1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com> 30 * Dave Airlie 31 */ 32 33 #include <linux/dma-mapping.h> 34 #include <linux/iommu.h> 35 #include <linux/hmm.h> 36 #include <linux/pagemap.h> 37 #include <linux/sched/task.h> 38 #include <linux/sched/mm.h> 39 #include <linux/seq_file.h> 40 #include <linux/slab.h> 41 #include <linux/swap.h> 42 #include <linux/swiotlb.h> 43 #include <linux/dma-buf.h> 44 #include <linux/sizes.h> 45 46 #include <drm/ttm/ttm_bo_api.h> 47 #include <drm/ttm/ttm_bo_driver.h> 48 #include <drm/ttm/ttm_placement.h> 49 #include <drm/ttm/ttm_module.h> 50 #include <drm/ttm/ttm_page_alloc.h> 51 52 #include <drm/drm_debugfs.h> 53 #include <drm/amdgpu_drm.h> 54 55 #include "amdgpu.h" 56 #include "amdgpu_object.h" 57 #include "amdgpu_trace.h" 58 #include "amdgpu_amdkfd.h" 59 #include "amdgpu_sdma.h" 60 #include "amdgpu_ras.h" 61 #include "bif/bif_4_1_d.h" 62 63 #define AMDGPU_TTM_VRAM_MAX_DW_READ (size_t)128 64 65 #define DRM_FILE_PAGE_OFFSET (0x100000000ULL >> PAGE_SHIFT) 66 67 static int amdgpu_map_buffer(struct ttm_buffer_object *bo, 68 struct ttm_mem_reg *mem, unsigned num_pages, 69 uint64_t offset, unsigned window, 70 struct amdgpu_ring *ring, 71 uint64_t *addr); 72 73 /** 74 * amdgpu_init_mem_type - Initialize a memory manager for a specific type of 75 * memory request. 76 * 77 * @bdev: The TTM BO device object (contains a reference to amdgpu_device) 78 * @type: The type of memory requested 79 * @man: The memory type manager for each domain 80 * 81 * This is called by ttm_bo_init_mm() when a buffer object is being 82 * initialized. 83 */ 84 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type, 85 struct ttm_mem_type_manager *man) 86 { 87 struct amdgpu_device *adev; 88 89 adev = amdgpu_ttm_adev(bdev); 90 91 switch (type) { 92 case TTM_PL_SYSTEM: 93 /* System memory */ 94 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE; 95 man->available_caching = TTM_PL_MASK_CACHING; 96 man->default_caching = TTM_PL_FLAG_CACHED; 97 break; 98 case TTM_PL_TT: 99 /* GTT memory */ 100 man->func = &amdgpu_gtt_mgr_func; 101 man->gpu_offset = adev->gmc.gart_start; 102 man->available_caching = TTM_PL_MASK_CACHING; 103 man->default_caching = TTM_PL_FLAG_CACHED; 104 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA; 105 break; 106 case TTM_PL_VRAM: 107 /* "On-card" video ram */ 108 man->func = &amdgpu_vram_mgr_func; 109 man->gpu_offset = adev->gmc.vram_start; 110 man->flags = TTM_MEMTYPE_FLAG_FIXED | 111 TTM_MEMTYPE_FLAG_MAPPABLE; 112 man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC; 113 man->default_caching = TTM_PL_FLAG_WC; 114 break; 115 case AMDGPU_PL_GDS: 116 case AMDGPU_PL_GWS: 117 case AMDGPU_PL_OA: 118 /* On-chip GDS memory*/ 119 man->func = &ttm_bo_manager_func; 120 man->gpu_offset = 0; 121 man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA; 122 man->available_caching = TTM_PL_FLAG_UNCACHED; 123 man->default_caching = TTM_PL_FLAG_UNCACHED; 124 break; 125 default: 126 DRM_ERROR("Unsupported memory type %u\n", (unsigned)type); 127 return -EINVAL; 128 } 129 return 0; 130 } 131 132 /** 133 * amdgpu_evict_flags - Compute placement flags 134 * 135 * @bo: The buffer object to evict 136 * @placement: Possible destination(s) for evicted BO 137 * 138 * Fill in placement data when ttm_bo_evict() is called 139 */ 140 static void amdgpu_evict_flags(struct ttm_buffer_object *bo, 141 struct ttm_placement *placement) 142 { 143 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 144 struct amdgpu_bo *abo; 145 static const struct ttm_place placements = { 146 .fpfn = 0, 147 .lpfn = 0, 148 .flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM 149 }; 150 151 /* Don't handle scatter gather BOs */ 152 if (bo->type == ttm_bo_type_sg) { 153 placement->num_placement = 0; 154 placement->num_busy_placement = 0; 155 return; 156 } 157 158 /* Object isn't an AMDGPU object so ignore */ 159 if (!amdgpu_bo_is_amdgpu_bo(bo)) { 160 placement->placement = &placements; 161 placement->busy_placement = &placements; 162 placement->num_placement = 1; 163 placement->num_busy_placement = 1; 164 return; 165 } 166 167 abo = ttm_to_amdgpu_bo(bo); 168 switch (bo->mem.mem_type) { 169 case AMDGPU_PL_GDS: 170 case AMDGPU_PL_GWS: 171 case AMDGPU_PL_OA: 172 placement->num_placement = 0; 173 placement->num_busy_placement = 0; 174 return; 175 176 case TTM_PL_VRAM: 177 if (!adev->mman.buffer_funcs_enabled) { 178 /* Move to system memory */ 179 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 180 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 181 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) && 182 amdgpu_bo_in_cpu_visible_vram(abo)) { 183 184 /* Try evicting to the CPU inaccessible part of VRAM 185 * first, but only set GTT as busy placement, so this 186 * BO will be evicted to GTT rather than causing other 187 * BOs to be evicted from VRAM 188 */ 189 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM | 190 AMDGPU_GEM_DOMAIN_GTT); 191 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT; 192 abo->placements[0].lpfn = 0; 193 abo->placement.busy_placement = &abo->placements[1]; 194 abo->placement.num_busy_placement = 1; 195 } else { 196 /* Move to GTT memory */ 197 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT); 198 } 199 break; 200 case TTM_PL_TT: 201 default: 202 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 203 break; 204 } 205 *placement = abo->placement; 206 } 207 208 /** 209 * amdgpu_verify_access - Verify access for a mmap call 210 * 211 * @bo: The buffer object to map 212 * @filp: The file pointer from the process performing the mmap 213 * 214 * This is called by ttm_bo_mmap() to verify whether a process 215 * has the right to mmap a BO to their process space. 216 */ 217 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp) 218 { 219 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 220 221 /* 222 * Don't verify access for KFD BOs. They don't have a GEM 223 * object associated with them. 224 */ 225 if (abo->kfd_bo) 226 return 0; 227 228 if (amdgpu_ttm_tt_get_usermm(bo->ttm)) 229 return -EPERM; 230 return drm_vma_node_verify_access(&abo->tbo.base.vma_node, filp); 231 } 232 233 /** 234 * amdgpu_move_null - Register memory for a buffer object 235 * 236 * @bo: The bo to assign the memory to 237 * @new_mem: The memory to be assigned. 238 * 239 * Assign the memory from new_mem to the memory of the buffer object bo. 240 */ 241 static void amdgpu_move_null(struct ttm_buffer_object *bo, 242 struct ttm_mem_reg *new_mem) 243 { 244 struct ttm_mem_reg *old_mem = &bo->mem; 245 246 BUG_ON(old_mem->mm_node != NULL); 247 *old_mem = *new_mem; 248 new_mem->mm_node = NULL; 249 } 250 251 /** 252 * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer. 253 * 254 * @bo: The bo to assign the memory to. 255 * @mm_node: Memory manager node for drm allocator. 256 * @mem: The region where the bo resides. 257 * 258 */ 259 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo, 260 struct drm_mm_node *mm_node, 261 struct ttm_mem_reg *mem) 262 { 263 uint64_t addr = 0; 264 265 if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) { 266 addr = mm_node->start << PAGE_SHIFT; 267 addr += bo->bdev->man[mem->mem_type].gpu_offset; 268 } 269 return addr; 270 } 271 272 /** 273 * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to 274 * @offset. It also modifies the offset to be within the drm_mm_node returned 275 * 276 * @mem: The region where the bo resides. 277 * @offset: The offset that drm_mm_node is used for finding. 278 * 279 */ 280 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem, 281 unsigned long *offset) 282 { 283 struct drm_mm_node *mm_node = mem->mm_node; 284 285 while (*offset >= (mm_node->size << PAGE_SHIFT)) { 286 *offset -= (mm_node->size << PAGE_SHIFT); 287 ++mm_node; 288 } 289 return mm_node; 290 } 291 292 /** 293 * amdgpu_copy_ttm_mem_to_mem - Helper function for copy 294 * 295 * The function copies @size bytes from {src->mem + src->offset} to 296 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a 297 * move and different for a BO to BO copy. 298 * 299 * @f: Returns the last fence if multiple jobs are submitted. 300 */ 301 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev, 302 struct amdgpu_copy_mem *src, 303 struct amdgpu_copy_mem *dst, 304 uint64_t size, 305 struct dma_resv *resv, 306 struct dma_fence **f) 307 { 308 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 309 struct drm_mm_node *src_mm, *dst_mm; 310 uint64_t src_node_start, dst_node_start, src_node_size, 311 dst_node_size, src_page_offset, dst_page_offset; 312 struct dma_fence *fence = NULL; 313 int r = 0; 314 const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE * 315 AMDGPU_GPU_PAGE_SIZE); 316 317 if (!adev->mman.buffer_funcs_enabled) { 318 DRM_ERROR("Trying to move memory with ring turned off.\n"); 319 return -EINVAL; 320 } 321 322 src_mm = amdgpu_find_mm_node(src->mem, &src->offset); 323 src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) + 324 src->offset; 325 src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset; 326 src_page_offset = src_node_start & (PAGE_SIZE - 1); 327 328 dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset); 329 dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) + 330 dst->offset; 331 dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset; 332 dst_page_offset = dst_node_start & (PAGE_SIZE - 1); 333 334 mutex_lock(&adev->mman.gtt_window_lock); 335 336 while (size) { 337 unsigned long cur_size; 338 uint64_t from = src_node_start, to = dst_node_start; 339 struct dma_fence *next; 340 341 /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst 342 * begins at an offset, then adjust the size accordingly 343 */ 344 cur_size = min3(min(src_node_size, dst_node_size), size, 345 GTT_MAX_BYTES); 346 if (cur_size + src_page_offset > GTT_MAX_BYTES || 347 cur_size + dst_page_offset > GTT_MAX_BYTES) 348 cur_size -= max(src_page_offset, dst_page_offset); 349 350 /* Map only what needs to be accessed. Map src to window 0 and 351 * dst to window 1 352 */ 353 if (src->mem->start == AMDGPU_BO_INVALID_OFFSET) { 354 r = amdgpu_map_buffer(src->bo, src->mem, 355 PFN_UP(cur_size + src_page_offset), 356 src_node_start, 0, ring, 357 &from); 358 if (r) 359 goto error; 360 /* Adjust the offset because amdgpu_map_buffer returns 361 * start of mapped page 362 */ 363 from += src_page_offset; 364 } 365 366 if (dst->mem->start == AMDGPU_BO_INVALID_OFFSET) { 367 r = amdgpu_map_buffer(dst->bo, dst->mem, 368 PFN_UP(cur_size + dst_page_offset), 369 dst_node_start, 1, ring, 370 &to); 371 if (r) 372 goto error; 373 to += dst_page_offset; 374 } 375 376 r = amdgpu_copy_buffer(ring, from, to, cur_size, 377 resv, &next, false, true); 378 if (r) 379 goto error; 380 381 dma_fence_put(fence); 382 fence = next; 383 384 size -= cur_size; 385 if (!size) 386 break; 387 388 src_node_size -= cur_size; 389 if (!src_node_size) { 390 src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm, 391 src->mem); 392 src_node_size = (src_mm->size << PAGE_SHIFT); 393 src_page_offset = 0; 394 } else { 395 src_node_start += cur_size; 396 src_page_offset = src_node_start & (PAGE_SIZE - 1); 397 } 398 dst_node_size -= cur_size; 399 if (!dst_node_size) { 400 dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm, 401 dst->mem); 402 dst_node_size = (dst_mm->size << PAGE_SHIFT); 403 dst_page_offset = 0; 404 } else { 405 dst_node_start += cur_size; 406 dst_page_offset = dst_node_start & (PAGE_SIZE - 1); 407 } 408 } 409 error: 410 mutex_unlock(&adev->mman.gtt_window_lock); 411 if (f) 412 *f = dma_fence_get(fence); 413 dma_fence_put(fence); 414 return r; 415 } 416 417 /** 418 * amdgpu_move_blit - Copy an entire buffer to another buffer 419 * 420 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to 421 * help move buffers to and from VRAM. 422 */ 423 static int amdgpu_move_blit(struct ttm_buffer_object *bo, 424 bool evict, bool no_wait_gpu, 425 struct ttm_mem_reg *new_mem, 426 struct ttm_mem_reg *old_mem) 427 { 428 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 429 struct amdgpu_copy_mem src, dst; 430 struct dma_fence *fence = NULL; 431 int r; 432 433 src.bo = bo; 434 dst.bo = bo; 435 src.mem = old_mem; 436 dst.mem = new_mem; 437 src.offset = 0; 438 dst.offset = 0; 439 440 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst, 441 new_mem->num_pages << PAGE_SHIFT, 442 bo->base.resv, &fence); 443 if (r) 444 goto error; 445 446 /* clear the space being freed */ 447 if (old_mem->mem_type == TTM_PL_VRAM && 448 (ttm_to_amdgpu_bo(bo)->flags & 449 AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) { 450 struct dma_fence *wipe_fence = NULL; 451 452 r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON, 453 NULL, &wipe_fence); 454 if (r) { 455 goto error; 456 } else if (wipe_fence) { 457 dma_fence_put(fence); 458 fence = wipe_fence; 459 } 460 } 461 462 /* Always block for VM page tables before committing the new location */ 463 if (bo->type == ttm_bo_type_kernel) 464 r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem); 465 else 466 r = ttm_bo_pipeline_move(bo, fence, evict, new_mem); 467 dma_fence_put(fence); 468 return r; 469 470 error: 471 if (fence) 472 dma_fence_wait(fence, false); 473 dma_fence_put(fence); 474 return r; 475 } 476 477 /** 478 * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer 479 * 480 * Called by amdgpu_bo_move(). 481 */ 482 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict, 483 struct ttm_operation_ctx *ctx, 484 struct ttm_mem_reg *new_mem) 485 { 486 struct ttm_mem_reg *old_mem = &bo->mem; 487 struct ttm_mem_reg tmp_mem; 488 struct ttm_place placements; 489 struct ttm_placement placement; 490 int r; 491 492 /* create space/pages for new_mem in GTT space */ 493 tmp_mem = *new_mem; 494 tmp_mem.mm_node = NULL; 495 placement.num_placement = 1; 496 placement.placement = &placements; 497 placement.num_busy_placement = 1; 498 placement.busy_placement = &placements; 499 placements.fpfn = 0; 500 placements.lpfn = 0; 501 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT; 502 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx); 503 if (unlikely(r)) { 504 pr_err("Failed to find GTT space for blit from VRAM\n"); 505 return r; 506 } 507 508 /* set caching flags */ 509 r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement); 510 if (unlikely(r)) { 511 goto out_cleanup; 512 } 513 514 /* Bind the memory to the GTT space */ 515 r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx); 516 if (unlikely(r)) { 517 goto out_cleanup; 518 } 519 520 /* blit VRAM to GTT */ 521 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem); 522 if (unlikely(r)) { 523 goto out_cleanup; 524 } 525 526 /* move BO (in tmp_mem) to new_mem */ 527 r = ttm_bo_move_ttm(bo, ctx, new_mem); 528 out_cleanup: 529 ttm_bo_mem_put(bo, &tmp_mem); 530 return r; 531 } 532 533 /** 534 * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM 535 * 536 * Called by amdgpu_bo_move(). 537 */ 538 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict, 539 struct ttm_operation_ctx *ctx, 540 struct ttm_mem_reg *new_mem) 541 { 542 struct ttm_mem_reg *old_mem = &bo->mem; 543 struct ttm_mem_reg tmp_mem; 544 struct ttm_placement placement; 545 struct ttm_place placements; 546 int r; 547 548 /* make space in GTT for old_mem buffer */ 549 tmp_mem = *new_mem; 550 tmp_mem.mm_node = NULL; 551 placement.num_placement = 1; 552 placement.placement = &placements; 553 placement.num_busy_placement = 1; 554 placement.busy_placement = &placements; 555 placements.fpfn = 0; 556 placements.lpfn = 0; 557 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT; 558 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx); 559 if (unlikely(r)) { 560 pr_err("Failed to find GTT space for blit to VRAM\n"); 561 return r; 562 } 563 564 /* move/bind old memory to GTT space */ 565 r = ttm_bo_move_ttm(bo, ctx, &tmp_mem); 566 if (unlikely(r)) { 567 goto out_cleanup; 568 } 569 570 /* copy to VRAM */ 571 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem); 572 if (unlikely(r)) { 573 goto out_cleanup; 574 } 575 out_cleanup: 576 ttm_bo_mem_put(bo, &tmp_mem); 577 return r; 578 } 579 580 /** 581 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy 582 * 583 * Called by amdgpu_bo_move() 584 */ 585 static bool amdgpu_mem_visible(struct amdgpu_device *adev, 586 struct ttm_mem_reg *mem) 587 { 588 struct drm_mm_node *nodes = mem->mm_node; 589 590 if (mem->mem_type == TTM_PL_SYSTEM || 591 mem->mem_type == TTM_PL_TT) 592 return true; 593 if (mem->mem_type != TTM_PL_VRAM) 594 return false; 595 596 /* ttm_mem_reg_ioremap only supports contiguous memory */ 597 if (nodes->size != mem->num_pages) 598 return false; 599 600 return ((nodes->start + nodes->size) << PAGE_SHIFT) 601 <= adev->gmc.visible_vram_size; 602 } 603 604 /** 605 * amdgpu_bo_move - Move a buffer object to a new memory location 606 * 607 * Called by ttm_bo_handle_move_mem() 608 */ 609 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, 610 struct ttm_operation_ctx *ctx, 611 struct ttm_mem_reg *new_mem) 612 { 613 struct amdgpu_device *adev; 614 struct amdgpu_bo *abo; 615 struct ttm_mem_reg *old_mem = &bo->mem; 616 int r; 617 618 /* Can't move a pinned BO */ 619 abo = ttm_to_amdgpu_bo(bo); 620 if (WARN_ON_ONCE(abo->pin_count > 0)) 621 return -EINVAL; 622 623 adev = amdgpu_ttm_adev(bo->bdev); 624 625 if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) { 626 amdgpu_move_null(bo, new_mem); 627 return 0; 628 } 629 if ((old_mem->mem_type == TTM_PL_TT && 630 new_mem->mem_type == TTM_PL_SYSTEM) || 631 (old_mem->mem_type == TTM_PL_SYSTEM && 632 new_mem->mem_type == TTM_PL_TT)) { 633 /* bind is enough */ 634 amdgpu_move_null(bo, new_mem); 635 return 0; 636 } 637 if (old_mem->mem_type == AMDGPU_PL_GDS || 638 old_mem->mem_type == AMDGPU_PL_GWS || 639 old_mem->mem_type == AMDGPU_PL_OA || 640 new_mem->mem_type == AMDGPU_PL_GDS || 641 new_mem->mem_type == AMDGPU_PL_GWS || 642 new_mem->mem_type == AMDGPU_PL_OA) { 643 /* Nothing to save here */ 644 amdgpu_move_null(bo, new_mem); 645 return 0; 646 } 647 648 if (!adev->mman.buffer_funcs_enabled) { 649 r = -ENODEV; 650 goto memcpy; 651 } 652 653 if (old_mem->mem_type == TTM_PL_VRAM && 654 new_mem->mem_type == TTM_PL_SYSTEM) { 655 r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem); 656 } else if (old_mem->mem_type == TTM_PL_SYSTEM && 657 new_mem->mem_type == TTM_PL_VRAM) { 658 r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem); 659 } else { 660 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, 661 new_mem, old_mem); 662 } 663 664 if (r) { 665 memcpy: 666 /* Check that all memory is CPU accessible */ 667 if (!amdgpu_mem_visible(adev, old_mem) || 668 !amdgpu_mem_visible(adev, new_mem)) { 669 pr_err("Move buffer fallback to memcpy unavailable\n"); 670 return r; 671 } 672 673 r = ttm_bo_move_memcpy(bo, ctx, new_mem); 674 if (r) 675 return r; 676 } 677 678 if (bo->type == ttm_bo_type_device && 679 new_mem->mem_type == TTM_PL_VRAM && 680 old_mem->mem_type != TTM_PL_VRAM) { 681 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU 682 * accesses the BO after it's moved. 683 */ 684 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 685 } 686 687 /* update statistics */ 688 atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved); 689 return 0; 690 } 691 692 /** 693 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault 694 * 695 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault() 696 */ 697 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) 698 { 699 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type]; 700 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 701 struct drm_mm_node *mm_node = mem->mm_node; 702 703 mem->bus.addr = NULL; 704 mem->bus.offset = 0; 705 mem->bus.size = mem->num_pages << PAGE_SHIFT; 706 mem->bus.base = 0; 707 mem->bus.is_iomem = false; 708 if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE)) 709 return -EINVAL; 710 switch (mem->mem_type) { 711 case TTM_PL_SYSTEM: 712 /* system memory */ 713 return 0; 714 case TTM_PL_TT: 715 break; 716 case TTM_PL_VRAM: 717 mem->bus.offset = mem->start << PAGE_SHIFT; 718 /* check if it's visible */ 719 if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size) 720 return -EINVAL; 721 /* Only physically contiguous buffers apply. In a contiguous 722 * buffer, size of the first mm_node would match the number of 723 * pages in ttm_mem_reg. 724 */ 725 if (adev->mman.aper_base_kaddr && 726 (mm_node->size == mem->num_pages)) 727 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr + 728 mem->bus.offset; 729 730 mem->bus.base = adev->gmc.aper_base; 731 mem->bus.is_iomem = true; 732 break; 733 default: 734 return -EINVAL; 735 } 736 return 0; 737 } 738 739 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) 740 { 741 } 742 743 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 744 unsigned long page_offset) 745 { 746 struct drm_mm_node *mm; 747 unsigned long offset = (page_offset << PAGE_SHIFT); 748 749 mm = amdgpu_find_mm_node(&bo->mem, &offset); 750 return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start + 751 (offset >> PAGE_SHIFT); 752 } 753 754 /* 755 * TTM backend functions. 756 */ 757 struct amdgpu_ttm_tt { 758 struct ttm_dma_tt ttm; 759 struct drm_gem_object *gobj; 760 u64 offset; 761 uint64_t userptr; 762 struct task_struct *usertask; 763 uint32_t userflags; 764 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR) 765 struct hmm_range *range; 766 #endif 767 }; 768 769 #ifdef CONFIG_DRM_AMDGPU_USERPTR 770 /* flags used by HMM internal, not related to CPU/GPU PTE flags */ 771 static const uint64_t hmm_range_flags[HMM_PFN_FLAG_MAX] = { 772 (1 << 0), /* HMM_PFN_VALID */ 773 (1 << 1), /* HMM_PFN_WRITE */ 774 }; 775 776 static const uint64_t hmm_range_values[HMM_PFN_VALUE_MAX] = { 777 0xfffffffffffffffeUL, /* HMM_PFN_ERROR */ 778 0, /* HMM_PFN_NONE */ 779 0xfffffffffffffffcUL /* HMM_PFN_SPECIAL */ 780 }; 781 782 /** 783 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user 784 * memory and start HMM tracking CPU page table update 785 * 786 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only 787 * once afterwards to stop HMM tracking 788 */ 789 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct vm_page **pages) 790 { 791 struct ttm_tt *ttm = bo->tbo.ttm; 792 struct amdgpu_ttm_tt *gtt = (void *)ttm; 793 unsigned long start = gtt->userptr; 794 struct vm_area_struct *vma; 795 struct hmm_range *range; 796 unsigned long timeout; 797 struct mm_struct *mm; 798 unsigned long i; 799 int r = 0; 800 801 mm = bo->notifier.mm; 802 if (unlikely(!mm)) { 803 DRM_DEBUG_DRIVER("BO is not registered?\n"); 804 return -EFAULT; 805 } 806 807 /* Another get_user_pages is running at the same time?? */ 808 if (WARN_ON(gtt->range)) 809 return -EFAULT; 810 811 if (!mmget_not_zero(mm)) /* Happens during process shutdown */ 812 return -ESRCH; 813 814 range = kzalloc(sizeof(*range), GFP_KERNEL); 815 if (unlikely(!range)) { 816 r = -ENOMEM; 817 goto out; 818 } 819 range->notifier = &bo->notifier; 820 range->flags = hmm_range_flags; 821 range->values = hmm_range_values; 822 range->pfn_shift = PAGE_SHIFT; 823 range->start = bo->notifier.interval_tree.start; 824 range->end = bo->notifier.interval_tree.last + 1; 825 range->default_flags = hmm_range_flags[HMM_PFN_VALID]; 826 if (!amdgpu_ttm_tt_is_readonly(ttm)) 827 range->default_flags |= range->flags[HMM_PFN_WRITE]; 828 829 range->pfns = kvmalloc_array(ttm->num_pages, sizeof(*range->pfns), 830 GFP_KERNEL); 831 if (unlikely(!range->pfns)) { 832 r = -ENOMEM; 833 goto out_free_ranges; 834 } 835 836 down_read(&mm->mmap_sem); 837 vma = find_vma(mm, start); 838 if (unlikely(!vma || start < vma->vm_start)) { 839 r = -EFAULT; 840 goto out_unlock; 841 } 842 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) && 843 vma->vm_file)) { 844 r = -EPERM; 845 goto out_unlock; 846 } 847 up_read(&mm->mmap_sem); 848 timeout = jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT); 849 850 retry: 851 range->notifier_seq = mmu_interval_read_begin(&bo->notifier); 852 853 down_read(&mm->mmap_sem); 854 r = hmm_range_fault(range); 855 up_read(&mm->mmap_sem); 856 if (unlikely(r <= 0)) { 857 /* 858 * FIXME: This timeout should encompass the retry from 859 * mmu_interval_read_retry() as well. 860 */ 861 if ((r == 0 || r == -EBUSY) && !time_after(jiffies, timeout)) 862 goto retry; 863 goto out_free_pfns; 864 } 865 866 for (i = 0; i < ttm->num_pages; i++) { 867 /* FIXME: The pages cannot be touched outside the notifier_lock */ 868 pages[i] = hmm_device_entry_to_page(range, range->pfns[i]); 869 if (unlikely(!pages[i])) { 870 pr_err("Page fault failed for pfn[%lu] = 0x%llx\n", 871 i, range->pfns[i]); 872 r = -ENOMEM; 873 874 goto out_free_pfns; 875 } 876 } 877 878 gtt->range = range; 879 mmput(mm); 880 881 return 0; 882 883 out_unlock: 884 up_read(&mm->mmap_sem); 885 out_free_pfns: 886 kvfree(range->pfns); 887 out_free_ranges: 888 kfree(range); 889 out: 890 mmput(mm); 891 return r; 892 } 893 894 /** 895 * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change 896 * Check if the pages backing this ttm range have been invalidated 897 * 898 * Returns: true if pages are still valid 899 */ 900 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm) 901 { 902 struct amdgpu_ttm_tt *gtt = (void *)ttm; 903 bool r = false; 904 905 if (!gtt || !gtt->userptr) 906 return false; 907 908 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n", 909 gtt->userptr, ttm->num_pages); 910 911 WARN_ONCE(!gtt->range || !gtt->range->pfns, 912 "No user pages to check\n"); 913 914 if (gtt->range) { 915 /* 916 * FIXME: Must always hold notifier_lock for this, and must 917 * not ignore the return code. 918 */ 919 r = mmu_interval_read_retry(gtt->range->notifier, 920 gtt->range->notifier_seq); 921 kvfree(gtt->range->pfns); 922 kfree(gtt->range); 923 gtt->range = NULL; 924 } 925 926 return !r; 927 } 928 #endif 929 930 /** 931 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary. 932 * 933 * Called by amdgpu_cs_list_validate(). This creates the page list 934 * that backs user memory and will ultimately be mapped into the device 935 * address space. 936 */ 937 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct vm_page **pages) 938 { 939 unsigned long i; 940 941 for (i = 0; i < ttm->num_pages; ++i) 942 ttm->pages[i] = pages ? pages[i] : NULL; 943 } 944 945 /** 946 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages 947 * 948 * Called by amdgpu_ttm_backend_bind() 949 **/ 950 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm) 951 { 952 STUB(); 953 return -ENOSYS; 954 #ifdef notyet 955 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 956 struct amdgpu_ttm_tt *gtt = (void *)ttm; 957 unsigned nents; 958 int r; 959 960 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 961 enum dma_data_direction direction = write ? 962 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 963 964 /* Allocate an SG array and squash pages into it */ 965 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, 966 ttm->num_pages << PAGE_SHIFT, 967 GFP_KERNEL); 968 if (r) 969 goto release_sg; 970 971 /* Map SG to device */ 972 r = -ENOMEM; 973 nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction); 974 if (nents == 0) 975 goto release_sg; 976 977 /* convert SG to linear array of pages and dma addresses */ 978 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages, 979 gtt->ttm.dma_address, ttm->num_pages); 980 981 return 0; 982 983 release_sg: 984 kfree(ttm->sg); 985 return r; 986 #endif 987 } 988 989 /** 990 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages 991 */ 992 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm) 993 { 994 STUB(); 995 #ifdef notyet 996 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 997 struct amdgpu_ttm_tt *gtt = (void *)ttm; 998 999 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1000 enum dma_data_direction direction = write ? 1001 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 1002 1003 /* double check that we don't free the table twice */ 1004 if (!ttm->sg->sgl) 1005 return; 1006 1007 /* unmap the pages mapped to the device */ 1008 dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction); 1009 1010 sg_free_table(ttm->sg); 1011 1012 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR) 1013 if (gtt->range) { 1014 unsigned long i; 1015 1016 for (i = 0; i < ttm->num_pages; i++) { 1017 if (ttm->pages[i] != 1018 hmm_device_entry_to_page(gtt->range, 1019 gtt->range->pfns[i])) 1020 break; 1021 } 1022 1023 WARN((i == ttm->num_pages), "Missing get_user_page_done\n"); 1024 } 1025 #endif 1026 #endif 1027 } 1028 1029 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev, 1030 struct ttm_buffer_object *tbo, 1031 uint64_t flags) 1032 { 1033 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo); 1034 struct ttm_tt *ttm = tbo->ttm; 1035 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1036 int r; 1037 1038 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) { 1039 uint64_t page_idx = 1; 1040 1041 r = amdgpu_gart_bind(adev, gtt->offset, page_idx, 1042 ttm->pages, gtt->ttm.dma_address, flags); 1043 if (r) 1044 goto gart_bind_fail; 1045 1046 /* The memory type of the first page defaults to UC. Now 1047 * modify the memory type to NC from the second page of 1048 * the BO onward. 1049 */ 1050 flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK; 1051 flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC); 1052 1053 r = amdgpu_gart_bind(adev, 1054 gtt->offset + (page_idx << PAGE_SHIFT), 1055 ttm->num_pages - page_idx, 1056 &ttm->pages[page_idx], 1057 &(gtt->ttm.dma_address[page_idx]), flags); 1058 } else { 1059 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 1060 ttm->pages, gtt->ttm.dma_address, flags); 1061 } 1062 1063 gart_bind_fail: 1064 if (r) 1065 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n", 1066 ttm->num_pages, gtt->offset); 1067 1068 return r; 1069 } 1070 1071 /** 1072 * amdgpu_ttm_backend_bind - Bind GTT memory 1073 * 1074 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem(). 1075 * This handles binding GTT memory to the device address space. 1076 */ 1077 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm, 1078 struct ttm_mem_reg *bo_mem) 1079 { 1080 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1081 struct amdgpu_ttm_tt *gtt = (void*)ttm; 1082 uint64_t flags; 1083 int r = 0; 1084 1085 if (gtt->userptr) { 1086 r = amdgpu_ttm_tt_pin_userptr(ttm); 1087 if (r) { 1088 DRM_ERROR("failed to pin userptr\n"); 1089 return r; 1090 } 1091 } 1092 if (!ttm->num_pages) { 1093 WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n", 1094 ttm->num_pages, bo_mem, ttm); 1095 } 1096 1097 if (bo_mem->mem_type == AMDGPU_PL_GDS || 1098 bo_mem->mem_type == AMDGPU_PL_GWS || 1099 bo_mem->mem_type == AMDGPU_PL_OA) 1100 return -EINVAL; 1101 1102 if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) { 1103 gtt->offset = AMDGPU_BO_INVALID_OFFSET; 1104 return 0; 1105 } 1106 1107 /* compute PTE flags relevant to this BO memory */ 1108 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem); 1109 1110 /* bind pages into GART page tables */ 1111 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT; 1112 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 1113 ttm->pages, gtt->ttm.dma_address, flags); 1114 1115 if (r) 1116 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n", 1117 ttm->num_pages, gtt->offset); 1118 return r; 1119 } 1120 1121 /** 1122 * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object 1123 */ 1124 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo) 1125 { 1126 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 1127 struct ttm_operation_ctx ctx = { false, false }; 1128 struct amdgpu_ttm_tt *gtt = (void*)bo->ttm; 1129 struct ttm_mem_reg tmp; 1130 struct ttm_placement placement; 1131 struct ttm_place placements; 1132 uint64_t addr, flags; 1133 int r; 1134 1135 if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET) 1136 return 0; 1137 1138 addr = amdgpu_gmc_agp_addr(bo); 1139 if (addr != AMDGPU_BO_INVALID_OFFSET) { 1140 bo->mem.start = addr >> PAGE_SHIFT; 1141 } else { 1142 1143 /* allocate GART space */ 1144 tmp = bo->mem; 1145 tmp.mm_node = NULL; 1146 placement.num_placement = 1; 1147 placement.placement = &placements; 1148 placement.num_busy_placement = 1; 1149 placement.busy_placement = &placements; 1150 placements.fpfn = 0; 1151 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT; 1152 placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) | 1153 TTM_PL_FLAG_TT; 1154 1155 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx); 1156 if (unlikely(r)) 1157 return r; 1158 1159 /* compute PTE flags for this buffer object */ 1160 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp); 1161 1162 /* Bind pages */ 1163 gtt->offset = (u64)tmp.start << PAGE_SHIFT; 1164 r = amdgpu_ttm_gart_bind(adev, bo, flags); 1165 if (unlikely(r)) { 1166 ttm_bo_mem_put(bo, &tmp); 1167 return r; 1168 } 1169 1170 ttm_bo_mem_put(bo, &bo->mem); 1171 bo->mem = tmp; 1172 } 1173 1174 bo->offset = (bo->mem.start << PAGE_SHIFT) + 1175 bo->bdev->man[bo->mem.mem_type].gpu_offset; 1176 1177 return 0; 1178 } 1179 1180 /** 1181 * amdgpu_ttm_recover_gart - Rebind GTT pages 1182 * 1183 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to 1184 * rebind GTT pages during a GPU reset. 1185 */ 1186 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo) 1187 { 1188 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev); 1189 uint64_t flags; 1190 int r; 1191 1192 if (!tbo->ttm) 1193 return 0; 1194 1195 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem); 1196 r = amdgpu_ttm_gart_bind(adev, tbo, flags); 1197 1198 return r; 1199 } 1200 1201 /** 1202 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages 1203 * 1204 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and 1205 * ttm_tt_destroy(). 1206 */ 1207 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm) 1208 { 1209 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1210 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1211 int r; 1212 1213 /* if the pages have userptr pinning then clear that first */ 1214 if (gtt->userptr) 1215 amdgpu_ttm_tt_unpin_userptr(ttm); 1216 1217 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET) 1218 return 0; 1219 1220 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ 1221 r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages); 1222 if (r) 1223 DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n", 1224 gtt->ttm.ttm.num_pages, gtt->offset); 1225 return r; 1226 } 1227 1228 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm) 1229 { 1230 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1231 1232 #ifdef notyet 1233 if (gtt->usertask) 1234 put_task_struct(gtt->usertask); 1235 #endif 1236 1237 ttm_dma_tt_fini(>t->ttm); 1238 kfree(gtt); 1239 } 1240 1241 static struct ttm_backend_func amdgpu_backend_func = { 1242 .bind = &amdgpu_ttm_backend_bind, 1243 .unbind = &amdgpu_ttm_backend_unbind, 1244 .destroy = &amdgpu_ttm_backend_destroy, 1245 }; 1246 1247 /** 1248 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO 1249 * 1250 * @bo: The buffer object to create a GTT ttm_tt object around 1251 * 1252 * Called by ttm_tt_create(). 1253 */ 1254 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo, 1255 uint32_t page_flags) 1256 { 1257 struct amdgpu_ttm_tt *gtt; 1258 1259 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); 1260 if (gtt == NULL) { 1261 return NULL; 1262 } 1263 gtt->ttm.ttm.func = &amdgpu_backend_func; 1264 gtt->gobj = &bo->base; 1265 1266 /* allocate space for the uninitialized page entries */ 1267 if (ttm_sg_tt_init(>t->ttm, bo, page_flags)) { 1268 kfree(gtt); 1269 return NULL; 1270 } 1271 return >t->ttm.ttm; 1272 } 1273 1274 /** 1275 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device 1276 * 1277 * Map the pages of a ttm_tt object to an address space visible 1278 * to the underlying device. 1279 */ 1280 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm, 1281 struct ttm_operation_ctx *ctx) 1282 { 1283 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1284 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1285 1286 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */ 1287 if (gtt && gtt->userptr) { 1288 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); 1289 if (!ttm->sg) 1290 return -ENOMEM; 1291 1292 ttm->page_flags |= TTM_PAGE_FLAG_SG; 1293 ttm->state = tt_unbound; 1294 return 0; 1295 } 1296 1297 if (ttm->page_flags & TTM_PAGE_FLAG_SG) { 1298 if (!ttm->sg) { 1299 struct dma_buf_attachment *attach; 1300 struct sg_table *sgt; 1301 1302 attach = gtt->gobj->import_attach; 1303 #ifdef notyet 1304 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 1305 if (IS_ERR(sgt)) 1306 return PTR_ERR(sgt); 1307 #else 1308 STUB(); 1309 return -ENOSYS; 1310 #endif 1311 1312 ttm->sg = sgt; 1313 } 1314 1315 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages, 1316 gtt->ttm.dma_address, 1317 ttm->num_pages); 1318 ttm->state = tt_unbound; 1319 return 0; 1320 } 1321 1322 #ifdef CONFIG_SWIOTLB 1323 if (adev->need_swiotlb && swiotlb_nr_tbl()) { 1324 return ttm_dma_populate(>t->ttm, adev->dev, ctx); 1325 } 1326 #endif 1327 1328 /* fall back to generic helper to populate the page array 1329 * and map them to the device */ 1330 return ttm_populate_and_map_pages(adev->dev, >t->ttm, ctx); 1331 } 1332 1333 /** 1334 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays 1335 * 1336 * Unmaps pages of a ttm_tt object from the device address space and 1337 * unpopulates the page array backing it. 1338 */ 1339 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm) 1340 { 1341 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1342 struct amdgpu_device *adev; 1343 1344 if (gtt && gtt->userptr) { 1345 amdgpu_ttm_tt_set_user_pages(ttm, NULL); 1346 kfree(ttm->sg); 1347 ttm->page_flags &= ~TTM_PAGE_FLAG_SG; 1348 return; 1349 } 1350 1351 if (ttm->sg && gtt->gobj->import_attach) { 1352 struct dma_buf_attachment *attach; 1353 1354 attach = gtt->gobj->import_attach; 1355 #ifdef notyet 1356 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL); 1357 #else 1358 STUB(); 1359 #endif 1360 ttm->sg = NULL; 1361 return; 1362 } 1363 1364 if (ttm->page_flags & TTM_PAGE_FLAG_SG) 1365 return; 1366 1367 adev = amdgpu_ttm_adev(ttm->bdev); 1368 1369 #ifdef CONFIG_SWIOTLB 1370 if (adev->need_swiotlb && swiotlb_nr_tbl()) { 1371 ttm_dma_unpopulate(>t->ttm, adev->dev); 1372 return; 1373 } 1374 #endif 1375 1376 /* fall back to generic helper to unmap and unpopulate array */ 1377 ttm_unmap_and_unpopulate_pages(adev->dev, >t->ttm); 1378 } 1379 1380 /** 1381 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current 1382 * task 1383 * 1384 * @ttm: The ttm_tt object to bind this userptr object to 1385 * @addr: The address in the current tasks VM space to use 1386 * @flags: Requirements of userptr object. 1387 * 1388 * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages 1389 * to current task 1390 */ 1391 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr, 1392 uint32_t flags) 1393 { 1394 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1395 1396 if (gtt == NULL) 1397 return -EINVAL; 1398 1399 gtt->userptr = addr; 1400 gtt->userflags = flags; 1401 1402 #ifdef notyet 1403 if (gtt->usertask) 1404 put_task_struct(gtt->usertask); 1405 gtt->usertask = current->group_leader; 1406 get_task_struct(gtt->usertask); 1407 #endif 1408 1409 return 0; 1410 } 1411 1412 /** 1413 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object 1414 */ 1415 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) 1416 { 1417 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1418 1419 if (gtt == NULL) 1420 return NULL; 1421 1422 if (gtt->usertask == NULL) 1423 return NULL; 1424 1425 #ifdef notyet 1426 return gtt->usertask->mm; 1427 #else 1428 STUB(); 1429 return NULL; 1430 #endif 1431 } 1432 1433 /** 1434 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an 1435 * address range for the current task. 1436 * 1437 */ 1438 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, 1439 unsigned long end) 1440 { 1441 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1442 unsigned long size; 1443 1444 if (gtt == NULL || !gtt->userptr) 1445 return false; 1446 1447 /* Return false if no part of the ttm_tt object lies within 1448 * the range 1449 */ 1450 size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE; 1451 if (gtt->userptr > end || gtt->userptr + size <= start) 1452 return false; 1453 1454 return true; 1455 } 1456 1457 /** 1458 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr? 1459 */ 1460 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm) 1461 { 1462 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1463 1464 if (gtt == NULL || !gtt->userptr) 1465 return false; 1466 1467 return true; 1468 } 1469 1470 /** 1471 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only? 1472 */ 1473 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) 1474 { 1475 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1476 1477 if (gtt == NULL) 1478 return false; 1479 1480 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1481 } 1482 1483 /** 1484 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object 1485 * 1486 * @ttm: The ttm_tt object to compute the flags for 1487 * @mem: The memory registry backing this ttm_tt object 1488 * 1489 * Figure out the flags to use for a VM PDE (Page Directory Entry). 1490 */ 1491 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem) 1492 { 1493 uint64_t flags = 0; 1494 1495 if (mem && mem->mem_type != TTM_PL_SYSTEM) 1496 flags |= AMDGPU_PTE_VALID; 1497 1498 if (mem && mem->mem_type == TTM_PL_TT) { 1499 flags |= AMDGPU_PTE_SYSTEM; 1500 1501 if (ttm->caching_state == tt_cached) 1502 flags |= AMDGPU_PTE_SNOOPED; 1503 } 1504 1505 return flags; 1506 } 1507 1508 /** 1509 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object 1510 * 1511 * @ttm: The ttm_tt object to compute the flags for 1512 * @mem: The memory registry backing this ttm_tt object 1513 1514 * Figure out the flags to use for a VM PTE (Page Table Entry). 1515 */ 1516 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, 1517 struct ttm_mem_reg *mem) 1518 { 1519 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem); 1520 1521 flags |= adev->gart.gart_pte_flags; 1522 flags |= AMDGPU_PTE_READABLE; 1523 1524 if (!amdgpu_ttm_tt_is_readonly(ttm)) 1525 flags |= AMDGPU_PTE_WRITEABLE; 1526 1527 return flags; 1528 } 1529 1530 /** 1531 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer 1532 * object. 1533 * 1534 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on 1535 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until 1536 * it can find space for a new object and by ttm_bo_force_list_clean() which is 1537 * used to clean out a memory space. 1538 */ 1539 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 1540 const struct ttm_place *place) 1541 { 1542 unsigned long num_pages = bo->mem.num_pages; 1543 struct drm_mm_node *node = bo->mem.mm_node; 1544 struct dma_resv_list *flist; 1545 struct dma_fence *f; 1546 int i; 1547 1548 if (bo->type == ttm_bo_type_kernel && 1549 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo))) 1550 return false; 1551 1552 /* If bo is a KFD BO, check if the bo belongs to the current process. 1553 * If true, then return false as any KFD process needs all its BOs to 1554 * be resident to run successfully 1555 */ 1556 flist = dma_resv_get_list(bo->base.resv); 1557 if (flist) { 1558 for (i = 0; i < flist->shared_count; ++i) { 1559 f = rcu_dereference_protected(flist->shared[i], 1560 dma_resv_held(bo->base.resv)); 1561 #ifdef notyet 1562 if (amdkfd_fence_check_mm(f, current->mm)) 1563 return false; 1564 #endif 1565 } 1566 } 1567 1568 switch (bo->mem.mem_type) { 1569 case TTM_PL_TT: 1570 return true; 1571 1572 case TTM_PL_VRAM: 1573 /* Check each drm MM node individually */ 1574 while (num_pages) { 1575 if (place->fpfn < (node->start + node->size) && 1576 !(place->lpfn && place->lpfn <= node->start)) 1577 return true; 1578 1579 num_pages -= node->size; 1580 ++node; 1581 } 1582 return false; 1583 1584 default: 1585 break; 1586 } 1587 1588 return ttm_bo_eviction_valuable(bo, place); 1589 } 1590 1591 /** 1592 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object. 1593 * 1594 * @bo: The buffer object to read/write 1595 * @offset: Offset into buffer object 1596 * @buf: Secondary buffer to write/read from 1597 * @len: Length in bytes of access 1598 * @write: true if writing 1599 * 1600 * This is used to access VRAM that backs a buffer object via MMIO 1601 * access for debugging purposes. 1602 */ 1603 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo, 1604 unsigned long offset, 1605 void *buf, int len, int write) 1606 { 1607 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1608 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1609 struct drm_mm_node *nodes; 1610 uint32_t value = 0; 1611 int ret = 0; 1612 uint64_t pos; 1613 unsigned long flags; 1614 1615 if (bo->mem.mem_type != TTM_PL_VRAM) 1616 return -EIO; 1617 1618 nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset); 1619 pos = (nodes->start << PAGE_SHIFT) + offset; 1620 1621 while (len && pos < adev->gmc.mc_vram_size) { 1622 uint64_t aligned_pos = pos & ~(uint64_t)3; 1623 uint64_t bytes = 4 - (pos & 3); 1624 uint32_t shift = (pos & 3) * 8; 1625 uint32_t mask = 0xffffffff << shift; 1626 1627 if (len < bytes) { 1628 mask &= 0xffffffff >> (bytes - len) * 8; 1629 bytes = len; 1630 } 1631 1632 if (mask != 0xffffffff) { 1633 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 1634 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000); 1635 WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31); 1636 if (!write || mask != 0xffffffff) 1637 value = RREG32_NO_KIQ(mmMM_DATA); 1638 if (write) { 1639 value &= ~mask; 1640 value |= (*(uint32_t *)buf << shift) & mask; 1641 WREG32_NO_KIQ(mmMM_DATA, value); 1642 } 1643 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 1644 if (!write) { 1645 value = (value & mask) >> shift; 1646 memcpy(buf, &value, bytes); 1647 } 1648 } else { 1649 bytes = (nodes->start + nodes->size) << PAGE_SHIFT; 1650 bytes = min(bytes - pos, (uint64_t)len & ~0x3ull); 1651 1652 amdgpu_device_vram_access(adev, pos, (uint32_t *)buf, 1653 bytes, write); 1654 } 1655 1656 ret += bytes; 1657 buf = (uint8_t *)buf + bytes; 1658 pos += bytes; 1659 len -= bytes; 1660 if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) { 1661 ++nodes; 1662 pos = (nodes->start << PAGE_SHIFT); 1663 } 1664 } 1665 1666 return ret; 1667 } 1668 1669 static struct ttm_bo_driver amdgpu_bo_driver = { 1670 .ttm_tt_create = &amdgpu_ttm_tt_create, 1671 .ttm_tt_populate = &amdgpu_ttm_tt_populate, 1672 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, 1673 .init_mem_type = &amdgpu_init_mem_type, 1674 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable, 1675 .evict_flags = &amdgpu_evict_flags, 1676 .move = &amdgpu_bo_move, 1677 .verify_access = &amdgpu_verify_access, 1678 .move_notify = &amdgpu_bo_move_notify, 1679 .release_notify = &amdgpu_bo_release_notify, 1680 .fault_reserve_notify = &amdgpu_bo_fault_reserve_notify, 1681 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, 1682 .io_mem_free = &amdgpu_ttm_io_mem_free, 1683 .io_mem_pfn = amdgpu_ttm_io_mem_pfn, 1684 .access_memory = &amdgpu_ttm_access_memory, 1685 .del_from_lru_notify = &amdgpu_vm_del_from_lru_notify 1686 }; 1687 1688 /* 1689 * Firmware Reservation functions 1690 */ 1691 /** 1692 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram 1693 * 1694 * @adev: amdgpu_device pointer 1695 * 1696 * free fw reserved vram if it has been reserved. 1697 */ 1698 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev) 1699 { 1700 amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo, 1701 NULL, &adev->fw_vram_usage.va); 1702 } 1703 1704 /** 1705 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw 1706 * 1707 * @adev: amdgpu_device pointer 1708 * 1709 * create bo vram reservation from fw. 1710 */ 1711 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev) 1712 { 1713 uint64_t vram_size = adev->gmc.visible_vram_size; 1714 1715 adev->fw_vram_usage.va = NULL; 1716 adev->fw_vram_usage.reserved_bo = NULL; 1717 1718 if (adev->fw_vram_usage.size == 0 || 1719 adev->fw_vram_usage.size > vram_size) 1720 return 0; 1721 1722 return amdgpu_bo_create_kernel_at(adev, 1723 adev->fw_vram_usage.start_offset, 1724 adev->fw_vram_usage.size, 1725 AMDGPU_GEM_DOMAIN_VRAM, 1726 &adev->fw_vram_usage.reserved_bo, 1727 &adev->fw_vram_usage.va); 1728 } 1729 1730 /* 1731 * Memoy training reservation functions 1732 */ 1733 1734 /** 1735 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram 1736 * 1737 * @adev: amdgpu_device pointer 1738 * 1739 * free memory training reserved vram if it has been reserved. 1740 */ 1741 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev) 1742 { 1743 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1744 1745 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT; 1746 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL); 1747 ctx->c2p_bo = NULL; 1748 1749 return 0; 1750 } 1751 1752 static u64 amdgpu_ttm_training_get_c2p_offset(u64 vram_size) 1753 { 1754 if ((vram_size & (SZ_1M - 1)) < (SZ_4K + 1) ) 1755 vram_size -= SZ_1M; 1756 1757 return roundup2(vram_size, SZ_1M); 1758 } 1759 1760 /** 1761 * amdgpu_ttm_training_reserve_vram_init - create bo vram reservation from memory training 1762 * 1763 * @adev: amdgpu_device pointer 1764 * 1765 * create bo vram reservation from memory training. 1766 */ 1767 static int amdgpu_ttm_training_reserve_vram_init(struct amdgpu_device *adev) 1768 { 1769 int ret; 1770 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1771 1772 memset(ctx, 0, sizeof(*ctx)); 1773 if (!adev->fw_vram_usage.mem_train_support) { 1774 DRM_DEBUG("memory training does not support!\n"); 1775 return 0; 1776 } 1777 1778 ctx->c2p_train_data_offset = amdgpu_ttm_training_get_c2p_offset(adev->gmc.mc_vram_size); 1779 ctx->p2c_train_data_offset = (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET); 1780 ctx->train_data_size = GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES; 1781 1782 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n", 1783 ctx->train_data_size, 1784 ctx->p2c_train_data_offset, 1785 ctx->c2p_train_data_offset); 1786 1787 ret = amdgpu_bo_create_kernel_at(adev, 1788 ctx->c2p_train_data_offset, 1789 ctx->train_data_size, 1790 AMDGPU_GEM_DOMAIN_VRAM, 1791 &ctx->c2p_bo, 1792 NULL); 1793 if (ret) { 1794 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret); 1795 amdgpu_ttm_training_reserve_vram_fini(adev); 1796 return ret; 1797 } 1798 1799 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS; 1800 return 0; 1801 } 1802 1803 /** 1804 * amdgpu_ttm_init - Init the memory management (ttm) as well as various 1805 * gtt/vram related fields. 1806 * 1807 * This initializes all of the memory space pools that the TTM layer 1808 * will need such as the GTT space (system memory mapped to the device), 1809 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which 1810 * can be mapped per VMID. 1811 */ 1812 int amdgpu_ttm_init(struct amdgpu_device *adev) 1813 { 1814 uint64_t gtt_size; 1815 int r; 1816 u64 vis_vram_limit; 1817 void *stolen_vga_buf; 1818 1819 rw_init(&adev->mman.gtt_window_lock, "gttwin"); 1820 1821 /* No others user of address space so set it to 0 */ 1822 #ifdef notyet 1823 r = ttm_bo_device_init(&adev->mman.bdev, 1824 &amdgpu_bo_driver, 1825 adev->ddev->anon_inode->i_mapping, 1826 adev->ddev->vma_offset_manager, 1827 dma_addressing_limited(adev->dev)); 1828 #else 1829 r = ttm_bo_device_init(&adev->mman.bdev, 1830 &amdgpu_bo_driver, 1831 /*adev->ddev->anon_inode->i_mapping*/ NULL, 1832 adev->ddev->vma_offset_manager, 1833 dma_addressing_limited(adev->dev)); 1834 #endif 1835 if (r) { 1836 DRM_ERROR("failed initializing buffer object driver(%d).\n", r); 1837 return r; 1838 } 1839 adev->mman.bdev.iot = adev->iot; 1840 adev->mman.bdev.memt = adev->memt; 1841 adev->mman.bdev.dmat = adev->dmat; 1842 adev->mman.initialized = true; 1843 1844 /* We opt to avoid OOM on system pages allocations */ 1845 adev->mman.bdev.no_retry = true; 1846 1847 /* Initialize VRAM pool with all of VRAM divided into pages */ 1848 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM, 1849 adev->gmc.real_vram_size >> PAGE_SHIFT); 1850 if (r) { 1851 DRM_ERROR("Failed initializing VRAM heap.\n"); 1852 return r; 1853 } 1854 1855 /* Reduce size of CPU-visible VRAM if requested */ 1856 vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024; 1857 if (amdgpu_vis_vram_limit > 0 && 1858 vis_vram_limit <= adev->gmc.visible_vram_size) 1859 adev->gmc.visible_vram_size = vis_vram_limit; 1860 1861 /* Change the size here instead of the init above so only lpfn is affected */ 1862 amdgpu_ttm_set_buffer_funcs_status(adev, false); 1863 #ifdef CONFIG_64BIT 1864 #ifdef __linux__ 1865 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base, 1866 adev->gmc.visible_vram_size); 1867 #else 1868 if (bus_space_map(adev->memt, adev->gmc.aper_base, 1869 adev->gmc.visible_vram_size, 1870 BUS_SPACE_MAP_LINEAR | BUS_SPACE_MAP_PREFETCHABLE, 1871 &adev->mman.aper_bsh)) { 1872 DRM_ERROR("Failed to remap VRAM\n"); 1873 return -ENOMEM; 1874 } 1875 adev->mman.aper_base_kaddr = bus_space_vaddr(adev->memt, 1876 adev->mman.aper_bsh); 1877 #endif 1878 #endif 1879 1880 /* 1881 *The reserved vram for firmware must be pinned to the specified 1882 *place on the VRAM, so reserve it early. 1883 */ 1884 r = amdgpu_ttm_fw_reserve_vram_init(adev); 1885 if (r) { 1886 return r; 1887 } 1888 1889 /* 1890 *The reserved vram for memory training must be pinned to the specified 1891 *place on the VRAM, so reserve it early. 1892 */ 1893 if (!amdgpu_sriov_vf(adev)) { 1894 r = amdgpu_ttm_training_reserve_vram_init(adev); 1895 if (r) 1896 return r; 1897 } 1898 1899 /* allocate memory as required for VGA 1900 * This is used for VGA emulation and pre-OS scanout buffers to 1901 * avoid display artifacts while transitioning between pre-OS 1902 * and driver. */ 1903 r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE, 1904 AMDGPU_GEM_DOMAIN_VRAM, 1905 &adev->stolen_vga_memory, 1906 NULL, &stolen_vga_buf); 1907 if (r) 1908 return r; 1909 1910 /* 1911 * reserve one TMR (64K) memory at the top of VRAM which holds 1912 * IP Discovery data and is protected by PSP. 1913 */ 1914 r = amdgpu_bo_create_kernel_at(adev, 1915 adev->gmc.real_vram_size - DISCOVERY_TMR_SIZE, 1916 DISCOVERY_TMR_SIZE, 1917 AMDGPU_GEM_DOMAIN_VRAM, 1918 &adev->discovery_memory, 1919 NULL); 1920 if (r) 1921 return r; 1922 1923 DRM_INFO("amdgpu: %uM of VRAM memory ready\n", 1924 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024))); 1925 1926 /* Compute GTT size, either bsaed on 3/4th the size of RAM size 1927 * or whatever the user passed on module init */ 1928 if (amdgpu_gtt_size == -1) { 1929 #ifdef __linux__ 1930 struct sysinfo si; 1931 1932 si_meminfo(&si); 1933 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20), 1934 adev->gmc.mc_vram_size), 1935 ((uint64_t)si.totalram * si.mem_unit * 3/4)); 1936 #else 1937 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20), 1938 adev->gmc.mc_vram_size), 1939 ((uint64_t)ptoa(physmem) * 3/4)); 1940 #endif 1941 } 1942 else 1943 gtt_size = (uint64_t)amdgpu_gtt_size << 20; 1944 1945 /* Initialize GTT memory pool */ 1946 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT); 1947 if (r) { 1948 DRM_ERROR("Failed initializing GTT heap.\n"); 1949 return r; 1950 } 1951 DRM_INFO("amdgpu: %uM of GTT memory ready.\n", 1952 (unsigned)(gtt_size / (1024 * 1024))); 1953 1954 /* Initialize various on-chip memory pools */ 1955 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS, 1956 adev->gds.gds_size); 1957 if (r) { 1958 DRM_ERROR("Failed initializing GDS heap.\n"); 1959 return r; 1960 } 1961 1962 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS, 1963 adev->gds.gws_size); 1964 if (r) { 1965 DRM_ERROR("Failed initializing gws heap.\n"); 1966 return r; 1967 } 1968 1969 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA, 1970 adev->gds.oa_size); 1971 if (r) { 1972 DRM_ERROR("Failed initializing oa heap.\n"); 1973 return r; 1974 } 1975 1976 return 0; 1977 } 1978 1979 /** 1980 * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm 1981 */ 1982 void amdgpu_ttm_late_init(struct amdgpu_device *adev) 1983 { 1984 void *stolen_vga_buf; 1985 /* return the VGA stolen memory (if any) back to VRAM */ 1986 amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, &stolen_vga_buf); 1987 } 1988 1989 /** 1990 * amdgpu_ttm_fini - De-initialize the TTM memory pools 1991 */ 1992 void amdgpu_ttm_fini(struct amdgpu_device *adev) 1993 { 1994 if (!adev->mman.initialized) 1995 return; 1996 1997 amdgpu_ttm_training_reserve_vram_fini(adev); 1998 /* return the IP Discovery TMR memory back to VRAM */ 1999 amdgpu_bo_free_kernel(&adev->discovery_memory, NULL, NULL); 2000 amdgpu_ttm_fw_reserve_vram_fini(adev); 2001 2002 #ifdef __linux__ 2003 if (adev->mman.aper_base_kaddr) 2004 iounmap(adev->mman.aper_base_kaddr); 2005 #else 2006 if (adev->mman.aper_base_kaddr) 2007 bus_space_unmap(adev->memt, adev->mman.aper_bsh, 2008 adev->gmc.visible_vram_size); 2009 #endif 2010 adev->mman.aper_base_kaddr = NULL; 2011 2012 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM); 2013 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT); 2014 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS); 2015 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS); 2016 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA); 2017 ttm_bo_device_release(&adev->mman.bdev); 2018 adev->mman.initialized = false; 2019 DRM_INFO("amdgpu: ttm finalized\n"); 2020 } 2021 2022 /** 2023 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions 2024 * 2025 * @adev: amdgpu_device pointer 2026 * @enable: true when we can use buffer functions. 2027 * 2028 * Enable/disable use of buffer functions during suspend/resume. This should 2029 * only be called at bootup or when userspace isn't running. 2030 */ 2031 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable) 2032 { 2033 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM]; 2034 uint64_t size; 2035 int r; 2036 2037 if (!adev->mman.initialized || adev->in_gpu_reset || 2038 adev->mman.buffer_funcs_enabled == enable) 2039 return; 2040 2041 if (enable) { 2042 struct amdgpu_ring *ring; 2043 struct drm_gpu_scheduler *sched; 2044 2045 ring = adev->mman.buffer_funcs_ring; 2046 sched = &ring->sched; 2047 r = drm_sched_entity_init(&adev->mman.entity, 2048 DRM_SCHED_PRIORITY_KERNEL, &sched, 2049 1, NULL); 2050 if (r) { 2051 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 2052 r); 2053 return; 2054 } 2055 } else { 2056 drm_sched_entity_destroy(&adev->mman.entity); 2057 dma_fence_put(man->move); 2058 man->move = NULL; 2059 } 2060 2061 /* this just adjusts TTM size idea, which sets lpfn to the correct value */ 2062 if (enable) 2063 size = adev->gmc.real_vram_size; 2064 else 2065 size = adev->gmc.visible_vram_size; 2066 man->size = size >> PAGE_SHIFT; 2067 adev->mman.buffer_funcs_enabled = enable; 2068 } 2069 2070 #ifdef __linux__ 2071 2072 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma) 2073 { 2074 struct drm_file *file_priv = filp->private_data; 2075 struct amdgpu_device *adev = file_priv->minor->dev->dev_private; 2076 2077 if (adev == NULL) 2078 return -EINVAL; 2079 2080 return ttm_bo_mmap(filp, vma, &adev->mman.bdev); 2081 } 2082 2083 #else 2084 2085 struct uvm_object * 2086 amdgpu_mmap(struct file *filp, vm_prot_t accessprot, voff_t off, vsize_t size) 2087 { 2088 struct drm_file *file_priv = (void *)filp; 2089 struct amdgpu_device *adev = file_priv->minor->dev->dev_private; 2090 2091 if (adev == NULL) 2092 return NULL; 2093 2094 if (unlikely(off < DRM_FILE_PAGE_OFFSET)) 2095 return NULL; 2096 2097 return ttm_bo_mmap(filp, off, size, &adev->mman.bdev); 2098 } 2099 2100 #endif 2101 2102 static int amdgpu_map_buffer(struct ttm_buffer_object *bo, 2103 struct ttm_mem_reg *mem, unsigned num_pages, 2104 uint64_t offset, unsigned window, 2105 struct amdgpu_ring *ring, 2106 uint64_t *addr) 2107 { 2108 struct amdgpu_ttm_tt *gtt = (void *)bo->ttm; 2109 struct amdgpu_device *adev = ring->adev; 2110 struct ttm_tt *ttm = bo->ttm; 2111 struct amdgpu_job *job; 2112 unsigned num_dw, num_bytes; 2113 dma_addr_t *dma_address; 2114 struct dma_fence *fence; 2115 uint64_t src_addr, dst_addr; 2116 uint64_t flags; 2117 int r; 2118 2119 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes < 2120 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8); 2121 2122 *addr = adev->gmc.gart_start; 2123 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 2124 AMDGPU_GPU_PAGE_SIZE; 2125 2126 num_dw = roundup2(adev->mman.buffer_funcs->copy_num_dw, 8); 2127 num_bytes = num_pages * 8; 2128 2129 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job); 2130 if (r) 2131 return r; 2132 2133 src_addr = num_dw * 4; 2134 src_addr += job->ibs[0].gpu_addr; 2135 2136 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 2137 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8; 2138 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 2139 dst_addr, num_bytes); 2140 2141 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2142 WARN_ON(job->ibs[0].length_dw > num_dw); 2143 2144 dma_address = >t->ttm.dma_address[offset >> PAGE_SHIFT]; 2145 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem); 2146 r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags, 2147 &job->ibs[0].ptr[num_dw]); 2148 if (r) 2149 goto error_free; 2150 2151 r = amdgpu_job_submit(job, &adev->mman.entity, 2152 AMDGPU_FENCE_OWNER_UNDEFINED, &fence); 2153 if (r) 2154 goto error_free; 2155 2156 dma_fence_put(fence); 2157 2158 return r; 2159 2160 error_free: 2161 amdgpu_job_free(job); 2162 return r; 2163 } 2164 2165 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, 2166 uint64_t dst_offset, uint32_t byte_count, 2167 struct dma_resv *resv, 2168 struct dma_fence **fence, bool direct_submit, 2169 bool vm_needs_flush) 2170 { 2171 struct amdgpu_device *adev = ring->adev; 2172 struct amdgpu_job *job; 2173 2174 uint32_t max_bytes; 2175 unsigned num_loops, num_dw; 2176 unsigned i; 2177 int r; 2178 2179 if (direct_submit && !ring->sched.ready) { 2180 DRM_ERROR("Trying to move memory with ring turned off.\n"); 2181 return -EINVAL; 2182 } 2183 2184 max_bytes = adev->mman.buffer_funcs->copy_max_bytes; 2185 num_loops = DIV_ROUND_UP(byte_count, max_bytes); 2186 num_dw = roundup2(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8); 2187 2188 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job); 2189 if (r) 2190 return r; 2191 2192 if (vm_needs_flush) { 2193 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo); 2194 job->vm_needs_flush = true; 2195 } 2196 if (resv) { 2197 r = amdgpu_sync_resv(adev, &job->sync, resv, 2198 AMDGPU_SYNC_ALWAYS, 2199 AMDGPU_FENCE_OWNER_UNDEFINED); 2200 if (r) { 2201 DRM_ERROR("sync failed (%d).\n", r); 2202 goto error_free; 2203 } 2204 } 2205 2206 for (i = 0; i < num_loops; i++) { 2207 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 2208 2209 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, 2210 dst_offset, cur_size_in_bytes); 2211 2212 src_offset += cur_size_in_bytes; 2213 dst_offset += cur_size_in_bytes; 2214 byte_count -= cur_size_in_bytes; 2215 } 2216 2217 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2218 WARN_ON(job->ibs[0].length_dw > num_dw); 2219 if (direct_submit) 2220 r = amdgpu_job_submit_direct(job, ring, fence); 2221 else 2222 r = amdgpu_job_submit(job, &adev->mman.entity, 2223 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 2224 if (r) 2225 goto error_free; 2226 2227 return r; 2228 2229 error_free: 2230 amdgpu_job_free(job); 2231 DRM_ERROR("Error scheduling IBs (%d)\n", r); 2232 return r; 2233 } 2234 2235 int amdgpu_fill_buffer(struct amdgpu_bo *bo, 2236 uint32_t src_data, 2237 struct dma_resv *resv, 2238 struct dma_fence **fence) 2239 { 2240 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2241 uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes; 2242 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2243 2244 struct drm_mm_node *mm_node; 2245 unsigned long num_pages; 2246 unsigned int num_loops, num_dw; 2247 2248 struct amdgpu_job *job; 2249 int r; 2250 2251 if (!adev->mman.buffer_funcs_enabled) { 2252 DRM_ERROR("Trying to clear memory with ring turned off.\n"); 2253 return -EINVAL; 2254 } 2255 2256 if (bo->tbo.mem.mem_type == TTM_PL_TT) { 2257 r = amdgpu_ttm_alloc_gart(&bo->tbo); 2258 if (r) 2259 return r; 2260 } 2261 2262 num_pages = bo->tbo.num_pages; 2263 mm_node = bo->tbo.mem.mm_node; 2264 num_loops = 0; 2265 while (num_pages) { 2266 uint64_t byte_count = mm_node->size << PAGE_SHIFT; 2267 2268 num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes); 2269 num_pages -= mm_node->size; 2270 ++mm_node; 2271 } 2272 num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw; 2273 2274 /* for IB padding */ 2275 num_dw += 64; 2276 2277 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job); 2278 if (r) 2279 return r; 2280 2281 if (resv) { 2282 r = amdgpu_sync_resv(adev, &job->sync, resv, 2283 AMDGPU_SYNC_ALWAYS, 2284 AMDGPU_FENCE_OWNER_UNDEFINED); 2285 if (r) { 2286 DRM_ERROR("sync failed (%d).\n", r); 2287 goto error_free; 2288 } 2289 } 2290 2291 num_pages = bo->tbo.num_pages; 2292 mm_node = bo->tbo.mem.mm_node; 2293 2294 while (num_pages) { 2295 uint64_t byte_count = mm_node->size << PAGE_SHIFT; 2296 uint64_t dst_addr; 2297 2298 dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem); 2299 while (byte_count) { 2300 uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count, 2301 max_bytes); 2302 2303 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, 2304 dst_addr, cur_size_in_bytes); 2305 2306 dst_addr += cur_size_in_bytes; 2307 byte_count -= cur_size_in_bytes; 2308 } 2309 2310 num_pages -= mm_node->size; 2311 ++mm_node; 2312 } 2313 2314 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2315 WARN_ON(job->ibs[0].length_dw > num_dw); 2316 r = amdgpu_job_submit(job, &adev->mman.entity, 2317 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 2318 if (r) 2319 goto error_free; 2320 2321 return 0; 2322 2323 error_free: 2324 amdgpu_job_free(job); 2325 return r; 2326 } 2327 2328 #if defined(CONFIG_DEBUG_FS) 2329 2330 static int amdgpu_mm_dump_table(struct seq_file *m, void *data) 2331 { 2332 struct drm_info_node *node = (struct drm_info_node *)m->private; 2333 unsigned ttm_pl = (uintptr_t)node->info_ent->data; 2334 struct drm_device *dev = node->minor->dev; 2335 struct amdgpu_device *adev = dev->dev_private; 2336 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl]; 2337 struct drm_printer p = drm_seq_file_printer(m); 2338 2339 man->func->debug(man, &p); 2340 return 0; 2341 } 2342 2343 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = { 2344 {"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM}, 2345 {"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT}, 2346 {"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS}, 2347 {"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS}, 2348 {"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA}, 2349 {"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL}, 2350 #ifdef CONFIG_SWIOTLB 2351 {"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL} 2352 #endif 2353 }; 2354 2355 /** 2356 * amdgpu_ttm_vram_read - Linear read access to VRAM 2357 * 2358 * Accesses VRAM via MMIO for debugging purposes. 2359 */ 2360 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, 2361 size_t size, loff_t *pos) 2362 { 2363 struct amdgpu_device *adev = file_inode(f)->i_private; 2364 ssize_t result = 0; 2365 2366 if (size & 0x3 || *pos & 0x3) 2367 return -EINVAL; 2368 2369 if (*pos >= adev->gmc.mc_vram_size) 2370 return -ENXIO; 2371 2372 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos)); 2373 while (size) { 2374 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4); 2375 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ]; 2376 2377 amdgpu_device_vram_access(adev, *pos, value, bytes, false); 2378 if (copy_to_user(buf, value, bytes)) 2379 return -EFAULT; 2380 2381 result += bytes; 2382 buf += bytes; 2383 *pos += bytes; 2384 size -= bytes; 2385 } 2386 2387 return result; 2388 } 2389 2390 /** 2391 * amdgpu_ttm_vram_write - Linear write access to VRAM 2392 * 2393 * Accesses VRAM via MMIO for debugging purposes. 2394 */ 2395 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf, 2396 size_t size, loff_t *pos) 2397 { 2398 struct amdgpu_device *adev = file_inode(f)->i_private; 2399 ssize_t result = 0; 2400 int r; 2401 2402 if (size & 0x3 || *pos & 0x3) 2403 return -EINVAL; 2404 2405 if (*pos >= adev->gmc.mc_vram_size) 2406 return -ENXIO; 2407 2408 while (size) { 2409 unsigned long flags; 2410 uint32_t value; 2411 2412 if (*pos >= adev->gmc.mc_vram_size) 2413 return result; 2414 2415 r = get_user(value, (uint32_t *)buf); 2416 if (r) 2417 return r; 2418 2419 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 2420 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000); 2421 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31); 2422 WREG32_NO_KIQ(mmMM_DATA, value); 2423 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 2424 2425 result += 4; 2426 buf += 4; 2427 *pos += 4; 2428 size -= 4; 2429 } 2430 2431 return result; 2432 } 2433 2434 static const struct file_operations amdgpu_ttm_vram_fops = { 2435 .owner = THIS_MODULE, 2436 .read = amdgpu_ttm_vram_read, 2437 .write = amdgpu_ttm_vram_write, 2438 .llseek = default_llseek, 2439 }; 2440 2441 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS 2442 2443 /** 2444 * amdgpu_ttm_gtt_read - Linear read access to GTT memory 2445 */ 2446 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf, 2447 size_t size, loff_t *pos) 2448 { 2449 struct amdgpu_device *adev = file_inode(f)->i_private; 2450 ssize_t result = 0; 2451 int r; 2452 2453 while (size) { 2454 loff_t p = *pos / PAGE_SIZE; 2455 unsigned off = *pos & PAGE_MASK; 2456 size_t cur_size = min_t(size_t, size, PAGE_SIZE - off); 2457 struct vm_page *page; 2458 void *ptr; 2459 2460 if (p >= adev->gart.num_cpu_pages) 2461 return result; 2462 2463 page = adev->gart.pages[p]; 2464 if (page) { 2465 ptr = kmap(page); 2466 ptr += off; 2467 2468 r = copy_to_user(buf, ptr, cur_size); 2469 kunmap(adev->gart.pages[p]); 2470 } else 2471 r = clear_user(buf, cur_size); 2472 2473 if (r) 2474 return -EFAULT; 2475 2476 result += cur_size; 2477 buf += cur_size; 2478 *pos += cur_size; 2479 size -= cur_size; 2480 } 2481 2482 return result; 2483 } 2484 2485 static const struct file_operations amdgpu_ttm_gtt_fops = { 2486 .owner = THIS_MODULE, 2487 .read = amdgpu_ttm_gtt_read, 2488 .llseek = default_llseek 2489 }; 2490 2491 #endif 2492 2493 /** 2494 * amdgpu_iomem_read - Virtual read access to GPU mapped memory 2495 * 2496 * This function is used to read memory that has been mapped to the 2497 * GPU and the known addresses are not physical addresses but instead 2498 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2499 */ 2500 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf, 2501 size_t size, loff_t *pos) 2502 { 2503 struct amdgpu_device *adev = file_inode(f)->i_private; 2504 struct iommu_domain *dom; 2505 ssize_t result = 0; 2506 int r; 2507 2508 /* retrieve the IOMMU domain if any for this device */ 2509 dom = iommu_get_domain_for_dev(adev->dev); 2510 2511 while (size) { 2512 phys_addr_t addr = *pos & ~PAGE_MASK; 2513 loff_t off = *pos & PAGE_MASK; 2514 size_t bytes = PAGE_SIZE - off; 2515 unsigned long pfn; 2516 struct vm_page *p; 2517 void *ptr; 2518 2519 bytes = bytes < size ? bytes : size; 2520 2521 /* Translate the bus address to a physical address. If 2522 * the domain is NULL it means there is no IOMMU active 2523 * and the address translation is the identity 2524 */ 2525 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2526 2527 pfn = addr >> PAGE_SHIFT; 2528 if (!pfn_valid(pfn)) 2529 return -EPERM; 2530 2531 p = pfn_to_page(pfn); 2532 if (p->mapping != adev->mman.bdev.dev_mapping) 2533 return -EPERM; 2534 2535 ptr = kmap(p); 2536 r = copy_to_user(buf, ptr + off, bytes); 2537 kunmap(p); 2538 if (r) 2539 return -EFAULT; 2540 2541 size -= bytes; 2542 *pos += bytes; 2543 result += bytes; 2544 } 2545 2546 return result; 2547 } 2548 2549 /** 2550 * amdgpu_iomem_write - Virtual write access to GPU mapped memory 2551 * 2552 * This function is used to write memory that has been mapped to the 2553 * GPU and the known addresses are not physical addresses but instead 2554 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2555 */ 2556 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf, 2557 size_t size, loff_t *pos) 2558 { 2559 struct amdgpu_device *adev = file_inode(f)->i_private; 2560 struct iommu_domain *dom; 2561 ssize_t result = 0; 2562 int r; 2563 2564 dom = iommu_get_domain_for_dev(adev->dev); 2565 2566 while (size) { 2567 phys_addr_t addr = *pos & ~PAGE_MASK; 2568 loff_t off = *pos & PAGE_MASK; 2569 size_t bytes = PAGE_SIZE - off; 2570 unsigned long pfn; 2571 struct vm_page *p; 2572 void *ptr; 2573 2574 bytes = bytes < size ? bytes : size; 2575 2576 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2577 2578 pfn = addr >> PAGE_SHIFT; 2579 if (!pfn_valid(pfn)) 2580 return -EPERM; 2581 2582 p = pfn_to_page(pfn); 2583 if (p->mapping != adev->mman.bdev.dev_mapping) 2584 return -EPERM; 2585 2586 ptr = kmap(p); 2587 r = copy_from_user(ptr + off, buf, bytes); 2588 kunmap(p); 2589 if (r) 2590 return -EFAULT; 2591 2592 size -= bytes; 2593 *pos += bytes; 2594 result += bytes; 2595 } 2596 2597 return result; 2598 } 2599 2600 static const struct file_operations amdgpu_ttm_iomem_fops = { 2601 .owner = THIS_MODULE, 2602 .read = amdgpu_iomem_read, 2603 .write = amdgpu_iomem_write, 2604 .llseek = default_llseek 2605 }; 2606 2607 static const struct { 2608 char *name; 2609 const struct file_operations *fops; 2610 int domain; 2611 } ttm_debugfs_entries[] = { 2612 { "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM }, 2613 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS 2614 { "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT }, 2615 #endif 2616 { "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM }, 2617 }; 2618 2619 #endif 2620 2621 int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) 2622 { 2623 #if defined(CONFIG_DEBUG_FS) 2624 unsigned count; 2625 2626 struct drm_minor *minor = adev->ddev->primary; 2627 struct dentry *ent, *root = minor->debugfs_root; 2628 2629 for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) { 2630 ent = debugfs_create_file( 2631 ttm_debugfs_entries[count].name, 2632 S_IFREG | S_IRUGO, root, 2633 adev, 2634 ttm_debugfs_entries[count].fops); 2635 if (IS_ERR(ent)) 2636 return PTR_ERR(ent); 2637 if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM) 2638 i_size_write(ent->d_inode, adev->gmc.mc_vram_size); 2639 else if (ttm_debugfs_entries[count].domain == TTM_PL_TT) 2640 i_size_write(ent->d_inode, adev->gmc.gart_size); 2641 adev->mman.debugfs_entries[count] = ent; 2642 } 2643 2644 count = ARRAY_SIZE(amdgpu_ttm_debugfs_list); 2645 2646 #ifdef CONFIG_SWIOTLB 2647 if (!(adev->need_swiotlb && swiotlb_nr_tbl())) 2648 --count; 2649 #endif 2650 2651 return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count); 2652 #else 2653 return 0; 2654 #endif 2655 } 2656