entity);
2058 		dma_fence_put(man->move);
2059 		man->move = NULL;
2060 	}
2061 
2062 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
2063 	if (enable)
2064 		size = adev->gmc.real_vram_size;
2065 	else
2066 		size = adev->gmc.visible_vram_size;
2067 	man->size = size >> PAGE_SHIFT;
2068 	adev->mman.buffer_funcs_enabled = enable;
2069 }
2070 
2071 #ifdef __linux__
2072 
2073 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
2074 {
2075 	struct drm_file *file_priv = filp->private_data;
2076 	struct amdgpu_device *adev = file_priv->minor->dev->dev_private;
2077 
2078 	if (adev == NULL)
2079 		return -EINVAL;
2080 
2081 	return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
2082 }
2083 
2084 #else
2085 
2086 struct uvm_object *
2087 amdgpu_mmap(struct file *filp, vm_prot_t accessprot, voff_t off, vsize_t size)
2088 {
2089 	struct drm_file *file_priv = (void *)filp;
2090 	struct amdgpu_device *adev = file_priv->minor->dev->dev_private;
2091 
2092 	if (adev == NULL)
2093 		return NULL;
2094 
2095 	if (unlikely(off < DRM_FILE_PAGE_OFFSET))
2096 		return NULL;
2097 
2098 	return ttm_bo_mmap(filp, off, size, &adev->mman.bdev);
2099 }
2100 
2101 #endif
2102 
2103 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
2104 			     struct ttm_mem_reg *mem, unsigned num_pages,
2105 			     uint64_t offset, unsigned window,
2106 			     struct amdgpu_ring *ring,
2107 			     uint64_t *addr)
2108 {
2109 	struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
2110 	struct amdgpu_device *adev = ring->adev;
2111 	struct ttm_tt *ttm = bo->ttm;
2112 	struct amdgpu_job *job;
2113 	unsigned num_dw, num_bytes;
2114 	dma_addr_t *dma_address;
2115 	struct dma_fence *fence;
2116 	uint64_t src_addr, dst_addr;
2117 	uint64_t flags;
2118 	int r;
2119 
2120 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
2121 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
2122 
2123 	*addr = adev->gmc.gart_start;
2124 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
2125 		AMDGPU_GPU_PAGE_SIZE;
2126 
2127 	num_dw = roundup2(adev->mman.buffer_funcs->copy_num_dw, 8);
2128 	num_bytes = num_pages * 8;
2129 
2130 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job);
2131 	if (r)
2132 		return r;
2133 
2134 	src_addr = num_dw * 4;
2135 	src_addr += job->ibs[0].gpu_addr;
2136 
2137 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
2138 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
2139 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
2140 				dst_addr, num_bytes);
2141 
2142 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2143 	WARN_ON(job->ibs[0].length_dw > num_dw);
2144 
2145 	dma_address = &gtt->ttm.dma_address[offset >> PAGE_SHIFT];
2146 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem);
2147 	r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
2148 			    &job->ibs[0].ptr[num_dw]);
2149 	if (r)
2150 		goto error_free;
2151 
2152 	r = amdgpu_job_submit(job, &adev->mman.entity,
2153 			      AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
2154 	if (r)
2155 		goto error_free;
2156 
2157 	dma_fence_put(fence);
2158 
2159 	return r;
2160 
2161 error_free:
2162 	amdgpu_job_free(job);
2163 	return r;
2164 }
2165 
2166 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2167 		       uint64_t dst_offset, uint32_t byte_count,
2168 		       struct dma_resv *resv,
2169 		       struct dma_fence **fence, bool direct_submit,
2170 		       bool vm_needs_flush)
2171 {
2172 	struct amdgpu_device *adev = ring->adev;
2173 	struct amdgpu_job *job;
2174 
2175 	uint32_t max_bytes;
2176 	unsigned num_loops, num_dw;
2177 	unsigned i;
2178 	int r;
2179 
2180 	if (direct_submit && !ring->sched.ready) {
2181 		DRM_ERROR("Trying to move memory with ring turned off.\n");
2182 		return -EINVAL;
2183 	}
2184 
2185 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2186 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2187 	num_dw = roundup2(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2188 
2189 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2190 	if (r)
2191 		return r;
2192 
2193 	if (vm_needs_flush) {
2194 		job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
2195 		job->vm_needs_flush = true;
2196 	}
2197 	if (resv) {
2198 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2199 				     AMDGPU_SYNC_ALWAYS,
2200 				     AMDGPU_FENCE_OWNER_UNDEFINED);
2201 		if (r) {
2202 			DRM_ERROR("sync failed (%d).\n", r);
2203 			goto error_free;
2204 		}
2205 	}
2206 
2207 	for (i = 0; i < num_loops; i++) {
2208 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2209 
2210 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2211 					dst_offset, cur_size_in_bytes);
2212 
2213 		src_offset += cur_size_in_bytes;
2214 		dst_offset += cur_size_in_bytes;
2215 		byte_count -= cur_size_in_bytes;
2216 	}
2217 
2218 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2219 	WARN_ON(job->ibs[0].length_dw > num_dw);
2220 	if (direct_submit)
2221 		r = amdgpu_job_submit_direct(job, ring, fence);
2222 	else
2223 		r = amdgpu_job_submit(job, &adev->mman.entity,
2224 				      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2225 	if (r)
2226 		goto error_free;
2227 
2228 	return r;
2229 
2230 error_free:
2231 	amdgpu_job_free(job);
2232 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2233 	return r;
2234 }
2235 
2236 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2237 		       uint32_t src_data,
2238 		       struct dma_resv *resv,
2239 		       struct dma_fence **fence)
2240 {
2241 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2242 	uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2243 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2244 
2245 	struct drm_mm_node *mm_node;
2246 	unsigned long num_pages;
2247 	unsigned int num_loops, num_dw;
2248 
2249 	struct amdgpu_job *job;
2250 	int r;
2251 
2252 	if (!adev->mman.buffer_funcs_enabled) {
2253 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2254 		return -EINVAL;
2255 	}
2256 
2257 	if (bo->tbo.mem.mem_type == TTM_PL_TT) {
2258 		r = amdgpu_ttm_alloc_gart(&bo->tbo);
2259 		if (r)
2260 			return r;
2261 	}
2262 
2263 	num_pages = bo->tbo.num_pages;
2264 	mm_node = bo->tbo.mem.mm_node;
2265 	num_loops = 0;
2266 	while (num_pages) {
2267 		uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2268 
2269 		num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes);
2270 		num_pages -= mm_node->size;
2271 		++mm_node;
2272 	}
2273 	num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2274 
2275 	/* for IB padding */
2276 	num_dw += 64;
2277 
2278 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2279 	if (r)
2280 		return r;
2281 
2282 	if (resv) {
2283 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2284 				     AMDGPU_SYNC_ALWAYS,
2285 				     AMDGPU_FENCE_OWNER_UNDEFINED);
2286 		if (r) {
2287 			DRM_ERROR("sync failed (%d).\n", r);
2288 			goto error_free;
2289 		}
2290 	}
2291 
2292 	num_pages = bo->tbo.num_pages;
2293 	mm_node = bo->tbo.mem.mm_node;
2294 
2295 	while (num_pages) {
2296 		uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2297 		uint64_t dst_addr;
2298 
2299 		dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
2300 		while (byte_count) {
2301 			uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count,
2302 							   max_bytes);
2303 
2304 			amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
2305 						dst_addr, cur_size_in_bytes);
2306 
2307 			dst_addr += cur_size_in_bytes;
2308 			byte_count -= cur_size_in_bytes;
2309 		}
2310 
2311 		num_pages -= mm_node->size;
2312 		++mm_node;
2313 	}
2314 
2315 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2316 	WARN_ON(job->ibs[0].length_dw > num_dw);
2317 	r = amdgpu_job_submit(job, &adev->mman.entity,
2318 			      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2319 	if (r)
2320 		goto error_free;
2321 
2322 	return 0;
2323 
2324 error_free:
2325 	amdgpu_job_free(job);
2326 	return r;
2327 }
2328 
2329 #if defined(CONFIG_DEBUG_FS)
2330 
2331 static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
2332 {
2333 	struct drm_info_node *node = (struct drm_info_node *)m->private;
2334 	unsigned ttm_pl = (uintptr_t)node->info_ent->data;
2335 	struct drm_device *dev = node->minor->dev;
2336 	struct amdgpu_device *adev = dev->dev_private;
2337 	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl];
2338 	struct drm_printer p = drm_seq_file_printer(m);
2339 
2340 	man->func->debug(man, &p);
2341 	return 0;
2342 }
2343 
2344 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
2345 	{"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM},
2346 	{"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT},
2347 	{"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS},
2348 	{"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS},
2349 	{"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA},
2350 	{"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
2351 #ifdef CONFIG_SWIOTLB
2352 	{"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
2353 #endif
2354 };
2355 
2356 /**
2357  * amdgpu_ttm_vram_read - Linear read access to VRAM
2358  *
2359  * Accesses VRAM via MMIO for debugging purposes.
2360  */
2361 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2362 				    size_t size, loff_t *pos)
2363 {
2364 	struct amdgpu_device *adev = file_inode(f)->i_private;
2365 	ssize_t result = 0;
2366 
2367 	if (size & 0x3 || *pos & 0x3)
2368 		return -EINVAL;
2369 
2370 	if (*pos >= adev->gmc.mc_vram_size)
2371 		return -ENXIO;
2372 
2373 	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2374 	while (size) {
2375 		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2376 		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2377 
2378 		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2379 		if (copy_to_user(buf, value, bytes))
2380 			return -EFAULT;
2381 
2382 		result += bytes;
2383 		buf += bytes;
2384 		*pos += bytes;
2385 		size -= bytes;
2386 	}
2387 
2388 	return result;
2389 }
2390 
2391 /**
2392  * amdgpu_ttm_vram_write - Linear write access to VRAM
2393  *
2394  * Accesses VRAM via MMIO for debugging purposes.
2395  */
2396 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2397 				    size_t size, loff_t *pos)
2398 {
2399 	struct amdgpu_device *adev = file_inode(f)->i_private;
2400 	ssize_t result = 0;
2401 	int r;
2402 
2403 	if (size & 0x3 || *pos & 0x3)
2404 		return -EINVAL;
2405 
2406 	if (*pos >= adev->gmc.mc_vram_size)
2407 		return -ENXIO;
2408 
2409 	while (size) {
2410 		unsigned long flags;
2411 		uint32_t value;
2412 
2413 		if (*pos >= adev->gmc.mc_vram_size)
2414 			return result;
2415 
2416 		r = get_user(value, (uint32_t *)buf);
2417 		if (r)
2418 			return r;
2419 
2420 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2421 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2422 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2423 		WREG32_NO_KIQ(mmMM_DATA, value);
2424 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2425 
2426 		result += 4;
2427 		buf += 4;
2428 		*pos += 4;
2429 		size -= 4;
2430 	}
2431 
2432 	return result;
2433 }
2434 
2435 static const struct file_operations amdgpu_ttm_vram_fops = {
2436 	.owner = THIS_MODULE,
2437 	.read = amdgpu_ttm_vram_read,
2438 	.write = amdgpu_ttm_vram_write,
2439 	.llseek = default_llseek,
2440 };
2441 
2442 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2443 
2444 /**
2445  * amdgpu_ttm_gtt_read - Linear read access to GTT memory
2446  */
2447 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
2448 				   size_t size, loff_t *pos)
2449 {
2450 	struct amdgpu_device *adev = file_inode(f)->i_private;
2451 	ssize_t result = 0;
2452 	int r;
2453 
2454 	while (size) {
2455 		loff_t p = *pos / PAGE_SIZE;
2456 		unsigned off = *pos & PAGE_MASK;
2457 		size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
2458 		struct vm_page *page;
2459 		void *ptr;
2460 
2461 		if (p >= adev->gart.num_cpu_pages)
2462 			return result;
2463 
2464 		page = adev->gart.pages[p];
2465 		if (page) {
2466 			ptr = kmap(page);
2467 			ptr += off;
2468 
2469 			r = copy_to_user(buf, ptr, cur_size);
2470 			kunmap(adev->gart.pages[p]);
2471 		} else
2472 			r = clear_user(buf, cur_size);
2473 
2474 		if (r)
2475 			return -EFAULT;
2476 
2477 		result += cur_size;
2478 		buf += cur_size;
2479 		*pos += cur_size;
2480 		size -= cur_size;
2481 	}
2482 
2483 	return result;
2484 }
2485 
2486 static const struct file_operations amdgpu_ttm_gtt_fops = {
2487 	.owner = THIS_MODULE,
2488 	.read = amdgpu_ttm_gtt_read,
2489 	.llseek = default_llseek
2490 };
2491 
2492 #endif
2493 
2494 /**
2495  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2496  *
2497  * This function is used to read memory that has been mapped to the
2498  * GPU and the known addresses are not physical addresses but instead
2499  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2500  */
2501 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2502 				 size_t size, loff_t *pos)
2503 {
2504 	struct amdgpu_device *adev = file_inode(f)->i_private;
2505 	struct iommu_domain *dom;
2506 	ssize_t result = 0;
2507 	int r;
2508 
2509 	/* retrieve the IOMMU domain if any for this device */
2510 	dom = iommu_get_domain_for_dev(adev->dev);
2511 
2512 	while (size) {
2513 		phys_addr_t addr = *pos & ~PAGE_MASK;
2514 		loff_t off = *pos & PAGE_MASK;
2515 		size_t bytes = PAGE_SIZE - off;
2516 		unsigned long pfn;
2517 		struct vm_page *p;
2518 		void *ptr;
2519 
2520 		bytes = bytes < size ? bytes : size;
2521 
2522 		/* Translate the bus address to a physical address.  If
2523 		 * the domain is NULL it means there is no IOMMU active
2524 		 * and the address translation is the identity
2525 		 */
2526 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2527 
2528 		pfn = addr >> PAGE_SHIFT;
2529 		if (!pfn_valid(pfn))
2530 			return -EPERM;
2531 
2532 		p = pfn_to_page(pfn);
2533 		if (p->mapping != adev->mman.bdev.dev_mapping)
2534 			return -EPERM;
2535 
2536 		ptr = kmap(p);
2537 		r = copy_to_user(buf, ptr + off, bytes);
2538 		kunmap(p);
2539 		if (r)
2540 			return -EFAULT;
2541 
2542 		size -= bytes;
2543 		*pos += bytes;
2544 		result += bytes;
2545 	}
2546 
2547 	return result;
2548 }
2549 
2550 /**
2551  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2552  *
2553  * This function is used to write memory that has been mapped to the
2554  * GPU and the known addresses are not physical addresses but instead
2555  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2556  */
2557 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2558 				 size_t size, loff_t *pos)
2559 {
2560 	struct amdgpu_device *adev = file_inode(f)->i_private;
2561 	struct iommu_domain *dom;
2562 	ssize_t result = 0;
2563 	int r;
2564 
2565 	dom = iommu_get_domain_for_dev(adev->dev);
2566 
2567 	while (size) {
2568 		phys_addr_t addr = *pos & ~PAGE_MASK;
2569 		loff_t off = *pos & PAGE_MASK;
2570 		size_t bytes = PAGE_SIZE - off;
2571 		unsigned long pfn;
2572 		struct vm_page *p;
2573 		void *ptr;
2574 
2575 		bytes = bytes < size ? bytes : size;
2576 
2577 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2578 
2579 		pfn = addr >> PAGE_SHIFT;
2580 		if (!pfn_valid(pfn))
2581 			return -EPERM;
2582 
2583 		p = pfn_to_page(pfn);
2584 		if (p->mapping != adev->mman.bdev.dev_mapping)
2585 			return -EPERM;
2586 
2587 		ptr = kmap(p);
2588 		r = copy_from_user(ptr + off, buf, bytes);
2589 		kunmap(p);
2590 		if (r)
2591 			return -EFAULT;
2592 
2593 		size -= bytes;
2594 		*pos += bytes;
2595 		result += bytes;
2596 	}
2597 
2598 	return result;
2599 }
2600 
2601 static const struct file_operations amdgpu_ttm_iomem_fops = {
2602 	.owner = THIS_MODULE,
2603 	.read = amdgpu_iomem_read,
2604 	.write = amdgpu_iomem_write,
2605 	.llseek = default_llseek
2606 };
2607 
2608 static const struct {
2609 	char *name;
2610 	const struct file_operations *fops;
2611 	int domain;
2612 } ttm_debugfs_entries[] = {
2613 	{ "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
2614 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2615 	{ "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
2616 #endif
2617 	{ "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
2618 };
2619 
2620 #endif
2621 
2622 int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2623 {
2624 #if defined(CONFIG_DEBUG_FS)
2625 	unsigned count;
2626 
2627 	struct drm_minor *minor = adev->ddev->primary;
2628 	struct dentry *ent, *root = minor->debugfs_root;
2629 
2630 	for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
2631 		ent = debugfs_create_file(
2632 				ttm_debugfs_entries[count].name,
2633 				S_IFREG | S_IRUGO, root,
2634 				adev,
2635 				ttm_debugfs_entries[count].fops);
2636 		if (IS_ERR(ent))
2637 			return PTR_ERR(ent);
2638 		if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
2639 			i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
2640 		else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
2641 			i_size_write(ent->d_inode, adev->gmc.gart_size);
2642 		adev->mman.debugfs_entries[count] = ent;
2643 	}
2644 
2645 	count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
2646 
2647 #ifdef CONFIG_SWIOTLB
2648 	if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
2649 		--count;
2650 #endif
2651 
2652 	return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
2653 #else
2654 	return 0;
2655 #endif
2656 }
2657