1 /* 2 * Copyright 2017 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: Rafał Miłecki <zajec5@gmail.com> 23 * Alex Deucher <alexdeucher@gmail.com> 24 */ 25 26 #include <drm/drm_debugfs.h> 27 28 #include "amdgpu.h" 29 #include "amdgpu_drv.h" 30 #include "amdgpu_pm.h" 31 #include "amdgpu_dpm.h" 32 #include "amdgpu_smu.h" 33 #include "atom.h" 34 #include <linux/pci.h> 35 #include <linux/hwmon.h> 36 #include <linux/hwmon-sysfs.h> 37 #include <linux/nospec.h> 38 #include <linux/pm_runtime.h> 39 #include "hwmgr.h" 40 41 static const struct cg_flag_name clocks[] = { 42 {AMD_CG_SUPPORT_GFX_MGCG, "Graphics Medium Grain Clock Gating"}, 43 {AMD_CG_SUPPORT_GFX_MGLS, "Graphics Medium Grain memory Light Sleep"}, 44 {AMD_CG_SUPPORT_GFX_CGCG, "Graphics Coarse Grain Clock Gating"}, 45 {AMD_CG_SUPPORT_GFX_CGLS, "Graphics Coarse Grain memory Light Sleep"}, 46 {AMD_CG_SUPPORT_GFX_CGTS, "Graphics Coarse Grain Tree Shader Clock Gating"}, 47 {AMD_CG_SUPPORT_GFX_CGTS_LS, "Graphics Coarse Grain Tree Shader Light Sleep"}, 48 {AMD_CG_SUPPORT_GFX_CP_LS, "Graphics Command Processor Light Sleep"}, 49 {AMD_CG_SUPPORT_GFX_RLC_LS, "Graphics Run List Controller Light Sleep"}, 50 {AMD_CG_SUPPORT_GFX_3D_CGCG, "Graphics 3D Coarse Grain Clock Gating"}, 51 {AMD_CG_SUPPORT_GFX_3D_CGLS, "Graphics 3D Coarse Grain memory Light Sleep"}, 52 {AMD_CG_SUPPORT_MC_LS, "Memory Controller Light Sleep"}, 53 {AMD_CG_SUPPORT_MC_MGCG, "Memory Controller Medium Grain Clock Gating"}, 54 {AMD_CG_SUPPORT_SDMA_LS, "System Direct Memory Access Light Sleep"}, 55 {AMD_CG_SUPPORT_SDMA_MGCG, "System Direct Memory Access Medium Grain Clock Gating"}, 56 {AMD_CG_SUPPORT_BIF_MGCG, "Bus Interface Medium Grain Clock Gating"}, 57 {AMD_CG_SUPPORT_BIF_LS, "Bus Interface Light Sleep"}, 58 {AMD_CG_SUPPORT_UVD_MGCG, "Unified Video Decoder Medium Grain Clock Gating"}, 59 {AMD_CG_SUPPORT_VCE_MGCG, "Video Compression Engine Medium Grain Clock Gating"}, 60 {AMD_CG_SUPPORT_HDP_LS, "Host Data Path Light Sleep"}, 61 {AMD_CG_SUPPORT_HDP_MGCG, "Host Data Path Medium Grain Clock Gating"}, 62 {AMD_CG_SUPPORT_DRM_MGCG, "Digital Right Management Medium Grain Clock Gating"}, 63 {AMD_CG_SUPPORT_DRM_LS, "Digital Right Management Light Sleep"}, 64 {AMD_CG_SUPPORT_ROM_MGCG, "Rom Medium Grain Clock Gating"}, 65 {AMD_CG_SUPPORT_DF_MGCG, "Data Fabric Medium Grain Clock Gating"}, 66 67 {AMD_CG_SUPPORT_ATHUB_MGCG, "Address Translation Hub Medium Grain Clock Gating"}, 68 {AMD_CG_SUPPORT_ATHUB_LS, "Address Translation Hub Light Sleep"}, 69 {0, NULL}, 70 }; 71 72 static const struct hwmon_temp_label { 73 enum PP_HWMON_TEMP channel; 74 const char *label; 75 } temp_label[] = { 76 {PP_TEMP_EDGE, "edge"}, 77 {PP_TEMP_JUNCTION, "junction"}, 78 {PP_TEMP_MEM, "mem"}, 79 }; 80 81 #ifdef __linux__ 82 83 /** 84 * DOC: power_dpm_state 85 * 86 * The power_dpm_state file is a legacy interface and is only provided for 87 * backwards compatibility. The amdgpu driver provides a sysfs API for adjusting 88 * certain power related parameters. The file power_dpm_state is used for this. 89 * It accepts the following arguments: 90 * 91 * - battery 92 * 93 * - balanced 94 * 95 * - performance 96 * 97 * battery 98 * 99 * On older GPUs, the vbios provided a special power state for battery 100 * operation. Selecting battery switched to this state. This is no 101 * longer provided on newer GPUs so the option does nothing in that case. 102 * 103 * balanced 104 * 105 * On older GPUs, the vbios provided a special power state for balanced 106 * operation. Selecting balanced switched to this state. This is no 107 * longer provided on newer GPUs so the option does nothing in that case. 108 * 109 * performance 110 * 111 * On older GPUs, the vbios provided a special power state for performance 112 * operation. Selecting performance switched to this state. This is no 113 * longer provided on newer GPUs so the option does nothing in that case. 114 * 115 */ 116 117 static ssize_t amdgpu_get_power_dpm_state(struct device *dev, 118 struct device_attribute *attr, 119 char *buf) 120 { 121 struct drm_device *ddev = dev_get_drvdata(dev); 122 struct amdgpu_device *adev = drm_to_adev(ddev); 123 enum amd_pm_state_type pm; 124 int ret; 125 126 if (amdgpu_in_reset(adev)) 127 return -EPERM; 128 129 ret = pm_runtime_get_sync(ddev->dev); 130 if (ret < 0) { 131 pm_runtime_put_autosuspend(ddev->dev); 132 return ret; 133 } 134 135 if (is_support_sw_smu(adev)) { 136 if (adev->smu.ppt_funcs->get_current_power_state) 137 pm = smu_get_current_power_state(&adev->smu); 138 else 139 pm = adev->pm.dpm.user_state; 140 } else if (adev->powerplay.pp_funcs->get_current_power_state) { 141 pm = amdgpu_dpm_get_current_power_state(adev); 142 } else { 143 pm = adev->pm.dpm.user_state; 144 } 145 146 pm_runtime_mark_last_busy(ddev->dev); 147 pm_runtime_put_autosuspend(ddev->dev); 148 149 return snprintf(buf, PAGE_SIZE, "%s\n", 150 (pm == POWER_STATE_TYPE_BATTERY) ? "battery" : 151 (pm == POWER_STATE_TYPE_BALANCED) ? "balanced" : "performance"); 152 } 153 154 static ssize_t amdgpu_set_power_dpm_state(struct device *dev, 155 struct device_attribute *attr, 156 const char *buf, 157 size_t count) 158 { 159 struct drm_device *ddev = dev_get_drvdata(dev); 160 struct amdgpu_device *adev = drm_to_adev(ddev); 161 enum amd_pm_state_type state; 162 int ret; 163 164 if (amdgpu_in_reset(adev)) 165 return -EPERM; 166 167 if (strncmp("battery", buf, strlen("battery")) == 0) 168 state = POWER_STATE_TYPE_BATTERY; 169 else if (strncmp("balanced", buf, strlen("balanced")) == 0) 170 state = POWER_STATE_TYPE_BALANCED; 171 else if (strncmp("performance", buf, strlen("performance")) == 0) 172 state = POWER_STATE_TYPE_PERFORMANCE; 173 else 174 return -EINVAL; 175 176 ret = pm_runtime_get_sync(ddev->dev); 177 if (ret < 0) { 178 pm_runtime_put_autosuspend(ddev->dev); 179 return ret; 180 } 181 182 if (is_support_sw_smu(adev)) { 183 mutex_lock(&adev->pm.mutex); 184 adev->pm.dpm.user_state = state; 185 mutex_unlock(&adev->pm.mutex); 186 } else if (adev->powerplay.pp_funcs->dispatch_tasks) { 187 amdgpu_dpm_dispatch_task(adev, AMD_PP_TASK_ENABLE_USER_STATE, &state); 188 } else { 189 mutex_lock(&adev->pm.mutex); 190 adev->pm.dpm.user_state = state; 191 mutex_unlock(&adev->pm.mutex); 192 193 amdgpu_pm_compute_clocks(adev); 194 } 195 pm_runtime_mark_last_busy(ddev->dev); 196 pm_runtime_put_autosuspend(ddev->dev); 197 198 return count; 199 } 200 201 202 /** 203 * DOC: power_dpm_force_performance_level 204 * 205 * The amdgpu driver provides a sysfs API for adjusting certain power 206 * related parameters. The file power_dpm_force_performance_level is 207 * used for this. It accepts the following arguments: 208 * 209 * - auto 210 * 211 * - low 212 * 213 * - high 214 * 215 * - manual 216 * 217 * - profile_standard 218 * 219 * - profile_min_sclk 220 * 221 * - profile_min_mclk 222 * 223 * - profile_peak 224 * 225 * auto 226 * 227 * When auto is selected, the driver will attempt to dynamically select 228 * the optimal power profile for current conditions in the driver. 229 * 230 * low 231 * 232 * When low is selected, the clocks are forced to the lowest power state. 233 * 234 * high 235 * 236 * When high is selected, the clocks are forced to the highest power state. 237 * 238 * manual 239 * 240 * When manual is selected, the user can manually adjust which power states 241 * are enabled for each clock domain via the sysfs pp_dpm_mclk, pp_dpm_sclk, 242 * and pp_dpm_pcie files and adjust the power state transition heuristics 243 * via the pp_power_profile_mode sysfs file. 244 * 245 * profile_standard 246 * profile_min_sclk 247 * profile_min_mclk 248 * profile_peak 249 * 250 * When the profiling modes are selected, clock and power gating are 251 * disabled and the clocks are set for different profiling cases. This 252 * mode is recommended for profiling specific work loads where you do 253 * not want clock or power gating for clock fluctuation to interfere 254 * with your results. profile_standard sets the clocks to a fixed clock 255 * level which varies from asic to asic. profile_min_sclk forces the sclk 256 * to the lowest level. profile_min_mclk forces the mclk to the lowest level. 257 * profile_peak sets all clocks (mclk, sclk, pcie) to the highest levels. 258 * 259 */ 260 261 static ssize_t amdgpu_get_power_dpm_force_performance_level(struct device *dev, 262 struct device_attribute *attr, 263 char *buf) 264 { 265 struct drm_device *ddev = dev_get_drvdata(dev); 266 struct amdgpu_device *adev = drm_to_adev(ddev); 267 enum amd_dpm_forced_level level = 0xff; 268 int ret; 269 270 if (amdgpu_in_reset(adev)) 271 return -EPERM; 272 273 ret = pm_runtime_get_sync(ddev->dev); 274 if (ret < 0) { 275 pm_runtime_put_autosuspend(ddev->dev); 276 return ret; 277 } 278 279 if (is_support_sw_smu(adev)) 280 level = smu_get_performance_level(&adev->smu); 281 else if (adev->powerplay.pp_funcs->get_performance_level) 282 level = amdgpu_dpm_get_performance_level(adev); 283 else 284 level = adev->pm.dpm.forced_level; 285 286 pm_runtime_mark_last_busy(ddev->dev); 287 pm_runtime_put_autosuspend(ddev->dev); 288 289 return snprintf(buf, PAGE_SIZE, "%s\n", 290 (level == AMD_DPM_FORCED_LEVEL_AUTO) ? "auto" : 291 (level == AMD_DPM_FORCED_LEVEL_LOW) ? "low" : 292 (level == AMD_DPM_FORCED_LEVEL_HIGH) ? "high" : 293 (level == AMD_DPM_FORCED_LEVEL_MANUAL) ? "manual" : 294 (level == AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD) ? "profile_standard" : 295 (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) ? "profile_min_sclk" : 296 (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) ? "profile_min_mclk" : 297 (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) ? "profile_peak" : 298 "unknown"); 299 } 300 301 static ssize_t amdgpu_set_power_dpm_force_performance_level(struct device *dev, 302 struct device_attribute *attr, 303 const char *buf, 304 size_t count) 305 { 306 struct drm_device *ddev = dev_get_drvdata(dev); 307 struct amdgpu_device *adev = drm_to_adev(ddev); 308 enum amd_dpm_forced_level level; 309 enum amd_dpm_forced_level current_level = 0xff; 310 int ret = 0; 311 312 if (amdgpu_in_reset(adev)) 313 return -EPERM; 314 315 if (strncmp("low", buf, strlen("low")) == 0) { 316 level = AMD_DPM_FORCED_LEVEL_LOW; 317 } else if (strncmp("high", buf, strlen("high")) == 0) { 318 level = AMD_DPM_FORCED_LEVEL_HIGH; 319 } else if (strncmp("auto", buf, strlen("auto")) == 0) { 320 level = AMD_DPM_FORCED_LEVEL_AUTO; 321 } else if (strncmp("manual", buf, strlen("manual")) == 0) { 322 level = AMD_DPM_FORCED_LEVEL_MANUAL; 323 } else if (strncmp("profile_exit", buf, strlen("profile_exit")) == 0) { 324 level = AMD_DPM_FORCED_LEVEL_PROFILE_EXIT; 325 } else if (strncmp("profile_standard", buf, strlen("profile_standard")) == 0) { 326 level = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD; 327 } else if (strncmp("profile_min_sclk", buf, strlen("profile_min_sclk")) == 0) { 328 level = AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK; 329 } else if (strncmp("profile_min_mclk", buf, strlen("profile_min_mclk")) == 0) { 330 level = AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK; 331 } else if (strncmp("profile_peak", buf, strlen("profile_peak")) == 0) { 332 level = AMD_DPM_FORCED_LEVEL_PROFILE_PEAK; 333 } else { 334 return -EINVAL; 335 } 336 337 ret = pm_runtime_get_sync(ddev->dev); 338 if (ret < 0) { 339 pm_runtime_put_autosuspend(ddev->dev); 340 return ret; 341 } 342 343 if (is_support_sw_smu(adev)) 344 current_level = smu_get_performance_level(&adev->smu); 345 else if (adev->powerplay.pp_funcs->get_performance_level) 346 current_level = amdgpu_dpm_get_performance_level(adev); 347 348 if (current_level == level) { 349 pm_runtime_mark_last_busy(ddev->dev); 350 pm_runtime_put_autosuspend(ddev->dev); 351 return count; 352 } 353 354 if (adev->asic_type == CHIP_RAVEN) { 355 if (!(adev->apu_flags & AMD_APU_IS_RAVEN2)) { 356 if (current_level != AMD_DPM_FORCED_LEVEL_MANUAL && level == AMD_DPM_FORCED_LEVEL_MANUAL) 357 amdgpu_gfx_off_ctrl(adev, false); 358 else if (current_level == AMD_DPM_FORCED_LEVEL_MANUAL && level != AMD_DPM_FORCED_LEVEL_MANUAL) 359 amdgpu_gfx_off_ctrl(adev, true); 360 } 361 } 362 363 /* profile_exit setting is valid only when current mode is in profile mode */ 364 if (!(current_level & (AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD | 365 AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK | 366 AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK | 367 AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)) && 368 (level == AMD_DPM_FORCED_LEVEL_PROFILE_EXIT)) { 369 pr_err("Currently not in any profile mode!\n"); 370 pm_runtime_mark_last_busy(ddev->dev); 371 pm_runtime_put_autosuspend(ddev->dev); 372 return -EINVAL; 373 } 374 375 if (is_support_sw_smu(adev)) { 376 ret = smu_force_performance_level(&adev->smu, level); 377 if (ret) { 378 pm_runtime_mark_last_busy(ddev->dev); 379 pm_runtime_put_autosuspend(ddev->dev); 380 return -EINVAL; 381 } 382 } else if (adev->powerplay.pp_funcs->force_performance_level) { 383 mutex_lock(&adev->pm.mutex); 384 if (adev->pm.dpm.thermal_active) { 385 mutex_unlock(&adev->pm.mutex); 386 pm_runtime_mark_last_busy(ddev->dev); 387 pm_runtime_put_autosuspend(ddev->dev); 388 return -EINVAL; 389 } 390 ret = amdgpu_dpm_force_performance_level(adev, level); 391 if (ret) { 392 mutex_unlock(&adev->pm.mutex); 393 pm_runtime_mark_last_busy(ddev->dev); 394 pm_runtime_put_autosuspend(ddev->dev); 395 return -EINVAL; 396 } else { 397 adev->pm.dpm.forced_level = level; 398 } 399 mutex_unlock(&adev->pm.mutex); 400 } 401 pm_runtime_mark_last_busy(ddev->dev); 402 pm_runtime_put_autosuspend(ddev->dev); 403 404 return count; 405 } 406 407 static ssize_t amdgpu_get_pp_num_states(struct device *dev, 408 struct device_attribute *attr, 409 char *buf) 410 { 411 struct drm_device *ddev = dev_get_drvdata(dev); 412 struct amdgpu_device *adev = drm_to_adev(ddev); 413 struct pp_states_info data; 414 int i, buf_len, ret; 415 416 if (amdgpu_in_reset(adev)) 417 return -EPERM; 418 419 ret = pm_runtime_get_sync(ddev->dev); 420 if (ret < 0) { 421 pm_runtime_put_autosuspend(ddev->dev); 422 return ret; 423 } 424 425 if (is_support_sw_smu(adev)) { 426 ret = smu_get_power_num_states(&adev->smu, &data); 427 if (ret) 428 return ret; 429 } else if (adev->powerplay.pp_funcs->get_pp_num_states) { 430 amdgpu_dpm_get_pp_num_states(adev, &data); 431 } else { 432 memset(&data, 0, sizeof(data)); 433 } 434 435 pm_runtime_mark_last_busy(ddev->dev); 436 pm_runtime_put_autosuspend(ddev->dev); 437 438 buf_len = snprintf(buf, PAGE_SIZE, "states: %d\n", data.nums); 439 for (i = 0; i < data.nums; i++) 440 buf_len += snprintf(buf + buf_len, PAGE_SIZE, "%d %s\n", i, 441 (data.states[i] == POWER_STATE_TYPE_INTERNAL_BOOT) ? "boot" : 442 (data.states[i] == POWER_STATE_TYPE_BATTERY) ? "battery" : 443 (data.states[i] == POWER_STATE_TYPE_BALANCED) ? "balanced" : 444 (data.states[i] == POWER_STATE_TYPE_PERFORMANCE) ? "performance" : "default"); 445 446 return buf_len; 447 } 448 449 static ssize_t amdgpu_get_pp_cur_state(struct device *dev, 450 struct device_attribute *attr, 451 char *buf) 452 { 453 struct drm_device *ddev = dev_get_drvdata(dev); 454 struct amdgpu_device *adev = drm_to_adev(ddev); 455 struct pp_states_info data; 456 struct smu_context *smu = &adev->smu; 457 enum amd_pm_state_type pm = 0; 458 int i = 0, ret = 0; 459 460 if (amdgpu_in_reset(adev)) 461 return -EPERM; 462 463 ret = pm_runtime_get_sync(ddev->dev); 464 if (ret < 0) { 465 pm_runtime_put_autosuspend(ddev->dev); 466 return ret; 467 } 468 469 if (is_support_sw_smu(adev)) { 470 pm = smu_get_current_power_state(smu); 471 ret = smu_get_power_num_states(smu, &data); 472 if (ret) 473 return ret; 474 } else if (adev->powerplay.pp_funcs->get_current_power_state 475 && adev->powerplay.pp_funcs->get_pp_num_states) { 476 pm = amdgpu_dpm_get_current_power_state(adev); 477 amdgpu_dpm_get_pp_num_states(adev, &data); 478 } 479 480 pm_runtime_mark_last_busy(ddev->dev); 481 pm_runtime_put_autosuspend(ddev->dev); 482 483 for (i = 0; i < data.nums; i++) { 484 if (pm == data.states[i]) 485 break; 486 } 487 488 if (i == data.nums) 489 i = -EINVAL; 490 491 return snprintf(buf, PAGE_SIZE, "%d\n", i); 492 } 493 494 static ssize_t amdgpu_get_pp_force_state(struct device *dev, 495 struct device_attribute *attr, 496 char *buf) 497 { 498 struct drm_device *ddev = dev_get_drvdata(dev); 499 struct amdgpu_device *adev = drm_to_adev(ddev); 500 501 if (amdgpu_in_reset(adev)) 502 return -EPERM; 503 504 if (adev->pp_force_state_enabled) 505 return amdgpu_get_pp_cur_state(dev, attr, buf); 506 else 507 return snprintf(buf, PAGE_SIZE, "\n"); 508 } 509 510 static ssize_t amdgpu_set_pp_force_state(struct device *dev, 511 struct device_attribute *attr, 512 const char *buf, 513 size_t count) 514 { 515 struct drm_device *ddev = dev_get_drvdata(dev); 516 struct amdgpu_device *adev = drm_to_adev(ddev); 517 enum amd_pm_state_type state = 0; 518 unsigned long idx; 519 int ret; 520 521 if (amdgpu_in_reset(adev)) 522 return -EPERM; 523 524 if (strlen(buf) == 1) 525 adev->pp_force_state_enabled = false; 526 else if (is_support_sw_smu(adev)) 527 adev->pp_force_state_enabled = false; 528 else if (adev->powerplay.pp_funcs->dispatch_tasks && 529 adev->powerplay.pp_funcs->get_pp_num_states) { 530 struct pp_states_info data; 531 532 ret = kstrtoul(buf, 0, &idx); 533 if (ret || idx >= ARRAY_SIZE(data.states)) 534 return -EINVAL; 535 536 idx = array_index_nospec(idx, ARRAY_SIZE(data.states)); 537 538 amdgpu_dpm_get_pp_num_states(adev, &data); 539 state = data.states[idx]; 540 541 ret = pm_runtime_get_sync(ddev->dev); 542 if (ret < 0) { 543 pm_runtime_put_autosuspend(ddev->dev); 544 return ret; 545 } 546 547 /* only set user selected power states */ 548 if (state != POWER_STATE_TYPE_INTERNAL_BOOT && 549 state != POWER_STATE_TYPE_DEFAULT) { 550 amdgpu_dpm_dispatch_task(adev, 551 AMD_PP_TASK_ENABLE_USER_STATE, &state); 552 adev->pp_force_state_enabled = true; 553 } 554 pm_runtime_mark_last_busy(ddev->dev); 555 pm_runtime_put_autosuspend(ddev->dev); 556 } 557 558 return count; 559 } 560 561 /** 562 * DOC: pp_table 563 * 564 * The amdgpu driver provides a sysfs API for uploading new powerplay 565 * tables. The file pp_table is used for this. Reading the file 566 * will dump the current power play table. Writing to the file 567 * will attempt to upload a new powerplay table and re-initialize 568 * powerplay using that new table. 569 * 570 */ 571 572 static ssize_t amdgpu_get_pp_table(struct device *dev, 573 struct device_attribute *attr, 574 char *buf) 575 { 576 struct drm_device *ddev = dev_get_drvdata(dev); 577 struct amdgpu_device *adev = drm_to_adev(ddev); 578 char *table = NULL; 579 int size, ret; 580 581 if (amdgpu_in_reset(adev)) 582 return -EPERM; 583 584 ret = pm_runtime_get_sync(ddev->dev); 585 if (ret < 0) { 586 pm_runtime_put_autosuspend(ddev->dev); 587 return ret; 588 } 589 590 if (is_support_sw_smu(adev)) { 591 size = smu_sys_get_pp_table(&adev->smu, (void **)&table); 592 pm_runtime_mark_last_busy(ddev->dev); 593 pm_runtime_put_autosuspend(ddev->dev); 594 if (size < 0) 595 return size; 596 } else if (adev->powerplay.pp_funcs->get_pp_table) { 597 size = amdgpu_dpm_get_pp_table(adev, &table); 598 pm_runtime_mark_last_busy(ddev->dev); 599 pm_runtime_put_autosuspend(ddev->dev); 600 if (size < 0) 601 return size; 602 } else { 603 pm_runtime_mark_last_busy(ddev->dev); 604 pm_runtime_put_autosuspend(ddev->dev); 605 return 0; 606 } 607 608 if (size >= PAGE_SIZE) 609 size = PAGE_SIZE - 1; 610 611 memcpy(buf, table, size); 612 613 return size; 614 } 615 616 static ssize_t amdgpu_set_pp_table(struct device *dev, 617 struct device_attribute *attr, 618 const char *buf, 619 size_t count) 620 { 621 struct drm_device *ddev = dev_get_drvdata(dev); 622 struct amdgpu_device *adev = drm_to_adev(ddev); 623 int ret = 0; 624 625 if (amdgpu_in_reset(adev)) 626 return -EPERM; 627 628 ret = pm_runtime_get_sync(ddev->dev); 629 if (ret < 0) { 630 pm_runtime_put_autosuspend(ddev->dev); 631 return ret; 632 } 633 634 if (is_support_sw_smu(adev)) { 635 ret = smu_sys_set_pp_table(&adev->smu, (void *)buf, count); 636 if (ret) { 637 pm_runtime_mark_last_busy(ddev->dev); 638 pm_runtime_put_autosuspend(ddev->dev); 639 return ret; 640 } 641 } else if (adev->powerplay.pp_funcs->set_pp_table) 642 amdgpu_dpm_set_pp_table(adev, buf, count); 643 644 pm_runtime_mark_last_busy(ddev->dev); 645 pm_runtime_put_autosuspend(ddev->dev); 646 647 return count; 648 } 649 650 /** 651 * DOC: pp_od_clk_voltage 652 * 653 * The amdgpu driver provides a sysfs API for adjusting the clocks and voltages 654 * in each power level within a power state. The pp_od_clk_voltage is used for 655 * this. 656 * 657 * Note that the actual memory controller clock rate are exposed, not 658 * the effective memory clock of the DRAMs. To translate it, use the 659 * following formula: 660 * 661 * Clock conversion (Mhz): 662 * 663 * HBM: effective_memory_clock = memory_controller_clock * 1 664 * 665 * G5: effective_memory_clock = memory_controller_clock * 1 666 * 667 * G6: effective_memory_clock = memory_controller_clock * 2 668 * 669 * DRAM data rate (MT/s): 670 * 671 * HBM: effective_memory_clock * 2 = data_rate 672 * 673 * G5: effective_memory_clock * 4 = data_rate 674 * 675 * G6: effective_memory_clock * 8 = data_rate 676 * 677 * Bandwidth (MB/s): 678 * 679 * data_rate * vram_bit_width / 8 = memory_bandwidth 680 * 681 * Some examples: 682 * 683 * G5 on RX460: 684 * 685 * memory_controller_clock = 1750 Mhz 686 * 687 * effective_memory_clock = 1750 Mhz * 1 = 1750 Mhz 688 * 689 * data rate = 1750 * 4 = 7000 MT/s 690 * 691 * memory_bandwidth = 7000 * 128 bits / 8 = 112000 MB/s 692 * 693 * G6 on RX5700: 694 * 695 * memory_controller_clock = 875 Mhz 696 * 697 * effective_memory_clock = 875 Mhz * 2 = 1750 Mhz 698 * 699 * data rate = 1750 * 8 = 14000 MT/s 700 * 701 * memory_bandwidth = 14000 * 256 bits / 8 = 448000 MB/s 702 * 703 * < For Vega10 and previous ASICs > 704 * 705 * Reading the file will display: 706 * 707 * - a list of engine clock levels and voltages labeled OD_SCLK 708 * 709 * - a list of memory clock levels and voltages labeled OD_MCLK 710 * 711 * - a list of valid ranges for sclk, mclk, and voltage labeled OD_RANGE 712 * 713 * To manually adjust these settings, first select manual using 714 * power_dpm_force_performance_level. Enter a new value for each 715 * level by writing a string that contains "s/m level clock voltage" to 716 * the file. E.g., "s 1 500 820" will update sclk level 1 to be 500 MHz 717 * at 820 mV; "m 0 350 810" will update mclk level 0 to be 350 MHz at 718 * 810 mV. When you have edited all of the states as needed, write 719 * "c" (commit) to the file to commit your changes. If you want to reset to the 720 * default power levels, write "r" (reset) to the file to reset them. 721 * 722 * 723 * < For Vega20 and newer ASICs > 724 * 725 * Reading the file will display: 726 * 727 * - minimum and maximum engine clock labeled OD_SCLK 728 * 729 * - maximum memory clock labeled OD_MCLK 730 * 731 * - three <frequency, voltage> points labeled OD_VDDC_CURVE. 732 * They can be used to calibrate the sclk voltage curve. 733 * 734 * - a list of valid ranges for sclk, mclk, and voltage curve points 735 * labeled OD_RANGE 736 * 737 * To manually adjust these settings: 738 * 739 * - First select manual using power_dpm_force_performance_level 740 * 741 * - For clock frequency setting, enter a new value by writing a 742 * string that contains "s/m index clock" to the file. The index 743 * should be 0 if to set minimum clock. And 1 if to set maximum 744 * clock. E.g., "s 0 500" will update minimum sclk to be 500 MHz. 745 * "m 1 800" will update maximum mclk to be 800Mhz. 746 * 747 * For sclk voltage curve, enter the new values by writing a 748 * string that contains "vc point clock voltage" to the file. The 749 * points are indexed by 0, 1 and 2. E.g., "vc 0 300 600" will 750 * update point1 with clock set as 300Mhz and voltage as 751 * 600mV. "vc 2 1000 1000" will update point3 with clock set 752 * as 1000Mhz and voltage 1000mV. 753 * 754 * - When you have edited all of the states as needed, write "c" (commit) 755 * to the file to commit your changes 756 * 757 * - If you want to reset to the default power levels, write "r" (reset) 758 * to the file to reset them 759 * 760 */ 761 762 static ssize_t amdgpu_set_pp_od_clk_voltage(struct device *dev, 763 struct device_attribute *attr, 764 const char *buf, 765 size_t count) 766 { 767 struct drm_device *ddev = dev_get_drvdata(dev); 768 struct amdgpu_device *adev = drm_to_adev(ddev); 769 int ret; 770 uint32_t parameter_size = 0; 771 long parameter[64]; 772 char buf_cpy[128]; 773 char *tmp_str; 774 char *sub_str; 775 const char delimiter[3] = {' ', '\n', '\0'}; 776 uint32_t type; 777 778 if (amdgpu_in_reset(adev)) 779 return -EPERM; 780 781 if (count > 127) 782 return -EINVAL; 783 784 if (*buf == 's') 785 type = PP_OD_EDIT_SCLK_VDDC_TABLE; 786 else if (*buf == 'm') 787 type = PP_OD_EDIT_MCLK_VDDC_TABLE; 788 else if(*buf == 'r') 789 type = PP_OD_RESTORE_DEFAULT_TABLE; 790 else if (*buf == 'c') 791 type = PP_OD_COMMIT_DPM_TABLE; 792 else if (!strncmp(buf, "vc", 2)) 793 type = PP_OD_EDIT_VDDC_CURVE; 794 else 795 return -EINVAL; 796 797 memcpy(buf_cpy, buf, count+1); 798 799 tmp_str = buf_cpy; 800 801 if (type == PP_OD_EDIT_VDDC_CURVE) 802 tmp_str++; 803 while (isspace(*++tmp_str)); 804 805 while (tmp_str[0]) { 806 sub_str = strsep(&tmp_str, delimiter); 807 ret = kstrtol(sub_str, 0, ¶meter[parameter_size]); 808 if (ret) 809 return -EINVAL; 810 parameter_size++; 811 812 while (isspace(*tmp_str)) 813 tmp_str++; 814 } 815 816 ret = pm_runtime_get_sync(ddev->dev); 817 if (ret < 0) { 818 pm_runtime_put_autosuspend(ddev->dev); 819 return ret; 820 } 821 822 if (is_support_sw_smu(adev)) { 823 ret = smu_od_edit_dpm_table(&adev->smu, type, 824 parameter, parameter_size); 825 826 if (ret) { 827 pm_runtime_mark_last_busy(ddev->dev); 828 pm_runtime_put_autosuspend(ddev->dev); 829 return -EINVAL; 830 } 831 } else { 832 833 if (adev->powerplay.pp_funcs->set_fine_grain_clk_vol) { 834 ret = amdgpu_dpm_set_fine_grain_clk_vol(adev, type, 835 parameter, 836 parameter_size); 837 if (ret) { 838 pm_runtime_mark_last_busy(ddev->dev); 839 pm_runtime_put_autosuspend(ddev->dev); 840 return -EINVAL; 841 } 842 } 843 844 if (adev->powerplay.pp_funcs->odn_edit_dpm_table) { 845 ret = amdgpu_dpm_odn_edit_dpm_table(adev, type, 846 parameter, parameter_size); 847 if (ret) { 848 pm_runtime_mark_last_busy(ddev->dev); 849 pm_runtime_put_autosuspend(ddev->dev); 850 return -EINVAL; 851 } 852 } 853 854 if (type == PP_OD_COMMIT_DPM_TABLE) { 855 if (adev->powerplay.pp_funcs->dispatch_tasks) { 856 amdgpu_dpm_dispatch_task(adev, 857 AMD_PP_TASK_READJUST_POWER_STATE, 858 NULL); 859 pm_runtime_mark_last_busy(ddev->dev); 860 pm_runtime_put_autosuspend(ddev->dev); 861 return count; 862 } else { 863 pm_runtime_mark_last_busy(ddev->dev); 864 pm_runtime_put_autosuspend(ddev->dev); 865 return -EINVAL; 866 } 867 } 868 } 869 pm_runtime_mark_last_busy(ddev->dev); 870 pm_runtime_put_autosuspend(ddev->dev); 871 872 return count; 873 } 874 875 static ssize_t amdgpu_get_pp_od_clk_voltage(struct device *dev, 876 struct device_attribute *attr, 877 char *buf) 878 { 879 struct drm_device *ddev = dev_get_drvdata(dev); 880 struct amdgpu_device *adev = drm_to_adev(ddev); 881 ssize_t size; 882 int ret; 883 884 if (amdgpu_in_reset(adev)) 885 return -EPERM; 886 887 ret = pm_runtime_get_sync(ddev->dev); 888 if (ret < 0) { 889 pm_runtime_put_autosuspend(ddev->dev); 890 return ret; 891 } 892 893 if (is_support_sw_smu(adev)) { 894 size = smu_print_clk_levels(&adev->smu, SMU_OD_SCLK, buf); 895 size += smu_print_clk_levels(&adev->smu, SMU_OD_MCLK, buf+size); 896 size += smu_print_clk_levels(&adev->smu, SMU_OD_VDDC_CURVE, buf+size); 897 size += smu_print_clk_levels(&adev->smu, SMU_OD_RANGE, buf+size); 898 } else if (adev->powerplay.pp_funcs->print_clock_levels) { 899 size = amdgpu_dpm_print_clock_levels(adev, OD_SCLK, buf); 900 size += amdgpu_dpm_print_clock_levels(adev, OD_MCLK, buf+size); 901 size += amdgpu_dpm_print_clock_levels(adev, OD_VDDC_CURVE, buf+size); 902 size += amdgpu_dpm_print_clock_levels(adev, OD_RANGE, buf+size); 903 } else { 904 size = snprintf(buf, PAGE_SIZE, "\n"); 905 } 906 pm_runtime_mark_last_busy(ddev->dev); 907 pm_runtime_put_autosuspend(ddev->dev); 908 909 return size; 910 } 911 912 /** 913 * DOC: pp_features 914 * 915 * The amdgpu driver provides a sysfs API for adjusting what powerplay 916 * features to be enabled. The file pp_features is used for this. And 917 * this is only available for Vega10 and later dGPUs. 918 * 919 * Reading back the file will show you the followings: 920 * - Current ppfeature masks 921 * - List of the all supported powerplay features with their naming, 922 * bitmasks and enablement status('Y'/'N' means "enabled"/"disabled"). 923 * 924 * To manually enable or disable a specific feature, just set or clear 925 * the corresponding bit from original ppfeature masks and input the 926 * new ppfeature masks. 927 */ 928 static ssize_t amdgpu_set_pp_features(struct device *dev, 929 struct device_attribute *attr, 930 const char *buf, 931 size_t count) 932 { 933 struct drm_device *ddev = dev_get_drvdata(dev); 934 struct amdgpu_device *adev = drm_to_adev(ddev); 935 uint64_t featuremask; 936 int ret; 937 938 if (amdgpu_in_reset(adev)) 939 return -EPERM; 940 941 ret = kstrtou64(buf, 0, &featuremask); 942 if (ret) 943 return -EINVAL; 944 945 pr_debug("featuremask = 0x%llx\n", featuremask); 946 947 ret = pm_runtime_get_sync(ddev->dev); 948 if (ret < 0) { 949 pm_runtime_put_autosuspend(ddev->dev); 950 return ret; 951 } 952 953 if (is_support_sw_smu(adev)) { 954 ret = smu_sys_set_pp_feature_mask(&adev->smu, featuremask); 955 if (ret) { 956 pm_runtime_mark_last_busy(ddev->dev); 957 pm_runtime_put_autosuspend(ddev->dev); 958 return -EINVAL; 959 } 960 } else if (adev->powerplay.pp_funcs->set_ppfeature_status) { 961 ret = amdgpu_dpm_set_ppfeature_status(adev, featuremask); 962 if (ret) { 963 pm_runtime_mark_last_busy(ddev->dev); 964 pm_runtime_put_autosuspend(ddev->dev); 965 return -EINVAL; 966 } 967 } 968 pm_runtime_mark_last_busy(ddev->dev); 969 pm_runtime_put_autosuspend(ddev->dev); 970 971 return count; 972 } 973 974 static ssize_t amdgpu_get_pp_features(struct device *dev, 975 struct device_attribute *attr, 976 char *buf) 977 { 978 struct drm_device *ddev = dev_get_drvdata(dev); 979 struct amdgpu_device *adev = drm_to_adev(ddev); 980 ssize_t size; 981 int ret; 982 983 if (amdgpu_in_reset(adev)) 984 return -EPERM; 985 986 ret = pm_runtime_get_sync(ddev->dev); 987 if (ret < 0) { 988 pm_runtime_put_autosuspend(ddev->dev); 989 return ret; 990 } 991 992 if (is_support_sw_smu(adev)) 993 size = smu_sys_get_pp_feature_mask(&adev->smu, buf); 994 else if (adev->powerplay.pp_funcs->get_ppfeature_status) 995 size = amdgpu_dpm_get_ppfeature_status(adev, buf); 996 else 997 size = snprintf(buf, PAGE_SIZE, "\n"); 998 999 pm_runtime_mark_last_busy(ddev->dev); 1000 pm_runtime_put_autosuspend(ddev->dev); 1001 1002 return size; 1003 } 1004 1005 /** 1006 * DOC: pp_dpm_sclk pp_dpm_mclk pp_dpm_socclk pp_dpm_fclk pp_dpm_dcefclk pp_dpm_pcie 1007 * 1008 * The amdgpu driver provides a sysfs API for adjusting what power levels 1009 * are enabled for a given power state. The files pp_dpm_sclk, pp_dpm_mclk, 1010 * pp_dpm_socclk, pp_dpm_fclk, pp_dpm_dcefclk and pp_dpm_pcie are used for 1011 * this. 1012 * 1013 * pp_dpm_socclk and pp_dpm_dcefclk interfaces are only available for 1014 * Vega10 and later ASICs. 1015 * pp_dpm_fclk interface is only available for Vega20 and later ASICs. 1016 * 1017 * Reading back the files will show you the available power levels within 1018 * the power state and the clock information for those levels. 1019 * 1020 * To manually adjust these states, first select manual using 1021 * power_dpm_force_performance_level. 1022 * Secondly, enter a new value for each level by inputing a string that 1023 * contains " echo xx xx xx > pp_dpm_sclk/mclk/pcie" 1024 * E.g., 1025 * 1026 * .. code-block:: bash 1027 * 1028 * echo "4 5 6" > pp_dpm_sclk 1029 * 1030 * will enable sclk levels 4, 5, and 6. 1031 * 1032 * NOTE: change to the dcefclk max dpm level is not supported now 1033 */ 1034 1035 static ssize_t amdgpu_get_pp_dpm_sclk(struct device *dev, 1036 struct device_attribute *attr, 1037 char *buf) 1038 { 1039 struct drm_device *ddev = dev_get_drvdata(dev); 1040 struct amdgpu_device *adev = drm_to_adev(ddev); 1041 ssize_t size; 1042 int ret; 1043 1044 if (amdgpu_in_reset(adev)) 1045 return -EPERM; 1046 1047 ret = pm_runtime_get_sync(ddev->dev); 1048 if (ret < 0) { 1049 pm_runtime_put_autosuspend(ddev->dev); 1050 return ret; 1051 } 1052 1053 if (is_support_sw_smu(adev)) 1054 size = smu_print_clk_levels(&adev->smu, SMU_SCLK, buf); 1055 else if (adev->powerplay.pp_funcs->print_clock_levels) 1056 size = amdgpu_dpm_print_clock_levels(adev, PP_SCLK, buf); 1057 else 1058 size = snprintf(buf, PAGE_SIZE, "\n"); 1059 1060 pm_runtime_mark_last_busy(ddev->dev); 1061 pm_runtime_put_autosuspend(ddev->dev); 1062 1063 return size; 1064 } 1065 1066 /* 1067 * Worst case: 32 bits individually specified, in octal at 12 characters 1068 * per line (+1 for \n). 1069 */ 1070 #define AMDGPU_MASK_BUF_MAX (32 * 13) 1071 1072 static ssize_t amdgpu_read_mask(const char *buf, size_t count, uint32_t *mask) 1073 { 1074 int ret; 1075 unsigned long level; 1076 char *sub_str = NULL; 1077 char *tmp; 1078 char buf_cpy[AMDGPU_MASK_BUF_MAX + 1]; 1079 const char delimiter[3] = {' ', '\n', '\0'}; 1080 size_t bytes; 1081 1082 *mask = 0; 1083 1084 bytes = min(count, sizeof(buf_cpy) - 1); 1085 memcpy(buf_cpy, buf, bytes); 1086 buf_cpy[bytes] = '\0'; 1087 tmp = buf_cpy; 1088 while (tmp[0]) { 1089 sub_str = strsep(&tmp, delimiter); 1090 if (strlen(sub_str)) { 1091 ret = kstrtoul(sub_str, 0, &level); 1092 if (ret || level > 31) 1093 return -EINVAL; 1094 *mask |= 1 << level; 1095 } else 1096 break; 1097 } 1098 1099 return 0; 1100 } 1101 1102 static ssize_t amdgpu_set_pp_dpm_sclk(struct device *dev, 1103 struct device_attribute *attr, 1104 const char *buf, 1105 size_t count) 1106 { 1107 struct drm_device *ddev = dev_get_drvdata(dev); 1108 struct amdgpu_device *adev = drm_to_adev(ddev); 1109 int ret; 1110 uint32_t mask = 0; 1111 1112 if (amdgpu_in_reset(adev)) 1113 return -EPERM; 1114 1115 ret = amdgpu_read_mask(buf, count, &mask); 1116 if (ret) 1117 return ret; 1118 1119 ret = pm_runtime_get_sync(ddev->dev); 1120 if (ret < 0) { 1121 pm_runtime_put_autosuspend(ddev->dev); 1122 return ret; 1123 } 1124 1125 if (is_support_sw_smu(adev)) 1126 ret = smu_force_clk_levels(&adev->smu, SMU_SCLK, mask); 1127 else if (adev->powerplay.pp_funcs->force_clock_level) 1128 ret = amdgpu_dpm_force_clock_level(adev, PP_SCLK, mask); 1129 1130 pm_runtime_mark_last_busy(ddev->dev); 1131 pm_runtime_put_autosuspend(ddev->dev); 1132 1133 if (ret) 1134 return -EINVAL; 1135 1136 return count; 1137 } 1138 1139 static ssize_t amdgpu_get_pp_dpm_mclk(struct device *dev, 1140 struct device_attribute *attr, 1141 char *buf) 1142 { 1143 struct drm_device *ddev = dev_get_drvdata(dev); 1144 struct amdgpu_device *adev = drm_to_adev(ddev); 1145 ssize_t size; 1146 int ret; 1147 1148 if (amdgpu_in_reset(adev)) 1149 return -EPERM; 1150 1151 ret = pm_runtime_get_sync(ddev->dev); 1152 if (ret < 0) { 1153 pm_runtime_put_autosuspend(ddev->dev); 1154 return ret; 1155 } 1156 1157 if (is_support_sw_smu(adev)) 1158 size = smu_print_clk_levels(&adev->smu, SMU_MCLK, buf); 1159 else if (adev->powerplay.pp_funcs->print_clock_levels) 1160 size = amdgpu_dpm_print_clock_levels(adev, PP_MCLK, buf); 1161 else 1162 size = snprintf(buf, PAGE_SIZE, "\n"); 1163 1164 pm_runtime_mark_last_busy(ddev->dev); 1165 pm_runtime_put_autosuspend(ddev->dev); 1166 1167 return size; 1168 } 1169 1170 static ssize_t amdgpu_set_pp_dpm_mclk(struct device *dev, 1171 struct device_attribute *attr, 1172 const char *buf, 1173 size_t count) 1174 { 1175 struct drm_device *ddev = dev_get_drvdata(dev); 1176 struct amdgpu_device *adev = drm_to_adev(ddev); 1177 uint32_t mask = 0; 1178 int ret; 1179 1180 if (amdgpu_in_reset(adev)) 1181 return -EPERM; 1182 1183 ret = amdgpu_read_mask(buf, count, &mask); 1184 if (ret) 1185 return ret; 1186 1187 ret = pm_runtime_get_sync(ddev->dev); 1188 if (ret < 0) { 1189 pm_runtime_put_autosuspend(ddev->dev); 1190 return ret; 1191 } 1192 1193 if (is_support_sw_smu(adev)) 1194 ret = smu_force_clk_levels(&adev->smu, SMU_MCLK, mask); 1195 else if (adev->powerplay.pp_funcs->force_clock_level) 1196 ret = amdgpu_dpm_force_clock_level(adev, PP_MCLK, mask); 1197 1198 pm_runtime_mark_last_busy(ddev->dev); 1199 pm_runtime_put_autosuspend(ddev->dev); 1200 1201 if (ret) 1202 return -EINVAL; 1203 1204 return count; 1205 } 1206 1207 static ssize_t amdgpu_get_pp_dpm_socclk(struct device *dev, 1208 struct device_attribute *attr, 1209 char *buf) 1210 { 1211 struct drm_device *ddev = dev_get_drvdata(dev); 1212 struct amdgpu_device *adev = drm_to_adev(ddev); 1213 ssize_t size; 1214 int ret; 1215 1216 if (amdgpu_in_reset(adev)) 1217 return -EPERM; 1218 1219 ret = pm_runtime_get_sync(ddev->dev); 1220 if (ret < 0) { 1221 pm_runtime_put_autosuspend(ddev->dev); 1222 return ret; 1223 } 1224 1225 if (is_support_sw_smu(adev)) 1226 size = smu_print_clk_levels(&adev->smu, SMU_SOCCLK, buf); 1227 else if (adev->powerplay.pp_funcs->print_clock_levels) 1228 size = amdgpu_dpm_print_clock_levels(adev, PP_SOCCLK, buf); 1229 else 1230 size = snprintf(buf, PAGE_SIZE, "\n"); 1231 1232 pm_runtime_mark_last_busy(ddev->dev); 1233 pm_runtime_put_autosuspend(ddev->dev); 1234 1235 return size; 1236 } 1237 1238 static ssize_t amdgpu_set_pp_dpm_socclk(struct device *dev, 1239 struct device_attribute *attr, 1240 const char *buf, 1241 size_t count) 1242 { 1243 struct drm_device *ddev = dev_get_drvdata(dev); 1244 struct amdgpu_device *adev = drm_to_adev(ddev); 1245 int ret; 1246 uint32_t mask = 0; 1247 1248 if (amdgpu_in_reset(adev)) 1249 return -EPERM; 1250 1251 ret = amdgpu_read_mask(buf, count, &mask); 1252 if (ret) 1253 return ret; 1254 1255 ret = pm_runtime_get_sync(ddev->dev); 1256 if (ret < 0) { 1257 pm_runtime_put_autosuspend(ddev->dev); 1258 return ret; 1259 } 1260 1261 if (is_support_sw_smu(adev)) 1262 ret = smu_force_clk_levels(&adev->smu, SMU_SOCCLK, mask); 1263 else if (adev->powerplay.pp_funcs->force_clock_level) 1264 ret = amdgpu_dpm_force_clock_level(adev, PP_SOCCLK, mask); 1265 else 1266 ret = 0; 1267 1268 pm_runtime_mark_last_busy(ddev->dev); 1269 pm_runtime_put_autosuspend(ddev->dev); 1270 1271 if (ret) 1272 return -EINVAL; 1273 1274 return count; 1275 } 1276 1277 static ssize_t amdgpu_get_pp_dpm_fclk(struct device *dev, 1278 struct device_attribute *attr, 1279 char *buf) 1280 { 1281 struct drm_device *ddev = dev_get_drvdata(dev); 1282 struct amdgpu_device *adev = drm_to_adev(ddev); 1283 ssize_t size; 1284 int ret; 1285 1286 if (amdgpu_in_reset(adev)) 1287 return -EPERM; 1288 1289 ret = pm_runtime_get_sync(ddev->dev); 1290 if (ret < 0) { 1291 pm_runtime_put_autosuspend(ddev->dev); 1292 return ret; 1293 } 1294 1295 if (is_support_sw_smu(adev)) 1296 size = smu_print_clk_levels(&adev->smu, SMU_FCLK, buf); 1297 else if (adev->powerplay.pp_funcs->print_clock_levels) 1298 size = amdgpu_dpm_print_clock_levels(adev, PP_FCLK, buf); 1299 else 1300 size = snprintf(buf, PAGE_SIZE, "\n"); 1301 1302 pm_runtime_mark_last_busy(ddev->dev); 1303 pm_runtime_put_autosuspend(ddev->dev); 1304 1305 return size; 1306 } 1307 1308 static ssize_t amdgpu_set_pp_dpm_fclk(struct device *dev, 1309 struct device_attribute *attr, 1310 const char *buf, 1311 size_t count) 1312 { 1313 struct drm_device *ddev = dev_get_drvdata(dev); 1314 struct amdgpu_device *adev = drm_to_adev(ddev); 1315 int ret; 1316 uint32_t mask = 0; 1317 1318 if (amdgpu_in_reset(adev)) 1319 return -EPERM; 1320 1321 ret = amdgpu_read_mask(buf, count, &mask); 1322 if (ret) 1323 return ret; 1324 1325 ret = pm_runtime_get_sync(ddev->dev); 1326 if (ret < 0) { 1327 pm_runtime_put_autosuspend(ddev->dev); 1328 return ret; 1329 } 1330 1331 if (is_support_sw_smu(adev)) 1332 ret = smu_force_clk_levels(&adev->smu, SMU_FCLK, mask); 1333 else if (adev->powerplay.pp_funcs->force_clock_level) 1334 ret = amdgpu_dpm_force_clock_level(adev, PP_FCLK, mask); 1335 else 1336 ret = 0; 1337 1338 pm_runtime_mark_last_busy(ddev->dev); 1339 pm_runtime_put_autosuspend(ddev->dev); 1340 1341 if (ret) 1342 return -EINVAL; 1343 1344 return count; 1345 } 1346 1347 static ssize_t amdgpu_get_pp_dpm_dcefclk(struct device *dev, 1348 struct device_attribute *attr, 1349 char *buf) 1350 { 1351 struct drm_device *ddev = dev_get_drvdata(dev); 1352 struct amdgpu_device *adev = drm_to_adev(ddev); 1353 ssize_t size; 1354 int ret; 1355 1356 if (amdgpu_in_reset(adev)) 1357 return -EPERM; 1358 1359 ret = pm_runtime_get_sync(ddev->dev); 1360 if (ret < 0) { 1361 pm_runtime_put_autosuspend(ddev->dev); 1362 return ret; 1363 } 1364 1365 if (is_support_sw_smu(adev)) 1366 size = smu_print_clk_levels(&adev->smu, SMU_DCEFCLK, buf); 1367 else if (adev->powerplay.pp_funcs->print_clock_levels) 1368 size = amdgpu_dpm_print_clock_levels(adev, PP_DCEFCLK, buf); 1369 else 1370 size = snprintf(buf, PAGE_SIZE, "\n"); 1371 1372 pm_runtime_mark_last_busy(ddev->dev); 1373 pm_runtime_put_autosuspend(ddev->dev); 1374 1375 return size; 1376 } 1377 1378 static ssize_t amdgpu_set_pp_dpm_dcefclk(struct device *dev, 1379 struct device_attribute *attr, 1380 const char *buf, 1381 size_t count) 1382 { 1383 struct drm_device *ddev = dev_get_drvdata(dev); 1384 struct amdgpu_device *adev = drm_to_adev(ddev); 1385 int ret; 1386 uint32_t mask = 0; 1387 1388 if (amdgpu_in_reset(adev)) 1389 return -EPERM; 1390 1391 ret = amdgpu_read_mask(buf, count, &mask); 1392 if (ret) 1393 return ret; 1394 1395 ret = pm_runtime_get_sync(ddev->dev); 1396 if (ret < 0) { 1397 pm_runtime_put_autosuspend(ddev->dev); 1398 return ret; 1399 } 1400 1401 if (is_support_sw_smu(adev)) 1402 ret = smu_force_clk_levels(&adev->smu, SMU_DCEFCLK, mask); 1403 else if (adev->powerplay.pp_funcs->force_clock_level) 1404 ret = amdgpu_dpm_force_clock_level(adev, PP_DCEFCLK, mask); 1405 else 1406 ret = 0; 1407 1408 pm_runtime_mark_last_busy(ddev->dev); 1409 pm_runtime_put_autosuspend(ddev->dev); 1410 1411 if (ret) 1412 return -EINVAL; 1413 1414 return count; 1415 } 1416 1417 static ssize_t amdgpu_get_pp_dpm_pcie(struct device *dev, 1418 struct device_attribute *attr, 1419 char *buf) 1420 { 1421 struct drm_device *ddev = dev_get_drvdata(dev); 1422 struct amdgpu_device *adev = drm_to_adev(ddev); 1423 ssize_t size; 1424 int ret; 1425 1426 if (amdgpu_in_reset(adev)) 1427 return -EPERM; 1428 1429 ret = pm_runtime_get_sync(ddev->dev); 1430 if (ret < 0) { 1431 pm_runtime_put_autosuspend(ddev->dev); 1432 return ret; 1433 } 1434 1435 if (is_support_sw_smu(adev)) 1436 size = smu_print_clk_levels(&adev->smu, SMU_PCIE, buf); 1437 else if (adev->powerplay.pp_funcs->print_clock_levels) 1438 size = amdgpu_dpm_print_clock_levels(adev, PP_PCIE, buf); 1439 else 1440 size = snprintf(buf, PAGE_SIZE, "\n"); 1441 1442 pm_runtime_mark_last_busy(ddev->dev); 1443 pm_runtime_put_autosuspend(ddev->dev); 1444 1445 return size; 1446 } 1447 1448 static ssize_t amdgpu_set_pp_dpm_pcie(struct device *dev, 1449 struct device_attribute *attr, 1450 const char *buf, 1451 size_t count) 1452 { 1453 struct drm_device *ddev = dev_get_drvdata(dev); 1454 struct amdgpu_device *adev = drm_to_adev(ddev); 1455 int ret; 1456 uint32_t mask = 0; 1457 1458 if (amdgpu_in_reset(adev)) 1459 return -EPERM; 1460 1461 ret = amdgpu_read_mask(buf, count, &mask); 1462 if (ret) 1463 return ret; 1464 1465 ret = pm_runtime_get_sync(ddev->dev); 1466 if (ret < 0) { 1467 pm_runtime_put_autosuspend(ddev->dev); 1468 return ret; 1469 } 1470 1471 if (is_support_sw_smu(adev)) 1472 ret = smu_force_clk_levels(&adev->smu, SMU_PCIE, mask); 1473 else if (adev->powerplay.pp_funcs->force_clock_level) 1474 ret = amdgpu_dpm_force_clock_level(adev, PP_PCIE, mask); 1475 else 1476 ret = 0; 1477 1478 pm_runtime_mark_last_busy(ddev->dev); 1479 pm_runtime_put_autosuspend(ddev->dev); 1480 1481 if (ret) 1482 return -EINVAL; 1483 1484 return count; 1485 } 1486 1487 static ssize_t amdgpu_get_pp_sclk_od(struct device *dev, 1488 struct device_attribute *attr, 1489 char *buf) 1490 { 1491 struct drm_device *ddev = dev_get_drvdata(dev); 1492 struct amdgpu_device *adev = drm_to_adev(ddev); 1493 uint32_t value = 0; 1494 int ret; 1495 1496 if (amdgpu_in_reset(adev)) 1497 return -EPERM; 1498 1499 ret = pm_runtime_get_sync(ddev->dev); 1500 if (ret < 0) { 1501 pm_runtime_put_autosuspend(ddev->dev); 1502 return ret; 1503 } 1504 1505 if (is_support_sw_smu(adev)) 1506 value = smu_get_od_percentage(&(adev->smu), SMU_OD_SCLK); 1507 else if (adev->powerplay.pp_funcs->get_sclk_od) 1508 value = amdgpu_dpm_get_sclk_od(adev); 1509 1510 pm_runtime_mark_last_busy(ddev->dev); 1511 pm_runtime_put_autosuspend(ddev->dev); 1512 1513 return snprintf(buf, PAGE_SIZE, "%d\n", value); 1514 } 1515 1516 static ssize_t amdgpu_set_pp_sclk_od(struct device *dev, 1517 struct device_attribute *attr, 1518 const char *buf, 1519 size_t count) 1520 { 1521 struct drm_device *ddev = dev_get_drvdata(dev); 1522 struct amdgpu_device *adev = drm_to_adev(ddev); 1523 int ret; 1524 long int value; 1525 1526 if (amdgpu_in_reset(adev)) 1527 return -EPERM; 1528 1529 ret = kstrtol(buf, 0, &value); 1530 1531 if (ret) 1532 return -EINVAL; 1533 1534 ret = pm_runtime_get_sync(ddev->dev); 1535 if (ret < 0) { 1536 pm_runtime_put_autosuspend(ddev->dev); 1537 return ret; 1538 } 1539 1540 if (is_support_sw_smu(adev)) { 1541 value = smu_set_od_percentage(&(adev->smu), SMU_OD_SCLK, (uint32_t)value); 1542 } else { 1543 if (adev->powerplay.pp_funcs->set_sclk_od) 1544 amdgpu_dpm_set_sclk_od(adev, (uint32_t)value); 1545 1546 if (adev->powerplay.pp_funcs->dispatch_tasks) { 1547 amdgpu_dpm_dispatch_task(adev, AMD_PP_TASK_READJUST_POWER_STATE, NULL); 1548 } else { 1549 adev->pm.dpm.current_ps = adev->pm.dpm.boot_ps; 1550 amdgpu_pm_compute_clocks(adev); 1551 } 1552 } 1553 1554 pm_runtime_mark_last_busy(ddev->dev); 1555 pm_runtime_put_autosuspend(ddev->dev); 1556 1557 return count; 1558 } 1559 1560 static ssize_t amdgpu_get_pp_mclk_od(struct device *dev, 1561 struct device_attribute *attr, 1562 char *buf) 1563 { 1564 struct drm_device *ddev = dev_get_drvdata(dev); 1565 struct amdgpu_device *adev = drm_to_adev(ddev); 1566 uint32_t value = 0; 1567 int ret; 1568 1569 if (amdgpu_in_reset(adev)) 1570 return -EPERM; 1571 1572 ret = pm_runtime_get_sync(ddev->dev); 1573 if (ret < 0) { 1574 pm_runtime_put_autosuspend(ddev->dev); 1575 return ret; 1576 } 1577 1578 if (is_support_sw_smu(adev)) 1579 value = smu_get_od_percentage(&(adev->smu), SMU_OD_MCLK); 1580 else if (adev->powerplay.pp_funcs->get_mclk_od) 1581 value = amdgpu_dpm_get_mclk_od(adev); 1582 1583 pm_runtime_mark_last_busy(ddev->dev); 1584 pm_runtime_put_autosuspend(ddev->dev); 1585 1586 return snprintf(buf, PAGE_SIZE, "%d\n", value); 1587 } 1588 1589 static ssize_t amdgpu_set_pp_mclk_od(struct device *dev, 1590 struct device_attribute *attr, 1591 const char *buf, 1592 size_t count) 1593 { 1594 struct drm_device *ddev = dev_get_drvdata(dev); 1595 struct amdgpu_device *adev = drm_to_adev(ddev); 1596 int ret; 1597 long int value; 1598 1599 if (amdgpu_in_reset(adev)) 1600 return -EPERM; 1601 1602 ret = kstrtol(buf, 0, &value); 1603 1604 if (ret) 1605 return -EINVAL; 1606 1607 ret = pm_runtime_get_sync(ddev->dev); 1608 if (ret < 0) { 1609 pm_runtime_put_autosuspend(ddev->dev); 1610 return ret; 1611 } 1612 1613 if (is_support_sw_smu(adev)) { 1614 value = smu_set_od_percentage(&(adev->smu), SMU_OD_MCLK, (uint32_t)value); 1615 } else { 1616 if (adev->powerplay.pp_funcs->set_mclk_od) 1617 amdgpu_dpm_set_mclk_od(adev, (uint32_t)value); 1618 1619 if (adev->powerplay.pp_funcs->dispatch_tasks) { 1620 amdgpu_dpm_dispatch_task(adev, AMD_PP_TASK_READJUST_POWER_STATE, NULL); 1621 } else { 1622 adev->pm.dpm.current_ps = adev->pm.dpm.boot_ps; 1623 amdgpu_pm_compute_clocks(adev); 1624 } 1625 } 1626 1627 pm_runtime_mark_last_busy(ddev->dev); 1628 pm_runtime_put_autosuspend(ddev->dev); 1629 1630 return count; 1631 } 1632 1633 /** 1634 * DOC: pp_power_profile_mode 1635 * 1636 * The amdgpu driver provides a sysfs API for adjusting the heuristics 1637 * related to switching between power levels in a power state. The file 1638 * pp_power_profile_mode is used for this. 1639 * 1640 * Reading this file outputs a list of all of the predefined power profiles 1641 * and the relevant heuristics settings for that profile. 1642 * 1643 * To select a profile or create a custom profile, first select manual using 1644 * power_dpm_force_performance_level. Writing the number of a predefined 1645 * profile to pp_power_profile_mode will enable those heuristics. To 1646 * create a custom set of heuristics, write a string of numbers to the file 1647 * starting with the number of the custom profile along with a setting 1648 * for each heuristic parameter. Due to differences across asic families 1649 * the heuristic parameters vary from family to family. 1650 * 1651 */ 1652 1653 static ssize_t amdgpu_get_pp_power_profile_mode(struct device *dev, 1654 struct device_attribute *attr, 1655 char *buf) 1656 { 1657 struct drm_device *ddev = dev_get_drvdata(dev); 1658 struct amdgpu_device *adev = drm_to_adev(ddev); 1659 ssize_t size; 1660 int ret; 1661 1662 if (amdgpu_in_reset(adev)) 1663 return -EPERM; 1664 1665 ret = pm_runtime_get_sync(ddev->dev); 1666 if (ret < 0) { 1667 pm_runtime_put_autosuspend(ddev->dev); 1668 return ret; 1669 } 1670 1671 if (is_support_sw_smu(adev)) 1672 size = smu_get_power_profile_mode(&adev->smu, buf); 1673 else if (adev->powerplay.pp_funcs->get_power_profile_mode) 1674 size = amdgpu_dpm_get_power_profile_mode(adev, buf); 1675 else 1676 size = snprintf(buf, PAGE_SIZE, "\n"); 1677 1678 pm_runtime_mark_last_busy(ddev->dev); 1679 pm_runtime_put_autosuspend(ddev->dev); 1680 1681 return size; 1682 } 1683 1684 1685 static ssize_t amdgpu_set_pp_power_profile_mode(struct device *dev, 1686 struct device_attribute *attr, 1687 const char *buf, 1688 size_t count) 1689 { 1690 int ret; 1691 struct drm_device *ddev = dev_get_drvdata(dev); 1692 struct amdgpu_device *adev = drm_to_adev(ddev); 1693 uint32_t parameter_size = 0; 1694 long parameter[64]; 1695 char *sub_str, buf_cpy[128]; 1696 char *tmp_str; 1697 uint32_t i = 0; 1698 char tmp[2]; 1699 long int profile_mode = 0; 1700 const char delimiter[3] = {' ', '\n', '\0'}; 1701 1702 if (amdgpu_in_reset(adev)) 1703 return -EPERM; 1704 1705 tmp[0] = *(buf); 1706 tmp[1] = '\0'; 1707 ret = kstrtol(tmp, 0, &profile_mode); 1708 if (ret) 1709 return -EINVAL; 1710 1711 if (profile_mode == PP_SMC_POWER_PROFILE_CUSTOM) { 1712 if (count < 2 || count > 127) 1713 return -EINVAL; 1714 while (isspace(*++buf)) 1715 i++; 1716 memcpy(buf_cpy, buf, count-i); 1717 tmp_str = buf_cpy; 1718 while (tmp_str[0]) { 1719 sub_str = strsep(&tmp_str, delimiter); 1720 ret = kstrtol(sub_str, 0, ¶meter[parameter_size]); 1721 if (ret) 1722 return -EINVAL; 1723 parameter_size++; 1724 while (isspace(*tmp_str)) 1725 tmp_str++; 1726 } 1727 } 1728 parameter[parameter_size] = profile_mode; 1729 1730 ret = pm_runtime_get_sync(ddev->dev); 1731 if (ret < 0) { 1732 pm_runtime_put_autosuspend(ddev->dev); 1733 return ret; 1734 } 1735 1736 if (is_support_sw_smu(adev)) 1737 ret = smu_set_power_profile_mode(&adev->smu, parameter, parameter_size, true); 1738 else if (adev->powerplay.pp_funcs->set_power_profile_mode) 1739 ret = amdgpu_dpm_set_power_profile_mode(adev, parameter, parameter_size); 1740 1741 pm_runtime_mark_last_busy(ddev->dev); 1742 pm_runtime_put_autosuspend(ddev->dev); 1743 1744 if (!ret) 1745 return count; 1746 1747 return -EINVAL; 1748 } 1749 1750 /** 1751 * DOC: gpu_busy_percent 1752 * 1753 * The amdgpu driver provides a sysfs API for reading how busy the GPU 1754 * is as a percentage. The file gpu_busy_percent is used for this. 1755 * The SMU firmware computes a percentage of load based on the 1756 * aggregate activity level in the IP cores. 1757 */ 1758 static ssize_t amdgpu_get_gpu_busy_percent(struct device *dev, 1759 struct device_attribute *attr, 1760 char *buf) 1761 { 1762 struct drm_device *ddev = dev_get_drvdata(dev); 1763 struct amdgpu_device *adev = drm_to_adev(ddev); 1764 int r, value, size = sizeof(value); 1765 1766 if (amdgpu_in_reset(adev)) 1767 return -EPERM; 1768 1769 r = pm_runtime_get_sync(ddev->dev); 1770 if (r < 0) { 1771 pm_runtime_put_autosuspend(ddev->dev); 1772 return r; 1773 } 1774 1775 /* read the IP busy sensor */ 1776 r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GPU_LOAD, 1777 (void *)&value, &size); 1778 1779 pm_runtime_mark_last_busy(ddev->dev); 1780 pm_runtime_put_autosuspend(ddev->dev); 1781 1782 if (r) 1783 return r; 1784 1785 return snprintf(buf, PAGE_SIZE, "%d\n", value); 1786 } 1787 1788 /** 1789 * DOC: mem_busy_percent 1790 * 1791 * The amdgpu driver provides a sysfs API for reading how busy the VRAM 1792 * is as a percentage. The file mem_busy_percent is used for this. 1793 * The SMU firmware computes a percentage of load based on the 1794 * aggregate activity level in the IP cores. 1795 */ 1796 static ssize_t amdgpu_get_mem_busy_percent(struct device *dev, 1797 struct device_attribute *attr, 1798 char *buf) 1799 { 1800 struct drm_device *ddev = dev_get_drvdata(dev); 1801 struct amdgpu_device *adev = drm_to_adev(ddev); 1802 int r, value, size = sizeof(value); 1803 1804 if (amdgpu_in_reset(adev)) 1805 return -EPERM; 1806 1807 r = pm_runtime_get_sync(ddev->dev); 1808 if (r < 0) { 1809 pm_runtime_put_autosuspend(ddev->dev); 1810 return r; 1811 } 1812 1813 /* read the IP busy sensor */ 1814 r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_MEM_LOAD, 1815 (void *)&value, &size); 1816 1817 pm_runtime_mark_last_busy(ddev->dev); 1818 pm_runtime_put_autosuspend(ddev->dev); 1819 1820 if (r) 1821 return r; 1822 1823 return snprintf(buf, PAGE_SIZE, "%d\n", value); 1824 } 1825 1826 /** 1827 * DOC: pcie_bw 1828 * 1829 * The amdgpu driver provides a sysfs API for estimating how much data 1830 * has been received and sent by the GPU in the last second through PCIe. 1831 * The file pcie_bw is used for this. 1832 * The Perf counters count the number of received and sent messages and return 1833 * those values, as well as the maximum payload size of a PCIe packet (mps). 1834 * Note that it is not possible to easily and quickly obtain the size of each 1835 * packet transmitted, so we output the max payload size (mps) to allow for 1836 * quick estimation of the PCIe bandwidth usage 1837 */ 1838 static ssize_t amdgpu_get_pcie_bw(struct device *dev, 1839 struct device_attribute *attr, 1840 char *buf) 1841 { 1842 struct drm_device *ddev = dev_get_drvdata(dev); 1843 struct amdgpu_device *adev = drm_to_adev(ddev); 1844 uint64_t count0 = 0, count1 = 0; 1845 int ret; 1846 1847 if (amdgpu_in_reset(adev)) 1848 return -EPERM; 1849 1850 if (adev->flags & AMD_IS_APU) 1851 return -ENODATA; 1852 1853 if (!adev->asic_funcs->get_pcie_usage) 1854 return -ENODATA; 1855 1856 ret = pm_runtime_get_sync(ddev->dev); 1857 if (ret < 0) { 1858 pm_runtime_put_autosuspend(ddev->dev); 1859 return ret; 1860 } 1861 1862 amdgpu_asic_get_pcie_usage(adev, &count0, &count1); 1863 1864 pm_runtime_mark_last_busy(ddev->dev); 1865 pm_runtime_put_autosuspend(ddev->dev); 1866 1867 return snprintf(buf, PAGE_SIZE, "%llu %llu %i\n", 1868 count0, count1, pcie_get_mps(adev->pdev)); 1869 } 1870 1871 /** 1872 * DOC: unique_id 1873 * 1874 * The amdgpu driver provides a sysfs API for providing a unique ID for the GPU 1875 * The file unique_id is used for this. 1876 * This will provide a Unique ID that will persist from machine to machine 1877 * 1878 * NOTE: This will only work for GFX9 and newer. This file will be absent 1879 * on unsupported ASICs (GFX8 and older) 1880 */ 1881 static ssize_t amdgpu_get_unique_id(struct device *dev, 1882 struct device_attribute *attr, 1883 char *buf) 1884 { 1885 struct drm_device *ddev = dev_get_drvdata(dev); 1886 struct amdgpu_device *adev = drm_to_adev(ddev); 1887 1888 if (amdgpu_in_reset(adev)) 1889 return -EPERM; 1890 1891 if (adev->unique_id) 1892 return snprintf(buf, PAGE_SIZE, "%016llx\n", adev->unique_id); 1893 1894 return 0; 1895 } 1896 1897 /** 1898 * DOC: thermal_throttling_logging 1899 * 1900 * Thermal throttling pulls down the clock frequency and thus the performance. 1901 * It's an useful mechanism to protect the chip from overheating. Since it 1902 * impacts performance, the user controls whether it is enabled and if so, 1903 * the log frequency. 1904 * 1905 * Reading back the file shows you the status(enabled or disabled) and 1906 * the interval(in seconds) between each thermal logging. 1907 * 1908 * Writing an integer to the file, sets a new logging interval, in seconds. 1909 * The value should be between 1 and 3600. If the value is less than 1, 1910 * thermal logging is disabled. Values greater than 3600 are ignored. 1911 */ 1912 static ssize_t amdgpu_get_thermal_throttling_logging(struct device *dev, 1913 struct device_attribute *attr, 1914 char *buf) 1915 { 1916 struct drm_device *ddev = dev_get_drvdata(dev); 1917 struct amdgpu_device *adev = drm_to_adev(ddev); 1918 1919 return snprintf(buf, PAGE_SIZE, "%s: thermal throttling logging %s, with interval %d seconds\n", 1920 adev_to_drm(adev)->unique, 1921 atomic_read(&adev->throttling_logging_enabled) ? "enabled" : "disabled", 1922 adev->throttling_logging_rs.interval / HZ + 1); 1923 } 1924 1925 static ssize_t amdgpu_set_thermal_throttling_logging(struct device *dev, 1926 struct device_attribute *attr, 1927 const char *buf, 1928 size_t count) 1929 { 1930 struct drm_device *ddev = dev_get_drvdata(dev); 1931 struct amdgpu_device *adev = drm_to_adev(ddev); 1932 long throttling_logging_interval; 1933 unsigned long flags; 1934 int ret = 0; 1935 1936 ret = kstrtol(buf, 0, &throttling_logging_interval); 1937 if (ret) 1938 return ret; 1939 1940 if (throttling_logging_interval > 3600) 1941 return -EINVAL; 1942 1943 if (throttling_logging_interval > 0) { 1944 raw_spin_lock_irqsave(&adev->throttling_logging_rs.lock, flags); 1945 /* 1946 * Reset the ratelimit timer internals. 1947 * This can effectively restart the timer. 1948 */ 1949 adev->throttling_logging_rs.interval = 1950 (throttling_logging_interval - 1) * HZ; 1951 adev->throttling_logging_rs.begin = 0; 1952 adev->throttling_logging_rs.printed = 0; 1953 adev->throttling_logging_rs.missed = 0; 1954 raw_spin_unlock_irqrestore(&adev->throttling_logging_rs.lock, flags); 1955 1956 atomic_set(&adev->throttling_logging_enabled, 1); 1957 } else { 1958 atomic_set(&adev->throttling_logging_enabled, 0); 1959 } 1960 1961 return count; 1962 } 1963 1964 /** 1965 * DOC: gpu_metrics 1966 * 1967 * The amdgpu driver provides a sysfs API for retrieving current gpu 1968 * metrics data. The file gpu_metrics is used for this. Reading the 1969 * file will dump all the current gpu metrics data. 1970 * 1971 * These data include temperature, frequency, engines utilization, 1972 * power consume, throttler status, fan speed and cpu core statistics( 1973 * available for APU only). That's it will give a snapshot of all sensors 1974 * at the same time. 1975 */ 1976 static ssize_t amdgpu_get_gpu_metrics(struct device *dev, 1977 struct device_attribute *attr, 1978 char *buf) 1979 { 1980 struct drm_device *ddev = dev_get_drvdata(dev); 1981 struct amdgpu_device *adev = drm_to_adev(ddev); 1982 void *gpu_metrics; 1983 ssize_t size = 0; 1984 int ret; 1985 1986 if (amdgpu_in_reset(adev)) 1987 return -EPERM; 1988 1989 ret = pm_runtime_get_sync(ddev->dev); 1990 if (ret < 0) { 1991 pm_runtime_put_autosuspend(ddev->dev); 1992 return ret; 1993 } 1994 1995 if (is_support_sw_smu(adev)) 1996 size = smu_sys_get_gpu_metrics(&adev->smu, &gpu_metrics); 1997 else if (adev->powerplay.pp_funcs->get_gpu_metrics) 1998 size = amdgpu_dpm_get_gpu_metrics(adev, &gpu_metrics); 1999 2000 if (size <= 0) 2001 goto out; 2002 2003 if (size >= PAGE_SIZE) 2004 size = PAGE_SIZE - 1; 2005 2006 memcpy(buf, gpu_metrics, size); 2007 2008 out: 2009 pm_runtime_mark_last_busy(ddev->dev); 2010 pm_runtime_put_autosuspend(ddev->dev); 2011 2012 return size; 2013 } 2014 2015 static struct amdgpu_device_attr amdgpu_device_attrs[] = { 2016 AMDGPU_DEVICE_ATTR_RW(power_dpm_state, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), 2017 AMDGPU_DEVICE_ATTR_RW(power_dpm_force_performance_level, ATTR_FLAG_BASIC), 2018 AMDGPU_DEVICE_ATTR_RO(pp_num_states, ATTR_FLAG_BASIC), 2019 AMDGPU_DEVICE_ATTR_RO(pp_cur_state, ATTR_FLAG_BASIC), 2020 AMDGPU_DEVICE_ATTR_RW(pp_force_state, ATTR_FLAG_BASIC), 2021 AMDGPU_DEVICE_ATTR_RW(pp_table, ATTR_FLAG_BASIC), 2022 AMDGPU_DEVICE_ATTR_RW(pp_dpm_sclk, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), 2023 AMDGPU_DEVICE_ATTR_RW(pp_dpm_mclk, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), 2024 AMDGPU_DEVICE_ATTR_RW(pp_dpm_socclk, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), 2025 AMDGPU_DEVICE_ATTR_RW(pp_dpm_fclk, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), 2026 AMDGPU_DEVICE_ATTR_RW(pp_dpm_dcefclk, ATTR_FLAG_BASIC), 2027 AMDGPU_DEVICE_ATTR_RW(pp_dpm_pcie, ATTR_FLAG_BASIC), 2028 AMDGPU_DEVICE_ATTR_RW(pp_sclk_od, ATTR_FLAG_BASIC), 2029 AMDGPU_DEVICE_ATTR_RW(pp_mclk_od, ATTR_FLAG_BASIC), 2030 AMDGPU_DEVICE_ATTR_RW(pp_power_profile_mode, ATTR_FLAG_BASIC), 2031 AMDGPU_DEVICE_ATTR_RW(pp_od_clk_voltage, ATTR_FLAG_BASIC), 2032 AMDGPU_DEVICE_ATTR_RO(gpu_busy_percent, ATTR_FLAG_BASIC), 2033 AMDGPU_DEVICE_ATTR_RO(mem_busy_percent, ATTR_FLAG_BASIC), 2034 AMDGPU_DEVICE_ATTR_RO(pcie_bw, ATTR_FLAG_BASIC), 2035 AMDGPU_DEVICE_ATTR_RW(pp_features, ATTR_FLAG_BASIC), 2036 AMDGPU_DEVICE_ATTR_RO(unique_id, ATTR_FLAG_BASIC), 2037 AMDGPU_DEVICE_ATTR_RW(thermal_throttling_logging, ATTR_FLAG_BASIC), 2038 AMDGPU_DEVICE_ATTR_RO(gpu_metrics, ATTR_FLAG_BASIC), 2039 }; 2040 2041 static int default_attr_update(struct amdgpu_device *adev, struct amdgpu_device_attr *attr, 2042 uint32_t mask, enum amdgpu_device_attr_states *states) 2043 { 2044 struct device_attribute *dev_attr = &attr->dev_attr; 2045 const char *attr_name = dev_attr->attr.name; 2046 struct pp_hwmgr *hwmgr = adev->powerplay.pp_handle; 2047 enum amd_asic_type asic_type = adev->asic_type; 2048 2049 if (!(attr->flags & mask)) { 2050 *states = ATTR_STATE_UNSUPPORTED; 2051 return 0; 2052 } 2053 2054 #define DEVICE_ATTR_IS(_name) (!strcmp(attr_name, #_name)) 2055 2056 if (DEVICE_ATTR_IS(pp_dpm_socclk)) { 2057 if (asic_type < CHIP_VEGA10) 2058 *states = ATTR_STATE_UNSUPPORTED; 2059 } else if (DEVICE_ATTR_IS(pp_dpm_dcefclk)) { 2060 if (asic_type < CHIP_VEGA10 || asic_type == CHIP_ARCTURUS) 2061 *states = ATTR_STATE_UNSUPPORTED; 2062 } else if (DEVICE_ATTR_IS(pp_dpm_fclk)) { 2063 if (asic_type < CHIP_VEGA20) 2064 *states = ATTR_STATE_UNSUPPORTED; 2065 } else if (DEVICE_ATTR_IS(pp_dpm_pcie)) { 2066 if (asic_type == CHIP_ARCTURUS) 2067 *states = ATTR_STATE_UNSUPPORTED; 2068 } else if (DEVICE_ATTR_IS(pp_od_clk_voltage)) { 2069 *states = ATTR_STATE_UNSUPPORTED; 2070 if ((is_support_sw_smu(adev) && adev->smu.od_enabled) || 2071 (!is_support_sw_smu(adev) && hwmgr->od_enabled)) 2072 *states = ATTR_STATE_SUPPORTED; 2073 } else if (DEVICE_ATTR_IS(mem_busy_percent)) { 2074 if (adev->flags & AMD_IS_APU || asic_type == CHIP_VEGA10) 2075 *states = ATTR_STATE_UNSUPPORTED; 2076 } else if (DEVICE_ATTR_IS(pcie_bw)) { 2077 /* PCIe Perf counters won't work on APU nodes */ 2078 if (adev->flags & AMD_IS_APU) 2079 *states = ATTR_STATE_UNSUPPORTED; 2080 } else if (DEVICE_ATTR_IS(unique_id)) { 2081 if (asic_type != CHIP_VEGA10 && 2082 asic_type != CHIP_VEGA20 && 2083 asic_type != CHIP_ARCTURUS) 2084 *states = ATTR_STATE_UNSUPPORTED; 2085 } else if (DEVICE_ATTR_IS(pp_features)) { 2086 if (adev->flags & AMD_IS_APU || asic_type < CHIP_VEGA10) 2087 *states = ATTR_STATE_UNSUPPORTED; 2088 } else if (DEVICE_ATTR_IS(gpu_metrics)) { 2089 if (asic_type < CHIP_VEGA12) 2090 *states = ATTR_STATE_UNSUPPORTED; 2091 } 2092 2093 if (asic_type == CHIP_ARCTURUS) { 2094 /* Arcturus does not support standalone mclk/socclk/fclk level setting */ 2095 if (DEVICE_ATTR_IS(pp_dpm_mclk) || 2096 DEVICE_ATTR_IS(pp_dpm_socclk) || 2097 DEVICE_ATTR_IS(pp_dpm_fclk)) { 2098 dev_attr->attr.mode &= ~S_IWUGO; 2099 dev_attr->store = NULL; 2100 } 2101 } 2102 2103 #undef DEVICE_ATTR_IS 2104 2105 return 0; 2106 } 2107 2108 2109 static int amdgpu_device_attr_create(struct amdgpu_device *adev, 2110 struct amdgpu_device_attr *attr, 2111 uint32_t mask, struct list_head *attr_list) 2112 { 2113 int ret = 0; 2114 struct device_attribute *dev_attr = &attr->dev_attr; 2115 const char *name = dev_attr->attr.name; 2116 enum amdgpu_device_attr_states attr_states = ATTR_STATE_SUPPORTED; 2117 struct amdgpu_device_attr_entry *attr_entry; 2118 2119 int (*attr_update)(struct amdgpu_device *adev, struct amdgpu_device_attr *attr, 2120 uint32_t mask, enum amdgpu_device_attr_states *states) = default_attr_update; 2121 2122 BUG_ON(!attr); 2123 2124 attr_update = attr->attr_update ? attr_update : default_attr_update; 2125 2126 ret = attr_update(adev, attr, mask, &attr_states); 2127 if (ret) { 2128 dev_err(adev->dev, "failed to update device file %s, ret = %d\n", 2129 name, ret); 2130 return ret; 2131 } 2132 2133 if (attr_states == ATTR_STATE_UNSUPPORTED) 2134 return 0; 2135 2136 ret = device_create_file(adev->dev, dev_attr); 2137 if (ret) { 2138 dev_err(adev->dev, "failed to create device file %s, ret = %d\n", 2139 name, ret); 2140 } 2141 2142 attr_entry = kmalloc(sizeof(*attr_entry), GFP_KERNEL); 2143 if (!attr_entry) 2144 return -ENOMEM; 2145 2146 attr_entry->attr = attr; 2147 INIT_LIST_HEAD(&attr_entry->entry); 2148 2149 list_add_tail(&attr_entry->entry, attr_list); 2150 2151 return ret; 2152 } 2153 2154 static void amdgpu_device_attr_remove(struct amdgpu_device *adev, struct amdgpu_device_attr *attr) 2155 { 2156 struct device_attribute *dev_attr = &attr->dev_attr; 2157 2158 device_remove_file(adev->dev, dev_attr); 2159 } 2160 2161 static void amdgpu_device_attr_remove_groups(struct amdgpu_device *adev, 2162 struct list_head *attr_list); 2163 2164 static int amdgpu_device_attr_create_groups(struct amdgpu_device *adev, 2165 struct amdgpu_device_attr *attrs, 2166 uint32_t counts, 2167 uint32_t mask, 2168 struct list_head *attr_list) 2169 { 2170 int ret = 0; 2171 uint32_t i = 0; 2172 2173 for (i = 0; i < counts; i++) { 2174 ret = amdgpu_device_attr_create(adev, &attrs[i], mask, attr_list); 2175 if (ret) 2176 goto failed; 2177 } 2178 2179 return 0; 2180 2181 failed: 2182 amdgpu_device_attr_remove_groups(adev, attr_list); 2183 2184 return ret; 2185 } 2186 2187 static void amdgpu_device_attr_remove_groups(struct amdgpu_device *adev, 2188 struct list_head *attr_list) 2189 { 2190 struct amdgpu_device_attr_entry *entry, *entry_tmp; 2191 2192 if (list_empty(attr_list)) 2193 return ; 2194 2195 list_for_each_entry_safe(entry, entry_tmp, attr_list, entry) { 2196 amdgpu_device_attr_remove(adev, entry->attr); 2197 list_del(&entry->entry); 2198 kfree(entry); 2199 } 2200 } 2201 2202 static ssize_t amdgpu_hwmon_show_temp(struct device *dev, 2203 struct device_attribute *attr, 2204 char *buf) 2205 { 2206 struct amdgpu_device *adev = dev_get_drvdata(dev); 2207 int channel = to_sensor_dev_attr(attr)->index; 2208 int r, temp = 0, size = sizeof(temp); 2209 2210 if (amdgpu_in_reset(adev)) 2211 return -EPERM; 2212 2213 if (channel >= PP_TEMP_MAX) 2214 return -EINVAL; 2215 2216 r = pm_runtime_get_sync(adev_to_drm(adev)->dev); 2217 if (r < 0) { 2218 pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); 2219 return r; 2220 } 2221 2222 switch (channel) { 2223 case PP_TEMP_JUNCTION: 2224 /* get current junction temperature */ 2225 r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_HOTSPOT_TEMP, 2226 (void *)&temp, &size); 2227 break; 2228 case PP_TEMP_EDGE: 2229 /* get current edge temperature */ 2230 r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_EDGE_TEMP, 2231 (void *)&temp, &size); 2232 break; 2233 case PP_TEMP_MEM: 2234 /* get current memory temperature */ 2235 r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_MEM_TEMP, 2236 (void *)&temp, &size); 2237 break; 2238 default: 2239 r = -EINVAL; 2240 break; 2241 } 2242 2243 pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); 2244 pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); 2245 2246 if (r) 2247 return r; 2248 2249 return snprintf(buf, PAGE_SIZE, "%d\n", temp); 2250 } 2251 2252 static ssize_t amdgpu_hwmon_show_temp_thresh(struct device *dev, 2253 struct device_attribute *attr, 2254 char *buf) 2255 { 2256 struct amdgpu_device *adev = dev_get_drvdata(dev); 2257 int hyst = to_sensor_dev_attr(attr)->index; 2258 int temp; 2259 2260 if (hyst) 2261 temp = adev->pm.dpm.thermal.min_temp; 2262 else 2263 temp = adev->pm.dpm.thermal.max_temp; 2264 2265 return snprintf(buf, PAGE_SIZE, "%d\n", temp); 2266 } 2267 2268 static ssize_t amdgpu_hwmon_show_hotspot_temp_thresh(struct device *dev, 2269 struct device_attribute *attr, 2270 char *buf) 2271 { 2272 struct amdgpu_device *adev = dev_get_drvdata(dev); 2273 int hyst = to_sensor_dev_attr(attr)->index; 2274 int temp; 2275 2276 if (hyst) 2277 temp = adev->pm.dpm.thermal.min_hotspot_temp; 2278 else 2279 temp = adev->pm.dpm.thermal.max_hotspot_crit_temp; 2280 2281 return snprintf(buf, PAGE_SIZE, "%d\n", temp); 2282 } 2283 2284 static ssize_t amdgpu_hwmon_show_mem_temp_thresh(struct device *dev, 2285 struct device_attribute *attr, 2286 char *buf) 2287 { 2288 struct amdgpu_device *adev = dev_get_drvdata(dev); 2289 int hyst = to_sensor_dev_attr(attr)->index; 2290 int temp; 2291 2292 if (hyst) 2293 temp = adev->pm.dpm.thermal.min_mem_temp; 2294 else 2295 temp = adev->pm.dpm.thermal.max_mem_crit_temp; 2296 2297 return snprintf(buf, PAGE_SIZE, "%d\n", temp); 2298 } 2299 2300 static ssize_t amdgpu_hwmon_show_temp_label(struct device *dev, 2301 struct device_attribute *attr, 2302 char *buf) 2303 { 2304 int channel = to_sensor_dev_attr(attr)->index; 2305 2306 if (channel >= PP_TEMP_MAX) 2307 return -EINVAL; 2308 2309 return snprintf(buf, PAGE_SIZE, "%s\n", temp_label[channel].label); 2310 } 2311 2312 static ssize_t amdgpu_hwmon_show_temp_emergency(struct device *dev, 2313 struct device_attribute *attr, 2314 char *buf) 2315 { 2316 struct amdgpu_device *adev = dev_get_drvdata(dev); 2317 int channel = to_sensor_dev_attr(attr)->index; 2318 int temp = 0; 2319 2320 if (channel >= PP_TEMP_MAX) 2321 return -EINVAL; 2322 2323 switch (channel) { 2324 case PP_TEMP_JUNCTION: 2325 temp = adev->pm.dpm.thermal.max_hotspot_emergency_temp; 2326 break; 2327 case PP_TEMP_EDGE: 2328 temp = adev->pm.dpm.thermal.max_edge_emergency_temp; 2329 break; 2330 case PP_TEMP_MEM: 2331 temp = adev->pm.dpm.thermal.max_mem_emergency_temp; 2332 break; 2333 } 2334 2335 return snprintf(buf, PAGE_SIZE, "%d\n", temp); 2336 } 2337 2338 static ssize_t amdgpu_hwmon_get_pwm1_enable(struct device *dev, 2339 struct device_attribute *attr, 2340 char *buf) 2341 { 2342 struct amdgpu_device *adev = dev_get_drvdata(dev); 2343 u32 pwm_mode = 0; 2344 int ret; 2345 2346 if (amdgpu_in_reset(adev)) 2347 return -EPERM; 2348 2349 ret = pm_runtime_get_sync(adev_to_drm(adev)->dev); 2350 if (ret < 0) { 2351 pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); 2352 return ret; 2353 } 2354 2355 if (is_support_sw_smu(adev)) { 2356 pwm_mode = smu_get_fan_control_mode(&adev->smu); 2357 } else { 2358 if (!adev->powerplay.pp_funcs->get_fan_control_mode) { 2359 pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); 2360 pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); 2361 return -EINVAL; 2362 } 2363 2364 pwm_mode = amdgpu_dpm_get_fan_control_mode(adev); 2365 } 2366 2367 pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); 2368 pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); 2369 2370 return sprintf(buf, "%i\n", pwm_mode); 2371 } 2372 2373 static ssize_t amdgpu_hwmon_set_pwm1_enable(struct device *dev, 2374 struct device_attribute *attr, 2375 const char *buf, 2376 size_t count) 2377 { 2378 struct amdgpu_device *adev = dev_get_drvdata(dev); 2379 int err, ret; 2380 int value; 2381 2382 if (amdgpu_in_reset(adev)) 2383 return -EPERM; 2384 2385 err = kstrtoint(buf, 10, &value); 2386 if (err) 2387 return err; 2388 2389 ret = pm_runtime_get_sync(adev_to_drm(adev)->dev); 2390 if (ret < 0) { 2391 pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); 2392 return ret; 2393 } 2394 2395 if (is_support_sw_smu(adev)) { 2396 smu_set_fan_control_mode(&adev->smu, value); 2397 } else { 2398 if (!adev->powerplay.pp_funcs->set_fan_control_mode) { 2399 pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); 2400 pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); 2401 return -EINVAL; 2402 } 2403 2404 amdgpu_dpm_set_fan_control_mode(adev, value); 2405 } 2406 2407 pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); 2408 pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); 2409 2410 return count; 2411 } 2412 2413 static ssize_t amdgpu_hwmon_get_pwm1_min(struct device *dev, 2414 struct device_attribute *attr, 2415 char *buf) 2416 { 2417 return sprintf(buf, "%i\n", 0); 2418 } 2419 2420 static ssize_t amdgpu_hwmon_get_pwm1_max(struct device *dev, 2421 struct device_attribute *attr, 2422 char *buf) 2423 { 2424 return sprintf(buf, "%i\n", 255); 2425 } 2426 2427 static ssize_t amdgpu_hwmon_set_pwm1(struct device *dev, 2428 struct device_attribute *attr, 2429 const char *buf, size_t count) 2430 { 2431 struct amdgpu_device *adev = dev_get_drvdata(dev); 2432 int err; 2433 u32 value; 2434 u32 pwm_mode; 2435 2436 if (amdgpu_in_reset(adev)) 2437 return -EPERM; 2438 2439 err = pm_runtime_get_sync(adev_to_drm(adev)->dev); 2440 if (err < 0) { 2441 pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); 2442 return err; 2443 } 2444 2445 if (is_support_sw_smu(adev)) 2446 pwm_mode = smu_get_fan_control_mode(&adev->smu); 2447 else 2448 pwm_mode = amdgpu_dpm_get_fan_control_mode(adev); 2449 2450 if (pwm_mode != AMD_FAN_CTRL_MANUAL) { 2451 pr_info("manual fan speed control should be enabled first\n"); 2452 pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); 2453 pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); 2454 return -EINVAL; 2455 } 2456 2457 err = kstrtou32(buf, 10, &value); 2458 if (err) { 2459 pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); 2460 pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); 2461 return err; 2462 } 2463 2464 value = (value * 100) / 255; 2465 2466 if (is_support_sw_smu(adev)) 2467 err = smu_set_fan_speed_percent(&adev->smu, value); 2468 else if (adev->powerplay.pp_funcs->set_fan_speed_percent) 2469 err = amdgpu_dpm_set_fan_speed_percent(adev, value); 2470 else 2471 err = -EINVAL; 2472 2473 pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); 2474 pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); 2475 2476 if (err) 2477 return err; 2478 2479 return count; 2480 } 2481 2482 static ssize_t amdgpu_hwmon_get_pwm1(struct device *dev, 2483 struct device_attribute *attr, 2484 char *buf) 2485 { 2486 struct amdgpu_device *adev = dev_get_drvdata(dev); 2487 int err; 2488 u32 speed = 0; 2489 2490 if (amdgpu_in_reset(adev)) 2491 return -EPERM; 2492 2493 err = pm_runtime_get_sync(adev_to_drm(adev)->dev); 2494 if (err < 0) { 2495 pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); 2496 return err; 2497 } 2498 2499 if (is_support_sw_smu(adev)) 2500 err = smu_get_fan_speed_percent(&adev->smu, &speed); 2501 else if (adev->powerplay.pp_funcs->get_fan_speed_percent) 2502 err = amdgpu_dpm_get_fan_speed_percent(adev, &speed); 2503 else 2504 err = -EINVAL; 2505 2506 pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); 2507 pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); 2508 2509 if (err) 2510 return err; 2511 2512 speed = (speed * 255) / 100; 2513 2514 return sprintf(buf, "%i\n", speed); 2515 } 2516 2517 static ssize_t amdgpu_hwmon_get_fan1_input(struct device *dev, 2518 struct device_attribute *attr, 2519 char *buf) 2520 { 2521 struct amdgpu_device *adev = dev_get_drvdata(dev); 2522 int err; 2523 u32 speed = 0; 2524 2525 if (amdgpu_in_reset(adev)) 2526 return -EPERM; 2527 2528 err = pm_runtime_get_sync(adev_to_drm(adev)->dev); 2529 if (err < 0) { 2530 pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); 2531 return err; 2532 } 2533 2534 if (is_support_sw_smu(adev)) 2535 err = smu_get_fan_speed_rpm(&adev->smu, &speed); 2536 else if (adev->powerplay.pp_funcs->get_fan_speed_rpm) 2537 err = amdgpu_dpm_get_fan_speed_rpm(adev, &speed); 2538 else 2539 err = -EINVAL; 2540 2541 pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); 2542 pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); 2543 2544 if (err) 2545 return err; 2546 2547 return sprintf(buf, "%i\n", speed); 2548 } 2549 2550 static ssize_t amdgpu_hwmon_get_fan1_min(struct device *dev, 2551 struct device_attribute *attr, 2552 char *buf) 2553 { 2554 struct amdgpu_device *adev = dev_get_drvdata(dev); 2555 u32 min_rpm = 0; 2556 u32 size = sizeof(min_rpm); 2557 int r; 2558 2559 if (amdgpu_in_reset(adev)) 2560 return -EPERM; 2561 2562 r = pm_runtime_get_sync(adev_to_drm(adev)->dev); 2563 if (r < 0) { 2564 pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); 2565 return r; 2566 } 2567 2568 r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_MIN_FAN_RPM, 2569 (void *)&min_rpm, &size); 2570 2571 pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); 2572 pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); 2573 2574 if (r) 2575 return r; 2576 2577 return snprintf(buf, PAGE_SIZE, "%d\n", min_rpm); 2578 } 2579 2580 static ssize_t amdgpu_hwmon_get_fan1_max(struct device *dev, 2581 struct device_attribute *attr, 2582 char *buf) 2583 { 2584 struct amdgpu_device *adev = dev_get_drvdata(dev); 2585 u32 max_rpm = 0; 2586 u32 size = sizeof(max_rpm); 2587 int r; 2588 2589 if (amdgpu_in_reset(adev)) 2590 return -EPERM; 2591 2592 r = pm_runtime_get_sync(adev_to_drm(adev)->dev); 2593 if (r < 0) { 2594 pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); 2595 return r; 2596 } 2597 2598 r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_MAX_FAN_RPM, 2599 (void *)&max_rpm, &size); 2600 2601 pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); 2602 pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); 2603 2604 if (r) 2605 return r; 2606 2607 return snprintf(buf, PAGE_SIZE, "%d\n", max_rpm); 2608 } 2609 2610 static ssize_t amdgpu_hwmon_get_fan1_target(struct device *dev, 2611 struct device_attribute *attr, 2612 char *buf) 2613 { 2614 struct amdgpu_device *adev = dev_get_drvdata(dev); 2615 int err; 2616 u32 rpm = 0; 2617 2618 if (amdgpu_in_reset(adev)) 2619 return -EPERM; 2620 2621 err = pm_runtime_get_sync(adev_to_drm(adev)->dev); 2622 if (err < 0) { 2623 pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); 2624 return err; 2625 } 2626 2627 if (is_support_sw_smu(adev)) 2628 err = smu_get_fan_speed_rpm(&adev->smu, &rpm); 2629 else if (adev->powerplay.pp_funcs->get_fan_speed_rpm) 2630 err = amdgpu_dpm_get_fan_speed_rpm(adev, &rpm); 2631 else 2632 err = -EINVAL; 2633 2634 pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); 2635 pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); 2636 2637 if (err) 2638 return err; 2639 2640 return sprintf(buf, "%i\n", rpm); 2641 } 2642 2643 static ssize_t amdgpu_hwmon_set_fan1_target(struct device *dev, 2644 struct device_attribute *attr, 2645 const char *buf, size_t count) 2646 { 2647 struct amdgpu_device *adev = dev_get_drvdata(dev); 2648 int err; 2649 u32 value; 2650 u32 pwm_mode; 2651 2652 if (amdgpu_in_reset(adev)) 2653 return -EPERM; 2654 2655 err = pm_runtime_get_sync(adev_to_drm(adev)->dev); 2656 if (err < 0) { 2657 pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); 2658 return err; 2659 } 2660 2661 if (is_support_sw_smu(adev)) 2662 pwm_mode = smu_get_fan_control_mode(&adev->smu); 2663 else 2664 pwm_mode = amdgpu_dpm_get_fan_control_mode(adev); 2665 2666 if (pwm_mode != AMD_FAN_CTRL_MANUAL) { 2667 pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); 2668 pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); 2669 return -ENODATA; 2670 } 2671 2672 err = kstrtou32(buf, 10, &value); 2673 if (err) { 2674 pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); 2675 pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); 2676 return err; 2677 } 2678 2679 if (is_support_sw_smu(adev)) 2680 err = smu_set_fan_speed_rpm(&adev->smu, value); 2681 else if (adev->powerplay.pp_funcs->set_fan_speed_rpm) 2682 err = amdgpu_dpm_set_fan_speed_rpm(adev, value); 2683 else 2684 err = -EINVAL; 2685 2686 pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); 2687 pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); 2688 2689 if (err) 2690 return err; 2691 2692 return count; 2693 } 2694 2695 static ssize_t amdgpu_hwmon_get_fan1_enable(struct device *dev, 2696 struct device_attribute *attr, 2697 char *buf) 2698 { 2699 struct amdgpu_device *adev = dev_get_drvdata(dev); 2700 u32 pwm_mode = 0; 2701 int ret; 2702 2703 if (amdgpu_in_reset(adev)) 2704 return -EPERM; 2705 2706 ret = pm_runtime_get_sync(adev_to_drm(adev)->dev); 2707 if (ret < 0) { 2708 pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); 2709 return ret; 2710 } 2711 2712 if (is_support_sw_smu(adev)) { 2713 pwm_mode = smu_get_fan_control_mode(&adev->smu); 2714 } else { 2715 if (!adev->powerplay.pp_funcs->get_fan_control_mode) { 2716 pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); 2717 pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); 2718 return -EINVAL; 2719 } 2720 2721 pwm_mode = amdgpu_dpm_get_fan_control_mode(adev); 2722 } 2723 2724 pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); 2725 pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); 2726 2727 return sprintf(buf, "%i\n", pwm_mode == AMD_FAN_CTRL_AUTO ? 0 : 1); 2728 } 2729 2730 static ssize_t amdgpu_hwmon_set_fan1_enable(struct device *dev, 2731 struct device_attribute *attr, 2732 const char *buf, 2733 size_t count) 2734 { 2735 struct amdgpu_device *adev = dev_get_drvdata(dev); 2736 int err; 2737 int value; 2738 u32 pwm_mode; 2739 2740 if (amdgpu_in_reset(adev)) 2741 return -EPERM; 2742 2743 err = kstrtoint(buf, 10, &value); 2744 if (err) 2745 return err; 2746 2747 if (value == 0) 2748 pwm_mode = AMD_FAN_CTRL_AUTO; 2749 else if (value == 1) 2750 pwm_mode = AMD_FAN_CTRL_MANUAL; 2751 else 2752 return -EINVAL; 2753 2754 err = pm_runtime_get_sync(adev_to_drm(adev)->dev); 2755 if (err < 0) { 2756 pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); 2757 return err; 2758 } 2759 2760 if (is_support_sw_smu(adev)) { 2761 smu_set_fan_control_mode(&adev->smu, pwm_mode); 2762 } else { 2763 if (!adev->powerplay.pp_funcs->set_fan_control_mode) { 2764 pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); 2765 pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); 2766 return -EINVAL; 2767 } 2768 amdgpu_dpm_set_fan_control_mode(adev, pwm_mode); 2769 } 2770 2771 pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); 2772 pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); 2773 2774 return count; 2775 } 2776 2777 static ssize_t amdgpu_hwmon_show_vddgfx(struct device *dev, 2778 struct device_attribute *attr, 2779 char *buf) 2780 { 2781 struct amdgpu_device *adev = dev_get_drvdata(dev); 2782 u32 vddgfx; 2783 int r, size = sizeof(vddgfx); 2784 2785 if (amdgpu_in_reset(adev)) 2786 return -EPERM; 2787 2788 r = pm_runtime_get_sync(adev_to_drm(adev)->dev); 2789 if (r < 0) { 2790 pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); 2791 return r; 2792 } 2793 2794 /* get the voltage */ 2795 r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_VDDGFX, 2796 (void *)&vddgfx, &size); 2797 2798 pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); 2799 pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); 2800 2801 if (r) 2802 return r; 2803 2804 return snprintf(buf, PAGE_SIZE, "%d\n", vddgfx); 2805 } 2806 2807 static ssize_t amdgpu_hwmon_show_vddgfx_label(struct device *dev, 2808 struct device_attribute *attr, 2809 char *buf) 2810 { 2811 return snprintf(buf, PAGE_SIZE, "vddgfx\n"); 2812 } 2813 2814 static ssize_t amdgpu_hwmon_show_vddnb(struct device *dev, 2815 struct device_attribute *attr, 2816 char *buf) 2817 { 2818 struct amdgpu_device *adev = dev_get_drvdata(dev); 2819 u32 vddnb; 2820 int r, size = sizeof(vddnb); 2821 2822 if (amdgpu_in_reset(adev)) 2823 return -EPERM; 2824 2825 /* only APUs have vddnb */ 2826 if (!(adev->flags & AMD_IS_APU)) 2827 return -EINVAL; 2828 2829 r = pm_runtime_get_sync(adev_to_drm(adev)->dev); 2830 if (r < 0) { 2831 pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); 2832 return r; 2833 } 2834 2835 /* get the voltage */ 2836 r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_VDDNB, 2837 (void *)&vddnb, &size); 2838 2839 pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); 2840 pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); 2841 2842 if (r) 2843 return r; 2844 2845 return snprintf(buf, PAGE_SIZE, "%d\n", vddnb); 2846 } 2847 2848 static ssize_t amdgpu_hwmon_show_vddnb_label(struct device *dev, 2849 struct device_attribute *attr, 2850 char *buf) 2851 { 2852 return snprintf(buf, PAGE_SIZE, "vddnb\n"); 2853 } 2854 2855 static ssize_t amdgpu_hwmon_show_power_avg(struct device *dev, 2856 struct device_attribute *attr, 2857 char *buf) 2858 { 2859 struct amdgpu_device *adev = dev_get_drvdata(dev); 2860 u32 query = 0; 2861 int r, size = sizeof(u32); 2862 unsigned uw; 2863 2864 if (amdgpu_in_reset(adev)) 2865 return -EPERM; 2866 2867 r = pm_runtime_get_sync(adev_to_drm(adev)->dev); 2868 if (r < 0) { 2869 pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); 2870 return r; 2871 } 2872 2873 /* get the voltage */ 2874 r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GPU_POWER, 2875 (void *)&query, &size); 2876 2877 pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); 2878 pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); 2879 2880 if (r) 2881 return r; 2882 2883 /* convert to microwatts */ 2884 uw = (query >> 8) * 1000000 + (query & 0xff) * 1000; 2885 2886 return snprintf(buf, PAGE_SIZE, "%u\n", uw); 2887 } 2888 2889 static ssize_t amdgpu_hwmon_show_power_cap_min(struct device *dev, 2890 struct device_attribute *attr, 2891 char *buf) 2892 { 2893 return sprintf(buf, "%i\n", 0); 2894 } 2895 2896 static ssize_t amdgpu_hwmon_show_power_cap_max(struct device *dev, 2897 struct device_attribute *attr, 2898 char *buf) 2899 { 2900 struct amdgpu_device *adev = dev_get_drvdata(dev); 2901 uint32_t limit = 0; 2902 ssize_t size; 2903 int r; 2904 2905 if (amdgpu_in_reset(adev)) 2906 return -EPERM; 2907 2908 r = pm_runtime_get_sync(adev_to_drm(adev)->dev); 2909 if (r < 0) { 2910 pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); 2911 return r; 2912 } 2913 2914 if (is_support_sw_smu(adev)) { 2915 smu_get_power_limit(&adev->smu, &limit, true); 2916 size = snprintf(buf, PAGE_SIZE, "%u\n", limit * 1000000); 2917 } else if (adev->powerplay.pp_funcs && adev->powerplay.pp_funcs->get_power_limit) { 2918 adev->powerplay.pp_funcs->get_power_limit(adev->powerplay.pp_handle, &limit, true); 2919 size = snprintf(buf, PAGE_SIZE, "%u\n", limit * 1000000); 2920 } else { 2921 size = snprintf(buf, PAGE_SIZE, "\n"); 2922 } 2923 2924 pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); 2925 pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); 2926 2927 return size; 2928 } 2929 2930 static ssize_t amdgpu_hwmon_show_power_cap(struct device *dev, 2931 struct device_attribute *attr, 2932 char *buf) 2933 { 2934 struct amdgpu_device *adev = dev_get_drvdata(dev); 2935 uint32_t limit = 0; 2936 ssize_t size; 2937 int r; 2938 2939 if (amdgpu_in_reset(adev)) 2940 return -EPERM; 2941 2942 r = pm_runtime_get_sync(adev_to_drm(adev)->dev); 2943 if (r < 0) { 2944 pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); 2945 return r; 2946 } 2947 2948 if (is_support_sw_smu(adev)) { 2949 smu_get_power_limit(&adev->smu, &limit, false); 2950 size = snprintf(buf, PAGE_SIZE, "%u\n", limit * 1000000); 2951 } else if (adev->powerplay.pp_funcs && adev->powerplay.pp_funcs->get_power_limit) { 2952 adev->powerplay.pp_funcs->get_power_limit(adev->powerplay.pp_handle, &limit, false); 2953 size = snprintf(buf, PAGE_SIZE, "%u\n", limit * 1000000); 2954 } else { 2955 size = snprintf(buf, PAGE_SIZE, "\n"); 2956 } 2957 2958 pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); 2959 pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); 2960 2961 return size; 2962 } 2963 2964 2965 static ssize_t amdgpu_hwmon_set_power_cap(struct device *dev, 2966 struct device_attribute *attr, 2967 const char *buf, 2968 size_t count) 2969 { 2970 struct amdgpu_device *adev = dev_get_drvdata(dev); 2971 int err; 2972 u32 value; 2973 2974 if (amdgpu_in_reset(adev)) 2975 return -EPERM; 2976 2977 if (amdgpu_sriov_vf(adev)) 2978 return -EINVAL; 2979 2980 err = kstrtou32(buf, 10, &value); 2981 if (err) 2982 return err; 2983 2984 value = value / 1000000; /* convert to Watt */ 2985 2986 2987 err = pm_runtime_get_sync(adev_to_drm(adev)->dev); 2988 if (err < 0) { 2989 pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); 2990 return err; 2991 } 2992 2993 if (is_support_sw_smu(adev)) 2994 err = smu_set_power_limit(&adev->smu, value); 2995 else if (adev->powerplay.pp_funcs && adev->powerplay.pp_funcs->set_power_limit) 2996 err = adev->powerplay.pp_funcs->set_power_limit(adev->powerplay.pp_handle, value); 2997 else 2998 err = -EINVAL; 2999 3000 pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); 3001 pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); 3002 3003 if (err) 3004 return err; 3005 3006 return count; 3007 } 3008 3009 static ssize_t amdgpu_hwmon_show_sclk(struct device *dev, 3010 struct device_attribute *attr, 3011 char *buf) 3012 { 3013 struct amdgpu_device *adev = dev_get_drvdata(dev); 3014 uint32_t sclk; 3015 int r, size = sizeof(sclk); 3016 3017 if (amdgpu_in_reset(adev)) 3018 return -EPERM; 3019 3020 r = pm_runtime_get_sync(adev_to_drm(adev)->dev); 3021 if (r < 0) { 3022 pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); 3023 return r; 3024 } 3025 3026 /* get the sclk */ 3027 r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GFX_SCLK, 3028 (void *)&sclk, &size); 3029 3030 pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); 3031 pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); 3032 3033 if (r) 3034 return r; 3035 3036 return snprintf(buf, PAGE_SIZE, "%u\n", sclk * 10 * 1000); 3037 } 3038 3039 static ssize_t amdgpu_hwmon_show_sclk_label(struct device *dev, 3040 struct device_attribute *attr, 3041 char *buf) 3042 { 3043 return snprintf(buf, PAGE_SIZE, "sclk\n"); 3044 } 3045 3046 static ssize_t amdgpu_hwmon_show_mclk(struct device *dev, 3047 struct device_attribute *attr, 3048 char *buf) 3049 { 3050 struct amdgpu_device *adev = dev_get_drvdata(dev); 3051 uint32_t mclk; 3052 int r, size = sizeof(mclk); 3053 3054 if (amdgpu_in_reset(adev)) 3055 return -EPERM; 3056 3057 r = pm_runtime_get_sync(adev_to_drm(adev)->dev); 3058 if (r < 0) { 3059 pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); 3060 return r; 3061 } 3062 3063 /* get the sclk */ 3064 r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GFX_MCLK, 3065 (void *)&mclk, &size); 3066 3067 pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); 3068 pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); 3069 3070 if (r) 3071 return r; 3072 3073 return snprintf(buf, PAGE_SIZE, "%u\n", mclk * 10 * 1000); 3074 } 3075 3076 static ssize_t amdgpu_hwmon_show_mclk_label(struct device *dev, 3077 struct device_attribute *attr, 3078 char *buf) 3079 { 3080 return snprintf(buf, PAGE_SIZE, "mclk\n"); 3081 } 3082 3083 /** 3084 * DOC: hwmon 3085 * 3086 * The amdgpu driver exposes the following sensor interfaces: 3087 * 3088 * - GPU temperature (via the on-die sensor) 3089 * 3090 * - GPU voltage 3091 * 3092 * - Northbridge voltage (APUs only) 3093 * 3094 * - GPU power 3095 * 3096 * - GPU fan 3097 * 3098 * - GPU gfx/compute engine clock 3099 * 3100 * - GPU memory clock (dGPU only) 3101 * 3102 * hwmon interfaces for GPU temperature: 3103 * 3104 * - temp[1-3]_input: the on die GPU temperature in millidegrees Celsius 3105 * - temp2_input and temp3_input are supported on SOC15 dGPUs only 3106 * 3107 * - temp[1-3]_label: temperature channel label 3108 * - temp2_label and temp3_label are supported on SOC15 dGPUs only 3109 * 3110 * - temp[1-3]_crit: temperature critical max value in millidegrees Celsius 3111 * - temp2_crit and temp3_crit are supported on SOC15 dGPUs only 3112 * 3113 * - temp[1-3]_crit_hyst: temperature hysteresis for critical limit in millidegrees Celsius 3114 * - temp2_crit_hyst and temp3_crit_hyst are supported on SOC15 dGPUs only 3115 * 3116 * - temp[1-3]_emergency: temperature emergency max value(asic shutdown) in millidegrees Celsius 3117 * - these are supported on SOC15 dGPUs only 3118 * 3119 * hwmon interfaces for GPU voltage: 3120 * 3121 * - in0_input: the voltage on the GPU in millivolts 3122 * 3123 * - in1_input: the voltage on the Northbridge in millivolts 3124 * 3125 * hwmon interfaces for GPU power: 3126 * 3127 * - power1_average: average power used by the GPU in microWatts 3128 * 3129 * - power1_cap_min: minimum cap supported in microWatts 3130 * 3131 * - power1_cap_max: maximum cap supported in microWatts 3132 * 3133 * - power1_cap: selected power cap in microWatts 3134 * 3135 * hwmon interfaces for GPU fan: 3136 * 3137 * - pwm1: pulse width modulation fan level (0-255) 3138 * 3139 * - pwm1_enable: pulse width modulation fan control method (0: no fan speed control, 1: manual fan speed control using pwm interface, 2: automatic fan speed control) 3140 * 3141 * - pwm1_min: pulse width modulation fan control minimum level (0) 3142 * 3143 * - pwm1_max: pulse width modulation fan control maximum level (255) 3144 * 3145 * - fan1_min: an minimum value Unit: revolution/min (RPM) 3146 * 3147 * - fan1_max: an maxmum value Unit: revolution/max (RPM) 3148 * 3149 * - fan1_input: fan speed in RPM 3150 * 3151 * - fan[1-\*]_target: Desired fan speed Unit: revolution/min (RPM) 3152 * 3153 * - fan[1-\*]_enable: Enable or disable the sensors.1: Enable 0: Disable 3154 * 3155 * hwmon interfaces for GPU clocks: 3156 * 3157 * - freq1_input: the gfx/compute clock in hertz 3158 * 3159 * - freq2_input: the memory clock in hertz 3160 * 3161 * You can use hwmon tools like sensors to view this information on your system. 3162 * 3163 */ 3164 3165 static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, amdgpu_hwmon_show_temp, NULL, PP_TEMP_EDGE); 3166 static SENSOR_DEVICE_ATTR(temp1_crit, S_IRUGO, amdgpu_hwmon_show_temp_thresh, NULL, 0); 3167 static SENSOR_DEVICE_ATTR(temp1_crit_hyst, S_IRUGO, amdgpu_hwmon_show_temp_thresh, NULL, 1); 3168 static SENSOR_DEVICE_ATTR(temp1_emergency, S_IRUGO, amdgpu_hwmon_show_temp_emergency, NULL, PP_TEMP_EDGE); 3169 static SENSOR_DEVICE_ATTR(temp2_input, S_IRUGO, amdgpu_hwmon_show_temp, NULL, PP_TEMP_JUNCTION); 3170 static SENSOR_DEVICE_ATTR(temp2_crit, S_IRUGO, amdgpu_hwmon_show_hotspot_temp_thresh, NULL, 0); 3171 static SENSOR_DEVICE_ATTR(temp2_crit_hyst, S_IRUGO, amdgpu_hwmon_show_hotspot_temp_thresh, NULL, 1); 3172 static SENSOR_DEVICE_ATTR(temp2_emergency, S_IRUGO, amdgpu_hwmon_show_temp_emergency, NULL, PP_TEMP_JUNCTION); 3173 static SENSOR_DEVICE_ATTR(temp3_input, S_IRUGO, amdgpu_hwmon_show_temp, NULL, PP_TEMP_MEM); 3174 static SENSOR_DEVICE_ATTR(temp3_crit, S_IRUGO, amdgpu_hwmon_show_mem_temp_thresh, NULL, 0); 3175 static SENSOR_DEVICE_ATTR(temp3_crit_hyst, S_IRUGO, amdgpu_hwmon_show_mem_temp_thresh, NULL, 1); 3176 static SENSOR_DEVICE_ATTR(temp3_emergency, S_IRUGO, amdgpu_hwmon_show_temp_emergency, NULL, PP_TEMP_MEM); 3177 static SENSOR_DEVICE_ATTR(temp1_label, S_IRUGO, amdgpu_hwmon_show_temp_label, NULL, PP_TEMP_EDGE); 3178 static SENSOR_DEVICE_ATTR(temp2_label, S_IRUGO, amdgpu_hwmon_show_temp_label, NULL, PP_TEMP_JUNCTION); 3179 static SENSOR_DEVICE_ATTR(temp3_label, S_IRUGO, amdgpu_hwmon_show_temp_label, NULL, PP_TEMP_MEM); 3180 static SENSOR_DEVICE_ATTR(pwm1, S_IRUGO | S_IWUSR, amdgpu_hwmon_get_pwm1, amdgpu_hwmon_set_pwm1, 0); 3181 static SENSOR_DEVICE_ATTR(pwm1_enable, S_IRUGO | S_IWUSR, amdgpu_hwmon_get_pwm1_enable, amdgpu_hwmon_set_pwm1_enable, 0); 3182 static SENSOR_DEVICE_ATTR(pwm1_min, S_IRUGO, amdgpu_hwmon_get_pwm1_min, NULL, 0); 3183 static SENSOR_DEVICE_ATTR(pwm1_max, S_IRUGO, amdgpu_hwmon_get_pwm1_max, NULL, 0); 3184 static SENSOR_DEVICE_ATTR(fan1_input, S_IRUGO, amdgpu_hwmon_get_fan1_input, NULL, 0); 3185 static SENSOR_DEVICE_ATTR(fan1_min, S_IRUGO, amdgpu_hwmon_get_fan1_min, NULL, 0); 3186 static SENSOR_DEVICE_ATTR(fan1_max, S_IRUGO, amdgpu_hwmon_get_fan1_max, NULL, 0); 3187 static SENSOR_DEVICE_ATTR(fan1_target, S_IRUGO | S_IWUSR, amdgpu_hwmon_get_fan1_target, amdgpu_hwmon_set_fan1_target, 0); 3188 static SENSOR_DEVICE_ATTR(fan1_enable, S_IRUGO | S_IWUSR, amdgpu_hwmon_get_fan1_enable, amdgpu_hwmon_set_fan1_enable, 0); 3189 static SENSOR_DEVICE_ATTR(in0_input, S_IRUGO, amdgpu_hwmon_show_vddgfx, NULL, 0); 3190 static SENSOR_DEVICE_ATTR(in0_label, S_IRUGO, amdgpu_hwmon_show_vddgfx_label, NULL, 0); 3191 static SENSOR_DEVICE_ATTR(in1_input, S_IRUGO, amdgpu_hwmon_show_vddnb, NULL, 0); 3192 static SENSOR_DEVICE_ATTR(in1_label, S_IRUGO, amdgpu_hwmon_show_vddnb_label, NULL, 0); 3193 static SENSOR_DEVICE_ATTR(power1_average, S_IRUGO, amdgpu_hwmon_show_power_avg, NULL, 0); 3194 static SENSOR_DEVICE_ATTR(power1_cap_max, S_IRUGO, amdgpu_hwmon_show_power_cap_max, NULL, 0); 3195 static SENSOR_DEVICE_ATTR(power1_cap_min, S_IRUGO, amdgpu_hwmon_show_power_cap_min, NULL, 0); 3196 static SENSOR_DEVICE_ATTR(power1_cap, S_IRUGO | S_IWUSR, amdgpu_hwmon_show_power_cap, amdgpu_hwmon_set_power_cap, 0); 3197 static SENSOR_DEVICE_ATTR(freq1_input, S_IRUGO, amdgpu_hwmon_show_sclk, NULL, 0); 3198 static SENSOR_DEVICE_ATTR(freq1_label, S_IRUGO, amdgpu_hwmon_show_sclk_label, NULL, 0); 3199 static SENSOR_DEVICE_ATTR(freq2_input, S_IRUGO, amdgpu_hwmon_show_mclk, NULL, 0); 3200 static SENSOR_DEVICE_ATTR(freq2_label, S_IRUGO, amdgpu_hwmon_show_mclk_label, NULL, 0); 3201 3202 static struct attribute *hwmon_attributes[] = { 3203 &sensor_dev_attr_temp1_input.dev_attr.attr, 3204 &sensor_dev_attr_temp1_crit.dev_attr.attr, 3205 &sensor_dev_attr_temp1_crit_hyst.dev_attr.attr, 3206 &sensor_dev_attr_temp2_input.dev_attr.attr, 3207 &sensor_dev_attr_temp2_crit.dev_attr.attr, 3208 &sensor_dev_attr_temp2_crit_hyst.dev_attr.attr, 3209 &sensor_dev_attr_temp3_input.dev_attr.attr, 3210 &sensor_dev_attr_temp3_crit.dev_attr.attr, 3211 &sensor_dev_attr_temp3_crit_hyst.dev_attr.attr, 3212 &sensor_dev_attr_temp1_emergency.dev_attr.attr, 3213 &sensor_dev_attr_temp2_emergency.dev_attr.attr, 3214 &sensor_dev_attr_temp3_emergency.dev_attr.attr, 3215 &sensor_dev_attr_temp1_label.dev_attr.attr, 3216 &sensor_dev_attr_temp2_label.dev_attr.attr, 3217 &sensor_dev_attr_temp3_label.dev_attr.attr, 3218 &sensor_dev_attr_pwm1.dev_attr.attr, 3219 &sensor_dev_attr_pwm1_enable.dev_attr.attr, 3220 &sensor_dev_attr_pwm1_min.dev_attr.attr, 3221 &sensor_dev_attr_pwm1_max.dev_attr.attr, 3222 &sensor_dev_attr_fan1_input.dev_attr.attr, 3223 &sensor_dev_attr_fan1_min.dev_attr.attr, 3224 &sensor_dev_attr_fan1_max.dev_attr.attr, 3225 &sensor_dev_attr_fan1_target.dev_attr.attr, 3226 &sensor_dev_attr_fan1_enable.dev_attr.attr, 3227 &sensor_dev_attr_in0_input.dev_attr.attr, 3228 &sensor_dev_attr_in0_label.dev_attr.attr, 3229 &sensor_dev_attr_in1_input.dev_attr.attr, 3230 &sensor_dev_attr_in1_label.dev_attr.attr, 3231 &sensor_dev_attr_power1_average.dev_attr.attr, 3232 &sensor_dev_attr_power1_cap_max.dev_attr.attr, 3233 &sensor_dev_attr_power1_cap_min.dev_attr.attr, 3234 &sensor_dev_attr_power1_cap.dev_attr.attr, 3235 &sensor_dev_attr_freq1_input.dev_attr.attr, 3236 &sensor_dev_attr_freq1_label.dev_attr.attr, 3237 &sensor_dev_attr_freq2_input.dev_attr.attr, 3238 &sensor_dev_attr_freq2_label.dev_attr.attr, 3239 NULL 3240 }; 3241 3242 static umode_t hwmon_attributes_visible(struct kobject *kobj, 3243 struct attribute *attr, int index) 3244 { 3245 struct device *dev = kobj_to_dev(kobj); 3246 struct amdgpu_device *adev = dev_get_drvdata(dev); 3247 umode_t effective_mode = attr->mode; 3248 3249 /* under multi-vf mode, the hwmon attributes are all not supported */ 3250 if (amdgpu_sriov_vf(adev) && !amdgpu_sriov_is_pp_one_vf(adev)) 3251 return 0; 3252 3253 /* there is no fan under pp one vf mode */ 3254 if (amdgpu_sriov_is_pp_one_vf(adev) && 3255 (attr == &sensor_dev_attr_pwm1.dev_attr.attr || 3256 attr == &sensor_dev_attr_pwm1_enable.dev_attr.attr || 3257 attr == &sensor_dev_attr_pwm1_max.dev_attr.attr || 3258 attr == &sensor_dev_attr_pwm1_min.dev_attr.attr || 3259 attr == &sensor_dev_attr_fan1_input.dev_attr.attr || 3260 attr == &sensor_dev_attr_fan1_min.dev_attr.attr || 3261 attr == &sensor_dev_attr_fan1_max.dev_attr.attr || 3262 attr == &sensor_dev_attr_fan1_target.dev_attr.attr || 3263 attr == &sensor_dev_attr_fan1_enable.dev_attr.attr)) 3264 return 0; 3265 3266 /* Skip fan attributes if fan is not present */ 3267 if (adev->pm.no_fan && (attr == &sensor_dev_attr_pwm1.dev_attr.attr || 3268 attr == &sensor_dev_attr_pwm1_enable.dev_attr.attr || 3269 attr == &sensor_dev_attr_pwm1_max.dev_attr.attr || 3270 attr == &sensor_dev_attr_pwm1_min.dev_attr.attr || 3271 attr == &sensor_dev_attr_fan1_input.dev_attr.attr || 3272 attr == &sensor_dev_attr_fan1_min.dev_attr.attr || 3273 attr == &sensor_dev_attr_fan1_max.dev_attr.attr || 3274 attr == &sensor_dev_attr_fan1_target.dev_attr.attr || 3275 attr == &sensor_dev_attr_fan1_enable.dev_attr.attr)) 3276 return 0; 3277 3278 /* Skip fan attributes on APU */ 3279 if ((adev->flags & AMD_IS_APU) && 3280 (attr == &sensor_dev_attr_pwm1.dev_attr.attr || 3281 attr == &sensor_dev_attr_pwm1_enable.dev_attr.attr || 3282 attr == &sensor_dev_attr_pwm1_max.dev_attr.attr || 3283 attr == &sensor_dev_attr_pwm1_min.dev_attr.attr || 3284 attr == &sensor_dev_attr_fan1_input.dev_attr.attr || 3285 attr == &sensor_dev_attr_fan1_min.dev_attr.attr || 3286 attr == &sensor_dev_attr_fan1_max.dev_attr.attr || 3287 attr == &sensor_dev_attr_fan1_target.dev_attr.attr || 3288 attr == &sensor_dev_attr_fan1_enable.dev_attr.attr)) 3289 return 0; 3290 3291 /* Skip crit temp on APU */ 3292 if ((adev->flags & AMD_IS_APU) && (adev->family >= AMDGPU_FAMILY_CZ) && 3293 (attr == &sensor_dev_attr_temp1_crit.dev_attr.attr || 3294 attr == &sensor_dev_attr_temp1_crit_hyst.dev_attr.attr)) 3295 return 0; 3296 3297 /* Skip limit attributes if DPM is not enabled */ 3298 if (!adev->pm.dpm_enabled && 3299 (attr == &sensor_dev_attr_temp1_crit.dev_attr.attr || 3300 attr == &sensor_dev_attr_temp1_crit_hyst.dev_attr.attr || 3301 attr == &sensor_dev_attr_pwm1.dev_attr.attr || 3302 attr == &sensor_dev_attr_pwm1_enable.dev_attr.attr || 3303 attr == &sensor_dev_attr_pwm1_max.dev_attr.attr || 3304 attr == &sensor_dev_attr_pwm1_min.dev_attr.attr || 3305 attr == &sensor_dev_attr_fan1_input.dev_attr.attr || 3306 attr == &sensor_dev_attr_fan1_min.dev_attr.attr || 3307 attr == &sensor_dev_attr_fan1_max.dev_attr.attr || 3308 attr == &sensor_dev_attr_fan1_target.dev_attr.attr || 3309 attr == &sensor_dev_attr_fan1_enable.dev_attr.attr)) 3310 return 0; 3311 3312 if (!is_support_sw_smu(adev)) { 3313 /* mask fan attributes if we have no bindings for this asic to expose */ 3314 if ((!adev->powerplay.pp_funcs->get_fan_speed_percent && 3315 attr == &sensor_dev_attr_pwm1.dev_attr.attr) || /* can't query fan */ 3316 (!adev->powerplay.pp_funcs->get_fan_control_mode && 3317 attr == &sensor_dev_attr_pwm1_enable.dev_attr.attr)) /* can't query state */ 3318 effective_mode &= ~S_IRUGO; 3319 3320 if ((!adev->powerplay.pp_funcs->set_fan_speed_percent && 3321 attr == &sensor_dev_attr_pwm1.dev_attr.attr) || /* can't manage fan */ 3322 (!adev->powerplay.pp_funcs->set_fan_control_mode && 3323 attr == &sensor_dev_attr_pwm1_enable.dev_attr.attr)) /* can't manage state */ 3324 effective_mode &= ~S_IWUSR; 3325 } 3326 3327 if (((adev->flags & AMD_IS_APU) || 3328 adev->family == AMDGPU_FAMILY_SI) && /* not implemented yet */ 3329 (attr == &sensor_dev_attr_power1_cap_max.dev_attr.attr || 3330 attr == &sensor_dev_attr_power1_cap_min.dev_attr.attr|| 3331 attr == &sensor_dev_attr_power1_cap.dev_attr.attr)) 3332 return 0; 3333 3334 if (((adev->family == AMDGPU_FAMILY_SI) || 3335 ((adev->flags & AMD_IS_APU) && 3336 (adev->asic_type < CHIP_RENOIR))) && /* not implemented yet */ 3337 (attr == &sensor_dev_attr_power1_average.dev_attr.attr)) 3338 return 0; 3339 3340 if (!is_support_sw_smu(adev)) { 3341 /* hide max/min values if we can't both query and manage the fan */ 3342 if ((!adev->powerplay.pp_funcs->set_fan_speed_percent && 3343 !adev->powerplay.pp_funcs->get_fan_speed_percent) && 3344 (!adev->powerplay.pp_funcs->set_fan_speed_rpm && 3345 !adev->powerplay.pp_funcs->get_fan_speed_rpm) && 3346 (attr == &sensor_dev_attr_pwm1_max.dev_attr.attr || 3347 attr == &sensor_dev_attr_pwm1_min.dev_attr.attr)) 3348 return 0; 3349 3350 if ((!adev->powerplay.pp_funcs->set_fan_speed_rpm && 3351 !adev->powerplay.pp_funcs->get_fan_speed_rpm) && 3352 (attr == &sensor_dev_attr_fan1_max.dev_attr.attr || 3353 attr == &sensor_dev_attr_fan1_min.dev_attr.attr)) 3354 return 0; 3355 } 3356 3357 if ((adev->family == AMDGPU_FAMILY_SI || /* not implemented yet */ 3358 adev->family == AMDGPU_FAMILY_KV) && /* not implemented yet */ 3359 (attr == &sensor_dev_attr_in0_input.dev_attr.attr || 3360 attr == &sensor_dev_attr_in0_label.dev_attr.attr)) 3361 return 0; 3362 3363 /* only APUs have vddnb */ 3364 if (!(adev->flags & AMD_IS_APU) && 3365 (attr == &sensor_dev_attr_in1_input.dev_attr.attr || 3366 attr == &sensor_dev_attr_in1_label.dev_attr.attr)) 3367 return 0; 3368 3369 /* no mclk on APUs */ 3370 if ((adev->flags & AMD_IS_APU) && 3371 (attr == &sensor_dev_attr_freq2_input.dev_attr.attr || 3372 attr == &sensor_dev_attr_freq2_label.dev_attr.attr)) 3373 return 0; 3374 3375 /* only SOC15 dGPUs support hotspot and mem temperatures */ 3376 if (((adev->flags & AMD_IS_APU) || 3377 adev->asic_type < CHIP_VEGA10) && 3378 (attr == &sensor_dev_attr_temp2_crit.dev_attr.attr || 3379 attr == &sensor_dev_attr_temp2_crit_hyst.dev_attr.attr || 3380 attr == &sensor_dev_attr_temp3_crit.dev_attr.attr || 3381 attr == &sensor_dev_attr_temp3_crit_hyst.dev_attr.attr || 3382 attr == &sensor_dev_attr_temp1_emergency.dev_attr.attr || 3383 attr == &sensor_dev_attr_temp2_emergency.dev_attr.attr || 3384 attr == &sensor_dev_attr_temp3_emergency.dev_attr.attr || 3385 attr == &sensor_dev_attr_temp2_input.dev_attr.attr || 3386 attr == &sensor_dev_attr_temp3_input.dev_attr.attr || 3387 attr == &sensor_dev_attr_temp2_label.dev_attr.attr || 3388 attr == &sensor_dev_attr_temp3_label.dev_attr.attr)) 3389 return 0; 3390 3391 return effective_mode; 3392 } 3393 3394 static const struct attribute_group hwmon_attrgroup = { 3395 .attrs = hwmon_attributes, 3396 .is_visible = hwmon_attributes_visible, 3397 }; 3398 3399 static const struct attribute_group *hwmon_groups[] = { 3400 &hwmon_attrgroup, 3401 NULL 3402 }; 3403 3404 #endif /* __linux__ */ 3405 3406 int amdgpu_pm_sysfs_init(struct amdgpu_device *adev) 3407 { 3408 return 0; 3409 #ifdef __linux__ 3410 int ret; 3411 uint32_t mask = 0; 3412 3413 if (adev->pm.sysfs_initialized) 3414 return 0; 3415 3416 if (adev->pm.dpm_enabled == 0) 3417 return 0; 3418 3419 INIT_LIST_HEAD(&adev->pm.pm_attr_list); 3420 3421 adev->pm.int_hwmon_dev = hwmon_device_register_with_groups(adev->dev, 3422 DRIVER_NAME, adev, 3423 hwmon_groups); 3424 if (IS_ERR(adev->pm.int_hwmon_dev)) { 3425 ret = PTR_ERR(adev->pm.int_hwmon_dev); 3426 dev_err(adev->dev, 3427 "Unable to register hwmon device: %d\n", ret); 3428 return ret; 3429 } 3430 3431 switch (amdgpu_virt_get_sriov_vf_mode(adev)) { 3432 case SRIOV_VF_MODE_ONE_VF: 3433 mask = ATTR_FLAG_ONEVF; 3434 break; 3435 case SRIOV_VF_MODE_MULTI_VF: 3436 mask = 0; 3437 break; 3438 case SRIOV_VF_MODE_BARE_METAL: 3439 default: 3440 mask = ATTR_FLAG_MASK_ALL; 3441 break; 3442 } 3443 3444 ret = amdgpu_device_attr_create_groups(adev, 3445 amdgpu_device_attrs, 3446 ARRAY_SIZE(amdgpu_device_attrs), 3447 mask, 3448 &adev->pm.pm_attr_list); 3449 if (ret) 3450 return ret; 3451 3452 adev->pm.sysfs_initialized = true; 3453 3454 return 0; 3455 #endif 3456 } 3457 3458 void amdgpu_pm_sysfs_fini(struct amdgpu_device *adev) 3459 { 3460 #ifdef __linux__ 3461 if (adev->pm.dpm_enabled == 0) 3462 return; 3463 3464 if (adev->pm.int_hwmon_dev) 3465 hwmon_device_unregister(adev->pm.int_hwmon_dev); 3466 3467 amdgpu_device_attr_remove_groups(adev, &adev->pm.pm_attr_list); 3468 #endif 3469 } 3470 3471 /* 3472 * Debugfs info 3473 */ 3474 #if defined(CONFIG_DEBUG_FS) 3475 3476 static int amdgpu_debugfs_pm_info_pp(struct seq_file *m, struct amdgpu_device *adev) 3477 { 3478 uint32_t value; 3479 uint64_t value64; 3480 uint32_t query = 0; 3481 int size; 3482 3483 /* GPU Clocks */ 3484 size = sizeof(value); 3485 seq_printf(m, "GFX Clocks and Power:\n"); 3486 if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GFX_MCLK, (void *)&value, &size)) 3487 seq_printf(m, "\t%u MHz (MCLK)\n", value/100); 3488 if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GFX_SCLK, (void *)&value, &size)) 3489 seq_printf(m, "\t%u MHz (SCLK)\n", value/100); 3490 if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_STABLE_PSTATE_SCLK, (void *)&value, &size)) 3491 seq_printf(m, "\t%u MHz (PSTATE_SCLK)\n", value/100); 3492 if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_STABLE_PSTATE_MCLK, (void *)&value, &size)) 3493 seq_printf(m, "\t%u MHz (PSTATE_MCLK)\n", value/100); 3494 if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_VDDGFX, (void *)&value, &size)) 3495 seq_printf(m, "\t%u mV (VDDGFX)\n", value); 3496 if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_VDDNB, (void *)&value, &size)) 3497 seq_printf(m, "\t%u mV (VDDNB)\n", value); 3498 size = sizeof(uint32_t); 3499 if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GPU_POWER, (void *)&query, &size)) 3500 seq_printf(m, "\t%u.%u W (average GPU)\n", query >> 8, query & 0xff); 3501 size = sizeof(value); 3502 seq_printf(m, "\n"); 3503 3504 /* GPU Temp */ 3505 if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GPU_TEMP, (void *)&value, &size)) 3506 seq_printf(m, "GPU Temperature: %u C\n", value/1000); 3507 3508 /* GPU Load */ 3509 if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GPU_LOAD, (void *)&value, &size)) 3510 seq_printf(m, "GPU Load: %u %%\n", value); 3511 /* MEM Load */ 3512 if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_MEM_LOAD, (void *)&value, &size)) 3513 seq_printf(m, "MEM Load: %u %%\n", value); 3514 3515 seq_printf(m, "\n"); 3516 3517 /* SMC feature mask */ 3518 if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_ENABLED_SMC_FEATURES_MASK, (void *)&value64, &size)) 3519 seq_printf(m, "SMC Feature Mask: 0x%016llx\n", value64); 3520 3521 if (adev->asic_type > CHIP_VEGA20) { 3522 /* VCN clocks */ 3523 if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_VCN_POWER_STATE, (void *)&value, &size)) { 3524 if (!value) { 3525 seq_printf(m, "VCN: Disabled\n"); 3526 } else { 3527 seq_printf(m, "VCN: Enabled\n"); 3528 if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_UVD_DCLK, (void *)&value, &size)) 3529 seq_printf(m, "\t%u MHz (DCLK)\n", value/100); 3530 if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_UVD_VCLK, (void *)&value, &size)) 3531 seq_printf(m, "\t%u MHz (VCLK)\n", value/100); 3532 } 3533 } 3534 seq_printf(m, "\n"); 3535 } else { 3536 /* UVD clocks */ 3537 if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_UVD_POWER, (void *)&value, &size)) { 3538 if (!value) { 3539 seq_printf(m, "UVD: Disabled\n"); 3540 } else { 3541 seq_printf(m, "UVD: Enabled\n"); 3542 if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_UVD_DCLK, (void *)&value, &size)) 3543 seq_printf(m, "\t%u MHz (DCLK)\n", value/100); 3544 if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_UVD_VCLK, (void *)&value, &size)) 3545 seq_printf(m, "\t%u MHz (VCLK)\n", value/100); 3546 } 3547 } 3548 seq_printf(m, "\n"); 3549 3550 /* VCE clocks */ 3551 if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_VCE_POWER, (void *)&value, &size)) { 3552 if (!value) { 3553 seq_printf(m, "VCE: Disabled\n"); 3554 } else { 3555 seq_printf(m, "VCE: Enabled\n"); 3556 if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_VCE_ECCLK, (void *)&value, &size)) 3557 seq_printf(m, "\t%u MHz (ECCLK)\n", value/100); 3558 } 3559 } 3560 } 3561 3562 return 0; 3563 } 3564 3565 static void amdgpu_parse_cg_state(struct seq_file *m, u32 flags) 3566 { 3567 int i; 3568 3569 for (i = 0; clocks[i].flag; i++) 3570 seq_printf(m, "\t%s: %s\n", clocks[i].name, 3571 (flags & clocks[i].flag) ? "On" : "Off"); 3572 } 3573 3574 static int amdgpu_debugfs_pm_info(struct seq_file *m, void *data) 3575 { 3576 struct drm_info_node *node = (struct drm_info_node *) m->private; 3577 struct drm_device *dev = node->minor->dev; 3578 struct amdgpu_device *adev = drm_to_adev(dev); 3579 u32 flags = 0; 3580 int r; 3581 3582 if (amdgpu_in_reset(adev)) 3583 return -EPERM; 3584 3585 r = pm_runtime_get_sync(dev->dev); 3586 if (r < 0) { 3587 pm_runtime_put_autosuspend(dev->dev); 3588 return r; 3589 } 3590 3591 if (!adev->pm.dpm_enabled) { 3592 seq_printf(m, "dpm not enabled\n"); 3593 pm_runtime_mark_last_busy(dev->dev); 3594 pm_runtime_put_autosuspend(dev->dev); 3595 return 0; 3596 } 3597 3598 if (!is_support_sw_smu(adev) && 3599 adev->powerplay.pp_funcs->debugfs_print_current_performance_level) { 3600 mutex_lock(&adev->pm.mutex); 3601 if (adev->powerplay.pp_funcs->debugfs_print_current_performance_level) 3602 adev->powerplay.pp_funcs->debugfs_print_current_performance_level(adev, m); 3603 else 3604 seq_printf(m, "Debugfs support not implemented for this asic\n"); 3605 mutex_unlock(&adev->pm.mutex); 3606 r = 0; 3607 } else { 3608 r = amdgpu_debugfs_pm_info_pp(m, adev); 3609 } 3610 if (r) 3611 goto out; 3612 3613 amdgpu_device_ip_get_clockgating_state(adev, &flags); 3614 3615 seq_printf(m, "Clock Gating Flags Mask: 0x%x\n", flags); 3616 amdgpu_parse_cg_state(m, flags); 3617 seq_printf(m, "\n"); 3618 3619 out: 3620 pm_runtime_mark_last_busy(dev->dev); 3621 pm_runtime_put_autosuspend(dev->dev); 3622 3623 return r; 3624 } 3625 3626 static const struct drm_info_list amdgpu_pm_info_list[] = { 3627 {"amdgpu_pm_info", amdgpu_debugfs_pm_info, 0, NULL}, 3628 }; 3629 #endif 3630 3631 int amdgpu_debugfs_pm_init(struct amdgpu_device *adev) 3632 { 3633 #if defined(CONFIG_DEBUG_FS) 3634 return amdgpu_debugfs_add_files(adev, amdgpu_pm_info_list, ARRAY_SIZE(amdgpu_pm_info_list)); 3635 #else 3636 return 0; 3637 #endif 3638 } 3639