xref: /openbsd/sys/dev/pci/drm/amd/amdgpu/amdgpu_ttm.c (revision 72c7c57a)
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/dma-buf.h>
42 #include <linux/sizes.h>
43 #include <linux/module.h>
44 
45 #include <drm/drm_drv.h>
46 #include <drm/ttm/ttm_bo.h>
47 #include <drm/ttm/ttm_placement.h>
48 #include <drm/ttm/ttm_range_manager.h>
49 #include <drm/ttm/ttm_tt.h>
50 
51 #include <drm/amdgpu_drm.h>
52 
53 #include "amdgpu.h"
54 #include "amdgpu_object.h"
55 #include "amdgpu_trace.h"
56 #include "amdgpu_amdkfd.h"
57 #include "amdgpu_sdma.h"
58 #include "amdgpu_ras.h"
59 #include "amdgpu_hmm.h"
60 #include "amdgpu_atomfirmware.h"
61 #include "amdgpu_res_cursor.h"
62 #include "bif/bif_4_1_d.h"
63 
64 MODULE_IMPORT_NS(DMA_BUF);
65 
66 #define AMDGPU_TTM_VRAM_MAX_DW_READ	((size_t)128)
67 
68 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
69 				   struct ttm_tt *ttm,
70 				   struct ttm_resource *bo_mem);
71 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
72 				      struct ttm_tt *ttm);
73 
74 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
75 				    unsigned int type,
76 				    uint64_t size_in_page)
77 {
78 	return ttm_range_man_init(&adev->mman.bdev, type,
79 				  false, size_in_page);
80 }
81 
82 /**
83  * amdgpu_evict_flags - Compute placement flags
84  *
85  * @bo: The buffer object to evict
86  * @placement: Possible destination(s) for evicted BO
87  *
88  * Fill in placement data when ttm_bo_evict() is called
89  */
90 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
91 				struct ttm_placement *placement)
92 {
93 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
94 	struct amdgpu_bo *abo;
95 	static const struct ttm_place placements = {
96 		.fpfn = 0,
97 		.lpfn = 0,
98 		.mem_type = TTM_PL_SYSTEM,
99 		.flags = 0
100 	};
101 
102 	/* Don't handle scatter gather BOs */
103 	if (bo->type == ttm_bo_type_sg) {
104 		placement->num_placement = 0;
105 		placement->num_busy_placement = 0;
106 		return;
107 	}
108 
109 	/* Object isn't an AMDGPU object so ignore */
110 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
111 		placement->placement = &placements;
112 		placement->busy_placement = &placements;
113 		placement->num_placement = 1;
114 		placement->num_busy_placement = 1;
115 		return;
116 	}
117 
118 	abo = ttm_to_amdgpu_bo(bo);
119 	if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
120 		placement->num_placement = 0;
121 		placement->num_busy_placement = 0;
122 		return;
123 	}
124 
125 	switch (bo->resource->mem_type) {
126 	case AMDGPU_PL_GDS:
127 	case AMDGPU_PL_GWS:
128 	case AMDGPU_PL_OA:
129 	case AMDGPU_PL_DOORBELL:
130 		placement->num_placement = 0;
131 		placement->num_busy_placement = 0;
132 		return;
133 
134 	case TTM_PL_VRAM:
135 		if (!adev->mman.buffer_funcs_enabled) {
136 			/* Move to system memory */
137 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
138 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
139 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
140 			   amdgpu_bo_in_cpu_visible_vram(abo)) {
141 
142 			/* Try evicting to the CPU inaccessible part of VRAM
143 			 * first, but only set GTT as busy placement, so this
144 			 * BO will be evicted to GTT rather than causing other
145 			 * BOs to be evicted from VRAM
146 			 */
147 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
148 							AMDGPU_GEM_DOMAIN_GTT |
149 							AMDGPU_GEM_DOMAIN_CPU);
150 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
151 			abo->placements[0].lpfn = 0;
152 			abo->placement.busy_placement = &abo->placements[1];
153 			abo->placement.num_busy_placement = 1;
154 		} else {
155 			/* Move to GTT memory */
156 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
157 							AMDGPU_GEM_DOMAIN_CPU);
158 		}
159 		break;
160 	case TTM_PL_TT:
161 	case AMDGPU_PL_PREEMPT:
162 	default:
163 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
164 		break;
165 	}
166 	*placement = abo->placement;
167 }
168 
169 /**
170  * amdgpu_ttm_map_buffer - Map memory into the GART windows
171  * @bo: buffer object to map
172  * @mem: memory object to map
173  * @mm_cur: range to map
174  * @window: which GART window to use
175  * @ring: DMA ring to use for the copy
176  * @tmz: if we should setup a TMZ enabled mapping
177  * @size: in number of bytes to map, out number of bytes mapped
178  * @addr: resulting address inside the MC address space
179  *
180  * Setup one of the GART windows to access a specific piece of memory or return
181  * the physical address for local memory.
182  */
183 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
184 				 struct ttm_resource *mem,
185 				 struct amdgpu_res_cursor *mm_cur,
186 				 unsigned int window, struct amdgpu_ring *ring,
187 				 bool tmz, uint64_t *size, uint64_t *addr)
188 {
189 	struct amdgpu_device *adev = ring->adev;
190 	unsigned int offset, num_pages, num_dw, num_bytes;
191 	uint64_t src_addr, dst_addr;
192 	struct amdgpu_job *job;
193 	void *cpu_addr;
194 	uint64_t flags;
195 	unsigned int i;
196 	int r;
197 
198 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
199 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
200 
201 	if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
202 		return -EINVAL;
203 
204 	/* Map only what can't be accessed directly */
205 	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
206 		*addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
207 			mm_cur->start;
208 		return 0;
209 	}
210 
211 
212 	/*
213 	 * If start begins at an offset inside the page, then adjust the size
214 	 * and addr accordingly
215 	 */
216 	offset = mm_cur->start & ~LINUX_PAGE_MASK;
217 
218 	num_pages = PFN_UP(*size + offset);
219 	num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
220 
221 	*size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
222 
223 	*addr = adev->gmc.gart_start;
224 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
225 		AMDGPU_GPU_PAGE_SIZE;
226 	*addr += offset;
227 
228 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
229 	num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
230 
231 	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
232 				     AMDGPU_FENCE_OWNER_UNDEFINED,
233 				     num_dw * 4 + num_bytes,
234 				     AMDGPU_IB_POOL_DELAYED, &job);
235 	if (r)
236 		return r;
237 
238 	src_addr = num_dw * 4;
239 	src_addr += job->ibs[0].gpu_addr;
240 
241 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
242 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
243 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
244 				dst_addr, num_bytes, false);
245 
246 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
247 	WARN_ON(job->ibs[0].length_dw > num_dw);
248 
249 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
250 	if (tmz)
251 		flags |= AMDGPU_PTE_TMZ;
252 
253 	cpu_addr = &job->ibs[0].ptr[num_dw];
254 
255 	if (mem->mem_type == TTM_PL_TT) {
256 		dma_addr_t *dma_addr;
257 
258 		dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
259 		amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
260 	} else {
261 		dma_addr_t dma_address;
262 
263 		dma_address = mm_cur->start;
264 		dma_address += adev->vm_manager.vram_base_offset;
265 
266 		for (i = 0; i < num_pages; ++i) {
267 			amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
268 					flags, cpu_addr);
269 			dma_address += PAGE_SIZE;
270 		}
271 	}
272 
273 	dma_fence_put(amdgpu_job_submit(job));
274 	return 0;
275 }
276 
277 /**
278  * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
279  * @adev: amdgpu device
280  * @src: buffer/address where to read from
281  * @dst: buffer/address where to write to
282  * @size: number of bytes to copy
283  * @tmz: if a secure copy should be used
284  * @resv: resv object to sync to
285  * @f: Returns the last fence if multiple jobs are submitted.
286  *
287  * The function copies @size bytes from {src->mem + src->offset} to
288  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
289  * move and different for a BO to BO copy.
290  *
291  */
292 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
293 			       const struct amdgpu_copy_mem *src,
294 			       const struct amdgpu_copy_mem *dst,
295 			       uint64_t size, bool tmz,
296 			       struct dma_resv *resv,
297 			       struct dma_fence **f)
298 {
299 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
300 	struct amdgpu_res_cursor src_mm, dst_mm;
301 	struct dma_fence *fence = NULL;
302 	int r = 0;
303 
304 	if (!adev->mman.buffer_funcs_enabled) {
305 		DRM_ERROR("Trying to move memory with ring turned off.\n");
306 		return -EINVAL;
307 	}
308 
309 	amdgpu_res_first(src->mem, src->offset, size, &src_mm);
310 	amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
311 
312 	mutex_lock(&adev->mman.gtt_window_lock);
313 	while (src_mm.remaining) {
314 		uint64_t from, to, cur_size;
315 		struct dma_fence *next;
316 
317 		/* Never copy more than 256MiB at once to avoid a timeout */
318 		cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
319 
320 		/* Map src to window 0 and dst to window 1. */
321 		r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
322 					  0, ring, tmz, &cur_size, &from);
323 		if (r)
324 			goto error;
325 
326 		r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
327 					  1, ring, tmz, &cur_size, &to);
328 		if (r)
329 			goto error;
330 
331 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
332 				       resv, &next, false, true, tmz);
333 		if (r)
334 			goto error;
335 
336 		dma_fence_put(fence);
337 		fence = next;
338 
339 		amdgpu_res_next(&src_mm, cur_size);
340 		amdgpu_res_next(&dst_mm, cur_size);
341 	}
342 error:
343 	mutex_unlock(&adev->mman.gtt_window_lock);
344 	if (f)
345 		*f = dma_fence_get(fence);
346 	dma_fence_put(fence);
347 	return r;
348 }
349 
350 /*
351  * amdgpu_move_blit - Copy an entire buffer to another buffer
352  *
353  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
354  * help move buffers to and from VRAM.
355  */
356 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
357 			    bool evict,
358 			    struct ttm_resource *new_mem,
359 			    struct ttm_resource *old_mem)
360 {
361 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
362 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
363 	struct amdgpu_copy_mem src, dst;
364 	struct dma_fence *fence = NULL;
365 	int r;
366 
367 	src.bo = bo;
368 	dst.bo = bo;
369 	src.mem = old_mem;
370 	dst.mem = new_mem;
371 	src.offset = 0;
372 	dst.offset = 0;
373 
374 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
375 				       new_mem->size,
376 				       amdgpu_bo_encrypted(abo),
377 				       bo->base.resv, &fence);
378 	if (r)
379 		goto error;
380 
381 	/* clear the space being freed */
382 	if (old_mem->mem_type == TTM_PL_VRAM &&
383 	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
384 		struct dma_fence *wipe_fence = NULL;
385 
386 		r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence,
387 					false);
388 		if (r) {
389 			goto error;
390 		} else if (wipe_fence) {
391 			dma_fence_put(fence);
392 			fence = wipe_fence;
393 		}
394 	}
395 
396 	/* Always block for VM page tables before committing the new location */
397 	if (bo->type == ttm_bo_type_kernel)
398 		r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
399 	else
400 		r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
401 	dma_fence_put(fence);
402 	return r;
403 
404 error:
405 	if (fence)
406 		dma_fence_wait(fence, false);
407 	dma_fence_put(fence);
408 	return r;
409 }
410 
411 /*
412  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
413  *
414  * Called by amdgpu_bo_move()
415  */
416 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
417 			       struct ttm_resource *mem)
418 {
419 	u64 mem_size = (u64)mem->size;
420 	struct amdgpu_res_cursor cursor;
421 	u64 end;
422 
423 	if (mem->mem_type == TTM_PL_SYSTEM ||
424 	    mem->mem_type == TTM_PL_TT)
425 		return true;
426 	if (mem->mem_type != TTM_PL_VRAM)
427 		return false;
428 
429 	amdgpu_res_first(mem, 0, mem_size, &cursor);
430 	end = cursor.start + cursor.size;
431 	while (cursor.remaining) {
432 		amdgpu_res_next(&cursor, cursor.size);
433 
434 		if (!cursor.remaining)
435 			break;
436 
437 		/* ttm_resource_ioremap only supports contiguous memory */
438 		if (end != cursor.start)
439 			return false;
440 
441 		end = cursor.start + cursor.size;
442 	}
443 
444 	return end <= adev->gmc.visible_vram_size;
445 }
446 
447 /*
448  * amdgpu_bo_move - Move a buffer object to a new memory location
449  *
450  * Called by ttm_bo_handle_move_mem()
451  */
452 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
453 			  struct ttm_operation_ctx *ctx,
454 			  struct ttm_resource *new_mem,
455 			  struct ttm_place *hop)
456 {
457 	struct amdgpu_device *adev;
458 	struct amdgpu_bo *abo;
459 	struct ttm_resource *old_mem = bo->resource;
460 	int r;
461 
462 	if (new_mem->mem_type == TTM_PL_TT ||
463 	    new_mem->mem_type == AMDGPU_PL_PREEMPT) {
464 		r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
465 		if (r)
466 			return r;
467 	}
468 
469 	abo = ttm_to_amdgpu_bo(bo);
470 	adev = amdgpu_ttm_adev(bo->bdev);
471 
472 	if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
473 			 bo->ttm == NULL)) {
474 		ttm_bo_move_null(bo, new_mem);
475 		goto out;
476 	}
477 	if (old_mem->mem_type == TTM_PL_SYSTEM &&
478 	    (new_mem->mem_type == TTM_PL_TT ||
479 	     new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
480 		ttm_bo_move_null(bo, new_mem);
481 		goto out;
482 	}
483 	if ((old_mem->mem_type == TTM_PL_TT ||
484 	     old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
485 	    new_mem->mem_type == TTM_PL_SYSTEM) {
486 		r = ttm_bo_wait_ctx(bo, ctx);
487 		if (r)
488 			return r;
489 
490 		amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
491 		ttm_resource_free(bo, &bo->resource);
492 		ttm_bo_assign_mem(bo, new_mem);
493 		goto out;
494 	}
495 
496 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
497 	    old_mem->mem_type == AMDGPU_PL_GWS ||
498 	    old_mem->mem_type == AMDGPU_PL_OA ||
499 	    old_mem->mem_type == AMDGPU_PL_DOORBELL ||
500 	    new_mem->mem_type == AMDGPU_PL_GDS ||
501 	    new_mem->mem_type == AMDGPU_PL_GWS ||
502 	    new_mem->mem_type == AMDGPU_PL_OA ||
503 	    new_mem->mem_type == AMDGPU_PL_DOORBELL) {
504 		/* Nothing to save here */
505 		ttm_bo_move_null(bo, new_mem);
506 		goto out;
507 	}
508 
509 	if (bo->type == ttm_bo_type_device &&
510 	    new_mem->mem_type == TTM_PL_VRAM &&
511 	    old_mem->mem_type != TTM_PL_VRAM) {
512 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
513 		 * accesses the BO after it's moved.
514 		 */
515 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
516 	}
517 
518 	if (adev->mman.buffer_funcs_enabled) {
519 		if (((old_mem->mem_type == TTM_PL_SYSTEM &&
520 		      new_mem->mem_type == TTM_PL_VRAM) ||
521 		     (old_mem->mem_type == TTM_PL_VRAM &&
522 		      new_mem->mem_type == TTM_PL_SYSTEM))) {
523 			hop->fpfn = 0;
524 			hop->lpfn = 0;
525 			hop->mem_type = TTM_PL_TT;
526 			hop->flags = TTM_PL_FLAG_TEMPORARY;
527 			return -EMULTIHOP;
528 		}
529 
530 		r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
531 	} else {
532 		r = -ENODEV;
533 	}
534 
535 	if (r) {
536 		/* Check that all memory is CPU accessible */
537 		if (!amdgpu_mem_visible(adev, old_mem) ||
538 		    !amdgpu_mem_visible(adev, new_mem)) {
539 			pr_err("Move buffer fallback to memcpy unavailable\n");
540 			return r;
541 		}
542 
543 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
544 		if (r)
545 			return r;
546 	}
547 
548 	trace_amdgpu_bo_move(abo, new_mem->mem_type, old_mem->mem_type);
549 out:
550 	/* update statistics */
551 	atomic64_add(bo->base.size, &adev->num_bytes_moved);
552 	amdgpu_bo_move_notify(bo, evict);
553 	return 0;
554 }
555 
556 /*
557  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
558  *
559  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
560  */
561 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
562 				     struct ttm_resource *mem)
563 {
564 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
565 	size_t bus_size = (size_t)mem->size;
566 
567 	switch (mem->mem_type) {
568 	case TTM_PL_SYSTEM:
569 		/* system memory */
570 		return 0;
571 	case TTM_PL_TT:
572 	case AMDGPU_PL_PREEMPT:
573 		break;
574 	case TTM_PL_VRAM:
575 		mem->bus.offset = mem->start << PAGE_SHIFT;
576 		/* check if it's visible */
577 		if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
578 			return -EINVAL;
579 
580 		if (adev->mman.aper_base_kaddr &&
581 		    mem->placement & TTM_PL_FLAG_CONTIGUOUS)
582 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
583 					mem->bus.offset;
584 
585 		mem->bus.offset += adev->gmc.aper_base;
586 		mem->bus.is_iomem = true;
587 		break;
588 	case AMDGPU_PL_DOORBELL:
589 		mem->bus.offset = mem->start << PAGE_SHIFT;
590 		mem->bus.offset += adev->doorbell.base;
591 		mem->bus.is_iomem = true;
592 		mem->bus.caching = ttm_uncached;
593 		break;
594 	default:
595 		return -EINVAL;
596 	}
597 	return 0;
598 }
599 
600 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
601 					   unsigned long page_offset)
602 {
603 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
604 	struct amdgpu_res_cursor cursor;
605 
606 	amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
607 			 &cursor);
608 
609 	if (bo->resource->mem_type == AMDGPU_PL_DOORBELL)
610 		return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT;
611 
612 	return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
613 }
614 
615 /**
616  * amdgpu_ttm_domain_start - Returns GPU start address
617  * @adev: amdgpu device object
618  * @type: type of the memory
619  *
620  * Returns:
621  * GPU start address of a memory domain
622  */
623 
624 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
625 {
626 	switch (type) {
627 	case TTM_PL_TT:
628 		return adev->gmc.gart_start;
629 	case TTM_PL_VRAM:
630 		return adev->gmc.vram_start;
631 	}
632 
633 	return 0;
634 }
635 
636 /*
637  * TTM backend functions.
638  */
639 struct amdgpu_ttm_tt {
640 	struct ttm_tt	ttm;
641 	struct drm_gem_object	*gobj;
642 	u64			offset;
643 	uint64_t		userptr;
644 	struct task_struct	*usertask;
645 	uint32_t		userflags;
646 	bool			bound;
647 	int32_t			pool_id;
648 };
649 
650 #define ttm_to_amdgpu_ttm_tt(ptr)	container_of(ptr, struct amdgpu_ttm_tt, ttm)
651 
652 #ifdef CONFIG_DRM_AMDGPU_USERPTR
653 /*
654  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
655  * memory and start HMM tracking CPU page table update
656  *
657  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
658  * once afterwards to stop HMM tracking
659  */
660 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct vm_page **pages,
661 				 struct hmm_range **range)
662 {
663 	struct ttm_tt *ttm = bo->tbo.ttm;
664 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
665 	unsigned long start = gtt->userptr;
666 	struct vm_area_struct *vma;
667 	struct mm_struct *mm;
668 	bool readonly;
669 	int r = 0;
670 
671 	/* Make sure get_user_pages_done() can cleanup gracefully */
672 	*range = NULL;
673 
674 	mm = bo->notifier.mm;
675 	if (unlikely(!mm)) {
676 		DRM_DEBUG_DRIVER("BO is not registered?\n");
677 		return -EFAULT;
678 	}
679 
680 	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
681 		return -ESRCH;
682 
683 	mmap_read_lock(mm);
684 	vma = vma_lookup(mm, start);
685 	if (unlikely(!vma)) {
686 		r = -EFAULT;
687 		goto out_unlock;
688 	}
689 	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
690 		vma->vm_file)) {
691 		r = -EPERM;
692 		goto out_unlock;
693 	}
694 
695 	readonly = amdgpu_ttm_tt_is_readonly(ttm);
696 	r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages,
697 				       readonly, NULL, pages, range);
698 out_unlock:
699 	mmap_read_unlock(mm);
700 	if (r)
701 		pr_debug("failed %d to get user pages 0x%lx\n", r, start);
702 
703 	mmput(mm);
704 
705 	return r;
706 }
707 
708 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations
709  */
710 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm,
711 				      struct hmm_range *range)
712 {
713 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
714 
715 	if (gtt && gtt->userptr && range)
716 		amdgpu_hmm_range_get_pages_done(range);
717 }
718 
719 /*
720  * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change
721  * Check if the pages backing this ttm range have been invalidated
722  *
723  * Returns: true if pages are still valid
724  */
725 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
726 				       struct hmm_range *range)
727 {
728 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
729 
730 	if (!gtt || !gtt->userptr || !range)
731 		return false;
732 
733 	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
734 		gtt->userptr, ttm->num_pages);
735 
736 	WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
737 
738 	return !amdgpu_hmm_range_get_pages_done(range);
739 }
740 #endif
741 
742 /*
743  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
744  *
745  * Called by amdgpu_cs_list_validate(). This creates the page list
746  * that backs user memory and will ultimately be mapped into the device
747  * address space.
748  */
749 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct vm_page **pages)
750 {
751 	unsigned long i;
752 
753 	for (i = 0; i < ttm->num_pages; ++i)
754 		ttm->pages[i] = pages ? pages[i] : NULL;
755 }
756 
757 /*
758  * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
759  *
760  * Called by amdgpu_ttm_backend_bind()
761  **/
762 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
763 				     struct ttm_tt *ttm)
764 {
765 	STUB();
766 	return -ENOSYS;
767 #ifdef notyet
768 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
769 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
770 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
771 	enum dma_data_direction direction = write ?
772 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
773 	int r;
774 
775 	/* Allocate an SG array and squash pages into it */
776 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
777 				      (u64)ttm->num_pages << PAGE_SHIFT,
778 				      GFP_KERNEL);
779 	if (r)
780 		goto release_sg;
781 
782 	/* Map SG to device */
783 	r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
784 	if (r)
785 		goto release_sg;
786 
787 	/* convert SG to linear array of pages and dma addresses */
788 	drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
789 				       ttm->num_pages);
790 
791 	return 0;
792 
793 release_sg:
794 	kfree(ttm->sg);
795 	ttm->sg = NULL;
796 	return r;
797 #endif
798 }
799 
800 /*
801  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
802  */
803 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
804 					struct ttm_tt *ttm)
805 {
806 	STUB();
807 #ifdef notyet
808 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
809 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
810 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
811 	enum dma_data_direction direction = write ?
812 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
813 
814 	/* double check that we don't free the table twice */
815 	if (!ttm->sg || !ttm->sg->sgl)
816 		return;
817 
818 	/* unmap the pages mapped to the device */
819 	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
820 	sg_free_table(ttm->sg);
821 #endif
822 }
823 
824 /*
825  * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ...
826  * MQDn+CtrlStackn where n is the number of XCCs per partition.
827  * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD
828  * and uses memory type default, UC. The rest of pages_per_xcc are
829  * Ctrl stack and modify their memory type to NC.
830  */
831 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev,
832 				struct ttm_tt *ttm, uint64_t flags)
833 {
834 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
835 	uint64_t total_pages = ttm->num_pages;
836 	int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp);
837 	uint64_t page_idx, pages_per_xcc;
838 	int i;
839 	uint64_t ctrl_flags = (flags & ~AMDGPU_PTE_MTYPE_VG10_MASK) |
840 			AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
841 
842 	pages_per_xcc = total_pages;
843 	do_div(pages_per_xcc, num_xcc);
844 
845 	for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) {
846 		/* MQD page: use default flags */
847 		amdgpu_gart_bind(adev,
848 				gtt->offset + (page_idx << PAGE_SHIFT),
849 				1, &gtt->ttm.dma_address[page_idx], flags);
850 		/*
851 		 * Ctrl pages - modify the memory type to NC (ctrl_flags) from
852 		 * the second page of the BO onward.
853 		 */
854 		amdgpu_gart_bind(adev,
855 				gtt->offset + ((page_idx + 1) << PAGE_SHIFT),
856 				pages_per_xcc - 1,
857 				&gtt->ttm.dma_address[page_idx + 1],
858 				ctrl_flags);
859 	}
860 }
861 
862 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
863 				 struct ttm_buffer_object *tbo,
864 				 uint64_t flags)
865 {
866 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
867 	struct ttm_tt *ttm = tbo->ttm;
868 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
869 
870 	if (amdgpu_bo_encrypted(abo))
871 		flags |= AMDGPU_PTE_TMZ;
872 
873 	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
874 		amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags);
875 	} else {
876 		amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
877 				 gtt->ttm.dma_address, flags);
878 	}
879 	gtt->bound = true;
880 }
881 
882 /*
883  * amdgpu_ttm_backend_bind - Bind GTT memory
884  *
885  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
886  * This handles binding GTT memory to the device address space.
887  */
888 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
889 				   struct ttm_tt *ttm,
890 				   struct ttm_resource *bo_mem)
891 {
892 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
893 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
894 	uint64_t flags;
895 	int r;
896 
897 	if (!bo_mem)
898 		return -EINVAL;
899 
900 	if (gtt->bound)
901 		return 0;
902 
903 	if (gtt->userptr) {
904 		r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
905 		if (r) {
906 			DRM_ERROR("failed to pin userptr\n");
907 			return r;
908 		}
909 	} else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
910 		if (!ttm->sg) {
911 			struct dma_buf_attachment *attach;
912 			struct sg_table *sgt;
913 
914 			attach = gtt->gobj->import_attach;
915 #ifdef notyet
916 			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
917 			if (IS_ERR(sgt))
918 				return PTR_ERR(sgt);
919 #else
920 			STUB();
921 			return -ENOSYS;
922 #endif
923 
924 			ttm->sg = sgt;
925 		}
926 
927 		drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
928 					       ttm->num_pages);
929 	}
930 
931 	if (!ttm->num_pages) {
932 		WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
933 		     ttm->num_pages, bo_mem, ttm);
934 	}
935 
936 	if (bo_mem->mem_type != TTM_PL_TT ||
937 	    !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
938 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
939 		return 0;
940 	}
941 
942 	/* compute PTE flags relevant to this BO memory */
943 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
944 
945 	/* bind pages into GART page tables */
946 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
947 	amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
948 			 gtt->ttm.dma_address, flags);
949 	gtt->bound = true;
950 	return 0;
951 }
952 
953 /*
954  * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
955  * through AGP or GART aperture.
956  *
957  * If bo is accessible through AGP aperture, then use AGP aperture
958  * to access bo; otherwise allocate logical space in GART aperture
959  * and map bo to GART aperture.
960  */
961 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
962 {
963 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
964 	struct ttm_operation_ctx ctx = { false, false };
965 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
966 	struct ttm_placement placement;
967 	struct ttm_place placements;
968 	struct ttm_resource *tmp;
969 	uint64_t addr, flags;
970 	int r;
971 
972 	if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
973 		return 0;
974 
975 	addr = amdgpu_gmc_agp_addr(bo);
976 	if (addr != AMDGPU_BO_INVALID_OFFSET) {
977 		bo->resource->start = addr >> PAGE_SHIFT;
978 		return 0;
979 	}
980 
981 	/* allocate GART space */
982 	placement.num_placement = 1;
983 	placement.placement = &placements;
984 	placement.num_busy_placement = 1;
985 	placement.busy_placement = &placements;
986 	placements.fpfn = 0;
987 	placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
988 	placements.mem_type = TTM_PL_TT;
989 	placements.flags = bo->resource->placement;
990 
991 	r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
992 	if (unlikely(r))
993 		return r;
994 
995 	/* compute PTE flags for this buffer object */
996 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
997 
998 	/* Bind pages */
999 	gtt->offset = (u64)tmp->start << PAGE_SHIFT;
1000 	amdgpu_ttm_gart_bind(adev, bo, flags);
1001 	amdgpu_gart_invalidate_tlb(adev);
1002 	ttm_resource_free(bo, &bo->resource);
1003 	ttm_bo_assign_mem(bo, tmp);
1004 
1005 	return 0;
1006 }
1007 
1008 /*
1009  * amdgpu_ttm_recover_gart - Rebind GTT pages
1010  *
1011  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1012  * rebind GTT pages during a GPU reset.
1013  */
1014 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1015 {
1016 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1017 	uint64_t flags;
1018 
1019 	if (!tbo->ttm)
1020 		return;
1021 
1022 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1023 	amdgpu_ttm_gart_bind(adev, tbo, flags);
1024 }
1025 
1026 /*
1027  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1028  *
1029  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1030  * ttm_tt_destroy().
1031  */
1032 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1033 				      struct ttm_tt *ttm)
1034 {
1035 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1036 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1037 
1038 	/* if the pages have userptr pinning then clear that first */
1039 	if (gtt->userptr) {
1040 		amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1041 	} else if (ttm->sg && gtt->gobj->import_attach) {
1042 		struct dma_buf_attachment *attach;
1043 
1044 		attach = gtt->gobj->import_attach;
1045 #ifdef notyet
1046 		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1047 #else
1048 		STUB();
1049 #endif
1050 		ttm->sg = NULL;
1051 	}
1052 
1053 	if (!gtt->bound)
1054 		return;
1055 
1056 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1057 		return;
1058 
1059 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1060 	amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1061 	gtt->bound = false;
1062 }
1063 
1064 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1065 				       struct ttm_tt *ttm)
1066 {
1067 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1068 
1069 #ifdef notyet
1070 	if (gtt->usertask)
1071 		put_task_struct(gtt->usertask);
1072 #endif
1073 
1074 	ttm_tt_fini(&gtt->ttm);
1075 	kfree(gtt);
1076 }
1077 
1078 /**
1079  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1080  *
1081  * @bo: The buffer object to create a GTT ttm_tt object around
1082  * @page_flags: Page flags to be added to the ttm_tt object
1083  *
1084  * Called by ttm_tt_create().
1085  */
1086 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1087 					   uint32_t page_flags)
1088 {
1089 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1090 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1091 	struct amdgpu_ttm_tt *gtt;
1092 	enum ttm_caching caching;
1093 
1094 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1095 	if (!gtt)
1096 		return NULL;
1097 
1098 	gtt->gobj = &bo->base;
1099 	if (adev->gmc.mem_partitions && abo->xcp_id >= 0)
1100 		gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id);
1101 	else
1102 		gtt->pool_id = abo->xcp_id;
1103 
1104 	if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1105 		caching = ttm_write_combined;
1106 	else
1107 		caching = ttm_cached;
1108 
1109 	/* allocate space for the uninitialized page entries */
1110 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1111 		kfree(gtt);
1112 		return NULL;
1113 	}
1114 	return &gtt->ttm;
1115 }
1116 
1117 /*
1118  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1119  *
1120  * Map the pages of a ttm_tt object to an address space visible
1121  * to the underlying device.
1122  */
1123 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1124 				  struct ttm_tt *ttm,
1125 				  struct ttm_operation_ctx *ctx)
1126 {
1127 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1128 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1129 	struct ttm_pool *pool;
1130 	pgoff_t i;
1131 	int ret;
1132 
1133 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1134 	if (gtt->userptr) {
1135 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1136 		if (!ttm->sg)
1137 			return -ENOMEM;
1138 		return 0;
1139 	}
1140 
1141 	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1142 		return 0;
1143 
1144 	if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1145 		pool = &adev->mman.ttm_pools[gtt->pool_id];
1146 	else
1147 		pool = &adev->mman.bdev.pool;
1148 	ret = ttm_pool_alloc(pool, ttm, ctx);
1149 	if (ret)
1150 		return ret;
1151 
1152 #ifdef notyet
1153 	for (i = 0; i < ttm->num_pages; ++i)
1154 		ttm->pages[i]->mapping = bdev->dev_mapping;
1155 #endif
1156 
1157 	return 0;
1158 }
1159 
1160 /*
1161  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1162  *
1163  * Unmaps pages of a ttm_tt object from the device address space and
1164  * unpopulates the page array backing it.
1165  */
1166 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1167 				     struct ttm_tt *ttm)
1168 {
1169 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1170 	struct amdgpu_device *adev;
1171 	struct ttm_pool *pool;
1172 	pgoff_t i;
1173 	struct vm_page *page;
1174 
1175 	amdgpu_ttm_backend_unbind(bdev, ttm);
1176 
1177 	if (gtt->userptr) {
1178 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1179 		kfree(ttm->sg);
1180 		ttm->sg = NULL;
1181 		return;
1182 	}
1183 
1184 	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1185 		return;
1186 
1187 	for (i = 0; i < ttm->num_pages; ++i) {
1188 		page = ttm->pages[i];
1189 		if (unlikely(page == NULL))
1190 			continue;
1191 		pmap_page_protect(page, PROT_NONE);
1192 	}
1193 
1194 	adev = amdgpu_ttm_adev(bdev);
1195 
1196 	if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1197 		pool = &adev->mman.ttm_pools[gtt->pool_id];
1198 	else
1199 		pool = &adev->mman.bdev.pool;
1200 
1201 	return ttm_pool_free(pool, ttm);
1202 }
1203 
1204 /**
1205  * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1206  * task
1207  *
1208  * @tbo: The ttm_buffer_object that contains the userptr
1209  * @user_addr:  The returned value
1210  */
1211 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1212 			      uint64_t *user_addr)
1213 {
1214 	struct amdgpu_ttm_tt *gtt;
1215 
1216 	if (!tbo->ttm)
1217 		return -EINVAL;
1218 
1219 	gtt = (void *)tbo->ttm;
1220 	*user_addr = gtt->userptr;
1221 	return 0;
1222 }
1223 
1224 /**
1225  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1226  * task
1227  *
1228  * @bo: The ttm_buffer_object to bind this userptr to
1229  * @addr:  The address in the current tasks VM space to use
1230  * @flags: Requirements of userptr object.
1231  *
1232  * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to
1233  * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to
1234  * initialize GPU VM for a KFD process.
1235  */
1236 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1237 			      uint64_t addr, uint32_t flags)
1238 {
1239 	struct amdgpu_ttm_tt *gtt;
1240 
1241 	if (!bo->ttm) {
1242 		/* TODO: We want a separate TTM object type for userptrs */
1243 		bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1244 		if (bo->ttm == NULL)
1245 			return -ENOMEM;
1246 	}
1247 
1248 	/* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1249 	bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1250 
1251 	gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1252 	gtt->userptr = addr;
1253 	gtt->userflags = flags;
1254 
1255 #ifdef notyet
1256 	if (gtt->usertask)
1257 		put_task_struct(gtt->usertask);
1258 	gtt->usertask = current->group_leader;
1259 	get_task_struct(gtt->usertask);
1260 #endif
1261 
1262 	return 0;
1263 }
1264 
1265 /*
1266  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1267  */
1268 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1269 {
1270 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1271 
1272 	if (gtt == NULL)
1273 		return NULL;
1274 
1275 	if (gtt->usertask == NULL)
1276 		return NULL;
1277 
1278 #ifdef notyet
1279 	return gtt->usertask->mm;
1280 #else
1281 	STUB();
1282 	return NULL;
1283 #endif
1284 }
1285 
1286 /*
1287  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1288  * address range for the current task.
1289  *
1290  */
1291 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1292 				  unsigned long end, unsigned long *userptr)
1293 {
1294 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1295 	unsigned long size;
1296 
1297 	if (gtt == NULL || !gtt->userptr)
1298 		return false;
1299 
1300 	/* Return false if no part of the ttm_tt object lies within
1301 	 * the range
1302 	 */
1303 	size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1304 	if (gtt->userptr > end || gtt->userptr + size <= start)
1305 		return false;
1306 
1307 	if (userptr)
1308 		*userptr = gtt->userptr;
1309 	return true;
1310 }
1311 
1312 /*
1313  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1314  */
1315 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1316 {
1317 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1318 
1319 	if (gtt == NULL || !gtt->userptr)
1320 		return false;
1321 
1322 	return true;
1323 }
1324 
1325 /*
1326  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1327  */
1328 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1329 {
1330 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1331 
1332 	if (gtt == NULL)
1333 		return false;
1334 
1335 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1336 }
1337 
1338 /**
1339  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1340  *
1341  * @ttm: The ttm_tt object to compute the flags for
1342  * @mem: The memory registry backing this ttm_tt object
1343  *
1344  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1345  */
1346 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1347 {
1348 	uint64_t flags = 0;
1349 
1350 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1351 		flags |= AMDGPU_PTE_VALID;
1352 
1353 	if (mem && (mem->mem_type == TTM_PL_TT ||
1354 		    mem->mem_type == AMDGPU_PL_DOORBELL ||
1355 		    mem->mem_type == AMDGPU_PL_PREEMPT)) {
1356 		flags |= AMDGPU_PTE_SYSTEM;
1357 
1358 		if (ttm->caching == ttm_cached)
1359 			flags |= AMDGPU_PTE_SNOOPED;
1360 	}
1361 
1362 	if (mem && mem->mem_type == TTM_PL_VRAM &&
1363 			mem->bus.caching == ttm_cached)
1364 		flags |= AMDGPU_PTE_SNOOPED;
1365 
1366 	return flags;
1367 }
1368 
1369 /**
1370  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1371  *
1372  * @adev: amdgpu_device pointer
1373  * @ttm: The ttm_tt object to compute the flags for
1374  * @mem: The memory registry backing this ttm_tt object
1375  *
1376  * Figure out the flags to use for a VM PTE (Page Table Entry).
1377  */
1378 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1379 				 struct ttm_resource *mem)
1380 {
1381 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1382 
1383 	flags |= adev->gart.gart_pte_flags;
1384 	flags |= AMDGPU_PTE_READABLE;
1385 
1386 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1387 		flags |= AMDGPU_PTE_WRITEABLE;
1388 
1389 	return flags;
1390 }
1391 
1392 /*
1393  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1394  * object.
1395  *
1396  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1397  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1398  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1399  * used to clean out a memory space.
1400  */
1401 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1402 					    const struct ttm_place *place)
1403 {
1404 	struct dma_resv_iter resv_cursor;
1405 	struct dma_fence *f;
1406 
1407 	if (!amdgpu_bo_is_amdgpu_bo(bo))
1408 		return ttm_bo_eviction_valuable(bo, place);
1409 
1410 	/* Swapout? */
1411 	if (bo->resource->mem_type == TTM_PL_SYSTEM)
1412 		return true;
1413 
1414 	if (bo->type == ttm_bo_type_kernel &&
1415 	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1416 		return false;
1417 
1418 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1419 	 * If true, then return false as any KFD process needs all its BOs to
1420 	 * be resident to run successfully
1421 	 */
1422 	dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1423 				DMA_RESV_USAGE_BOOKKEEP, f) {
1424 #ifdef notyet
1425 		if (amdkfd_fence_check_mm(f, current->mm))
1426 			return false;
1427 #endif
1428 	}
1429 
1430 	/* Preemptible BOs don't own system resources managed by the
1431 	 * driver (pages, VRAM, GART space). They point to resources
1432 	 * owned by someone else (e.g. pageable memory in user mode
1433 	 * or a DMABuf). They are used in a preemptible context so we
1434 	 * can guarantee no deadlocks and good QoS in case of MMU
1435 	 * notifiers or DMABuf move notifiers from the resource owner.
1436 	 */
1437 	if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1438 		return false;
1439 
1440 	if (bo->resource->mem_type == TTM_PL_TT &&
1441 	    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1442 		return false;
1443 
1444 	return ttm_bo_eviction_valuable(bo, place);
1445 }
1446 
1447 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1448 				      void *buf, size_t size, bool write)
1449 {
1450 	STUB();
1451 #ifdef notyet
1452 	while (size) {
1453 		uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1454 		uint64_t bytes = 4 - (pos & 0x3);
1455 		uint32_t shift = (pos & 0x3) * 8;
1456 		uint32_t mask = 0xffffffff << shift;
1457 		uint32_t value = 0;
1458 
1459 		if (size < bytes) {
1460 			mask &= 0xffffffff >> (bytes - size) * 8;
1461 			bytes = size;
1462 		}
1463 
1464 		if (mask != 0xffffffff) {
1465 			amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1466 			if (write) {
1467 				value &= ~mask;
1468 				value |= (*(uint32_t *)buf << shift) & mask;
1469 				amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1470 			} else {
1471 				value = (value & mask) >> shift;
1472 				memcpy(buf, &value, bytes);
1473 			}
1474 		} else {
1475 			amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1476 		}
1477 
1478 		pos += bytes;
1479 		buf += bytes;
1480 		size -= bytes;
1481 	}
1482 #endif
1483 }
1484 
1485 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1486 					unsigned long offset, void *buf,
1487 					int len, int write)
1488 {
1489 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1490 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1491 	struct amdgpu_res_cursor src_mm;
1492 	struct amdgpu_job *job;
1493 	struct dma_fence *fence;
1494 	uint64_t src_addr, dst_addr;
1495 	unsigned int num_dw;
1496 	int r, idx;
1497 
1498 	if (len != PAGE_SIZE)
1499 		return -EINVAL;
1500 
1501 	if (!adev->mman.sdma_access_ptr)
1502 		return -EACCES;
1503 
1504 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
1505 		return -ENODEV;
1506 
1507 	if (write)
1508 		memcpy(adev->mman.sdma_access_ptr, buf, len);
1509 
1510 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1511 	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
1512 				     AMDGPU_FENCE_OWNER_UNDEFINED,
1513 				     num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1514 				     &job);
1515 	if (r)
1516 		goto out;
1517 
1518 	amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1519 	src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) +
1520 		src_mm.start;
1521 	dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1522 	if (write)
1523 		swap(src_addr, dst_addr);
1524 
1525 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr,
1526 				PAGE_SIZE, false);
1527 
1528 	amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1529 	WARN_ON(job->ibs[0].length_dw > num_dw);
1530 
1531 	fence = amdgpu_job_submit(job);
1532 
1533 	if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1534 		r = -ETIMEDOUT;
1535 	dma_fence_put(fence);
1536 
1537 	if (!(r || write))
1538 		memcpy(buf, adev->mman.sdma_access_ptr, len);
1539 out:
1540 	drm_dev_exit(idx);
1541 	return r;
1542 }
1543 
1544 /**
1545  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1546  *
1547  * @bo:  The buffer object to read/write
1548  * @offset:  Offset into buffer object
1549  * @buf:  Secondary buffer to write/read from
1550  * @len: Length in bytes of access
1551  * @write:  true if writing
1552  *
1553  * This is used to access VRAM that backs a buffer object via MMIO
1554  * access for debugging purposes.
1555  */
1556 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1557 				    unsigned long offset, void *buf, int len,
1558 				    int write)
1559 {
1560 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1561 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1562 	struct amdgpu_res_cursor cursor;
1563 	int ret = 0;
1564 
1565 	if (bo->resource->mem_type != TTM_PL_VRAM)
1566 		return -EIO;
1567 
1568 	if (amdgpu_device_has_timeouts_enabled(adev) &&
1569 			!amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1570 		return len;
1571 
1572 	amdgpu_res_first(bo->resource, offset, len, &cursor);
1573 	while (cursor.remaining) {
1574 		size_t count, size = cursor.size;
1575 		loff_t pos = cursor.start;
1576 
1577 		count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1578 		size -= count;
1579 		if (size) {
1580 			/* using MM to access rest vram and handle un-aligned address */
1581 			pos += count;
1582 			buf += count;
1583 			amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1584 		}
1585 
1586 		ret += cursor.size;
1587 		buf += cursor.size;
1588 		amdgpu_res_next(&cursor, cursor.size);
1589 	}
1590 
1591 	return ret;
1592 }
1593 
1594 static void
1595 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1596 {
1597 	amdgpu_bo_move_notify(bo, false);
1598 }
1599 
1600 static struct ttm_device_funcs amdgpu_bo_driver = {
1601 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1602 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1603 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1604 	.ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1605 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1606 	.evict_flags = &amdgpu_evict_flags,
1607 	.move = &amdgpu_bo_move,
1608 	.delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1609 	.release_notify = &amdgpu_bo_release_notify,
1610 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1611 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1612 	.access_memory = &amdgpu_ttm_access_memory,
1613 };
1614 
1615 /*
1616  * Firmware Reservation functions
1617  */
1618 /**
1619  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1620  *
1621  * @adev: amdgpu_device pointer
1622  *
1623  * free fw reserved vram if it has been reserved.
1624  */
1625 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1626 {
1627 	amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1628 		NULL, &adev->mman.fw_vram_usage_va);
1629 }
1630 
1631 /*
1632  * Driver Reservation functions
1633  */
1634 /**
1635  * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
1636  *
1637  * @adev: amdgpu_device pointer
1638  *
1639  * free drv reserved vram if it has been reserved.
1640  */
1641 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
1642 {
1643 	amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo,
1644 						  NULL,
1645 						  &adev->mman.drv_vram_usage_va);
1646 }
1647 
1648 /**
1649  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1650  *
1651  * @adev: amdgpu_device pointer
1652  *
1653  * create bo vram reservation from fw.
1654  */
1655 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1656 {
1657 	uint64_t vram_size = adev->gmc.visible_vram_size;
1658 
1659 	adev->mman.fw_vram_usage_va = NULL;
1660 	adev->mman.fw_vram_usage_reserved_bo = NULL;
1661 
1662 	if (adev->mman.fw_vram_usage_size == 0 ||
1663 	    adev->mman.fw_vram_usage_size > vram_size)
1664 		return 0;
1665 
1666 	return amdgpu_bo_create_kernel_at(adev,
1667 					  adev->mman.fw_vram_usage_start_offset,
1668 					  adev->mman.fw_vram_usage_size,
1669 					  &adev->mman.fw_vram_usage_reserved_bo,
1670 					  &adev->mman.fw_vram_usage_va);
1671 }
1672 
1673 /**
1674  * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
1675  *
1676  * @adev: amdgpu_device pointer
1677  *
1678  * create bo vram reservation from drv.
1679  */
1680 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
1681 {
1682 	u64 vram_size = adev->gmc.visible_vram_size;
1683 
1684 	adev->mman.drv_vram_usage_va = NULL;
1685 	adev->mman.drv_vram_usage_reserved_bo = NULL;
1686 
1687 	if (adev->mman.drv_vram_usage_size == 0 ||
1688 	    adev->mman.drv_vram_usage_size > vram_size)
1689 		return 0;
1690 
1691 	return amdgpu_bo_create_kernel_at(adev,
1692 					  adev->mman.drv_vram_usage_start_offset,
1693 					  adev->mman.drv_vram_usage_size,
1694 					  &adev->mman.drv_vram_usage_reserved_bo,
1695 					  &adev->mman.drv_vram_usage_va);
1696 }
1697 
1698 /*
1699  * Memoy training reservation functions
1700  */
1701 
1702 /**
1703  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1704  *
1705  * @adev: amdgpu_device pointer
1706  *
1707  * free memory training reserved vram if it has been reserved.
1708  */
1709 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1710 {
1711 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1712 
1713 	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1714 	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1715 	ctx->c2p_bo = NULL;
1716 
1717 	return 0;
1718 }
1719 
1720 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev,
1721 						uint32_t reserve_size)
1722 {
1723 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1724 
1725 	memset(ctx, 0, sizeof(*ctx));
1726 
1727 	ctx->c2p_train_data_offset =
1728 		ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M);
1729 	ctx->p2c_train_data_offset =
1730 		(adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1731 	ctx->train_data_size =
1732 		GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1733 
1734 	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1735 			ctx->train_data_size,
1736 			ctx->p2c_train_data_offset,
1737 			ctx->c2p_train_data_offset);
1738 }
1739 
1740 /*
1741  * reserve TMR memory at the top of VRAM which holds
1742  * IP Discovery data and is protected by PSP.
1743  */
1744 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1745 {
1746 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1747 	bool mem_train_support = false;
1748 	uint32_t reserve_size = 0;
1749 	int ret;
1750 
1751 	if (adev->bios && !amdgpu_sriov_vf(adev)) {
1752 		if (amdgpu_atomfirmware_mem_training_supported(adev))
1753 			mem_train_support = true;
1754 		else
1755 			DRM_DEBUG("memory training does not support!\n");
1756 	}
1757 
1758 	/*
1759 	 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1760 	 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1761 	 *
1762 	 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1763 	 * discovery data and G6 memory training data respectively
1764 	 */
1765 	if (adev->bios)
1766 		reserve_size =
1767 			amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1768 
1769 	if (!adev->bios && adev->ip_versions[GC_HWIP][0] == IP_VERSION(9, 4, 3))
1770 		reserve_size = max(reserve_size, (uint32_t)280 << 20);
1771 	else if (!reserve_size)
1772 		reserve_size = DISCOVERY_TMR_OFFSET;
1773 
1774 	if (mem_train_support) {
1775 		/* reserve vram for mem train according to TMR location */
1776 		amdgpu_ttm_training_data_block_init(adev, reserve_size);
1777 		ret = amdgpu_bo_create_kernel_at(adev,
1778 						 ctx->c2p_train_data_offset,
1779 						 ctx->train_data_size,
1780 						 &ctx->c2p_bo,
1781 						 NULL);
1782 		if (ret) {
1783 			DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1784 			amdgpu_ttm_training_reserve_vram_fini(adev);
1785 			return ret;
1786 		}
1787 		ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1788 	}
1789 
1790 	if (!adev->gmc.is_app_apu) {
1791 		ret = amdgpu_bo_create_kernel_at(
1792 			adev, adev->gmc.real_vram_size - reserve_size,
1793 			reserve_size, &adev->mman.fw_reserved_memory, NULL);
1794 		if (ret) {
1795 			DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1796 			amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory,
1797 					      NULL, NULL);
1798 			return ret;
1799 		}
1800 	} else {
1801 		DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n");
1802 	}
1803 
1804 	return 0;
1805 }
1806 
1807 static int amdgpu_ttm_pools_init(struct amdgpu_device *adev)
1808 {
1809 	int i;
1810 
1811 	if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions)
1812 		return 0;
1813 
1814 	adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions,
1815 				       sizeof(*adev->mman.ttm_pools),
1816 				       GFP_KERNEL);
1817 	if (!adev->mman.ttm_pools)
1818 		return -ENOMEM;
1819 
1820 	for (i = 0; i < adev->gmc.num_mem_partitions; i++) {
1821 		ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev,
1822 			      adev->gmc.mem_partitions[i].numa.node,
1823 			      false, false);
1824 	}
1825 	return 0;
1826 }
1827 
1828 static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev)
1829 {
1830 	int i;
1831 
1832 	if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools)
1833 		return;
1834 
1835 	for (i = 0; i < adev->gmc.num_mem_partitions; i++)
1836 		ttm_pool_fini(&adev->mman.ttm_pools[i]);
1837 
1838 	kfree(adev->mman.ttm_pools);
1839 	adev->mman.ttm_pools = NULL;
1840 }
1841 
1842 /*
1843  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1844  * gtt/vram related fields.
1845  *
1846  * This initializes all of the memory space pools that the TTM layer
1847  * will need such as the GTT space (system memory mapped to the device),
1848  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1849  * can be mapped per VMID.
1850  */
1851 int amdgpu_ttm_init(struct amdgpu_device *adev)
1852 {
1853 	uint64_t gtt_size;
1854 	int r;
1855 
1856 	rw_init(&adev->mman.gtt_window_lock, "gttwin");
1857 
1858 	/* No others user of address space so set it to 0 */
1859 #ifdef notyet
1860 	r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1861 			       adev_to_drm(adev)->anon_inode->i_mapping,
1862 			       adev_to_drm(adev)->vma_offset_manager,
1863 			       adev->need_swiotlb,
1864 			       dma_addressing_limited(adev->dev));
1865 #else
1866 	r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1867 			       /*adev_to_drm(adev)->anon_inode->i_mapping*/NULL,
1868 			       adev_to_drm(adev)->vma_offset_manager,
1869 			       adev->need_swiotlb,
1870 			       dma_addressing_limited(adev->dev));
1871 #endif
1872 	if (r) {
1873 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1874 		return r;
1875 	}
1876 
1877 	r = amdgpu_ttm_pools_init(adev);
1878 	if (r) {
1879 		DRM_ERROR("failed to init ttm pools(%d).\n", r);
1880 		return r;
1881 	}
1882 	adev->mman.bdev.iot = adev->iot;
1883 	adev->mman.bdev.memt = adev->memt;
1884 	adev->mman.bdev.dmat = adev->dmat;
1885 	adev->mman.initialized = true;
1886 
1887 	/* Initialize VRAM pool with all of VRAM divided into pages */
1888 	r = amdgpu_vram_mgr_init(adev);
1889 	if (r) {
1890 		DRM_ERROR("Failed initializing VRAM heap.\n");
1891 		return r;
1892 	}
1893 
1894 	/* Change the size here instead of the init above so only lpfn is affected */
1895 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1896 #if defined(CONFIG_64BIT) && defined(__linux__)
1897 #ifdef CONFIG_X86
1898 	if (adev->gmc.xgmi.connected_to_cpu)
1899 		adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1900 				adev->gmc.visible_vram_size);
1901 
1902 	else if (adev->gmc.is_app_apu)
1903 		DRM_DEBUG_DRIVER(
1904 			"No need to ioremap when real vram size is 0\n");
1905 	else
1906 #endif
1907 		adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1908 				adev->gmc.visible_vram_size);
1909 #else
1910 	if (bus_space_map(adev->memt, adev->gmc.aper_base,
1911 	    adev->gmc.visible_vram_size,
1912 	    BUS_SPACE_MAP_LINEAR | BUS_SPACE_MAP_PREFETCHABLE,
1913 	    &adev->mman.aper_bsh)) {
1914 		adev->mman.aper_base_kaddr = NULL;
1915 	} else {
1916 		adev->mman.aper_base_kaddr = bus_space_vaddr(adev->memt,
1917 		    adev->mman.aper_bsh);
1918 	}
1919 #endif
1920 
1921 	/*
1922 	 *The reserved vram for firmware must be pinned to the specified
1923 	 *place on the VRAM, so reserve it early.
1924 	 */
1925 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1926 	if (r)
1927 		return r;
1928 
1929 	/*
1930 	 *The reserved vram for driver must be pinned to the specified
1931 	 *place on the VRAM, so reserve it early.
1932 	 */
1933 	r = amdgpu_ttm_drv_reserve_vram_init(adev);
1934 	if (r)
1935 		return r;
1936 
1937 	/*
1938 	 * only NAVI10 and onwards ASIC support for IP discovery.
1939 	 * If IP discovery enabled, a block of memory should be
1940 	 * reserved for IP discovey.
1941 	 */
1942 	if (adev->mman.discovery_bin) {
1943 		r = amdgpu_ttm_reserve_tmr(adev);
1944 		if (r)
1945 			return r;
1946 	}
1947 
1948 	/* allocate memory as required for VGA
1949 	 * This is used for VGA emulation and pre-OS scanout buffers to
1950 	 * avoid display artifacts while transitioning between pre-OS
1951 	 * and driver.
1952 	 */
1953 	if (!adev->gmc.is_app_apu) {
1954 		r = amdgpu_bo_create_kernel_at(adev, 0,
1955 					       adev->mman.stolen_vga_size,
1956 					       &adev->mman.stolen_vga_memory,
1957 					       NULL);
1958 		if (r)
1959 			return r;
1960 
1961 		r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1962 					       adev->mman.stolen_extended_size,
1963 					       &adev->mman.stolen_extended_memory,
1964 					       NULL);
1965 
1966 		if (r)
1967 			return r;
1968 
1969 		r = amdgpu_bo_create_kernel_at(adev,
1970 					       adev->mman.stolen_reserved_offset,
1971 					       adev->mman.stolen_reserved_size,
1972 					       &adev->mman.stolen_reserved_memory,
1973 					       NULL);
1974 		if (r)
1975 			return r;
1976 	} else {
1977 		DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n");
1978 	}
1979 
1980 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1981 		 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024)));
1982 
1983 	/* Compute GTT size, either based on TTM limit
1984 	 * or whatever the user passed on module init.
1985 	 */
1986 	if (amdgpu_gtt_size == -1)
1987 		gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT;
1988 	else
1989 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1990 
1991 	/* Initialize GTT memory pool */
1992 	r = amdgpu_gtt_mgr_init(adev, gtt_size);
1993 	if (r) {
1994 		DRM_ERROR("Failed initializing GTT heap.\n");
1995 		return r;
1996 	}
1997 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1998 		 (unsigned int)(gtt_size / (1024 * 1024)));
1999 
2000 	/* Initiailize doorbell pool on PCI BAR */
2001 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE);
2002 	if (r) {
2003 		DRM_ERROR("Failed initializing doorbell heap.\n");
2004 		return r;
2005 	}
2006 
2007 	/* Create a boorbell page for kernel usages */
2008 	r = amdgpu_doorbell_create_kernel_doorbells(adev);
2009 	if (r) {
2010 		DRM_ERROR("Failed to initialize kernel doorbells.\n");
2011 		return r;
2012 	}
2013 
2014 	/* Initialize preemptible memory pool */
2015 	r = amdgpu_preempt_mgr_init(adev);
2016 	if (r) {
2017 		DRM_ERROR("Failed initializing PREEMPT heap.\n");
2018 		return r;
2019 	}
2020 
2021 	/* Initialize various on-chip memory pools */
2022 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
2023 	if (r) {
2024 		DRM_ERROR("Failed initializing GDS heap.\n");
2025 		return r;
2026 	}
2027 
2028 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
2029 	if (r) {
2030 		DRM_ERROR("Failed initializing gws heap.\n");
2031 		return r;
2032 	}
2033 
2034 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
2035 	if (r) {
2036 		DRM_ERROR("Failed initializing oa heap.\n");
2037 		return r;
2038 	}
2039 	if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
2040 				AMDGPU_GEM_DOMAIN_GTT,
2041 				&adev->mman.sdma_access_bo, NULL,
2042 				&adev->mman.sdma_access_ptr))
2043 		DRM_WARN("Debug VRAM access will use slowpath MM access\n");
2044 
2045 	return 0;
2046 }
2047 
2048 /*
2049  * amdgpu_ttm_fini - De-initialize the TTM memory pools
2050  */
2051 void amdgpu_ttm_fini(struct amdgpu_device *adev)
2052 {
2053 	int idx;
2054 
2055 	if (!adev->mman.initialized)
2056 		return;
2057 
2058 	amdgpu_ttm_pools_fini(adev);
2059 
2060 	amdgpu_ttm_training_reserve_vram_fini(adev);
2061 	/* return the stolen vga memory back to VRAM */
2062 	if (!adev->gmc.is_app_apu) {
2063 		amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
2064 		amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
2065 		/* return the FW reserved memory back to VRAM */
2066 		amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL,
2067 				      NULL);
2068 		if (adev->mman.stolen_reserved_size)
2069 			amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
2070 					      NULL, NULL);
2071 	}
2072 	amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
2073 					&adev->mman.sdma_access_ptr);
2074 	amdgpu_ttm_fw_reserve_vram_fini(adev);
2075 	amdgpu_ttm_drv_reserve_vram_fini(adev);
2076 
2077 	if (drm_dev_enter(adev_to_drm(adev), &idx)) {
2078 
2079 #ifdef __linux__
2080 		if (adev->mman.aper_base_kaddr)
2081 			iounmap(adev->mman.aper_base_kaddr);
2082 #else
2083 		if (adev->mman.aper_base_kaddr)
2084 			bus_space_unmap(adev->memt, adev->mman.aper_bsh,
2085 			    adev->gmc.visible_vram_size);
2086 #endif
2087 		adev->mman.aper_base_kaddr = NULL;
2088 
2089 		drm_dev_exit(idx);
2090 	}
2091 
2092 	amdgpu_vram_mgr_fini(adev);
2093 	amdgpu_gtt_mgr_fini(adev);
2094 	amdgpu_preempt_mgr_fini(adev);
2095 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
2096 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
2097 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
2098 	ttm_device_fini(&adev->mman.bdev);
2099 	adev->mman.initialized = false;
2100 	DRM_INFO("amdgpu: ttm finalized\n");
2101 }
2102 
2103 /**
2104  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2105  *
2106  * @adev: amdgpu_device pointer
2107  * @enable: true when we can use buffer functions.
2108  *
2109  * Enable/disable use of buffer functions during suspend/resume. This should
2110  * only be called at bootup or when userspace isn't running.
2111  */
2112 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2113 {
2114 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2115 	uint64_t size;
2116 	int r;
2117 
2118 	if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2119 	    adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu)
2120 		return;
2121 
2122 	if (enable) {
2123 		struct amdgpu_ring *ring;
2124 		struct drm_gpu_scheduler *sched;
2125 
2126 		ring = adev->mman.buffer_funcs_ring;
2127 		sched = &ring->sched;
2128 		r = drm_sched_entity_init(&adev->mman.high_pr,
2129 					  DRM_SCHED_PRIORITY_KERNEL, &sched,
2130 					  1, NULL);
2131 		if (r) {
2132 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2133 				  r);
2134 			return;
2135 		}
2136 
2137 		r = drm_sched_entity_init(&adev->mman.low_pr,
2138 					  DRM_SCHED_PRIORITY_NORMAL, &sched,
2139 					  1, NULL);
2140 		if (r) {
2141 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2142 				  r);
2143 			goto error_free_entity;
2144 		}
2145 	} else {
2146 		drm_sched_entity_destroy(&adev->mman.high_pr);
2147 		drm_sched_entity_destroy(&adev->mman.low_pr);
2148 		dma_fence_put(man->move);
2149 		man->move = NULL;
2150 	}
2151 
2152 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
2153 	if (enable)
2154 		size = adev->gmc.real_vram_size;
2155 	else
2156 		size = adev->gmc.visible_vram_size;
2157 	man->size = size;
2158 	adev->mman.buffer_funcs_enabled = enable;
2159 
2160 	return;
2161 
2162 error_free_entity:
2163 	drm_sched_entity_destroy(&adev->mman.high_pr);
2164 }
2165 
2166 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
2167 				  bool direct_submit,
2168 				  unsigned int num_dw,
2169 				  struct dma_resv *resv,
2170 				  bool vm_needs_flush,
2171 				  struct amdgpu_job **job,
2172 				  bool delayed)
2173 {
2174 	enum amdgpu_ib_pool_type pool = direct_submit ?
2175 		AMDGPU_IB_POOL_DIRECT :
2176 		AMDGPU_IB_POOL_DELAYED;
2177 	int r;
2178 	struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr :
2179 						    &adev->mman.high_pr;
2180 	r = amdgpu_job_alloc_with_ib(adev, entity,
2181 				     AMDGPU_FENCE_OWNER_UNDEFINED,
2182 				     num_dw * 4, pool, job);
2183 	if (r)
2184 		return r;
2185 
2186 	if (vm_needs_flush) {
2187 		(*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
2188 							adev->gmc.pdb0_bo :
2189 							adev->gart.bo);
2190 		(*job)->vm_needs_flush = true;
2191 	}
2192 	if (!resv)
2193 		return 0;
2194 
2195 	return drm_sched_job_add_resv_dependencies(&(*job)->base, resv,
2196 						   DMA_RESV_USAGE_BOOKKEEP);
2197 }
2198 
2199 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2200 		       uint64_t dst_offset, uint32_t byte_count,
2201 		       struct dma_resv *resv,
2202 		       struct dma_fence **fence, bool direct_submit,
2203 		       bool vm_needs_flush, bool tmz)
2204 {
2205 	struct amdgpu_device *adev = ring->adev;
2206 	unsigned int num_loops, num_dw;
2207 	struct amdgpu_job *job;
2208 	uint32_t max_bytes;
2209 	unsigned int i;
2210 	int r;
2211 
2212 	if (!direct_submit && !ring->sched.ready) {
2213 		DRM_ERROR("Trying to move memory with ring turned off.\n");
2214 		return -EINVAL;
2215 	}
2216 
2217 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2218 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2219 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2220 	r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2221 				   resv, vm_needs_flush, &job, false);
2222 	if (r)
2223 		return r;
2224 
2225 	for (i = 0; i < num_loops; i++) {
2226 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2227 
2228 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2229 					dst_offset, cur_size_in_bytes, tmz);
2230 
2231 		src_offset += cur_size_in_bytes;
2232 		dst_offset += cur_size_in_bytes;
2233 		byte_count -= cur_size_in_bytes;
2234 	}
2235 
2236 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2237 	WARN_ON(job->ibs[0].length_dw > num_dw);
2238 	if (direct_submit)
2239 		r = amdgpu_job_submit_direct(job, ring, fence);
2240 	else
2241 		*fence = amdgpu_job_submit(job);
2242 	if (r)
2243 		goto error_free;
2244 
2245 	return r;
2246 
2247 error_free:
2248 	amdgpu_job_free(job);
2249 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2250 	return r;
2251 }
2252 
2253 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2254 			       uint64_t dst_addr, uint32_t byte_count,
2255 			       struct dma_resv *resv,
2256 			       struct dma_fence **fence,
2257 			       bool vm_needs_flush, bool delayed)
2258 {
2259 	struct amdgpu_device *adev = ring->adev;
2260 	unsigned int num_loops, num_dw;
2261 	struct amdgpu_job *job;
2262 	uint32_t max_bytes;
2263 	unsigned int i;
2264 	int r;
2265 
2266 	max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2267 	num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2268 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2269 	r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2270 				   &job, delayed);
2271 	if (r)
2272 		return r;
2273 
2274 	for (i = 0; i < num_loops; i++) {
2275 		uint32_t cur_size = min(byte_count, max_bytes);
2276 
2277 		amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2278 					cur_size);
2279 
2280 		dst_addr += cur_size;
2281 		byte_count -= cur_size;
2282 	}
2283 
2284 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2285 	WARN_ON(job->ibs[0].length_dw > num_dw);
2286 	*fence = amdgpu_job_submit(job);
2287 	return 0;
2288 }
2289 
2290 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2291 			uint32_t src_data,
2292 			struct dma_resv *resv,
2293 			struct dma_fence **f,
2294 			bool delayed)
2295 {
2296 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2297 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2298 	struct dma_fence *fence = NULL;
2299 	struct amdgpu_res_cursor dst;
2300 	int r;
2301 
2302 	if (!adev->mman.buffer_funcs_enabled) {
2303 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2304 		return -EINVAL;
2305 	}
2306 
2307 	amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2308 
2309 	mutex_lock(&adev->mman.gtt_window_lock);
2310 	while (dst.remaining) {
2311 		struct dma_fence *next;
2312 		uint64_t cur_size, to;
2313 
2314 		/* Never fill more than 256MiB at once to avoid timeouts */
2315 		cur_size = min(dst.size, 256ULL << 20);
2316 
2317 		r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2318 					  1, ring, false, &cur_size, &to);
2319 		if (r)
2320 			goto error;
2321 
2322 		r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2323 					&next, true, delayed);
2324 		if (r)
2325 			goto error;
2326 
2327 		dma_fence_put(fence);
2328 		fence = next;
2329 
2330 		amdgpu_res_next(&dst, cur_size);
2331 	}
2332 error:
2333 	mutex_unlock(&adev->mman.gtt_window_lock);
2334 	if (f)
2335 		*f = dma_fence_get(fence);
2336 	dma_fence_put(fence);
2337 	return r;
2338 }
2339 
2340 /**
2341  * amdgpu_ttm_evict_resources - evict memory buffers
2342  * @adev: amdgpu device object
2343  * @mem_type: evicted BO's memory type
2344  *
2345  * Evicts all @mem_type buffers on the lru list of the memory type.
2346  *
2347  * Returns:
2348  * 0 for success or a negative error code on failure.
2349  */
2350 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2351 {
2352 	struct ttm_resource_manager *man;
2353 
2354 	switch (mem_type) {
2355 	case TTM_PL_VRAM:
2356 	case TTM_PL_TT:
2357 	case AMDGPU_PL_GWS:
2358 	case AMDGPU_PL_GDS:
2359 	case AMDGPU_PL_OA:
2360 		man = ttm_manager_type(&adev->mman.bdev, mem_type);
2361 		break;
2362 	default:
2363 		DRM_ERROR("Trying to evict invalid memory type\n");
2364 		return -EINVAL;
2365 	}
2366 
2367 	return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2368 }
2369 
2370 #if defined(CONFIG_DEBUG_FS)
2371 
2372 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2373 {
2374 	struct amdgpu_device *adev = m->private;
2375 
2376 	return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2377 }
2378 
2379 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2380 
2381 /*
2382  * amdgpu_ttm_vram_read - Linear read access to VRAM
2383  *
2384  * Accesses VRAM via MMIO for debugging purposes.
2385  */
2386 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2387 				    size_t size, loff_t *pos)
2388 {
2389 	struct amdgpu_device *adev = file_inode(f)->i_private;
2390 	ssize_t result = 0;
2391 
2392 	if (size & 0x3 || *pos & 0x3)
2393 		return -EINVAL;
2394 
2395 	if (*pos >= adev->gmc.mc_vram_size)
2396 		return -ENXIO;
2397 
2398 	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2399 	while (size) {
2400 		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2401 		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2402 
2403 		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2404 		if (copy_to_user(buf, value, bytes))
2405 			return -EFAULT;
2406 
2407 		result += bytes;
2408 		buf += bytes;
2409 		*pos += bytes;
2410 		size -= bytes;
2411 	}
2412 
2413 	return result;
2414 }
2415 
2416 /*
2417  * amdgpu_ttm_vram_write - Linear write access to VRAM
2418  *
2419  * Accesses VRAM via MMIO for debugging purposes.
2420  */
2421 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2422 				    size_t size, loff_t *pos)
2423 {
2424 	struct amdgpu_device *adev = file_inode(f)->i_private;
2425 	ssize_t result = 0;
2426 	int r;
2427 
2428 	if (size & 0x3 || *pos & 0x3)
2429 		return -EINVAL;
2430 
2431 	if (*pos >= adev->gmc.mc_vram_size)
2432 		return -ENXIO;
2433 
2434 	while (size) {
2435 		uint32_t value;
2436 
2437 		if (*pos >= adev->gmc.mc_vram_size)
2438 			return result;
2439 
2440 		r = get_user(value, (uint32_t *)buf);
2441 		if (r)
2442 			return r;
2443 
2444 		amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2445 
2446 		result += 4;
2447 		buf += 4;
2448 		*pos += 4;
2449 		size -= 4;
2450 	}
2451 
2452 	return result;
2453 }
2454 
2455 static const struct file_operations amdgpu_ttm_vram_fops = {
2456 	.owner = THIS_MODULE,
2457 	.read = amdgpu_ttm_vram_read,
2458 	.write = amdgpu_ttm_vram_write,
2459 	.llseek = default_llseek,
2460 };
2461 
2462 /*
2463  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2464  *
2465  * This function is used to read memory that has been mapped to the
2466  * GPU and the known addresses are not physical addresses but instead
2467  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2468  */
2469 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2470 				 size_t size, loff_t *pos)
2471 {
2472 	struct amdgpu_device *adev = file_inode(f)->i_private;
2473 	struct iommu_domain *dom;
2474 	ssize_t result = 0;
2475 	int r;
2476 
2477 	/* retrieve the IOMMU domain if any for this device */
2478 	dom = iommu_get_domain_for_dev(adev->dev);
2479 
2480 	while (size) {
2481 		phys_addr_t addr = *pos & LINUX_PAGE_MASK;
2482 		loff_t off = *pos & ~LINUX_PAGE_MASK;
2483 		size_t bytes = PAGE_SIZE - off;
2484 		unsigned long pfn;
2485 		struct vm_page *p;
2486 		void *ptr;
2487 
2488 		bytes = min(bytes, size);
2489 
2490 		/* Translate the bus address to a physical address.  If
2491 		 * the domain is NULL it means there is no IOMMU active
2492 		 * and the address translation is the identity
2493 		 */
2494 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2495 
2496 		pfn = addr >> PAGE_SHIFT;
2497 		if (!pfn_valid(pfn))
2498 			return -EPERM;
2499 
2500 		p = pfn_to_page(pfn);
2501 #ifdef notyet
2502 		if (p->mapping != adev->mman.bdev.dev_mapping)
2503 			return -EPERM;
2504 #else
2505 		STUB();
2506 #endif
2507 
2508 		ptr = kmap_local_page(p);
2509 		r = copy_to_user(buf, ptr + off, bytes);
2510 		kunmap_local(ptr);
2511 		if (r)
2512 			return -EFAULT;
2513 
2514 		size -= bytes;
2515 		*pos += bytes;
2516 		result += bytes;
2517 	}
2518 
2519 	return result;
2520 }
2521 
2522 /*
2523  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2524  *
2525  * This function is used to write memory that has been mapped to the
2526  * GPU and the known addresses are not physical addresses but instead
2527  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2528  */
2529 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2530 				 size_t size, loff_t *pos)
2531 {
2532 	struct amdgpu_device *adev = file_inode(f)->i_private;
2533 	struct iommu_domain *dom;
2534 	ssize_t result = 0;
2535 	int r;
2536 
2537 	dom = iommu_get_domain_for_dev(adev->dev);
2538 
2539 	while (size) {
2540 		phys_addr_t addr = *pos & LINUX_PAGE_MASK;
2541 		loff_t off = *pos & ~LINUX_PAGE_MASK;
2542 		size_t bytes = PAGE_SIZE - off;
2543 		unsigned long pfn;
2544 		struct vm_page *p;
2545 		void *ptr;
2546 
2547 		bytes = min(bytes, size);
2548 
2549 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2550 
2551 		pfn = addr >> PAGE_SHIFT;
2552 		if (!pfn_valid(pfn))
2553 			return -EPERM;
2554 
2555 		p = pfn_to_page(pfn);
2556 #ifdef notyet
2557 		if (p->mapping != adev->mman.bdev.dev_mapping)
2558 			return -EPERM;
2559 #else
2560 		STUB();
2561 #endif
2562 
2563 		ptr = kmap_local_page(p);
2564 		r = copy_from_user(ptr + off, buf, bytes);
2565 		kunmap_local(ptr);
2566 		if (r)
2567 			return -EFAULT;
2568 
2569 		size -= bytes;
2570 		*pos += bytes;
2571 		result += bytes;
2572 	}
2573 
2574 	return result;
2575 }
2576 
2577 static const struct file_operations amdgpu_ttm_iomem_fops = {
2578 	.owner = THIS_MODULE,
2579 	.read = amdgpu_iomem_read,
2580 	.write = amdgpu_iomem_write,
2581 	.llseek = default_llseek
2582 };
2583 
2584 #endif
2585 
2586 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2587 {
2588 #if defined(CONFIG_DEBUG_FS)
2589 	struct drm_minor *minor = adev_to_drm(adev)->primary;
2590 	struct dentry *root = minor->debugfs_root;
2591 
2592 	debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2593 				 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2594 	debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2595 			    &amdgpu_ttm_iomem_fops);
2596 	debugfs_create_file("ttm_page_pool", 0444, root, adev,
2597 			    &amdgpu_ttm_page_pool_fops);
2598 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2599 							     TTM_PL_VRAM),
2600 					    root, "amdgpu_vram_mm");
2601 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2602 							     TTM_PL_TT),
2603 					    root, "amdgpu_gtt_mm");
2604 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2605 							     AMDGPU_PL_GDS),
2606 					    root, "amdgpu_gds_mm");
2607 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2608 							     AMDGPU_PL_GWS),
2609 					    root, "amdgpu_gws_mm");
2610 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2611 							     AMDGPU_PL_OA),
2612 					    root, "amdgpu_oa_mm");
2613 
2614 #endif
2615 }
2616