1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com> 30 * Dave Airlie 31 */ 32 33 #include <linux/dma-mapping.h> 34 #include <linux/iommu.h> 35 #include <linux/hmm.h> 36 #include <linux/pagemap.h> 37 #include <linux/sched/task.h> 38 #include <linux/sched/mm.h> 39 #include <linux/seq_file.h> 40 #include <linux/slab.h> 41 #include <linux/swap.h> 42 #include <linux/swiotlb.h> 43 #include <linux/dma-buf.h> 44 #include <linux/sizes.h> 45 46 #include <drm/ttm/ttm_bo_api.h> 47 #include <drm/ttm/ttm_bo_driver.h> 48 #include <drm/ttm/ttm_placement.h> 49 #include <drm/ttm/ttm_module.h> 50 #include <drm/ttm/ttm_page_alloc.h> 51 52 #include <drm/drm_debugfs.h> 53 #include <drm/amdgpu_drm.h> 54 55 #include "amdgpu.h" 56 #include "amdgpu_object.h" 57 #include "amdgpu_trace.h" 58 #include "amdgpu_amdkfd.h" 59 #include "amdgpu_sdma.h" 60 #include "amdgpu_ras.h" 61 #include "amdgpu_atomfirmware.h" 62 #include "bif/bif_4_1_d.h" 63 64 #define AMDGPU_TTM_VRAM_MAX_DW_READ (size_t)128 65 66 static int amdgpu_ttm_backend_bind(struct ttm_bo_device *bdev, 67 struct ttm_tt *ttm, 68 struct ttm_resource *bo_mem); 69 70 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev, 71 unsigned int type, 72 uint64_t size_in_page) 73 { 74 return ttm_range_man_init(&adev->mman.bdev, type, 75 false, size_in_page); 76 } 77 78 /** 79 * amdgpu_evict_flags - Compute placement flags 80 * 81 * @bo: The buffer object to evict 82 * @placement: Possible destination(s) for evicted BO 83 * 84 * Fill in placement data when ttm_bo_evict() is called 85 */ 86 static void amdgpu_evict_flags(struct ttm_buffer_object *bo, 87 struct ttm_placement *placement) 88 { 89 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 90 struct amdgpu_bo *abo; 91 static const struct ttm_place placements = { 92 .fpfn = 0, 93 .lpfn = 0, 94 .mem_type = TTM_PL_SYSTEM, 95 .flags = TTM_PL_MASK_CACHING 96 }; 97 98 /* Don't handle scatter gather BOs */ 99 if (bo->type == ttm_bo_type_sg) { 100 placement->num_placement = 0; 101 placement->num_busy_placement = 0; 102 return; 103 } 104 105 /* Object isn't an AMDGPU object so ignore */ 106 if (!amdgpu_bo_is_amdgpu_bo(bo)) { 107 placement->placement = &placements; 108 placement->busy_placement = &placements; 109 placement->num_placement = 1; 110 placement->num_busy_placement = 1; 111 return; 112 } 113 114 abo = ttm_to_amdgpu_bo(bo); 115 switch (bo->mem.mem_type) { 116 case AMDGPU_PL_GDS: 117 case AMDGPU_PL_GWS: 118 case AMDGPU_PL_OA: 119 placement->num_placement = 0; 120 placement->num_busy_placement = 0; 121 return; 122 123 case TTM_PL_VRAM: 124 if (!adev->mman.buffer_funcs_enabled) { 125 /* Move to system memory */ 126 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 127 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 128 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) && 129 amdgpu_bo_in_cpu_visible_vram(abo)) { 130 131 /* Try evicting to the CPU inaccessible part of VRAM 132 * first, but only set GTT as busy placement, so this 133 * BO will be evicted to GTT rather than causing other 134 * BOs to be evicted from VRAM 135 */ 136 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM | 137 AMDGPU_GEM_DOMAIN_GTT); 138 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT; 139 abo->placements[0].lpfn = 0; 140 abo->placement.busy_placement = &abo->placements[1]; 141 abo->placement.num_busy_placement = 1; 142 } else { 143 /* Move to GTT memory */ 144 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT); 145 } 146 break; 147 case TTM_PL_TT: 148 default: 149 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 150 break; 151 } 152 *placement = abo->placement; 153 } 154 155 /** 156 * amdgpu_verify_access - Verify access for a mmap call 157 * 158 * @bo: The buffer object to map 159 * @filp: The file pointer from the process performing the mmap 160 * 161 * This is called by ttm_bo_mmap() to verify whether a process 162 * has the right to mmap a BO to their process space. 163 */ 164 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp) 165 { 166 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 167 struct drm_file *file_priv = (void *)filp; 168 169 /* 170 * Don't verify access for KFD BOs. They don't have a GEM 171 * object associated with them. 172 */ 173 if (abo->kfd_bo) 174 return 0; 175 176 if (amdgpu_ttm_tt_get_usermm(bo->ttm)) 177 return -EPERM; 178 return drm_vma_node_verify_access(&abo->tbo.base.vma_node, file_priv); 179 } 180 181 /** 182 * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer. 183 * 184 * @bo: The bo to assign the memory to. 185 * @mm_node: Memory manager node for drm allocator. 186 * @mem: The region where the bo resides. 187 * 188 */ 189 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo, 190 struct drm_mm_node *mm_node, 191 struct ttm_resource *mem) 192 { 193 uint64_t addr = 0; 194 195 if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) { 196 addr = mm_node->start << PAGE_SHIFT; 197 addr += amdgpu_ttm_domain_start(amdgpu_ttm_adev(bo->bdev), 198 mem->mem_type); 199 } 200 return addr; 201 } 202 203 /** 204 * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to 205 * @offset. It also modifies the offset to be within the drm_mm_node returned 206 * 207 * @mem: The region where the bo resides. 208 * @offset: The offset that drm_mm_node is used for finding. 209 * 210 */ 211 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_resource *mem, 212 uint64_t *offset) 213 { 214 struct drm_mm_node *mm_node = mem->mm_node; 215 216 while (*offset >= (mm_node->size << PAGE_SHIFT)) { 217 *offset -= (mm_node->size << PAGE_SHIFT); 218 ++mm_node; 219 } 220 return mm_node; 221 } 222 223 /** 224 * amdgpu_ttm_map_buffer - Map memory into the GART windows 225 * @bo: buffer object to map 226 * @mem: memory object to map 227 * @mm_node: drm_mm node object to map 228 * @num_pages: number of pages to map 229 * @offset: offset into @mm_node where to start 230 * @window: which GART window to use 231 * @ring: DMA ring to use for the copy 232 * @tmz: if we should setup a TMZ enabled mapping 233 * @addr: resulting address inside the MC address space 234 * 235 * Setup one of the GART windows to access a specific piece of memory or return 236 * the physical address for local memory. 237 */ 238 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo, 239 struct ttm_resource *mem, 240 struct drm_mm_node *mm_node, 241 unsigned num_pages, uint64_t offset, 242 unsigned window, struct amdgpu_ring *ring, 243 bool tmz, uint64_t *addr) 244 { 245 struct amdgpu_device *adev = ring->adev; 246 struct amdgpu_job *job; 247 unsigned num_dw, num_bytes; 248 struct dma_fence *fence; 249 uint64_t src_addr, dst_addr; 250 void *cpu_addr; 251 uint64_t flags; 252 unsigned int i; 253 int r; 254 255 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes < 256 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8); 257 258 /* Map only what can't be accessed directly */ 259 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) { 260 *addr = amdgpu_mm_node_addr(bo, mm_node, mem) + offset; 261 return 0; 262 } 263 264 *addr = adev->gmc.gart_start; 265 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 266 AMDGPU_GPU_PAGE_SIZE; 267 *addr += offset & ~LINUX_PAGE_MASK; 268 269 num_dw = roundup2(adev->mman.buffer_funcs->copy_num_dw, 8); 270 num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE; 271 272 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, 273 AMDGPU_IB_POOL_DELAYED, &job); 274 if (r) 275 return r; 276 277 src_addr = num_dw * 4; 278 src_addr += job->ibs[0].gpu_addr; 279 280 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 281 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8; 282 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 283 dst_addr, num_bytes, false); 284 285 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 286 WARN_ON(job->ibs[0].length_dw > num_dw); 287 288 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem); 289 if (tmz) 290 flags |= AMDGPU_PTE_TMZ; 291 292 cpu_addr = &job->ibs[0].ptr[num_dw]; 293 294 if (mem->mem_type == TTM_PL_TT) { 295 struct ttm_dma_tt *dma; 296 dma_addr_t *dma_address; 297 298 dma = container_of(bo->ttm, struct ttm_dma_tt, ttm); 299 dma_address = &dma->dma_address[offset >> PAGE_SHIFT]; 300 r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags, 301 cpu_addr); 302 if (r) 303 goto error_free; 304 } else { 305 dma_addr_t dma_address; 306 307 dma_address = (mm_node->start << PAGE_SHIFT) + offset; 308 dma_address += adev->vm_manager.vram_base_offset; 309 310 for (i = 0; i < num_pages; ++i) { 311 r = amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, 312 &dma_address, flags, cpu_addr); 313 if (r) 314 goto error_free; 315 316 dma_address += PAGE_SIZE; 317 } 318 } 319 320 r = amdgpu_job_submit(job, &adev->mman.entity, 321 AMDGPU_FENCE_OWNER_UNDEFINED, &fence); 322 if (r) 323 goto error_free; 324 325 dma_fence_put(fence); 326 327 return r; 328 329 error_free: 330 amdgpu_job_free(job); 331 return r; 332 } 333 334 /** 335 * amdgpu_copy_ttm_mem_to_mem - Helper function for copy 336 * @adev: amdgpu device 337 * @src: buffer/address where to read from 338 * @dst: buffer/address where to write to 339 * @size: number of bytes to copy 340 * @tmz: if a secure copy should be used 341 * @resv: resv object to sync to 342 * @f: Returns the last fence if multiple jobs are submitted. 343 * 344 * The function copies @size bytes from {src->mem + src->offset} to 345 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a 346 * move and different for a BO to BO copy. 347 * 348 */ 349 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev, 350 const struct amdgpu_copy_mem *src, 351 const struct amdgpu_copy_mem *dst, 352 uint64_t size, bool tmz, 353 struct dma_resv *resv, 354 struct dma_fence **f) 355 { 356 const uint32_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE * 357 AMDGPU_GPU_PAGE_SIZE); 358 359 uint64_t src_node_size, dst_node_size, src_offset, dst_offset; 360 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 361 struct drm_mm_node *src_mm, *dst_mm; 362 struct dma_fence *fence = NULL; 363 int r = 0; 364 365 if (!adev->mman.buffer_funcs_enabled) { 366 DRM_ERROR("Trying to move memory with ring turned off.\n"); 367 return -EINVAL; 368 } 369 370 src_offset = src->offset; 371 if (src->mem->mm_node) { 372 src_mm = amdgpu_find_mm_node(src->mem, &src_offset); 373 src_node_size = (src_mm->size << PAGE_SHIFT) - src_offset; 374 } else { 375 src_mm = NULL; 376 src_node_size = ULLONG_MAX; 377 } 378 379 dst_offset = dst->offset; 380 if (dst->mem->mm_node) { 381 dst_mm = amdgpu_find_mm_node(dst->mem, &dst_offset); 382 dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst_offset; 383 } else { 384 dst_mm = NULL; 385 dst_node_size = ULLONG_MAX; 386 } 387 388 mutex_lock(&adev->mman.gtt_window_lock); 389 390 while (size) { 391 uint32_t src_page_offset = src_offset & ~LINUX_PAGE_MASK; 392 uint32_t dst_page_offset = dst_offset & ~LINUX_PAGE_MASK; 393 struct dma_fence *next; 394 uint32_t cur_size; 395 uint64_t from, to; 396 397 /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst 398 * begins at an offset, then adjust the size accordingly 399 */ 400 cur_size = max(src_page_offset, dst_page_offset); 401 cur_size = min(min3(src_node_size, dst_node_size, size), 402 (uint64_t)(GTT_MAX_BYTES - cur_size)); 403 404 /* Map src to window 0 and dst to window 1. */ 405 r = amdgpu_ttm_map_buffer(src->bo, src->mem, src_mm, 406 PFN_UP(cur_size + src_page_offset), 407 src_offset, 0, ring, tmz, &from); 408 if (r) 409 goto error; 410 411 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, dst_mm, 412 PFN_UP(cur_size + dst_page_offset), 413 dst_offset, 1, ring, tmz, &to); 414 if (r) 415 goto error; 416 417 r = amdgpu_copy_buffer(ring, from, to, cur_size, 418 resv, &next, false, true, tmz); 419 if (r) 420 goto error; 421 422 dma_fence_put(fence); 423 fence = next; 424 425 size -= cur_size; 426 if (!size) 427 break; 428 429 src_node_size -= cur_size; 430 if (!src_node_size) { 431 ++src_mm; 432 src_node_size = src_mm->size << PAGE_SHIFT; 433 src_offset = 0; 434 } else { 435 src_offset += cur_size; 436 } 437 438 dst_node_size -= cur_size; 439 if (!dst_node_size) { 440 ++dst_mm; 441 dst_node_size = dst_mm->size << PAGE_SHIFT; 442 dst_offset = 0; 443 } else { 444 dst_offset += cur_size; 445 } 446 } 447 error: 448 mutex_unlock(&adev->mman.gtt_window_lock); 449 if (f) 450 *f = dma_fence_get(fence); 451 dma_fence_put(fence); 452 return r; 453 } 454 455 /** 456 * amdgpu_move_blit - Copy an entire buffer to another buffer 457 * 458 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to 459 * help move buffers to and from VRAM. 460 */ 461 static int amdgpu_move_blit(struct ttm_buffer_object *bo, 462 bool evict, 463 struct ttm_resource *new_mem, 464 struct ttm_resource *old_mem) 465 { 466 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 467 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 468 struct amdgpu_copy_mem src, dst; 469 struct dma_fence *fence = NULL; 470 int r; 471 472 src.bo = bo; 473 dst.bo = bo; 474 src.mem = old_mem; 475 dst.mem = new_mem; 476 src.offset = 0; 477 dst.offset = 0; 478 479 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst, 480 new_mem->num_pages << PAGE_SHIFT, 481 amdgpu_bo_encrypted(abo), 482 bo->base.resv, &fence); 483 if (r) 484 goto error; 485 486 /* clear the space being freed */ 487 if (old_mem->mem_type == TTM_PL_VRAM && 488 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) { 489 struct dma_fence *wipe_fence = NULL; 490 491 r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON, 492 NULL, &wipe_fence); 493 if (r) { 494 goto error; 495 } else if (wipe_fence) { 496 dma_fence_put(fence); 497 fence = wipe_fence; 498 } 499 } 500 501 /* Always block for VM page tables before committing the new location */ 502 if (bo->type == ttm_bo_type_kernel) 503 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem); 504 else 505 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem); 506 dma_fence_put(fence); 507 return r; 508 509 error: 510 if (fence) 511 dma_fence_wait(fence, false); 512 dma_fence_put(fence); 513 return r; 514 } 515 516 /** 517 * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer 518 * 519 * Called by amdgpu_bo_move(). 520 */ 521 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict, 522 struct ttm_operation_ctx *ctx, 523 struct ttm_resource *new_mem) 524 { 525 struct ttm_resource *old_mem = &bo->mem; 526 struct ttm_resource tmp_mem; 527 struct ttm_place placements; 528 struct ttm_placement placement; 529 int r; 530 531 /* create space/pages for new_mem in GTT space */ 532 tmp_mem = *new_mem; 533 tmp_mem.mm_node = NULL; 534 placement.num_placement = 1; 535 placement.placement = &placements; 536 placement.num_busy_placement = 1; 537 placement.busy_placement = &placements; 538 placements.fpfn = 0; 539 placements.lpfn = 0; 540 placements.mem_type = TTM_PL_TT; 541 placements.flags = TTM_PL_MASK_CACHING; 542 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx); 543 if (unlikely(r)) { 544 pr_err("Failed to find GTT space for blit from VRAM\n"); 545 return r; 546 } 547 548 /* set caching flags */ 549 r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement); 550 if (unlikely(r)) { 551 goto out_cleanup; 552 } 553 554 r = ttm_tt_populate(bo->bdev, bo->ttm, ctx); 555 if (unlikely(r)) 556 goto out_cleanup; 557 558 /* Bind the memory to the GTT space */ 559 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, &tmp_mem); 560 if (unlikely(r)) { 561 goto out_cleanup; 562 } 563 564 /* blit VRAM to GTT */ 565 r = amdgpu_move_blit(bo, evict, &tmp_mem, old_mem); 566 if (unlikely(r)) { 567 goto out_cleanup; 568 } 569 570 /* move BO (in tmp_mem) to new_mem */ 571 r = ttm_bo_move_ttm(bo, ctx, new_mem); 572 out_cleanup: 573 ttm_resource_free(bo, &tmp_mem); 574 return r; 575 } 576 577 /** 578 * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM 579 * 580 * Called by amdgpu_bo_move(). 581 */ 582 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict, 583 struct ttm_operation_ctx *ctx, 584 struct ttm_resource *new_mem) 585 { 586 struct ttm_resource *old_mem = &bo->mem; 587 struct ttm_resource tmp_mem; 588 struct ttm_placement placement; 589 struct ttm_place placements; 590 int r; 591 592 /* make space in GTT for old_mem buffer */ 593 tmp_mem = *new_mem; 594 tmp_mem.mm_node = NULL; 595 placement.num_placement = 1; 596 placement.placement = &placements; 597 placement.num_busy_placement = 1; 598 placement.busy_placement = &placements; 599 placements.fpfn = 0; 600 placements.lpfn = 0; 601 placements.mem_type = TTM_PL_TT; 602 placements.flags = TTM_PL_MASK_CACHING; 603 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx); 604 if (unlikely(r)) { 605 pr_err("Failed to find GTT space for blit to VRAM\n"); 606 return r; 607 } 608 609 /* move/bind old memory to GTT space */ 610 r = ttm_bo_move_ttm(bo, ctx, &tmp_mem); 611 if (unlikely(r)) { 612 goto out_cleanup; 613 } 614 615 /* copy to VRAM */ 616 r = amdgpu_move_blit(bo, evict, new_mem, old_mem); 617 if (unlikely(r)) { 618 goto out_cleanup; 619 } 620 out_cleanup: 621 ttm_resource_free(bo, &tmp_mem); 622 return r; 623 } 624 625 /** 626 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy 627 * 628 * Called by amdgpu_bo_move() 629 */ 630 static bool amdgpu_mem_visible(struct amdgpu_device *adev, 631 struct ttm_resource *mem) 632 { 633 struct drm_mm_node *nodes = mem->mm_node; 634 635 if (mem->mem_type == TTM_PL_SYSTEM || 636 mem->mem_type == TTM_PL_TT) 637 return true; 638 if (mem->mem_type != TTM_PL_VRAM) 639 return false; 640 641 /* ttm_resource_ioremap only supports contiguous memory */ 642 if (nodes->size != mem->num_pages) 643 return false; 644 645 return ((nodes->start + nodes->size) << PAGE_SHIFT) 646 <= adev->gmc.visible_vram_size; 647 } 648 649 /** 650 * amdgpu_bo_move - Move a buffer object to a new memory location 651 * 652 * Called by ttm_bo_handle_move_mem() 653 */ 654 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, 655 struct ttm_operation_ctx *ctx, 656 struct ttm_resource *new_mem) 657 { 658 struct amdgpu_device *adev; 659 struct amdgpu_bo *abo; 660 struct ttm_resource *old_mem = &bo->mem; 661 int r; 662 663 /* Can't move a pinned BO */ 664 abo = ttm_to_amdgpu_bo(bo); 665 if (WARN_ON_ONCE(abo->pin_count > 0)) 666 return -EINVAL; 667 668 adev = amdgpu_ttm_adev(bo->bdev); 669 670 if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) { 671 ttm_bo_move_null(bo, new_mem); 672 return 0; 673 } 674 if ((old_mem->mem_type == TTM_PL_TT && 675 new_mem->mem_type == TTM_PL_SYSTEM) || 676 (old_mem->mem_type == TTM_PL_SYSTEM && 677 new_mem->mem_type == TTM_PL_TT)) { 678 /* bind is enough */ 679 ttm_bo_move_null(bo, new_mem); 680 return 0; 681 } 682 if (old_mem->mem_type == AMDGPU_PL_GDS || 683 old_mem->mem_type == AMDGPU_PL_GWS || 684 old_mem->mem_type == AMDGPU_PL_OA || 685 new_mem->mem_type == AMDGPU_PL_GDS || 686 new_mem->mem_type == AMDGPU_PL_GWS || 687 new_mem->mem_type == AMDGPU_PL_OA) { 688 /* Nothing to save here */ 689 ttm_bo_move_null(bo, new_mem); 690 return 0; 691 } 692 693 if (!adev->mman.buffer_funcs_enabled) { 694 r = -ENODEV; 695 goto memcpy; 696 } 697 698 if (old_mem->mem_type == TTM_PL_VRAM && 699 new_mem->mem_type == TTM_PL_SYSTEM) { 700 r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem); 701 } else if (old_mem->mem_type == TTM_PL_SYSTEM && 702 new_mem->mem_type == TTM_PL_VRAM) { 703 r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem); 704 } else { 705 r = amdgpu_move_blit(bo, evict, 706 new_mem, old_mem); 707 } 708 709 if (r) { 710 memcpy: 711 /* Check that all memory is CPU accessible */ 712 if (!amdgpu_mem_visible(adev, old_mem) || 713 !amdgpu_mem_visible(adev, new_mem)) { 714 pr_err("Move buffer fallback to memcpy unavailable\n"); 715 return r; 716 } 717 718 r = ttm_bo_move_memcpy(bo, ctx, new_mem); 719 if (r) 720 return r; 721 } 722 723 if (bo->type == ttm_bo_type_device && 724 new_mem->mem_type == TTM_PL_VRAM && 725 old_mem->mem_type != TTM_PL_VRAM) { 726 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU 727 * accesses the BO after it's moved. 728 */ 729 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 730 } 731 732 /* update statistics */ 733 atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved); 734 return 0; 735 } 736 737 /** 738 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault 739 * 740 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault() 741 */ 742 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_resource *mem) 743 { 744 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 745 struct drm_mm_node *mm_node = mem->mm_node; 746 size_t bus_size = (size_t)mem->num_pages << PAGE_SHIFT; 747 748 switch (mem->mem_type) { 749 case TTM_PL_SYSTEM: 750 /* system memory */ 751 return 0; 752 case TTM_PL_TT: 753 break; 754 case TTM_PL_VRAM: 755 mem->bus.offset = mem->start << PAGE_SHIFT; 756 /* check if it's visible */ 757 if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size) 758 return -EINVAL; 759 /* Only physically contiguous buffers apply. In a contiguous 760 * buffer, size of the first mm_node would match the number of 761 * pages in ttm_resource. 762 */ 763 if (adev->mman.aper_base_kaddr && 764 (mm_node->size == mem->num_pages)) 765 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr + 766 mem->bus.offset; 767 768 mem->bus.offset += adev->gmc.aper_base; 769 mem->bus.is_iomem = true; 770 break; 771 default: 772 return -EINVAL; 773 } 774 return 0; 775 } 776 777 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 778 unsigned long page_offset) 779 { 780 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 781 uint64_t offset = (page_offset << PAGE_SHIFT); 782 struct drm_mm_node *mm; 783 784 mm = amdgpu_find_mm_node(&bo->mem, &offset); 785 offset += adev->gmc.aper_base; 786 return mm->start + (offset >> PAGE_SHIFT); 787 } 788 789 /** 790 * amdgpu_ttm_domain_start - Returns GPU start address 791 * @adev: amdgpu device object 792 * @type: type of the memory 793 * 794 * Returns: 795 * GPU start address of a memory domain 796 */ 797 798 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type) 799 { 800 switch (type) { 801 case TTM_PL_TT: 802 return adev->gmc.gart_start; 803 case TTM_PL_VRAM: 804 return adev->gmc.vram_start; 805 } 806 807 return 0; 808 } 809 810 /* 811 * TTM backend functions. 812 */ 813 struct amdgpu_ttm_tt { 814 struct ttm_dma_tt ttm; 815 struct drm_gem_object *gobj; 816 u64 offset; 817 uint64_t userptr; 818 struct task_struct *usertask; 819 uint32_t userflags; 820 bool bound; 821 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR) 822 struct hmm_range *range; 823 #endif 824 }; 825 826 #ifdef CONFIG_DRM_AMDGPU_USERPTR 827 /** 828 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user 829 * memory and start HMM tracking CPU page table update 830 * 831 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only 832 * once afterwards to stop HMM tracking 833 */ 834 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct vm_page **pages) 835 { 836 struct ttm_tt *ttm = bo->tbo.ttm; 837 struct amdgpu_ttm_tt *gtt = (void *)ttm; 838 unsigned long start = gtt->userptr; 839 struct vm_area_struct *vma; 840 struct hmm_range *range; 841 unsigned long timeout; 842 struct mm_struct *mm; 843 unsigned long i; 844 int r = 0; 845 846 mm = bo->notifier.mm; 847 if (unlikely(!mm)) { 848 DRM_DEBUG_DRIVER("BO is not registered?\n"); 849 return -EFAULT; 850 } 851 852 /* Another get_user_pages is running at the same time?? */ 853 if (WARN_ON(gtt->range)) 854 return -EFAULT; 855 856 if (!mmget_not_zero(mm)) /* Happens during process shutdown */ 857 return -ESRCH; 858 859 range = kzalloc(sizeof(*range), GFP_KERNEL); 860 if (unlikely(!range)) { 861 r = -ENOMEM; 862 goto out; 863 } 864 range->notifier = &bo->notifier; 865 range->start = bo->notifier.interval_tree.start; 866 range->end = bo->notifier.interval_tree.last + 1; 867 range->default_flags = HMM_PFN_REQ_FAULT; 868 if (!amdgpu_ttm_tt_is_readonly(ttm)) 869 range->default_flags |= HMM_PFN_REQ_WRITE; 870 871 range->hmm_pfns = kvmalloc_array(ttm->num_pages, 872 sizeof(*range->hmm_pfns), GFP_KERNEL); 873 if (unlikely(!range->hmm_pfns)) { 874 r = -ENOMEM; 875 goto out_free_ranges; 876 } 877 878 mmap_read_lock(mm); 879 vma = find_vma(mm, start); 880 if (unlikely(!vma || start < vma->vm_start)) { 881 r = -EFAULT; 882 goto out_unlock; 883 } 884 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) && 885 vma->vm_file)) { 886 r = -EPERM; 887 goto out_unlock; 888 } 889 mmap_read_unlock(mm); 890 timeout = jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT); 891 892 retry: 893 range->notifier_seq = mmu_interval_read_begin(&bo->notifier); 894 895 mmap_read_lock(mm); 896 r = hmm_range_fault(range); 897 mmap_read_unlock(mm); 898 if (unlikely(r)) { 899 /* 900 * FIXME: This timeout should encompass the retry from 901 * mmu_interval_read_retry() as well. 902 */ 903 if (r == -EBUSY && !time_after(jiffies, timeout)) 904 goto retry; 905 goto out_free_pfns; 906 } 907 908 /* 909 * Due to default_flags, all pages are HMM_PFN_VALID or 910 * hmm_range_fault() fails. FIXME: The pages cannot be touched outside 911 * the notifier_lock, and mmu_interval_read_retry() must be done first. 912 */ 913 for (i = 0; i < ttm->num_pages; i++) 914 pages[i] = hmm_pfn_to_page(range->hmm_pfns[i]); 915 916 gtt->range = range; 917 mmput(mm); 918 919 return 0; 920 921 out_unlock: 922 mmap_read_unlock(mm); 923 out_free_pfns: 924 kvfree(range->hmm_pfns); 925 out_free_ranges: 926 kfree(range); 927 out: 928 mmput(mm); 929 return r; 930 } 931 932 /** 933 * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change 934 * Check if the pages backing this ttm range have been invalidated 935 * 936 * Returns: true if pages are still valid 937 */ 938 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm) 939 { 940 struct amdgpu_ttm_tt *gtt = (void *)ttm; 941 bool r = false; 942 943 if (!gtt || !gtt->userptr) 944 return false; 945 946 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n", 947 gtt->userptr, ttm->num_pages); 948 949 WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns, 950 "No user pages to check\n"); 951 952 if (gtt->range) { 953 /* 954 * FIXME: Must always hold notifier_lock for this, and must 955 * not ignore the return code. 956 */ 957 r = mmu_interval_read_retry(gtt->range->notifier, 958 gtt->range->notifier_seq); 959 kvfree(gtt->range->hmm_pfns); 960 kfree(gtt->range); 961 gtt->range = NULL; 962 } 963 964 return !r; 965 } 966 #endif 967 968 /** 969 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary. 970 * 971 * Called by amdgpu_cs_list_validate(). This creates the page list 972 * that backs user memory and will ultimately be mapped into the device 973 * address space. 974 */ 975 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct vm_page **pages) 976 { 977 unsigned long i; 978 979 for (i = 0; i < ttm->num_pages; ++i) 980 ttm->pages[i] = pages ? pages[i] : NULL; 981 } 982 983 /** 984 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages 985 * 986 * Called by amdgpu_ttm_backend_bind() 987 **/ 988 static int amdgpu_ttm_tt_pin_userptr(struct ttm_bo_device *bdev, 989 struct ttm_tt *ttm) 990 { 991 STUB(); 992 return -ENOSYS; 993 #ifdef notyet 994 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 995 struct amdgpu_ttm_tt *gtt = (void *)ttm; 996 int r; 997 998 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 999 enum dma_data_direction direction = write ? 1000 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 1001 1002 /* Allocate an SG array and squash pages into it */ 1003 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, 1004 ttm->num_pages << PAGE_SHIFT, 1005 GFP_KERNEL); 1006 if (r) 1007 goto release_sg; 1008 1009 /* Map SG to device */ 1010 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0); 1011 if (r) 1012 goto release_sg; 1013 1014 /* convert SG to linear array of pages and dma addresses */ 1015 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages, 1016 gtt->ttm.dma_address, ttm->num_pages); 1017 1018 return 0; 1019 1020 release_sg: 1021 kfree(ttm->sg); 1022 ttm->sg = NULL; 1023 return r; 1024 #endif 1025 } 1026 1027 /** 1028 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages 1029 */ 1030 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_bo_device *bdev, 1031 struct ttm_tt *ttm) 1032 { 1033 STUB(); 1034 #ifdef notyet 1035 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1036 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1037 1038 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1039 enum dma_data_direction direction = write ? 1040 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 1041 1042 /* double check that we don't free the table twice */ 1043 if (!ttm->sg || !ttm->sg->sgl) 1044 return; 1045 1046 /* unmap the pages mapped to the device */ 1047 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 1048 sg_free_table(ttm->sg); 1049 1050 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR) 1051 if (gtt->range) { 1052 unsigned long i; 1053 1054 for (i = 0; i < ttm->num_pages; i++) { 1055 if (ttm->pages[i] != 1056 hmm_pfn_to_page(gtt->range->hmm_pfns[i])) 1057 break; 1058 } 1059 1060 WARN((i == ttm->num_pages), "Missing get_user_page_done\n"); 1061 } 1062 #endif 1063 #endif 1064 } 1065 1066 static int amdgpu_ttm_gart_bind(struct amdgpu_device *adev, 1067 struct ttm_buffer_object *tbo, 1068 uint64_t flags) 1069 { 1070 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo); 1071 struct ttm_tt *ttm = tbo->ttm; 1072 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1073 int r; 1074 1075 if (amdgpu_bo_encrypted(abo)) 1076 flags |= AMDGPU_PTE_TMZ; 1077 1078 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) { 1079 uint64_t page_idx = 1; 1080 1081 r = amdgpu_gart_bind(adev, gtt->offset, page_idx, 1082 ttm->pages, gtt->ttm.dma_address, flags); 1083 if (r) 1084 goto gart_bind_fail; 1085 1086 /* The memory type of the first page defaults to UC. Now 1087 * modify the memory type to NC from the second page of 1088 * the BO onward. 1089 */ 1090 flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK; 1091 flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC); 1092 1093 r = amdgpu_gart_bind(adev, 1094 gtt->offset + (page_idx << PAGE_SHIFT), 1095 ttm->num_pages - page_idx, 1096 &ttm->pages[page_idx], 1097 &(gtt->ttm.dma_address[page_idx]), flags); 1098 } else { 1099 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 1100 ttm->pages, gtt->ttm.dma_address, flags); 1101 } 1102 1103 gart_bind_fail: 1104 if (r) 1105 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n", 1106 ttm->num_pages, gtt->offset); 1107 1108 return r; 1109 } 1110 1111 /** 1112 * amdgpu_ttm_backend_bind - Bind GTT memory 1113 * 1114 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem(). 1115 * This handles binding GTT memory to the device address space. 1116 */ 1117 static int amdgpu_ttm_backend_bind(struct ttm_bo_device *bdev, 1118 struct ttm_tt *ttm, 1119 struct ttm_resource *bo_mem) 1120 { 1121 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1122 struct amdgpu_ttm_tt *gtt = (void*)ttm; 1123 uint64_t flags; 1124 int r = 0; 1125 1126 if (!bo_mem) 1127 return -EINVAL; 1128 1129 if (gtt->bound) 1130 return 0; 1131 1132 if (gtt->userptr) { 1133 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm); 1134 if (r) { 1135 DRM_ERROR("failed to pin userptr\n"); 1136 return r; 1137 } 1138 } 1139 if (!ttm->num_pages) { 1140 WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n", 1141 ttm->num_pages, bo_mem, ttm); 1142 } 1143 1144 if (bo_mem->mem_type == AMDGPU_PL_GDS || 1145 bo_mem->mem_type == AMDGPU_PL_GWS || 1146 bo_mem->mem_type == AMDGPU_PL_OA) 1147 return -EINVAL; 1148 1149 if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) { 1150 gtt->offset = AMDGPU_BO_INVALID_OFFSET; 1151 return 0; 1152 } 1153 1154 /* compute PTE flags relevant to this BO memory */ 1155 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem); 1156 1157 /* bind pages into GART page tables */ 1158 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT; 1159 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 1160 ttm->pages, gtt->ttm.dma_address, flags); 1161 1162 if (r) 1163 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n", 1164 ttm->num_pages, gtt->offset); 1165 gtt->bound = true; 1166 return r; 1167 } 1168 1169 /** 1170 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either 1171 * through AGP or GART aperture. 1172 * 1173 * If bo is accessible through AGP aperture, then use AGP aperture 1174 * to access bo; otherwise allocate logical space in GART aperture 1175 * and map bo to GART aperture. 1176 */ 1177 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo) 1178 { 1179 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 1180 struct ttm_operation_ctx ctx = { false, false }; 1181 struct amdgpu_ttm_tt *gtt = (void*)bo->ttm; 1182 struct ttm_resource tmp; 1183 struct ttm_placement placement; 1184 struct ttm_place placements; 1185 uint64_t addr, flags; 1186 int r; 1187 1188 if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET) 1189 return 0; 1190 1191 addr = amdgpu_gmc_agp_addr(bo); 1192 if (addr != AMDGPU_BO_INVALID_OFFSET) { 1193 bo->mem.start = addr >> PAGE_SHIFT; 1194 } else { 1195 1196 /* allocate GART space */ 1197 tmp = bo->mem; 1198 tmp.mm_node = NULL; 1199 placement.num_placement = 1; 1200 placement.placement = &placements; 1201 placement.num_busy_placement = 1; 1202 placement.busy_placement = &placements; 1203 placements.fpfn = 0; 1204 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT; 1205 placements.mem_type = TTM_PL_TT; 1206 placements.flags = bo->mem.placement; 1207 1208 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx); 1209 if (unlikely(r)) 1210 return r; 1211 1212 /* compute PTE flags for this buffer object */ 1213 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp); 1214 1215 /* Bind pages */ 1216 gtt->offset = (u64)tmp.start << PAGE_SHIFT; 1217 r = amdgpu_ttm_gart_bind(adev, bo, flags); 1218 if (unlikely(r)) { 1219 ttm_resource_free(bo, &tmp); 1220 return r; 1221 } 1222 1223 ttm_resource_free(bo, &bo->mem); 1224 bo->mem = tmp; 1225 } 1226 1227 return 0; 1228 } 1229 1230 /** 1231 * amdgpu_ttm_recover_gart - Rebind GTT pages 1232 * 1233 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to 1234 * rebind GTT pages during a GPU reset. 1235 */ 1236 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo) 1237 { 1238 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev); 1239 uint64_t flags; 1240 int r; 1241 1242 if (!tbo->ttm) 1243 return 0; 1244 1245 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem); 1246 r = amdgpu_ttm_gart_bind(adev, tbo, flags); 1247 1248 return r; 1249 } 1250 1251 /** 1252 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages 1253 * 1254 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and 1255 * ttm_tt_destroy(). 1256 */ 1257 static void amdgpu_ttm_backend_unbind(struct ttm_bo_device *bdev, 1258 struct ttm_tt *ttm) 1259 { 1260 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1261 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1262 int r; 1263 1264 /* if the pages have userptr pinning then clear that first */ 1265 if (gtt->userptr) 1266 amdgpu_ttm_tt_unpin_userptr(bdev, ttm); 1267 1268 if (!gtt->bound) 1269 return; 1270 1271 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET) 1272 return; 1273 1274 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ 1275 r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages); 1276 if (r) 1277 DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n", 1278 gtt->ttm.ttm.num_pages, gtt->offset); 1279 gtt->bound = false; 1280 } 1281 1282 static void amdgpu_ttm_backend_destroy(struct ttm_bo_device *bdev, 1283 struct ttm_tt *ttm) 1284 { 1285 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1286 1287 amdgpu_ttm_backend_unbind(bdev, ttm); 1288 ttm_tt_destroy_common(bdev, ttm); 1289 #ifdef notyet 1290 if (gtt->usertask) 1291 put_task_struct(gtt->usertask); 1292 #endif 1293 1294 ttm_dma_tt_fini(>t->ttm); 1295 kfree(gtt); 1296 } 1297 1298 /** 1299 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO 1300 * 1301 * @bo: The buffer object to create a GTT ttm_tt object around 1302 * 1303 * Called by ttm_tt_create(). 1304 */ 1305 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo, 1306 uint32_t page_flags) 1307 { 1308 struct amdgpu_ttm_tt *gtt; 1309 1310 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); 1311 if (gtt == NULL) { 1312 return NULL; 1313 } 1314 gtt->gobj = &bo->base; 1315 1316 /* allocate space for the uninitialized page entries */ 1317 if (ttm_sg_tt_init(>t->ttm, bo, page_flags)) { 1318 kfree(gtt); 1319 return NULL; 1320 } 1321 return >t->ttm.ttm; 1322 } 1323 1324 /** 1325 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device 1326 * 1327 * Map the pages of a ttm_tt object to an address space visible 1328 * to the underlying device. 1329 */ 1330 static int amdgpu_ttm_tt_populate(struct ttm_bo_device *bdev, 1331 struct ttm_tt *ttm, 1332 struct ttm_operation_ctx *ctx) 1333 { 1334 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1335 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1336 1337 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */ 1338 if (gtt && gtt->userptr) { 1339 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); 1340 if (!ttm->sg) 1341 return -ENOMEM; 1342 1343 ttm->page_flags |= TTM_PAGE_FLAG_SG; 1344 ttm_tt_set_populated(ttm); 1345 return 0; 1346 } 1347 1348 if (ttm->page_flags & TTM_PAGE_FLAG_SG) { 1349 if (!ttm->sg) { 1350 struct dma_buf_attachment *attach; 1351 struct sg_table *sgt; 1352 1353 attach = gtt->gobj->import_attach; 1354 #ifdef notyet 1355 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 1356 if (IS_ERR(sgt)) 1357 return PTR_ERR(sgt); 1358 #else 1359 STUB(); 1360 return -ENOSYS; 1361 #endif 1362 1363 ttm->sg = sgt; 1364 } 1365 1366 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages, 1367 gtt->ttm.dma_address, 1368 ttm->num_pages); 1369 ttm_tt_set_populated(ttm); 1370 return 0; 1371 } 1372 1373 #ifdef CONFIG_SWIOTLB 1374 if (adev->need_swiotlb && swiotlb_nr_tbl()) { 1375 return ttm_dma_populate(>t->ttm, adev->dev, ctx); 1376 } 1377 #endif 1378 1379 /* fall back to generic helper to populate the page array 1380 * and map them to the device */ 1381 return ttm_populate_and_map_pages(adev->dev, >t->ttm, ctx); 1382 } 1383 1384 /** 1385 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays 1386 * 1387 * Unmaps pages of a ttm_tt object from the device address space and 1388 * unpopulates the page array backing it. 1389 */ 1390 static void amdgpu_ttm_tt_unpopulate(struct ttm_bo_device *bdev, struct ttm_tt *ttm) 1391 { 1392 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1393 struct amdgpu_device *adev; 1394 1395 if (gtt && gtt->userptr) { 1396 amdgpu_ttm_tt_set_user_pages(ttm, NULL); 1397 kfree(ttm->sg); 1398 ttm->sg = NULL; 1399 ttm->page_flags &= ~TTM_PAGE_FLAG_SG; 1400 return; 1401 } 1402 1403 if (ttm->sg && gtt->gobj->import_attach) { 1404 struct dma_buf_attachment *attach; 1405 1406 attach = gtt->gobj->import_attach; 1407 #ifdef notyet 1408 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL); 1409 #else 1410 STUB(); 1411 #endif 1412 ttm->sg = NULL; 1413 return; 1414 } 1415 1416 if (ttm->page_flags & TTM_PAGE_FLAG_SG) 1417 return; 1418 1419 adev = amdgpu_ttm_adev(bdev); 1420 1421 #ifdef CONFIG_SWIOTLB 1422 if (adev->need_swiotlb && swiotlb_nr_tbl()) { 1423 ttm_dma_unpopulate(>t->ttm, adev->dev); 1424 return; 1425 } 1426 #endif 1427 1428 /* fall back to generic helper to unmap and unpopulate array */ 1429 ttm_unmap_and_unpopulate_pages(adev->dev, >t->ttm); 1430 } 1431 1432 /** 1433 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current 1434 * task 1435 * 1436 * @bo: The ttm_buffer_object to bind this userptr to 1437 * @addr: The address in the current tasks VM space to use 1438 * @flags: Requirements of userptr object. 1439 * 1440 * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages 1441 * to current task 1442 */ 1443 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo, 1444 uint64_t addr, uint32_t flags) 1445 { 1446 struct amdgpu_ttm_tt *gtt; 1447 1448 if (!bo->ttm) { 1449 /* TODO: We want a separate TTM object type for userptrs */ 1450 bo->ttm = amdgpu_ttm_tt_create(bo, 0); 1451 if (bo->ttm == NULL) 1452 return -ENOMEM; 1453 } 1454 1455 gtt = (void*)bo->ttm; 1456 gtt->userptr = addr; 1457 gtt->userflags = flags; 1458 1459 #ifdef notyet 1460 if (gtt->usertask) 1461 put_task_struct(gtt->usertask); 1462 gtt->usertask = current->group_leader; 1463 get_task_struct(gtt->usertask); 1464 #endif 1465 1466 return 0; 1467 } 1468 1469 /** 1470 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object 1471 */ 1472 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) 1473 { 1474 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1475 1476 if (gtt == NULL) 1477 return NULL; 1478 1479 if (gtt->usertask == NULL) 1480 return NULL; 1481 1482 #ifdef notyet 1483 return gtt->usertask->mm; 1484 #else 1485 STUB(); 1486 return NULL; 1487 #endif 1488 } 1489 1490 /** 1491 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an 1492 * address range for the current task. 1493 * 1494 */ 1495 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, 1496 unsigned long end) 1497 { 1498 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1499 unsigned long size; 1500 1501 if (gtt == NULL || !gtt->userptr) 1502 return false; 1503 1504 /* Return false if no part of the ttm_tt object lies within 1505 * the range 1506 */ 1507 size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE; 1508 if (gtt->userptr > end || gtt->userptr + size <= start) 1509 return false; 1510 1511 return true; 1512 } 1513 1514 /** 1515 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr? 1516 */ 1517 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm) 1518 { 1519 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1520 1521 if (gtt == NULL || !gtt->userptr) 1522 return false; 1523 1524 return true; 1525 } 1526 1527 /** 1528 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only? 1529 */ 1530 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) 1531 { 1532 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1533 1534 if (gtt == NULL) 1535 return false; 1536 1537 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1538 } 1539 1540 /** 1541 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object 1542 * 1543 * @ttm: The ttm_tt object to compute the flags for 1544 * @mem: The memory registry backing this ttm_tt object 1545 * 1546 * Figure out the flags to use for a VM PDE (Page Directory Entry). 1547 */ 1548 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem) 1549 { 1550 uint64_t flags = 0; 1551 1552 if (mem && mem->mem_type != TTM_PL_SYSTEM) 1553 flags |= AMDGPU_PTE_VALID; 1554 1555 if (mem && mem->mem_type == TTM_PL_TT) { 1556 flags |= AMDGPU_PTE_SYSTEM; 1557 1558 if (ttm->caching_state == tt_cached) 1559 flags |= AMDGPU_PTE_SNOOPED; 1560 } 1561 1562 return flags; 1563 } 1564 1565 /** 1566 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object 1567 * 1568 * @ttm: The ttm_tt object to compute the flags for 1569 * @mem: The memory registry backing this ttm_tt object 1570 1571 * Figure out the flags to use for a VM PTE (Page Table Entry). 1572 */ 1573 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, 1574 struct ttm_resource *mem) 1575 { 1576 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem); 1577 1578 flags |= adev->gart.gart_pte_flags; 1579 flags |= AMDGPU_PTE_READABLE; 1580 1581 if (!amdgpu_ttm_tt_is_readonly(ttm)) 1582 flags |= AMDGPU_PTE_WRITEABLE; 1583 1584 return flags; 1585 } 1586 1587 /** 1588 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer 1589 * object. 1590 * 1591 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on 1592 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until 1593 * it can find space for a new object and by ttm_bo_force_list_clean() which is 1594 * used to clean out a memory space. 1595 */ 1596 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 1597 const struct ttm_place *place) 1598 { 1599 unsigned long num_pages = bo->mem.num_pages; 1600 struct drm_mm_node *node = bo->mem.mm_node; 1601 struct dma_resv_list *flist; 1602 struct dma_fence *f; 1603 int i; 1604 1605 if (bo->type == ttm_bo_type_kernel && 1606 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo))) 1607 return false; 1608 1609 /* If bo is a KFD BO, check if the bo belongs to the current process. 1610 * If true, then return false as any KFD process needs all its BOs to 1611 * be resident to run successfully 1612 */ 1613 flist = dma_resv_get_list(bo->base.resv); 1614 if (flist) { 1615 for (i = 0; i < flist->shared_count; ++i) { 1616 f = rcu_dereference_protected(flist->shared[i], 1617 dma_resv_held(bo->base.resv)); 1618 #ifdef notyet 1619 if (amdkfd_fence_check_mm(f, current->mm)) 1620 return false; 1621 #endif 1622 } 1623 } 1624 1625 switch (bo->mem.mem_type) { 1626 case TTM_PL_TT: 1627 if (amdgpu_bo_is_amdgpu_bo(bo) && 1628 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo))) 1629 return false; 1630 return true; 1631 1632 case TTM_PL_VRAM: 1633 /* Check each drm MM node individually */ 1634 while (num_pages) { 1635 if (place->fpfn < (node->start + node->size) && 1636 !(place->lpfn && place->lpfn <= node->start)) 1637 return true; 1638 1639 num_pages -= node->size; 1640 ++node; 1641 } 1642 return false; 1643 1644 default: 1645 break; 1646 } 1647 1648 return ttm_bo_eviction_valuable(bo, place); 1649 } 1650 1651 /** 1652 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object. 1653 * 1654 * @bo: The buffer object to read/write 1655 * @offset: Offset into buffer object 1656 * @buf: Secondary buffer to write/read from 1657 * @len: Length in bytes of access 1658 * @write: true if writing 1659 * 1660 * This is used to access VRAM that backs a buffer object via MMIO 1661 * access for debugging purposes. 1662 */ 1663 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo, 1664 unsigned long offset, 1665 void *buf, int len, int write) 1666 { 1667 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1668 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1669 struct drm_mm_node *nodes; 1670 uint32_t value = 0; 1671 int ret = 0; 1672 uint64_t pos; 1673 unsigned long flags; 1674 1675 if (bo->mem.mem_type != TTM_PL_VRAM) 1676 return -EIO; 1677 1678 pos = offset; 1679 nodes = amdgpu_find_mm_node(&abo->tbo.mem, &pos); 1680 pos += (nodes->start << PAGE_SHIFT); 1681 1682 while (len && pos < adev->gmc.mc_vram_size) { 1683 uint64_t aligned_pos = pos & ~(uint64_t)3; 1684 uint64_t bytes = 4 - (pos & 3); 1685 uint32_t shift = (pos & 3) * 8; 1686 uint32_t mask = 0xffffffff << shift; 1687 1688 if (len < bytes) { 1689 mask &= 0xffffffff >> (bytes - len) * 8; 1690 bytes = len; 1691 } 1692 1693 if (mask != 0xffffffff) { 1694 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 1695 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000); 1696 WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31); 1697 if (!write || mask != 0xffffffff) 1698 value = RREG32_NO_KIQ(mmMM_DATA); 1699 if (write) { 1700 value &= ~mask; 1701 value |= (*(uint32_t *)buf << shift) & mask; 1702 WREG32_NO_KIQ(mmMM_DATA, value); 1703 } 1704 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 1705 if (!write) { 1706 value = (value & mask) >> shift; 1707 memcpy(buf, &value, bytes); 1708 } 1709 } else { 1710 bytes = (nodes->start + nodes->size) << PAGE_SHIFT; 1711 bytes = min(bytes - pos, (uint64_t)len & ~0x3ull); 1712 1713 amdgpu_device_vram_access(adev, pos, (uint32_t *)buf, 1714 bytes, write); 1715 } 1716 1717 ret += bytes; 1718 buf = (uint8_t *)buf + bytes; 1719 pos += bytes; 1720 len -= bytes; 1721 if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) { 1722 ++nodes; 1723 pos = (nodes->start << PAGE_SHIFT); 1724 } 1725 } 1726 1727 return ret; 1728 } 1729 1730 static struct ttm_bo_driver amdgpu_bo_driver = { 1731 .ttm_tt_create = &amdgpu_ttm_tt_create, 1732 .ttm_tt_populate = &amdgpu_ttm_tt_populate, 1733 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, 1734 .ttm_tt_bind = &amdgpu_ttm_backend_bind, 1735 .ttm_tt_unbind = &amdgpu_ttm_backend_unbind, 1736 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy, 1737 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable, 1738 .evict_flags = &amdgpu_evict_flags, 1739 .move = &amdgpu_bo_move, 1740 .verify_access = &amdgpu_verify_access, 1741 .move_notify = &amdgpu_bo_move_notify, 1742 .release_notify = &amdgpu_bo_release_notify, 1743 .fault_reserve_notify = &amdgpu_bo_fault_reserve_notify, 1744 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, 1745 .io_mem_pfn = amdgpu_ttm_io_mem_pfn, 1746 .access_memory = &amdgpu_ttm_access_memory, 1747 .del_from_lru_notify = &amdgpu_vm_del_from_lru_notify 1748 }; 1749 1750 /* 1751 * Firmware Reservation functions 1752 */ 1753 /** 1754 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram 1755 * 1756 * @adev: amdgpu_device pointer 1757 * 1758 * free fw reserved vram if it has been reserved. 1759 */ 1760 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev) 1761 { 1762 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo, 1763 NULL, &adev->mman.fw_vram_usage_va); 1764 } 1765 1766 /** 1767 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw 1768 * 1769 * @adev: amdgpu_device pointer 1770 * 1771 * create bo vram reservation from fw. 1772 */ 1773 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev) 1774 { 1775 uint64_t vram_size = adev->gmc.visible_vram_size; 1776 1777 adev->mman.fw_vram_usage_va = NULL; 1778 adev->mman.fw_vram_usage_reserved_bo = NULL; 1779 1780 if (adev->mman.fw_vram_usage_size == 0 || 1781 adev->mman.fw_vram_usage_size > vram_size) 1782 return 0; 1783 1784 return amdgpu_bo_create_kernel_at(adev, 1785 adev->mman.fw_vram_usage_start_offset, 1786 adev->mman.fw_vram_usage_size, 1787 AMDGPU_GEM_DOMAIN_VRAM, 1788 &adev->mman.fw_vram_usage_reserved_bo, 1789 &adev->mman.fw_vram_usage_va); 1790 } 1791 1792 /* 1793 * Memoy training reservation functions 1794 */ 1795 1796 /** 1797 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram 1798 * 1799 * @adev: amdgpu_device pointer 1800 * 1801 * free memory training reserved vram if it has been reserved. 1802 */ 1803 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev) 1804 { 1805 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1806 1807 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT; 1808 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL); 1809 ctx->c2p_bo = NULL; 1810 1811 return 0; 1812 } 1813 1814 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev) 1815 { 1816 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1817 1818 memset(ctx, 0, sizeof(*ctx)); 1819 1820 ctx->c2p_train_data_offset = 1821 roundup2((adev->gmc.mc_vram_size - adev->mman.discovery_tmr_size - SZ_1M), SZ_1M); 1822 ctx->p2c_train_data_offset = 1823 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET); 1824 ctx->train_data_size = 1825 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES; 1826 1827 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n", 1828 ctx->train_data_size, 1829 ctx->p2c_train_data_offset, 1830 ctx->c2p_train_data_offset); 1831 } 1832 1833 /* 1834 * reserve TMR memory at the top of VRAM which holds 1835 * IP Discovery data and is protected by PSP. 1836 */ 1837 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev) 1838 { 1839 int ret; 1840 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1841 bool mem_train_support = false; 1842 1843 if (!amdgpu_sriov_vf(adev)) { 1844 ret = amdgpu_mem_train_support(adev); 1845 if (ret == 1) 1846 mem_train_support = true; 1847 else if (ret == -1) 1848 return -EINVAL; 1849 else 1850 DRM_DEBUG("memory training does not support!\n"); 1851 } 1852 1853 /* 1854 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all 1855 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc) 1856 * 1857 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip 1858 * discovery data and G6 memory training data respectively 1859 */ 1860 adev->mman.discovery_tmr_size = 1861 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev); 1862 if (!adev->mman.discovery_tmr_size) 1863 adev->mman.discovery_tmr_size = DISCOVERY_TMR_OFFSET; 1864 1865 if (mem_train_support) { 1866 /* reserve vram for mem train according to TMR location */ 1867 amdgpu_ttm_training_data_block_init(adev); 1868 ret = amdgpu_bo_create_kernel_at(adev, 1869 ctx->c2p_train_data_offset, 1870 ctx->train_data_size, 1871 AMDGPU_GEM_DOMAIN_VRAM, 1872 &ctx->c2p_bo, 1873 NULL); 1874 if (ret) { 1875 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret); 1876 amdgpu_ttm_training_reserve_vram_fini(adev); 1877 return ret; 1878 } 1879 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS; 1880 } 1881 1882 ret = amdgpu_bo_create_kernel_at(adev, 1883 adev->gmc.real_vram_size - adev->mman.discovery_tmr_size, 1884 adev->mman.discovery_tmr_size, 1885 AMDGPU_GEM_DOMAIN_VRAM, 1886 &adev->mman.discovery_memory, 1887 NULL); 1888 if (ret) { 1889 DRM_ERROR("alloc tmr failed(%d)!\n", ret); 1890 amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL); 1891 return ret; 1892 } 1893 1894 return 0; 1895 } 1896 1897 /** 1898 * amdgpu_ttm_init - Init the memory management (ttm) as well as various 1899 * gtt/vram related fields. 1900 * 1901 * This initializes all of the memory space pools that the TTM layer 1902 * will need such as the GTT space (system memory mapped to the device), 1903 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which 1904 * can be mapped per VMID. 1905 */ 1906 int amdgpu_ttm_init(struct amdgpu_device *adev) 1907 { 1908 uint64_t gtt_size; 1909 int r; 1910 u64 vis_vram_limit; 1911 1912 rw_init(&adev->mman.gtt_window_lock, "gttwin"); 1913 1914 /* No others user of address space so set it to 0 */ 1915 #ifdef notyet 1916 r = ttm_bo_device_init(&adev->mman.bdev, 1917 &amdgpu_bo_driver, 1918 adev_to_drm(adev)->anon_inode->i_mapping, 1919 adev_to_drm(adev)->vma_offset_manager, 1920 dma_addressing_limited(adev->dev)); 1921 #else 1922 r = ttm_bo_device_init(&adev->mman.bdev, 1923 &amdgpu_bo_driver, 1924 /*adev_to_drm(adev)->anon_inode->i_mapping*/NULL, 1925 adev_to_drm(adev)->vma_offset_manager, 1926 dma_addressing_limited(adev->dev)); 1927 #endif 1928 if (r) { 1929 DRM_ERROR("failed initializing buffer object driver(%d).\n", r); 1930 return r; 1931 } 1932 adev->mman.bdev.iot = adev->iot; 1933 adev->mman.bdev.memt = adev->memt; 1934 adev->mman.bdev.dmat = adev->dmat; 1935 adev->mman.initialized = true; 1936 1937 /* We opt to avoid OOM on system pages allocations */ 1938 adev->mman.bdev.no_retry = true; 1939 1940 /* Initialize VRAM pool with all of VRAM divided into pages */ 1941 r = amdgpu_vram_mgr_init(adev); 1942 if (r) { 1943 DRM_ERROR("Failed initializing VRAM heap.\n"); 1944 return r; 1945 } 1946 1947 /* Reduce size of CPU-visible VRAM if requested */ 1948 vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024; 1949 if (amdgpu_vis_vram_limit > 0 && 1950 vis_vram_limit <= adev->gmc.visible_vram_size) 1951 adev->gmc.visible_vram_size = vis_vram_limit; 1952 1953 /* Change the size here instead of the init above so only lpfn is affected */ 1954 amdgpu_ttm_set_buffer_funcs_status(adev, false); 1955 #ifdef CONFIG_64BIT 1956 #ifdef __linux__ 1957 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base, 1958 adev->gmc.visible_vram_size); 1959 #else 1960 if (bus_space_map(adev->memt, adev->gmc.aper_base, 1961 adev->gmc.visible_vram_size, 1962 BUS_SPACE_MAP_LINEAR | BUS_SPACE_MAP_PREFETCHABLE, 1963 &adev->mman.aper_bsh)) { 1964 adev->mman.aper_base_kaddr = NULL; 1965 } else { 1966 adev->mman.aper_base_kaddr = bus_space_vaddr(adev->memt, 1967 adev->mman.aper_bsh); 1968 } 1969 #endif 1970 #endif 1971 1972 /* 1973 *The reserved vram for firmware must be pinned to the specified 1974 *place on the VRAM, so reserve it early. 1975 */ 1976 r = amdgpu_ttm_fw_reserve_vram_init(adev); 1977 if (r) { 1978 return r; 1979 } 1980 1981 /* 1982 * only NAVI10 and onwards ASIC support for IP discovery. 1983 * If IP discovery enabled, a block of memory should be 1984 * reserved for IP discovey. 1985 */ 1986 if (adev->mman.discovery_bin) { 1987 r = amdgpu_ttm_reserve_tmr(adev); 1988 if (r) 1989 return r; 1990 } 1991 1992 /* allocate memory as required for VGA 1993 * This is used for VGA emulation and pre-OS scanout buffers to 1994 * avoid display artifacts while transitioning between pre-OS 1995 * and driver. */ 1996 r = amdgpu_bo_create_kernel_at(adev, 0, adev->mman.stolen_vga_size, 1997 AMDGPU_GEM_DOMAIN_VRAM, 1998 &adev->mman.stolen_vga_memory, 1999 NULL); 2000 if (r) 2001 return r; 2002 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size, 2003 adev->mman.stolen_extended_size, 2004 AMDGPU_GEM_DOMAIN_VRAM, 2005 &adev->mman.stolen_extended_memory, 2006 NULL); 2007 if (r) 2008 return r; 2009 2010 DRM_INFO("amdgpu: %uM of VRAM memory ready\n", 2011 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024))); 2012 2013 /* Compute GTT size, either bsaed on 3/4th the size of RAM size 2014 * or whatever the user passed on module init */ 2015 if (amdgpu_gtt_size == -1) { 2016 #ifdef __linux__ 2017 struct sysinfo si; 2018 2019 si_meminfo(&si); 2020 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20), 2021 adev->gmc.mc_vram_size), 2022 ((uint64_t)si.totalram * si.mem_unit * 3/4)); 2023 #else 2024 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20), 2025 adev->gmc.mc_vram_size), 2026 ((uint64_t)ptoa(physmem) * 3/4)); 2027 #endif 2028 } 2029 else 2030 gtt_size = (uint64_t)amdgpu_gtt_size << 20; 2031 2032 /* Initialize GTT memory pool */ 2033 r = amdgpu_gtt_mgr_init(adev, gtt_size); 2034 if (r) { 2035 DRM_ERROR("Failed initializing GTT heap.\n"); 2036 return r; 2037 } 2038 DRM_INFO("amdgpu: %uM of GTT memory ready.\n", 2039 (unsigned)(gtt_size / (1024 * 1024))); 2040 2041 /* Initialize various on-chip memory pools */ 2042 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size); 2043 if (r) { 2044 DRM_ERROR("Failed initializing GDS heap.\n"); 2045 return r; 2046 } 2047 2048 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size); 2049 if (r) { 2050 DRM_ERROR("Failed initializing gws heap.\n"); 2051 return r; 2052 } 2053 2054 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size); 2055 if (r) { 2056 DRM_ERROR("Failed initializing oa heap.\n"); 2057 return r; 2058 } 2059 2060 return 0; 2061 } 2062 2063 /** 2064 * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm 2065 */ 2066 void amdgpu_ttm_late_init(struct amdgpu_device *adev) 2067 { 2068 /* return the VGA stolen memory (if any) back to VRAM */ 2069 if (!adev->mman.keep_stolen_vga_memory) 2070 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL); 2071 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL); 2072 } 2073 2074 /** 2075 * amdgpu_ttm_fini - De-initialize the TTM memory pools 2076 */ 2077 void amdgpu_ttm_fini(struct amdgpu_device *adev) 2078 { 2079 if (!adev->mman.initialized) 2080 return; 2081 2082 amdgpu_ttm_training_reserve_vram_fini(adev); 2083 /* return the stolen vga memory back to VRAM */ 2084 if (adev->mman.keep_stolen_vga_memory) 2085 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL); 2086 /* return the IP Discovery TMR memory back to VRAM */ 2087 amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL); 2088 amdgpu_ttm_fw_reserve_vram_fini(adev); 2089 2090 #ifdef __linux__ 2091 if (adev->mman.aper_base_kaddr) 2092 iounmap(adev->mman.aper_base_kaddr); 2093 #else 2094 if (adev->mman.aper_base_kaddr) 2095 bus_space_unmap(adev->memt, adev->mman.aper_bsh, 2096 adev->gmc.visible_vram_size); 2097 #endif 2098 adev->mman.aper_base_kaddr = NULL; 2099 2100 amdgpu_vram_mgr_fini(adev); 2101 amdgpu_gtt_mgr_fini(adev); 2102 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS); 2103 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS); 2104 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA); 2105 ttm_bo_device_release(&adev->mman.bdev); 2106 adev->mman.initialized = false; 2107 DRM_INFO("amdgpu: ttm finalized\n"); 2108 } 2109 2110 /** 2111 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions 2112 * 2113 * @adev: amdgpu_device pointer 2114 * @enable: true when we can use buffer functions. 2115 * 2116 * Enable/disable use of buffer functions during suspend/resume. This should 2117 * only be called at bootup or when userspace isn't running. 2118 */ 2119 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable) 2120 { 2121 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM); 2122 uint64_t size; 2123 int r; 2124 2125 if (!adev->mman.initialized || amdgpu_in_reset(adev) || 2126 adev->mman.buffer_funcs_enabled == enable) 2127 return; 2128 2129 if (enable) { 2130 struct amdgpu_ring *ring; 2131 struct drm_gpu_scheduler *sched; 2132 2133 ring = adev->mman.buffer_funcs_ring; 2134 sched = &ring->sched; 2135 r = drm_sched_entity_init(&adev->mman.entity, 2136 DRM_SCHED_PRIORITY_KERNEL, &sched, 2137 1, NULL); 2138 if (r) { 2139 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 2140 r); 2141 return; 2142 } 2143 } else { 2144 drm_sched_entity_destroy(&adev->mman.entity); 2145 dma_fence_put(man->move); 2146 man->move = NULL; 2147 } 2148 2149 /* this just adjusts TTM size idea, which sets lpfn to the correct value */ 2150 if (enable) 2151 size = adev->gmc.real_vram_size; 2152 else 2153 size = adev->gmc.visible_vram_size; 2154 man->size = size >> PAGE_SHIFT; 2155 adev->mman.buffer_funcs_enabled = enable; 2156 } 2157 2158 #ifdef __linux__ 2159 2160 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma) 2161 { 2162 struct drm_file *file_priv = filp->private_data; 2163 struct amdgpu_device *adev = drm_to_adev(file_priv->minor->dev); 2164 2165 if (adev == NULL) 2166 return -EINVAL; 2167 2168 return ttm_bo_mmap(filp, vma, &adev->mman.bdev); 2169 } 2170 2171 #else 2172 2173 struct uvm_object * 2174 amdgpu_mmap(struct file *filp, vm_prot_t accessprot, voff_t off, vsize_t size) 2175 { 2176 struct drm_file *file_priv = (void *)filp; 2177 struct amdgpu_device *adev = drm_to_adev(file_priv->minor->dev); 2178 2179 if (adev == NULL) 2180 return NULL; 2181 2182 return ttm_bo_mmap(filp, off, size, &adev->mman.bdev); 2183 } 2184 2185 #endif 2186 2187 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, 2188 uint64_t dst_offset, uint32_t byte_count, 2189 struct dma_resv *resv, 2190 struct dma_fence **fence, bool direct_submit, 2191 bool vm_needs_flush, bool tmz) 2192 { 2193 enum amdgpu_ib_pool_type pool = direct_submit ? AMDGPU_IB_POOL_DIRECT : 2194 AMDGPU_IB_POOL_DELAYED; 2195 struct amdgpu_device *adev = ring->adev; 2196 struct amdgpu_job *job; 2197 2198 uint32_t max_bytes; 2199 unsigned num_loops, num_dw; 2200 unsigned i; 2201 int r; 2202 2203 if (direct_submit && !ring->sched.ready) { 2204 DRM_ERROR("Trying to move memory with ring turned off.\n"); 2205 return -EINVAL; 2206 } 2207 2208 max_bytes = adev->mman.buffer_funcs->copy_max_bytes; 2209 num_loops = DIV_ROUND_UP(byte_count, max_bytes); 2210 num_dw = roundup2(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8); 2211 2212 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, &job); 2213 if (r) 2214 return r; 2215 2216 if (vm_needs_flush) { 2217 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo); 2218 job->vm_needs_flush = true; 2219 } 2220 if (resv) { 2221 r = amdgpu_sync_resv(adev, &job->sync, resv, 2222 AMDGPU_SYNC_ALWAYS, 2223 AMDGPU_FENCE_OWNER_UNDEFINED); 2224 if (r) { 2225 DRM_ERROR("sync failed (%d).\n", r); 2226 goto error_free; 2227 } 2228 } 2229 2230 for (i = 0; i < num_loops; i++) { 2231 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 2232 2233 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, 2234 dst_offset, cur_size_in_bytes, tmz); 2235 2236 src_offset += cur_size_in_bytes; 2237 dst_offset += cur_size_in_bytes; 2238 byte_count -= cur_size_in_bytes; 2239 } 2240 2241 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2242 WARN_ON(job->ibs[0].length_dw > num_dw); 2243 if (direct_submit) 2244 r = amdgpu_job_submit_direct(job, ring, fence); 2245 else 2246 r = amdgpu_job_submit(job, &adev->mman.entity, 2247 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 2248 if (r) 2249 goto error_free; 2250 2251 return r; 2252 2253 error_free: 2254 amdgpu_job_free(job); 2255 DRM_ERROR("Error scheduling IBs (%d)\n", r); 2256 return r; 2257 } 2258 2259 int amdgpu_fill_buffer(struct amdgpu_bo *bo, 2260 uint32_t src_data, 2261 struct dma_resv *resv, 2262 struct dma_fence **fence) 2263 { 2264 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2265 uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes; 2266 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2267 2268 struct drm_mm_node *mm_node; 2269 unsigned long num_pages; 2270 unsigned int num_loops, num_dw; 2271 2272 struct amdgpu_job *job; 2273 int r; 2274 2275 if (!adev->mman.buffer_funcs_enabled) { 2276 DRM_ERROR("Trying to clear memory with ring turned off.\n"); 2277 return -EINVAL; 2278 } 2279 2280 if (bo->tbo.mem.mem_type == TTM_PL_TT) { 2281 r = amdgpu_ttm_alloc_gart(&bo->tbo); 2282 if (r) 2283 return r; 2284 } 2285 2286 num_pages = bo->tbo.num_pages; 2287 mm_node = bo->tbo.mem.mm_node; 2288 num_loops = 0; 2289 while (num_pages) { 2290 uint64_t byte_count = mm_node->size << PAGE_SHIFT; 2291 2292 num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes); 2293 num_pages -= mm_node->size; 2294 ++mm_node; 2295 } 2296 num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw; 2297 2298 /* for IB padding */ 2299 num_dw += 64; 2300 2301 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED, 2302 &job); 2303 if (r) 2304 return r; 2305 2306 if (resv) { 2307 r = amdgpu_sync_resv(adev, &job->sync, resv, 2308 AMDGPU_SYNC_ALWAYS, 2309 AMDGPU_FENCE_OWNER_UNDEFINED); 2310 if (r) { 2311 DRM_ERROR("sync failed (%d).\n", r); 2312 goto error_free; 2313 } 2314 } 2315 2316 num_pages = bo->tbo.num_pages; 2317 mm_node = bo->tbo.mem.mm_node; 2318 2319 while (num_pages) { 2320 uint64_t byte_count = mm_node->size << PAGE_SHIFT; 2321 uint64_t dst_addr; 2322 2323 dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem); 2324 while (byte_count) { 2325 uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count, 2326 max_bytes); 2327 2328 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, 2329 dst_addr, cur_size_in_bytes); 2330 2331 dst_addr += cur_size_in_bytes; 2332 byte_count -= cur_size_in_bytes; 2333 } 2334 2335 num_pages -= mm_node->size; 2336 ++mm_node; 2337 } 2338 2339 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2340 WARN_ON(job->ibs[0].length_dw > num_dw); 2341 r = amdgpu_job_submit(job, &adev->mman.entity, 2342 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 2343 if (r) 2344 goto error_free; 2345 2346 return 0; 2347 2348 error_free: 2349 amdgpu_job_free(job); 2350 return r; 2351 } 2352 2353 #if defined(CONFIG_DEBUG_FS) 2354 2355 static int amdgpu_mm_dump_table(struct seq_file *m, void *data) 2356 { 2357 struct drm_info_node *node = (struct drm_info_node *)m->private; 2358 unsigned ttm_pl = (uintptr_t)node->info_ent->data; 2359 struct drm_device *dev = node->minor->dev; 2360 struct amdgpu_device *adev = drm_to_adev(dev); 2361 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, ttm_pl); 2362 struct drm_printer p = drm_seq_file_printer(m); 2363 2364 man->func->debug(man, &p); 2365 return 0; 2366 } 2367 2368 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = { 2369 {"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM}, 2370 {"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT}, 2371 {"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS}, 2372 {"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS}, 2373 {"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA}, 2374 {"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL}, 2375 #ifdef CONFIG_SWIOTLB 2376 {"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL} 2377 #endif 2378 }; 2379 2380 /** 2381 * amdgpu_ttm_vram_read - Linear read access to VRAM 2382 * 2383 * Accesses VRAM via MMIO for debugging purposes. 2384 */ 2385 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, 2386 size_t size, loff_t *pos) 2387 { 2388 struct amdgpu_device *adev = file_inode(f)->i_private; 2389 ssize_t result = 0; 2390 2391 if (size & 0x3 || *pos & 0x3) 2392 return -EINVAL; 2393 2394 if (*pos >= adev->gmc.mc_vram_size) 2395 return -ENXIO; 2396 2397 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos)); 2398 while (size) { 2399 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4); 2400 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ]; 2401 2402 amdgpu_device_vram_access(adev, *pos, value, bytes, false); 2403 if (copy_to_user(buf, value, bytes)) 2404 return -EFAULT; 2405 2406 result += bytes; 2407 buf += bytes; 2408 *pos += bytes; 2409 size -= bytes; 2410 } 2411 2412 return result; 2413 } 2414 2415 /** 2416 * amdgpu_ttm_vram_write - Linear write access to VRAM 2417 * 2418 * Accesses VRAM via MMIO for debugging purposes. 2419 */ 2420 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf, 2421 size_t size, loff_t *pos) 2422 { 2423 struct amdgpu_device *adev = file_inode(f)->i_private; 2424 ssize_t result = 0; 2425 int r; 2426 2427 if (size & 0x3 || *pos & 0x3) 2428 return -EINVAL; 2429 2430 if (*pos >= adev->gmc.mc_vram_size) 2431 return -ENXIO; 2432 2433 while (size) { 2434 unsigned long flags; 2435 uint32_t value; 2436 2437 if (*pos >= adev->gmc.mc_vram_size) 2438 return result; 2439 2440 r = get_user(value, (uint32_t *)buf); 2441 if (r) 2442 return r; 2443 2444 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 2445 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000); 2446 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31); 2447 WREG32_NO_KIQ(mmMM_DATA, value); 2448 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 2449 2450 result += 4; 2451 buf += 4; 2452 *pos += 4; 2453 size -= 4; 2454 } 2455 2456 return result; 2457 } 2458 2459 static const struct file_operations amdgpu_ttm_vram_fops = { 2460 .owner = THIS_MODULE, 2461 .read = amdgpu_ttm_vram_read, 2462 .write = amdgpu_ttm_vram_write, 2463 .llseek = default_llseek, 2464 }; 2465 2466 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS 2467 2468 /** 2469 * amdgpu_ttm_gtt_read - Linear read access to GTT memory 2470 */ 2471 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf, 2472 size_t size, loff_t *pos) 2473 { 2474 struct amdgpu_device *adev = file_inode(f)->i_private; 2475 ssize_t result = 0; 2476 int r; 2477 2478 while (size) { 2479 loff_t p = *pos / PAGE_SIZE; 2480 unsigned off = *pos & ~LINUX_PAGE_MASK; 2481 size_t cur_size = min_t(size_t, size, PAGE_SIZE - off); 2482 struct vm_page *page; 2483 void *ptr; 2484 2485 if (p >= adev->gart.num_cpu_pages) 2486 return result; 2487 2488 page = adev->gart.pages[p]; 2489 if (page) { 2490 ptr = kmap(page); 2491 ptr += off; 2492 2493 r = copy_to_user(buf, ptr, cur_size); 2494 kunmap(adev->gart.pages[p]); 2495 } else 2496 r = clear_user(buf, cur_size); 2497 2498 if (r) 2499 return -EFAULT; 2500 2501 result += cur_size; 2502 buf += cur_size; 2503 *pos += cur_size; 2504 size -= cur_size; 2505 } 2506 2507 return result; 2508 } 2509 2510 static const struct file_operations amdgpu_ttm_gtt_fops = { 2511 .owner = THIS_MODULE, 2512 .read = amdgpu_ttm_gtt_read, 2513 .llseek = default_llseek 2514 }; 2515 2516 #endif 2517 2518 /** 2519 * amdgpu_iomem_read - Virtual read access to GPU mapped memory 2520 * 2521 * This function is used to read memory that has been mapped to the 2522 * GPU and the known addresses are not physical addresses but instead 2523 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2524 */ 2525 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf, 2526 size_t size, loff_t *pos) 2527 { 2528 struct amdgpu_device *adev = file_inode(f)->i_private; 2529 struct iommu_domain *dom; 2530 ssize_t result = 0; 2531 int r; 2532 2533 /* retrieve the IOMMU domain if any for this device */ 2534 dom = iommu_get_domain_for_dev(adev->dev); 2535 2536 while (size) { 2537 phys_addr_t addr = *pos & LINUX_PAGE_MASK; 2538 loff_t off = *pos & ~LINUX_PAGE_MASK; 2539 size_t bytes = PAGE_SIZE - off; 2540 unsigned long pfn; 2541 struct vm_page *p; 2542 void *ptr; 2543 2544 bytes = bytes < size ? bytes : size; 2545 2546 /* Translate the bus address to a physical address. If 2547 * the domain is NULL it means there is no IOMMU active 2548 * and the address translation is the identity 2549 */ 2550 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2551 2552 pfn = addr >> PAGE_SHIFT; 2553 if (!pfn_valid(pfn)) 2554 return -EPERM; 2555 2556 p = pfn_to_page(pfn); 2557 if (p->mapping != adev->mman.bdev.dev_mapping) 2558 return -EPERM; 2559 2560 ptr = kmap(p); 2561 r = copy_to_user(buf, ptr + off, bytes); 2562 kunmap(p); 2563 if (r) 2564 return -EFAULT; 2565 2566 size -= bytes; 2567 *pos += bytes; 2568 result += bytes; 2569 } 2570 2571 return result; 2572 } 2573 2574 /** 2575 * amdgpu_iomem_write - Virtual write access to GPU mapped memory 2576 * 2577 * This function is used to write memory that has been mapped to the 2578 * GPU and the known addresses are not physical addresses but instead 2579 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2580 */ 2581 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf, 2582 size_t size, loff_t *pos) 2583 { 2584 struct amdgpu_device *adev = file_inode(f)->i_private; 2585 struct iommu_domain *dom; 2586 ssize_t result = 0; 2587 int r; 2588 2589 dom = iommu_get_domain_for_dev(adev->dev); 2590 2591 while (size) { 2592 phys_addr_t addr = *pos & LINUX_PAGE_MASK; 2593 loff_t off = *pos & ~LINUX_PAGE_MASK; 2594 size_t bytes = PAGE_SIZE - off; 2595 unsigned long pfn; 2596 struct vm_page *p; 2597 void *ptr; 2598 2599 bytes = bytes < size ? bytes : size; 2600 2601 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2602 2603 pfn = addr >> PAGE_SHIFT; 2604 if (!pfn_valid(pfn)) 2605 return -EPERM; 2606 2607 p = pfn_to_page(pfn); 2608 if (p->mapping != adev->mman.bdev.dev_mapping) 2609 return -EPERM; 2610 2611 ptr = kmap(p); 2612 r = copy_from_user(ptr + off, buf, bytes); 2613 kunmap(p); 2614 if (r) 2615 return -EFAULT; 2616 2617 size -= bytes; 2618 *pos += bytes; 2619 result += bytes; 2620 } 2621 2622 return result; 2623 } 2624 2625 static const struct file_operations amdgpu_ttm_iomem_fops = { 2626 .owner = THIS_MODULE, 2627 .read = amdgpu_iomem_read, 2628 .write = amdgpu_iomem_write, 2629 .llseek = default_llseek 2630 }; 2631 2632 static const struct { 2633 char *name; 2634 const struct file_operations *fops; 2635 int domain; 2636 } ttm_debugfs_entries[] = { 2637 { "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM }, 2638 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS 2639 { "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT }, 2640 #endif 2641 { "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM }, 2642 }; 2643 2644 #endif 2645 2646 int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) 2647 { 2648 #if defined(CONFIG_DEBUG_FS) 2649 unsigned count; 2650 2651 struct drm_minor *minor = adev_to_drm(adev)->primary; 2652 struct dentry *ent, *root = minor->debugfs_root; 2653 2654 for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) { 2655 ent = debugfs_create_file( 2656 ttm_debugfs_entries[count].name, 2657 S_IFREG | S_IRUGO, root, 2658 adev, 2659 ttm_debugfs_entries[count].fops); 2660 if (IS_ERR(ent)) 2661 return PTR_ERR(ent); 2662 if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM) 2663 i_size_write(ent->d_inode, adev->gmc.mc_vram_size); 2664 else if (ttm_debugfs_entries[count].domain == TTM_PL_TT) 2665 i_size_write(ent->d_inode, adev->gmc.gart_size); 2666 adev->mman.debugfs_entries[count] = ent; 2667 } 2668 2669 count = ARRAY_SIZE(amdgpu_ttm_debugfs_list); 2670 2671 #ifdef CONFIG_SWIOTLB 2672 if (!(adev->need_swiotlb && swiotlb_nr_tbl())) 2673 --count; 2674 #endif 2675 2676 return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count); 2677 #else 2678 return 0; 2679 #endif 2680 } 2681