1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 */ 22 23 #include <linux/mutex.h> 24 #include <linux/log2.h> 25 #include <linux/sched.h> 26 #include <linux/sched/mm.h> 27 #include <linux/sched/task.h> 28 #include <linux/mmu_context.h> 29 #include <linux/slab.h> 30 #include <linux/amd-iommu.h> 31 #include <linux/notifier.h> 32 #include <linux/compat.h> 33 #include <linux/mman.h> 34 #include <linux/file.h> 35 #include <linux/pm_runtime.h> 36 #include "amdgpu_amdkfd.h" 37 #include "amdgpu.h" 38 39 struct mm_struct; 40 41 #include "kfd_priv.h" 42 #include "kfd_device_queue_manager.h" 43 #include "kfd_dbgmgr.h" 44 #include "kfd_iommu.h" 45 46 /* 47 * List of struct kfd_process (field kfd_process). 48 * Unique/indexed by mm_struct* 49 */ 50 DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE); 51 static DEFINE_MUTEX(kfd_processes_mutex); 52 53 DEFINE_SRCU(kfd_processes_srcu); 54 55 /* For process termination handling */ 56 static struct workqueue_struct *kfd_process_wq; 57 58 /* Ordered, single-threaded workqueue for restoring evicted 59 * processes. Restoring multiple processes concurrently under memory 60 * pressure can lead to processes blocking each other from validating 61 * their BOs and result in a live-lock situation where processes 62 * remain evicted indefinitely. 63 */ 64 static struct workqueue_struct *kfd_restore_wq; 65 66 static struct kfd_process *find_process(const struct task_struct *thread); 67 static void kfd_process_ref_release(struct kref *ref); 68 static struct kfd_process *create_process(const struct task_struct *thread); 69 static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep); 70 71 static void evict_process_worker(struct work_struct *work); 72 static void restore_process_worker(struct work_struct *work); 73 74 struct kfd_procfs_tree { 75 struct kobject *kobj; 76 }; 77 78 static struct kfd_procfs_tree procfs; 79 80 /* 81 * Structure for SDMA activity tracking 82 */ 83 struct kfd_sdma_activity_handler_workarea { 84 struct work_struct sdma_activity_work; 85 struct kfd_process_device *pdd; 86 uint64_t sdma_activity_counter; 87 }; 88 89 struct temp_sdma_queue_list { 90 uint64_t __user *rptr; 91 uint64_t sdma_val; 92 unsigned int queue_id; 93 struct list_head list; 94 }; 95 96 static void kfd_sdma_activity_worker(struct work_struct *work) 97 { 98 struct kfd_sdma_activity_handler_workarea *workarea; 99 struct kfd_process_device *pdd; 100 uint64_t val; 101 struct mm_struct *mm; 102 struct queue *q; 103 struct qcm_process_device *qpd; 104 struct device_queue_manager *dqm; 105 int ret = 0; 106 struct temp_sdma_queue_list sdma_q_list; 107 struct temp_sdma_queue_list *sdma_q, *next; 108 109 workarea = container_of(work, struct kfd_sdma_activity_handler_workarea, 110 sdma_activity_work); 111 if (!workarea) 112 return; 113 114 pdd = workarea->pdd; 115 if (!pdd) 116 return; 117 dqm = pdd->dev->dqm; 118 qpd = &pdd->qpd; 119 if (!dqm || !qpd) 120 return; 121 /* 122 * Total SDMA activity is current SDMA activity + past SDMA activity 123 * Past SDMA count is stored in pdd. 124 * To get the current activity counters for all active SDMA queues, 125 * we loop over all SDMA queues and get their counts from user-space. 126 * 127 * We cannot call get_user() with dqm_lock held as it can cause 128 * a circular lock dependency situation. To read the SDMA stats, 129 * we need to do the following: 130 * 131 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list, 132 * with dqm_lock/dqm_unlock(). 133 * 2. Call get_user() for each node in temporary list without dqm_lock. 134 * Save the SDMA count for each node and also add the count to the total 135 * SDMA count counter. 136 * Its possible, during this step, a few SDMA queue nodes got deleted 137 * from the qpd->queues_list. 138 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted. 139 * If any node got deleted, its SDMA count would be captured in the sdma 140 * past activity counter. So subtract the SDMA counter stored in step 2 141 * for this node from the total SDMA count. 142 */ 143 INIT_LIST_HEAD(&sdma_q_list.list); 144 145 /* 146 * Create the temp list of all SDMA queues 147 */ 148 dqm_lock(dqm); 149 150 list_for_each_entry(q, &qpd->queues_list, list) { 151 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) && 152 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI)) 153 continue; 154 155 sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL); 156 if (!sdma_q) { 157 dqm_unlock(dqm); 158 goto cleanup; 159 } 160 161 INIT_LIST_HEAD(&sdma_q->list); 162 sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr; 163 sdma_q->queue_id = q->properties.queue_id; 164 list_add_tail(&sdma_q->list, &sdma_q_list.list); 165 } 166 167 /* 168 * If the temp list is empty, then no SDMA queues nodes were found in 169 * qpd->queues_list. Return the past activity count as the total sdma 170 * count 171 */ 172 if (list_empty(&sdma_q_list.list)) { 173 workarea->sdma_activity_counter = pdd->sdma_past_activity_counter; 174 dqm_unlock(dqm); 175 return; 176 } 177 178 dqm_unlock(dqm); 179 180 /* 181 * Get the usage count for each SDMA queue in temp_list. 182 */ 183 mm = get_task_mm(pdd->process->lead_thread); 184 if (!mm) 185 goto cleanup; 186 187 kthread_use_mm(mm); 188 189 list_for_each_entry(sdma_q, &sdma_q_list.list, list) { 190 val = 0; 191 ret = read_sdma_queue_counter(sdma_q->rptr, &val); 192 if (ret) { 193 pr_debug("Failed to read SDMA queue active counter for queue id: %d", 194 sdma_q->queue_id); 195 } else { 196 sdma_q->sdma_val = val; 197 workarea->sdma_activity_counter += val; 198 } 199 } 200 201 kthread_unuse_mm(mm); 202 mmput(mm); 203 204 /* 205 * Do a second iteration over qpd_queues_list to check if any SDMA 206 * nodes got deleted while fetching SDMA counter. 207 */ 208 dqm_lock(dqm); 209 210 workarea->sdma_activity_counter += pdd->sdma_past_activity_counter; 211 212 list_for_each_entry(q, &qpd->queues_list, list) { 213 if (list_empty(&sdma_q_list.list)) 214 break; 215 216 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) && 217 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI)) 218 continue; 219 220 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 221 if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) && 222 (sdma_q->queue_id == q->properties.queue_id)) { 223 list_del(&sdma_q->list); 224 kfree(sdma_q); 225 break; 226 } 227 } 228 } 229 230 dqm_unlock(dqm); 231 232 /* 233 * If temp list is not empty, it implies some queues got deleted 234 * from qpd->queues_list during SDMA usage read. Subtract the SDMA 235 * count for each node from the total SDMA count. 236 */ 237 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 238 workarea->sdma_activity_counter -= sdma_q->sdma_val; 239 list_del(&sdma_q->list); 240 kfree(sdma_q); 241 } 242 243 return; 244 245 cleanup: 246 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) { 247 list_del(&sdma_q->list); 248 kfree(sdma_q); 249 } 250 } 251 252 /** 253 * @kfd_get_cu_occupancy() - Collect number of waves in-flight on this device 254 * by current process. Translates acquired wave count into number of compute units 255 * that are occupied. 256 * 257 * @atr: Handle of attribute that allows reporting of wave count. The attribute 258 * handle encapsulates GPU device it is associated with, thereby allowing collection 259 * of waves in flight, etc 260 * 261 * @buffer: Handle of user provided buffer updated with wave count 262 * 263 * Return: Number of bytes written to user buffer or an error value 264 */ 265 static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer) 266 { 267 int cu_cnt; 268 int wave_cnt; 269 int max_waves_per_cu; 270 struct kfd_dev *dev = NULL; 271 struct kfd_process *proc = NULL; 272 struct kfd_process_device *pdd = NULL; 273 274 pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy); 275 dev = pdd->dev; 276 if (dev->kfd2kgd->get_cu_occupancy == NULL) 277 return -EINVAL; 278 279 cu_cnt = 0; 280 proc = pdd->process; 281 if (pdd->qpd.queue_count == 0) { 282 pr_debug("Gpu-Id: %d has no active queues for process %d\n", 283 dev->id, proc->pasid); 284 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt); 285 } 286 287 /* Collect wave count from device if it supports */ 288 wave_cnt = 0; 289 max_waves_per_cu = 0; 290 dev->kfd2kgd->get_cu_occupancy(dev->kgd, proc->pasid, &wave_cnt, 291 &max_waves_per_cu); 292 293 /* Translate wave count to number of compute units */ 294 cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu; 295 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt); 296 } 297 298 static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr, 299 char *buffer) 300 { 301 if (strcmp(attr->name, "pasid") == 0) { 302 struct kfd_process *p = container_of(attr, struct kfd_process, 303 attr_pasid); 304 305 return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid); 306 } else if (strncmp(attr->name, "vram_", 5) == 0) { 307 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device, 308 attr_vram); 309 return snprintf(buffer, PAGE_SIZE, "%llu\n", READ_ONCE(pdd->vram_usage)); 310 } else if (strncmp(attr->name, "sdma_", 5) == 0) { 311 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device, 312 attr_sdma); 313 struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler; 314 315 INIT_WORK(&sdma_activity_work_handler.sdma_activity_work, 316 kfd_sdma_activity_worker); 317 318 sdma_activity_work_handler.pdd = pdd; 319 sdma_activity_work_handler.sdma_activity_counter = 0; 320 321 schedule_work(&sdma_activity_work_handler.sdma_activity_work); 322 323 flush_work(&sdma_activity_work_handler.sdma_activity_work); 324 325 return snprintf(buffer, PAGE_SIZE, "%llu\n", 326 (sdma_activity_work_handler.sdma_activity_counter)/ 327 SDMA_ACTIVITY_DIVISOR); 328 } else { 329 pr_err("Invalid attribute"); 330 return -EINVAL; 331 } 332 333 return 0; 334 } 335 336 static void kfd_procfs_kobj_release(struct kobject *kobj) 337 { 338 kfree(kobj); 339 } 340 341 static const struct sysfs_ops kfd_procfs_ops = { 342 .show = kfd_procfs_show, 343 }; 344 345 static struct kobj_type procfs_type = { 346 .release = kfd_procfs_kobj_release, 347 .sysfs_ops = &kfd_procfs_ops, 348 }; 349 350 void kfd_procfs_init(void) 351 { 352 int ret = 0; 353 354 procfs.kobj = kfd_alloc_struct(procfs.kobj); 355 if (!procfs.kobj) 356 return; 357 358 ret = kobject_init_and_add(procfs.kobj, &procfs_type, 359 &kfd_device->kobj, "proc"); 360 if (ret) { 361 pr_warn("Could not create procfs proc folder"); 362 /* If we fail to create the procfs, clean up */ 363 kfd_procfs_shutdown(); 364 } 365 } 366 367 void kfd_procfs_shutdown(void) 368 { 369 if (procfs.kobj) { 370 kobject_del(procfs.kobj); 371 kobject_put(procfs.kobj); 372 procfs.kobj = NULL; 373 } 374 } 375 376 static ssize_t kfd_procfs_queue_show(struct kobject *kobj, 377 struct attribute *attr, char *buffer) 378 { 379 struct queue *q = container_of(kobj, struct queue, kobj); 380 381 if (!strcmp(attr->name, "size")) 382 return snprintf(buffer, PAGE_SIZE, "%llu", 383 q->properties.queue_size); 384 else if (!strcmp(attr->name, "type")) 385 return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type); 386 else if (!strcmp(attr->name, "gpuid")) 387 return snprintf(buffer, PAGE_SIZE, "%u", q->device->id); 388 else 389 pr_err("Invalid attribute"); 390 391 return 0; 392 } 393 394 static ssize_t kfd_procfs_stats_show(struct kobject *kobj, 395 struct attribute *attr, char *buffer) 396 { 397 if (strcmp(attr->name, "evicted_ms") == 0) { 398 struct kfd_process_device *pdd = container_of(attr, 399 struct kfd_process_device, 400 attr_evict); 401 uint64_t evict_jiffies; 402 403 evict_jiffies = atomic64_read(&pdd->evict_duration_counter); 404 405 return snprintf(buffer, 406 PAGE_SIZE, 407 "%llu\n", 408 jiffies64_to_msecs(evict_jiffies)); 409 410 /* Sysfs handle that gets CU occupancy is per device */ 411 } else if (strcmp(attr->name, "cu_occupancy") == 0) { 412 return kfd_get_cu_occupancy(attr, buffer); 413 } else { 414 pr_err("Invalid attribute"); 415 } 416 417 return 0; 418 } 419 420 static struct attribute attr_queue_size = { 421 .name = "size", 422 .mode = KFD_SYSFS_FILE_MODE 423 }; 424 425 static struct attribute attr_queue_type = { 426 .name = "type", 427 .mode = KFD_SYSFS_FILE_MODE 428 }; 429 430 static struct attribute attr_queue_gpuid = { 431 .name = "gpuid", 432 .mode = KFD_SYSFS_FILE_MODE 433 }; 434 435 static struct attribute *procfs_queue_attrs[] = { 436 &attr_queue_size, 437 &attr_queue_type, 438 &attr_queue_gpuid, 439 NULL 440 }; 441 442 static const struct sysfs_ops procfs_queue_ops = { 443 .show = kfd_procfs_queue_show, 444 }; 445 446 static struct kobj_type procfs_queue_type = { 447 .sysfs_ops = &procfs_queue_ops, 448 .default_attrs = procfs_queue_attrs, 449 }; 450 451 static const struct sysfs_ops procfs_stats_ops = { 452 .show = kfd_procfs_stats_show, 453 }; 454 455 static struct kobj_type procfs_stats_type = { 456 .sysfs_ops = &procfs_stats_ops, 457 .release = kfd_procfs_kobj_release, 458 }; 459 460 int kfd_procfs_add_queue(struct queue *q) 461 { 462 struct kfd_process *proc; 463 int ret; 464 465 if (!q || !q->process) 466 return -EINVAL; 467 proc = q->process; 468 469 /* Create proc/<pid>/queues/<queue id> folder */ 470 if (!proc->kobj_queues) 471 return -EFAULT; 472 ret = kobject_init_and_add(&q->kobj, &procfs_queue_type, 473 proc->kobj_queues, "%u", q->properties.queue_id); 474 if (ret < 0) { 475 pr_warn("Creating proc/<pid>/queues/%u failed", 476 q->properties.queue_id); 477 kobject_put(&q->kobj); 478 return ret; 479 } 480 481 return 0; 482 } 483 484 static int kfd_sysfs_create_file(struct kfd_process *p, struct attribute *attr, 485 char *name) 486 { 487 int ret = 0; 488 489 if (!p || !attr || !name) 490 return -EINVAL; 491 492 attr->name = name; 493 attr->mode = KFD_SYSFS_FILE_MODE; 494 sysfs_attr_init(attr); 495 496 ret = sysfs_create_file(p->kobj, attr); 497 498 return ret; 499 } 500 501 static int kfd_procfs_add_sysfs_stats(struct kfd_process *p) 502 { 503 int ret = 0; 504 struct kfd_process_device *pdd; 505 char stats_dir_filename[MAX_SYSFS_FILENAME_LEN]; 506 507 if (!p) 508 return -EINVAL; 509 510 if (!p->kobj) 511 return -EFAULT; 512 513 /* 514 * Create sysfs files for each GPU: 515 * - proc/<pid>/stats_<gpuid>/ 516 * - proc/<pid>/stats_<gpuid>/evicted_ms 517 * - proc/<pid>/stats_<gpuid>/cu_occupancy 518 */ 519 list_for_each_entry(pdd, &p->per_device_data, per_device_list) { 520 struct kobject *kobj_stats; 521 522 snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN, 523 "stats_%u", pdd->dev->id); 524 kobj_stats = kfd_alloc_struct(kobj_stats); 525 if (!kobj_stats) 526 return -ENOMEM; 527 528 ret = kobject_init_and_add(kobj_stats, 529 &procfs_stats_type, 530 p->kobj, 531 stats_dir_filename); 532 533 if (ret) { 534 pr_warn("Creating KFD proc/stats_%s folder failed", 535 stats_dir_filename); 536 kobject_put(kobj_stats); 537 goto err; 538 } 539 540 pdd->kobj_stats = kobj_stats; 541 pdd->attr_evict.name = "evicted_ms"; 542 pdd->attr_evict.mode = KFD_SYSFS_FILE_MODE; 543 sysfs_attr_init(&pdd->attr_evict); 544 ret = sysfs_create_file(kobj_stats, &pdd->attr_evict); 545 if (ret) 546 pr_warn("Creating eviction stats for gpuid %d failed", 547 (int)pdd->dev->id); 548 549 /* Add sysfs file to report compute unit occupancy */ 550 if (pdd->dev->kfd2kgd->get_cu_occupancy != NULL) { 551 pdd->attr_cu_occupancy.name = "cu_occupancy"; 552 pdd->attr_cu_occupancy.mode = KFD_SYSFS_FILE_MODE; 553 sysfs_attr_init(&pdd->attr_cu_occupancy); 554 ret = sysfs_create_file(kobj_stats, 555 &pdd->attr_cu_occupancy); 556 if (ret) 557 pr_warn("Creating %s failed for gpuid: %d", 558 pdd->attr_cu_occupancy.name, 559 (int)pdd->dev->id); 560 } 561 } 562 err: 563 return ret; 564 } 565 566 567 static int kfd_procfs_add_sysfs_files(struct kfd_process *p) 568 { 569 int ret = 0; 570 struct kfd_process_device *pdd; 571 572 if (!p) 573 return -EINVAL; 574 575 if (!p->kobj) 576 return -EFAULT; 577 578 /* 579 * Create sysfs files for each GPU: 580 * - proc/<pid>/vram_<gpuid> 581 * - proc/<pid>/sdma_<gpuid> 582 */ 583 list_for_each_entry(pdd, &p->per_device_data, per_device_list) { 584 snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u", 585 pdd->dev->id); 586 ret = kfd_sysfs_create_file(p, &pdd->attr_vram, pdd->vram_filename); 587 if (ret) 588 pr_warn("Creating vram usage for gpu id %d failed", 589 (int)pdd->dev->id); 590 591 snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u", 592 pdd->dev->id); 593 ret = kfd_sysfs_create_file(p, &pdd->attr_sdma, pdd->sdma_filename); 594 if (ret) 595 pr_warn("Creating sdma usage for gpu id %d failed", 596 (int)pdd->dev->id); 597 } 598 599 return ret; 600 } 601 602 void kfd_procfs_del_queue(struct queue *q) 603 { 604 if (!q) 605 return; 606 607 kobject_del(&q->kobj); 608 kobject_put(&q->kobj); 609 } 610 611 int kfd_process_create_wq(void) 612 { 613 if (!kfd_process_wq) 614 kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0); 615 if (!kfd_restore_wq) 616 kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 0); 617 618 if (!kfd_process_wq || !kfd_restore_wq) { 619 kfd_process_destroy_wq(); 620 return -ENOMEM; 621 } 622 623 return 0; 624 } 625 626 void kfd_process_destroy_wq(void) 627 { 628 if (kfd_process_wq) { 629 destroy_workqueue(kfd_process_wq); 630 kfd_process_wq = NULL; 631 } 632 if (kfd_restore_wq) { 633 destroy_workqueue(kfd_restore_wq); 634 kfd_restore_wq = NULL; 635 } 636 } 637 638 static void kfd_process_free_gpuvm(struct kgd_mem *mem, 639 struct kfd_process_device *pdd) 640 { 641 struct kfd_dev *dev = pdd->dev; 642 643 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->kgd, mem, pdd->vm); 644 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd, mem, NULL); 645 } 646 647 /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process 648 * This function should be only called right after the process 649 * is created and when kfd_processes_mutex is still being held 650 * to avoid concurrency. Because of that exclusiveness, we do 651 * not need to take p->mutex. 652 */ 653 static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd, 654 uint64_t gpu_va, uint32_t size, 655 uint32_t flags, void **kptr) 656 { 657 struct kfd_dev *kdev = pdd->dev; 658 struct kgd_mem *mem = NULL; 659 int handle; 660 int err; 661 662 err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->kgd, gpu_va, size, 663 pdd->vm, &mem, NULL, flags); 664 if (err) 665 goto err_alloc_mem; 666 667 err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->kgd, mem, pdd->vm); 668 if (err) 669 goto err_map_mem; 670 671 err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->kgd, mem, true); 672 if (err) { 673 pr_debug("Sync memory failed, wait interrupted by user signal\n"); 674 goto sync_memory_failed; 675 } 676 677 /* Create an obj handle so kfd_process_device_remove_obj_handle 678 * will take care of the bo removal when the process finishes. 679 * We do not need to take p->mutex, because the process is just 680 * created and the ioctls have not had the chance to run. 681 */ 682 handle = kfd_process_device_create_obj_handle(pdd, mem); 683 684 if (handle < 0) { 685 err = handle; 686 goto free_gpuvm; 687 } 688 689 if (kptr) { 690 err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(kdev->kgd, 691 (struct kgd_mem *)mem, kptr, NULL); 692 if (err) { 693 pr_debug("Map GTT BO to kernel failed\n"); 694 goto free_obj_handle; 695 } 696 } 697 698 return err; 699 700 free_obj_handle: 701 kfd_process_device_remove_obj_handle(pdd, handle); 702 free_gpuvm: 703 sync_memory_failed: 704 kfd_process_free_gpuvm(mem, pdd); 705 return err; 706 707 err_map_mem: 708 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->kgd, mem, NULL); 709 err_alloc_mem: 710 *kptr = NULL; 711 return err; 712 } 713 714 /* kfd_process_device_reserve_ib_mem - Reserve memory inside the 715 * process for IB usage The memory reserved is for KFD to submit 716 * IB to AMDGPU from kernel. If the memory is reserved 717 * successfully, ib_kaddr will have the CPU/kernel 718 * address. Check ib_kaddr before accessing the memory. 719 */ 720 static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd) 721 { 722 struct qcm_process_device *qpd = &pdd->qpd; 723 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT | 724 KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE | 725 KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE | 726 KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; 727 void *kaddr; 728 int ret; 729 730 if (qpd->ib_kaddr || !qpd->ib_base) 731 return 0; 732 733 /* ib_base is only set for dGPU */ 734 ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags, 735 &kaddr); 736 if (ret) 737 return ret; 738 739 qpd->ib_kaddr = kaddr; 740 741 return 0; 742 } 743 744 struct kfd_process *kfd_create_process(struct file *filep) 745 { 746 struct kfd_process *process; 747 struct task_struct *thread = current; 748 int ret; 749 750 if (!thread->mm) 751 return ERR_PTR(-EINVAL); 752 753 /* Only the pthreads threading model is supported. */ 754 if (thread->group_leader->mm != thread->mm) 755 return ERR_PTR(-EINVAL); 756 757 /* 758 * take kfd processes mutex before starting of process creation 759 * so there won't be a case where two threads of the same process 760 * create two kfd_process structures 761 */ 762 mutex_lock(&kfd_processes_mutex); 763 764 /* A prior open of /dev/kfd could have already created the process. */ 765 process = find_process(thread); 766 if (process) { 767 pr_debug("Process already found\n"); 768 } else { 769 process = create_process(thread); 770 if (IS_ERR(process)) 771 goto out; 772 773 ret = kfd_process_init_cwsr_apu(process, filep); 774 if (ret) { 775 process = ERR_PTR(ret); 776 goto out; 777 } 778 779 if (!procfs.kobj) 780 goto out; 781 782 process->kobj = kfd_alloc_struct(process->kobj); 783 if (!process->kobj) { 784 pr_warn("Creating procfs kobject failed"); 785 goto out; 786 } 787 ret = kobject_init_and_add(process->kobj, &procfs_type, 788 procfs.kobj, "%d", 789 (int)process->lead_thread->pid); 790 if (ret) { 791 pr_warn("Creating procfs pid directory failed"); 792 kobject_put(process->kobj); 793 goto out; 794 } 795 796 process->attr_pasid.name = "pasid"; 797 process->attr_pasid.mode = KFD_SYSFS_FILE_MODE; 798 sysfs_attr_init(&process->attr_pasid); 799 ret = sysfs_create_file(process->kobj, &process->attr_pasid); 800 if (ret) 801 pr_warn("Creating pasid for pid %d failed", 802 (int)process->lead_thread->pid); 803 804 process->kobj_queues = kobject_create_and_add("queues", 805 process->kobj); 806 if (!process->kobj_queues) 807 pr_warn("Creating KFD proc/queues folder failed"); 808 809 ret = kfd_procfs_add_sysfs_stats(process); 810 if (ret) 811 pr_warn("Creating sysfs stats dir for pid %d failed", 812 (int)process->lead_thread->pid); 813 814 ret = kfd_procfs_add_sysfs_files(process); 815 if (ret) 816 pr_warn("Creating sysfs usage file for pid %d failed", 817 (int)process->lead_thread->pid); 818 } 819 out: 820 if (!IS_ERR(process)) 821 kref_get(&process->ref); 822 mutex_unlock(&kfd_processes_mutex); 823 824 return process; 825 } 826 827 struct kfd_process *kfd_get_process(const struct task_struct *thread) 828 { 829 struct kfd_process *process; 830 831 if (!thread->mm) 832 return ERR_PTR(-EINVAL); 833 834 /* Only the pthreads threading model is supported. */ 835 if (thread->group_leader->mm != thread->mm) 836 return ERR_PTR(-EINVAL); 837 838 process = find_process(thread); 839 if (!process) 840 return ERR_PTR(-EINVAL); 841 842 return process; 843 } 844 845 static struct kfd_process *find_process_by_mm(const struct mm_struct *mm) 846 { 847 struct kfd_process *process; 848 849 hash_for_each_possible_rcu(kfd_processes_table, process, 850 kfd_processes, (uintptr_t)mm) 851 if (process->mm == mm) 852 return process; 853 854 return NULL; 855 } 856 857 static struct kfd_process *find_process(const struct task_struct *thread) 858 { 859 struct kfd_process *p; 860 int idx; 861 862 idx = srcu_read_lock(&kfd_processes_srcu); 863 p = find_process_by_mm(thread->mm); 864 srcu_read_unlock(&kfd_processes_srcu, idx); 865 866 return p; 867 } 868 869 void kfd_unref_process(struct kfd_process *p) 870 { 871 kref_put(&p->ref, kfd_process_ref_release); 872 } 873 874 static void kfd_process_device_free_bos(struct kfd_process_device *pdd) 875 { 876 struct kfd_process *p = pdd->process; 877 void *mem; 878 int id; 879 880 /* 881 * Remove all handles from idr and release appropriate 882 * local memory object 883 */ 884 idr_for_each_entry(&pdd->alloc_idr, mem, id) { 885 struct kfd_process_device *peer_pdd; 886 887 list_for_each_entry(peer_pdd, &p->per_device_data, 888 per_device_list) { 889 if (!peer_pdd->vm) 890 continue; 891 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu( 892 peer_pdd->dev->kgd, mem, peer_pdd->vm); 893 } 894 895 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->kgd, mem, NULL); 896 kfd_process_device_remove_obj_handle(pdd, id); 897 } 898 } 899 900 static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p) 901 { 902 struct kfd_process_device *pdd; 903 904 list_for_each_entry(pdd, &p->per_device_data, per_device_list) 905 kfd_process_device_free_bos(pdd); 906 } 907 908 static void kfd_process_destroy_pdds(struct kfd_process *p) 909 { 910 struct kfd_process_device *pdd, *temp; 911 912 list_for_each_entry_safe(pdd, temp, &p->per_device_data, 913 per_device_list) { 914 pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n", 915 pdd->dev->id, p->pasid); 916 917 if (pdd->drm_file) { 918 amdgpu_amdkfd_gpuvm_release_process_vm( 919 pdd->dev->kgd, pdd->vm); 920 fput(pdd->drm_file); 921 } 922 else if (pdd->vm) 923 amdgpu_amdkfd_gpuvm_destroy_process_vm( 924 pdd->dev->kgd, pdd->vm); 925 926 list_del(&pdd->per_device_list); 927 928 if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base) 929 free_pages((unsigned long)pdd->qpd.cwsr_kaddr, 930 get_order(KFD_CWSR_TBA_TMA_SIZE)); 931 932 kfree(pdd->qpd.doorbell_bitmap); 933 idr_destroy(&pdd->alloc_idr); 934 935 kfd_free_process_doorbells(pdd->dev, pdd->doorbell_index); 936 937 /* 938 * before destroying pdd, make sure to report availability 939 * for auto suspend 940 */ 941 if (pdd->runtime_inuse) { 942 pm_runtime_mark_last_busy(pdd->dev->ddev->dev); 943 pm_runtime_put_autosuspend(pdd->dev->ddev->dev); 944 pdd->runtime_inuse = false; 945 } 946 947 kfree(pdd); 948 } 949 } 950 951 /* No process locking is needed in this function, because the process 952 * is not findable any more. We must assume that no other thread is 953 * using it any more, otherwise we couldn't safely free the process 954 * structure in the end. 955 */ 956 static void kfd_process_wq_release(struct work_struct *work) 957 { 958 struct kfd_process *p = container_of(work, struct kfd_process, 959 release_work); 960 struct kfd_process_device *pdd; 961 962 /* Remove the procfs files */ 963 if (p->kobj) { 964 sysfs_remove_file(p->kobj, &p->attr_pasid); 965 kobject_del(p->kobj_queues); 966 kobject_put(p->kobj_queues); 967 p->kobj_queues = NULL; 968 969 list_for_each_entry(pdd, &p->per_device_data, per_device_list) { 970 sysfs_remove_file(p->kobj, &pdd->attr_vram); 971 sysfs_remove_file(p->kobj, &pdd->attr_sdma); 972 973 sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict); 974 if (pdd->dev->kfd2kgd->get_cu_occupancy) 975 sysfs_remove_file(pdd->kobj_stats, 976 &pdd->attr_cu_occupancy); 977 kobject_del(pdd->kobj_stats); 978 kobject_put(pdd->kobj_stats); 979 pdd->kobj_stats = NULL; 980 } 981 982 kobject_del(p->kobj); 983 kobject_put(p->kobj); 984 p->kobj = NULL; 985 } 986 987 kfd_iommu_unbind_process(p); 988 989 kfd_process_free_outstanding_kfd_bos(p); 990 991 kfd_process_destroy_pdds(p); 992 dma_fence_put(p->ef); 993 994 kfd_event_free_process(p); 995 996 kfd_pasid_free(p->pasid); 997 mutex_destroy(&p->mutex); 998 999 put_task_struct(p->lead_thread); 1000 1001 kfree(p); 1002 } 1003 1004 static void kfd_process_ref_release(struct kref *ref) 1005 { 1006 struct kfd_process *p = container_of(ref, struct kfd_process, ref); 1007 1008 INIT_WORK(&p->release_work, kfd_process_wq_release); 1009 queue_work(kfd_process_wq, &p->release_work); 1010 } 1011 1012 static void kfd_process_free_notifier(struct mmu_notifier *mn) 1013 { 1014 kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier)); 1015 } 1016 1017 static void kfd_process_notifier_release(struct mmu_notifier *mn, 1018 struct mm_struct *mm) 1019 { 1020 struct kfd_process *p; 1021 struct kfd_process_device *pdd = NULL; 1022 1023 /* 1024 * The kfd_process structure can not be free because the 1025 * mmu_notifier srcu is read locked 1026 */ 1027 p = container_of(mn, struct kfd_process, mmu_notifier); 1028 if (WARN_ON(p->mm != mm)) 1029 return; 1030 1031 mutex_lock(&kfd_processes_mutex); 1032 hash_del_rcu(&p->kfd_processes); 1033 mutex_unlock(&kfd_processes_mutex); 1034 synchronize_srcu(&kfd_processes_srcu); 1035 1036 cancel_delayed_work_sync(&p->eviction_work); 1037 cancel_delayed_work_sync(&p->restore_work); 1038 1039 mutex_lock(&p->mutex); 1040 1041 /* Iterate over all process device data structures and if the 1042 * pdd is in debug mode, we should first force unregistration, 1043 * then we will be able to destroy the queues 1044 */ 1045 list_for_each_entry(pdd, &p->per_device_data, per_device_list) { 1046 struct kfd_dev *dev = pdd->dev; 1047 1048 mutex_lock(kfd_get_dbgmgr_mutex()); 1049 if (dev && dev->dbgmgr && dev->dbgmgr->pasid == p->pasid) { 1050 if (!kfd_dbgmgr_unregister(dev->dbgmgr, p)) { 1051 kfd_dbgmgr_destroy(dev->dbgmgr); 1052 dev->dbgmgr = NULL; 1053 } 1054 } 1055 mutex_unlock(kfd_get_dbgmgr_mutex()); 1056 } 1057 1058 kfd_process_dequeue_from_all_devices(p); 1059 pqm_uninit(&p->pqm); 1060 1061 /* Indicate to other users that MM is no longer valid */ 1062 p->mm = NULL; 1063 /* Signal the eviction fence after user mode queues are 1064 * destroyed. This allows any BOs to be freed without 1065 * triggering pointless evictions or waiting for fences. 1066 */ 1067 dma_fence_signal(p->ef); 1068 1069 mutex_unlock(&p->mutex); 1070 1071 mmu_notifier_put(&p->mmu_notifier); 1072 } 1073 1074 static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = { 1075 .release = kfd_process_notifier_release, 1076 .free_notifier = kfd_process_free_notifier, 1077 }; 1078 1079 static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep) 1080 { 1081 unsigned long offset; 1082 struct kfd_process_device *pdd; 1083 1084 list_for_each_entry(pdd, &p->per_device_data, per_device_list) { 1085 struct kfd_dev *dev = pdd->dev; 1086 struct qcm_process_device *qpd = &pdd->qpd; 1087 1088 if (!dev->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base) 1089 continue; 1090 1091 offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id); 1092 qpd->tba_addr = (int64_t)vm_mmap(filep, 0, 1093 KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC, 1094 MAP_SHARED, offset); 1095 1096 if (IS_ERR_VALUE(qpd->tba_addr)) { 1097 int err = qpd->tba_addr; 1098 1099 pr_err("Failure to set tba address. error %d.\n", err); 1100 qpd->tba_addr = 0; 1101 qpd->cwsr_kaddr = NULL; 1102 return err; 1103 } 1104 1105 memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size); 1106 1107 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET; 1108 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n", 1109 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr); 1110 } 1111 1112 return 0; 1113 } 1114 1115 static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd) 1116 { 1117 struct kfd_dev *dev = pdd->dev; 1118 struct qcm_process_device *qpd = &pdd->qpd; 1119 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT 1120 | KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE 1121 | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; 1122 void *kaddr; 1123 int ret; 1124 1125 if (!dev->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base) 1126 return 0; 1127 1128 /* cwsr_base is only set for dGPU */ 1129 ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base, 1130 KFD_CWSR_TBA_TMA_SIZE, flags, &kaddr); 1131 if (ret) 1132 return ret; 1133 1134 qpd->cwsr_kaddr = kaddr; 1135 qpd->tba_addr = qpd->cwsr_base; 1136 1137 memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size); 1138 1139 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET; 1140 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n", 1141 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr); 1142 1143 return 0; 1144 } 1145 1146 /* 1147 * On return the kfd_process is fully operational and will be freed when the 1148 * mm is released 1149 */ 1150 static struct kfd_process *create_process(const struct task_struct *thread) 1151 { 1152 struct kfd_process *process; 1153 int err = -ENOMEM; 1154 1155 process = kzalloc(sizeof(*process), GFP_KERNEL); 1156 if (!process) 1157 goto err_alloc_process; 1158 1159 kref_init(&process->ref); 1160 mutex_init(&process->mutex); 1161 process->mm = thread->mm; 1162 process->lead_thread = thread->group_leader; 1163 INIT_LIST_HEAD(&process->per_device_data); 1164 INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker); 1165 INIT_DELAYED_WORK(&process->restore_work, restore_process_worker); 1166 process->last_restore_timestamp = get_jiffies_64(); 1167 kfd_event_init_process(process); 1168 process->is_32bit_user_mode = in_compat_syscall(); 1169 1170 process->pasid = kfd_pasid_alloc(); 1171 if (process->pasid == 0) 1172 goto err_alloc_pasid; 1173 1174 err = pqm_init(&process->pqm, process); 1175 if (err != 0) 1176 goto err_process_pqm_init; 1177 1178 /* init process apertures*/ 1179 err = kfd_init_apertures(process); 1180 if (err != 0) 1181 goto err_init_apertures; 1182 1183 /* Must be last, have to use release destruction after this */ 1184 process->mmu_notifier.ops = &kfd_process_mmu_notifier_ops; 1185 err = mmu_notifier_register(&process->mmu_notifier, process->mm); 1186 if (err) 1187 goto err_register_notifier; 1188 1189 get_task_struct(process->lead_thread); 1190 hash_add_rcu(kfd_processes_table, &process->kfd_processes, 1191 (uintptr_t)process->mm); 1192 1193 return process; 1194 1195 err_register_notifier: 1196 kfd_process_free_outstanding_kfd_bos(process); 1197 kfd_process_destroy_pdds(process); 1198 err_init_apertures: 1199 pqm_uninit(&process->pqm); 1200 err_process_pqm_init: 1201 kfd_pasid_free(process->pasid); 1202 err_alloc_pasid: 1203 mutex_destroy(&process->mutex); 1204 kfree(process); 1205 err_alloc_process: 1206 return ERR_PTR(err); 1207 } 1208 1209 static int init_doorbell_bitmap(struct qcm_process_device *qpd, 1210 struct kfd_dev *dev) 1211 { 1212 unsigned int i; 1213 int range_start = dev->shared_resources.non_cp_doorbells_start; 1214 int range_end = dev->shared_resources.non_cp_doorbells_end; 1215 1216 if (!KFD_IS_SOC15(dev->device_info->asic_family)) 1217 return 0; 1218 1219 qpd->doorbell_bitmap = 1220 kzalloc(DIV_ROUND_UP(KFD_MAX_NUM_OF_QUEUES_PER_PROCESS, 1221 BITS_PER_BYTE), GFP_KERNEL); 1222 if (!qpd->doorbell_bitmap) 1223 return -ENOMEM; 1224 1225 /* Mask out doorbells reserved for SDMA, IH, and VCN on SOC15. */ 1226 pr_debug("reserved doorbell 0x%03x - 0x%03x\n", range_start, range_end); 1227 pr_debug("reserved doorbell 0x%03x - 0x%03x\n", 1228 range_start + KFD_QUEUE_DOORBELL_MIRROR_OFFSET, 1229 range_end + KFD_QUEUE_DOORBELL_MIRROR_OFFSET); 1230 1231 for (i = 0; i < KFD_MAX_NUM_OF_QUEUES_PER_PROCESS / 2; i++) { 1232 if (i >= range_start && i <= range_end) { 1233 set_bit(i, qpd->doorbell_bitmap); 1234 set_bit(i + KFD_QUEUE_DOORBELL_MIRROR_OFFSET, 1235 qpd->doorbell_bitmap); 1236 } 1237 } 1238 1239 return 0; 1240 } 1241 1242 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev, 1243 struct kfd_process *p) 1244 { 1245 struct kfd_process_device *pdd = NULL; 1246 1247 list_for_each_entry(pdd, &p->per_device_data, per_device_list) 1248 if (pdd->dev == dev) 1249 return pdd; 1250 1251 return NULL; 1252 } 1253 1254 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev, 1255 struct kfd_process *p) 1256 { 1257 struct kfd_process_device *pdd = NULL; 1258 1259 pdd = kzalloc(sizeof(*pdd), GFP_KERNEL); 1260 if (!pdd) 1261 return NULL; 1262 1263 if (kfd_alloc_process_doorbells(dev, &pdd->doorbell_index) < 0) { 1264 pr_err("Failed to alloc doorbell for pdd\n"); 1265 goto err_free_pdd; 1266 } 1267 1268 if (init_doorbell_bitmap(&pdd->qpd, dev)) { 1269 pr_err("Failed to init doorbell for process\n"); 1270 goto err_free_pdd; 1271 } 1272 1273 pdd->dev = dev; 1274 INIT_LIST_HEAD(&pdd->qpd.queues_list); 1275 INIT_LIST_HEAD(&pdd->qpd.priv_queue_list); 1276 pdd->qpd.dqm = dev->dqm; 1277 pdd->qpd.pqm = &p->pqm; 1278 pdd->qpd.evicted = 0; 1279 pdd->qpd.mapped_gws_queue = false; 1280 pdd->process = p; 1281 pdd->bound = PDD_UNBOUND; 1282 pdd->already_dequeued = false; 1283 pdd->runtime_inuse = false; 1284 pdd->vram_usage = 0; 1285 pdd->sdma_past_activity_counter = 0; 1286 atomic64_set(&pdd->evict_duration_counter, 0); 1287 list_add(&pdd->per_device_list, &p->per_device_data); 1288 1289 /* Init idr used for memory handle translation */ 1290 idr_init(&pdd->alloc_idr); 1291 1292 return pdd; 1293 1294 err_free_pdd: 1295 kfree(pdd); 1296 return NULL; 1297 } 1298 1299 /** 1300 * kfd_process_device_init_vm - Initialize a VM for a process-device 1301 * 1302 * @pdd: The process-device 1303 * @drm_file: Optional pointer to a DRM file descriptor 1304 * 1305 * If @drm_file is specified, it will be used to acquire the VM from 1306 * that file descriptor. If successful, the @pdd takes ownership of 1307 * the file descriptor. 1308 * 1309 * If @drm_file is NULL, a new VM is created. 1310 * 1311 * Returns 0 on success, -errno on failure. 1312 */ 1313 int kfd_process_device_init_vm(struct kfd_process_device *pdd, 1314 struct file *drm_file) 1315 { 1316 struct kfd_process *p; 1317 struct kfd_dev *dev; 1318 int ret; 1319 1320 if (pdd->vm) 1321 return drm_file ? -EBUSY : 0; 1322 1323 p = pdd->process; 1324 dev = pdd->dev; 1325 1326 if (drm_file) 1327 ret = amdgpu_amdkfd_gpuvm_acquire_process_vm( 1328 dev->kgd, drm_file, p->pasid, 1329 &pdd->vm, &p->kgd_process_info, &p->ef); 1330 else 1331 ret = amdgpu_amdkfd_gpuvm_create_process_vm(dev->kgd, p->pasid, 1332 &pdd->vm, &p->kgd_process_info, &p->ef); 1333 if (ret) { 1334 pr_err("Failed to create process VM object\n"); 1335 return ret; 1336 } 1337 1338 amdgpu_vm_set_task_info(pdd->vm); 1339 1340 ret = kfd_process_device_reserve_ib_mem(pdd); 1341 if (ret) 1342 goto err_reserve_ib_mem; 1343 ret = kfd_process_device_init_cwsr_dgpu(pdd); 1344 if (ret) 1345 goto err_init_cwsr; 1346 1347 pdd->drm_file = drm_file; 1348 1349 return 0; 1350 1351 err_init_cwsr: 1352 err_reserve_ib_mem: 1353 kfd_process_device_free_bos(pdd); 1354 if (!drm_file) 1355 amdgpu_amdkfd_gpuvm_destroy_process_vm(dev->kgd, pdd->vm); 1356 pdd->vm = NULL; 1357 1358 return ret; 1359 } 1360 1361 /* 1362 * Direct the IOMMU to bind the process (specifically the pasid->mm) 1363 * to the device. 1364 * Unbinding occurs when the process dies or the device is removed. 1365 * 1366 * Assumes that the process lock is held. 1367 */ 1368 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev, 1369 struct kfd_process *p) 1370 { 1371 struct kfd_process_device *pdd; 1372 int err; 1373 1374 pdd = kfd_get_process_device_data(dev, p); 1375 if (!pdd) { 1376 pr_err("Process device data doesn't exist\n"); 1377 return ERR_PTR(-ENOMEM); 1378 } 1379 1380 /* 1381 * signal runtime-pm system to auto resume and prevent 1382 * further runtime suspend once device pdd is created until 1383 * pdd is destroyed. 1384 */ 1385 if (!pdd->runtime_inuse) { 1386 err = pm_runtime_get_sync(dev->ddev->dev); 1387 if (err < 0) { 1388 pm_runtime_put_autosuspend(dev->ddev->dev); 1389 return ERR_PTR(err); 1390 } 1391 } 1392 1393 err = kfd_iommu_bind_process_to_device(pdd); 1394 if (err) 1395 goto out; 1396 1397 err = kfd_process_device_init_vm(pdd, NULL); 1398 if (err) 1399 goto out; 1400 1401 /* 1402 * make sure that runtime_usage counter is incremented just once 1403 * per pdd 1404 */ 1405 pdd->runtime_inuse = true; 1406 1407 return pdd; 1408 1409 out: 1410 /* balance runpm reference count and exit with error */ 1411 if (!pdd->runtime_inuse) { 1412 pm_runtime_mark_last_busy(dev->ddev->dev); 1413 pm_runtime_put_autosuspend(dev->ddev->dev); 1414 } 1415 1416 return ERR_PTR(err); 1417 } 1418 1419 struct kfd_process_device *kfd_get_first_process_device_data( 1420 struct kfd_process *p) 1421 { 1422 return list_first_entry(&p->per_device_data, 1423 struct kfd_process_device, 1424 per_device_list); 1425 } 1426 1427 struct kfd_process_device *kfd_get_next_process_device_data( 1428 struct kfd_process *p, 1429 struct kfd_process_device *pdd) 1430 { 1431 if (list_is_last(&pdd->per_device_list, &p->per_device_data)) 1432 return NULL; 1433 return list_next_entry(pdd, per_device_list); 1434 } 1435 1436 bool kfd_has_process_device_data(struct kfd_process *p) 1437 { 1438 return !(list_empty(&p->per_device_data)); 1439 } 1440 1441 /* Create specific handle mapped to mem from process local memory idr 1442 * Assumes that the process lock is held. 1443 */ 1444 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd, 1445 void *mem) 1446 { 1447 return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL); 1448 } 1449 1450 /* Translate specific handle from process local memory idr 1451 * Assumes that the process lock is held. 1452 */ 1453 void *kfd_process_device_translate_handle(struct kfd_process_device *pdd, 1454 int handle) 1455 { 1456 if (handle < 0) 1457 return NULL; 1458 1459 return idr_find(&pdd->alloc_idr, handle); 1460 } 1461 1462 /* Remove specific handle from process local memory idr 1463 * Assumes that the process lock is held. 1464 */ 1465 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd, 1466 int handle) 1467 { 1468 if (handle >= 0) 1469 idr_remove(&pdd->alloc_idr, handle); 1470 } 1471 1472 /* This increments the process->ref counter. */ 1473 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid) 1474 { 1475 struct kfd_process *p, *ret_p = NULL; 1476 unsigned int temp; 1477 1478 int idx = srcu_read_lock(&kfd_processes_srcu); 1479 1480 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 1481 if (p->pasid == pasid) { 1482 kref_get(&p->ref); 1483 ret_p = p; 1484 break; 1485 } 1486 } 1487 1488 srcu_read_unlock(&kfd_processes_srcu, idx); 1489 1490 return ret_p; 1491 } 1492 1493 /* This increments the process->ref counter. */ 1494 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm) 1495 { 1496 struct kfd_process *p; 1497 1498 int idx = srcu_read_lock(&kfd_processes_srcu); 1499 1500 p = find_process_by_mm(mm); 1501 if (p) 1502 kref_get(&p->ref); 1503 1504 srcu_read_unlock(&kfd_processes_srcu, idx); 1505 1506 return p; 1507 } 1508 1509 /* kfd_process_evict_queues - Evict all user queues of a process 1510 * 1511 * Eviction is reference-counted per process-device. This means multiple 1512 * evictions from different sources can be nested safely. 1513 */ 1514 int kfd_process_evict_queues(struct kfd_process *p) 1515 { 1516 struct kfd_process_device *pdd; 1517 int r = 0; 1518 unsigned int n_evicted = 0; 1519 1520 list_for_each_entry(pdd, &p->per_device_data, per_device_list) { 1521 r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm, 1522 &pdd->qpd); 1523 if (r) { 1524 pr_err("Failed to evict process queues\n"); 1525 goto fail; 1526 } 1527 n_evicted++; 1528 } 1529 1530 return r; 1531 1532 fail: 1533 /* To keep state consistent, roll back partial eviction by 1534 * restoring queues 1535 */ 1536 list_for_each_entry(pdd, &p->per_device_data, per_device_list) { 1537 if (n_evicted == 0) 1538 break; 1539 if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm, 1540 &pdd->qpd)) 1541 pr_err("Failed to restore queues\n"); 1542 1543 n_evicted--; 1544 } 1545 1546 return r; 1547 } 1548 1549 /* kfd_process_restore_queues - Restore all user queues of a process */ 1550 int kfd_process_restore_queues(struct kfd_process *p) 1551 { 1552 struct kfd_process_device *pdd; 1553 int r, ret = 0; 1554 1555 list_for_each_entry(pdd, &p->per_device_data, per_device_list) { 1556 r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm, 1557 &pdd->qpd); 1558 if (r) { 1559 pr_err("Failed to restore process queues\n"); 1560 if (!ret) 1561 ret = r; 1562 } 1563 } 1564 1565 return ret; 1566 } 1567 1568 static void evict_process_worker(struct work_struct *work) 1569 { 1570 int ret; 1571 struct kfd_process *p; 1572 struct delayed_work *dwork; 1573 1574 dwork = to_delayed_work(work); 1575 1576 /* Process termination destroys this worker thread. So during the 1577 * lifetime of this thread, kfd_process p will be valid 1578 */ 1579 p = container_of(dwork, struct kfd_process, eviction_work); 1580 WARN_ONCE(p->last_eviction_seqno != p->ef->seqno, 1581 "Eviction fence mismatch\n"); 1582 1583 /* Narrow window of overlap between restore and evict work 1584 * item is possible. Once amdgpu_amdkfd_gpuvm_restore_process_bos 1585 * unreserves KFD BOs, it is possible to evicted again. But 1586 * restore has few more steps of finish. So lets wait for any 1587 * previous restore work to complete 1588 */ 1589 flush_delayed_work(&p->restore_work); 1590 1591 pr_debug("Started evicting pasid 0x%x\n", p->pasid); 1592 ret = kfd_process_evict_queues(p); 1593 if (!ret) { 1594 dma_fence_signal(p->ef); 1595 dma_fence_put(p->ef); 1596 p->ef = NULL; 1597 queue_delayed_work(kfd_restore_wq, &p->restore_work, 1598 msecs_to_jiffies(PROCESS_RESTORE_TIME_MS)); 1599 1600 pr_debug("Finished evicting pasid 0x%x\n", p->pasid); 1601 } else 1602 pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid); 1603 } 1604 1605 static void restore_process_worker(struct work_struct *work) 1606 { 1607 struct delayed_work *dwork; 1608 struct kfd_process *p; 1609 int ret = 0; 1610 1611 dwork = to_delayed_work(work); 1612 1613 /* Process termination destroys this worker thread. So during the 1614 * lifetime of this thread, kfd_process p will be valid 1615 */ 1616 p = container_of(dwork, struct kfd_process, restore_work); 1617 pr_debug("Started restoring pasid 0x%x\n", p->pasid); 1618 1619 /* Setting last_restore_timestamp before successful restoration. 1620 * Otherwise this would have to be set by KGD (restore_process_bos) 1621 * before KFD BOs are unreserved. If not, the process can be evicted 1622 * again before the timestamp is set. 1623 * If restore fails, the timestamp will be set again in the next 1624 * attempt. This would mean that the minimum GPU quanta would be 1625 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two 1626 * functions) 1627 */ 1628 1629 p->last_restore_timestamp = get_jiffies_64(); 1630 ret = amdgpu_amdkfd_gpuvm_restore_process_bos(p->kgd_process_info, 1631 &p->ef); 1632 if (ret) { 1633 pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n", 1634 p->pasid, PROCESS_BACK_OFF_TIME_MS); 1635 ret = queue_delayed_work(kfd_restore_wq, &p->restore_work, 1636 msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS)); 1637 WARN(!ret, "reschedule restore work failed\n"); 1638 return; 1639 } 1640 1641 ret = kfd_process_restore_queues(p); 1642 if (!ret) 1643 pr_debug("Finished restoring pasid 0x%x\n", p->pasid); 1644 else 1645 pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid); 1646 } 1647 1648 void kfd_suspend_all_processes(void) 1649 { 1650 struct kfd_process *p; 1651 unsigned int temp; 1652 int idx = srcu_read_lock(&kfd_processes_srcu); 1653 1654 WARN(debug_evictions, "Evicting all processes"); 1655 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 1656 cancel_delayed_work_sync(&p->eviction_work); 1657 cancel_delayed_work_sync(&p->restore_work); 1658 1659 if (kfd_process_evict_queues(p)) 1660 pr_err("Failed to suspend process 0x%x\n", p->pasid); 1661 dma_fence_signal(p->ef); 1662 dma_fence_put(p->ef); 1663 p->ef = NULL; 1664 } 1665 srcu_read_unlock(&kfd_processes_srcu, idx); 1666 } 1667 1668 int kfd_resume_all_processes(void) 1669 { 1670 struct kfd_process *p; 1671 unsigned int temp; 1672 int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu); 1673 1674 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 1675 if (!queue_delayed_work(kfd_restore_wq, &p->restore_work, 0)) { 1676 pr_err("Restore process %d failed during resume\n", 1677 p->pasid); 1678 ret = -EFAULT; 1679 } 1680 } 1681 srcu_read_unlock(&kfd_processes_srcu, idx); 1682 return ret; 1683 } 1684 1685 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process, 1686 struct vm_area_struct *vma) 1687 { 1688 struct kfd_process_device *pdd; 1689 struct qcm_process_device *qpd; 1690 1691 if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) { 1692 pr_err("Incorrect CWSR mapping size.\n"); 1693 return -EINVAL; 1694 } 1695 1696 pdd = kfd_get_process_device_data(dev, process); 1697 if (!pdd) 1698 return -EINVAL; 1699 qpd = &pdd->qpd; 1700 1701 qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1702 get_order(KFD_CWSR_TBA_TMA_SIZE)); 1703 if (!qpd->cwsr_kaddr) { 1704 pr_err("Error allocating per process CWSR buffer.\n"); 1705 return -ENOMEM; 1706 } 1707 1708 vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND 1709 | VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP; 1710 /* Mapping pages to user process */ 1711 return remap_pfn_range(vma, vma->vm_start, 1712 PFN_DOWN(__pa(qpd->cwsr_kaddr)), 1713 KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot); 1714 } 1715 1716 void kfd_flush_tlb(struct kfd_process_device *pdd) 1717 { 1718 struct kfd_dev *dev = pdd->dev; 1719 1720 if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) { 1721 /* Nothing to flush until a VMID is assigned, which 1722 * only happens when the first queue is created. 1723 */ 1724 if (pdd->qpd.vmid) 1725 amdgpu_amdkfd_flush_gpu_tlb_vmid(dev->kgd, 1726 pdd->qpd.vmid); 1727 } else { 1728 amdgpu_amdkfd_flush_gpu_tlb_pasid(dev->kgd, 1729 pdd->process->pasid); 1730 } 1731 } 1732 1733 #if defined(CONFIG_DEBUG_FS) 1734 1735 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data) 1736 { 1737 struct kfd_process *p; 1738 unsigned int temp; 1739 int r = 0; 1740 1741 int idx = srcu_read_lock(&kfd_processes_srcu); 1742 1743 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 1744 seq_printf(m, "Process %d PASID 0x%x:\n", 1745 p->lead_thread->tgid, p->pasid); 1746 1747 mutex_lock(&p->mutex); 1748 r = pqm_debugfs_mqds(m, &p->pqm); 1749 mutex_unlock(&p->mutex); 1750 1751 if (r) 1752 break; 1753 } 1754 1755 srcu_read_unlock(&kfd_processes_srcu, idx); 1756 1757 return r; 1758 } 1759 1760 #endif 1761 1762