1 /* 2 * drm_irq.c IRQ and vblank support 3 * 4 * \author Rickard E. (Rik) Faith <faith@valinux.com> 5 * \author Gareth Hughes <gareth@valinux.com> 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the "Software"), 9 * to deal in the Software without restriction, including without limitation 10 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 11 * and/or sell copies of the Software, and to permit persons to whom the 12 * Software is furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the next 15 * paragraph) shall be included in all copies or substantial portions of the 16 * Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 22 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 23 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 24 * OTHER DEALINGS IN THE SOFTWARE. 25 */ 26 27 #include <linux/export.h> 28 #include <linux/moduleparam.h> 29 30 #include <drm/drm_crtc.h> 31 #include <drm/drm_drv.h> 32 #include <drm/drm_framebuffer.h> 33 #include <drm/drm_modeset_helper_vtables.h> 34 #include <drm/drm_print.h> 35 #include <drm/drm_vblank.h> 36 37 #include "drm_internal.h" 38 #include "drm_trace.h" 39 40 /** 41 * DOC: vblank handling 42 * 43 * Vertical blanking plays a major role in graphics rendering. To achieve 44 * tear-free display, users must synchronize page flips and/or rendering to 45 * vertical blanking. The DRM API offers ioctls to perform page flips 46 * synchronized to vertical blanking and wait for vertical blanking. 47 * 48 * The DRM core handles most of the vertical blanking management logic, which 49 * involves filtering out spurious interrupts, keeping race-free blanking 50 * counters, coping with counter wrap-around and resets and keeping use counts. 51 * It relies on the driver to generate vertical blanking interrupts and 52 * optionally provide a hardware vertical blanking counter. 53 * 54 * Drivers must initialize the vertical blanking handling core with a call to 55 * drm_vblank_init(). Minimally, a driver needs to implement 56 * &drm_crtc_funcs.enable_vblank and &drm_crtc_funcs.disable_vblank plus call 57 * drm_crtc_handle_vblank() in its vblank interrupt handler for working vblank 58 * support. 59 * 60 * Vertical blanking interrupts can be enabled by the DRM core or by drivers 61 * themselves (for instance to handle page flipping operations). The DRM core 62 * maintains a vertical blanking use count to ensure that the interrupts are not 63 * disabled while a user still needs them. To increment the use count, drivers 64 * call drm_crtc_vblank_get() and release the vblank reference again with 65 * drm_crtc_vblank_put(). In between these two calls vblank interrupts are 66 * guaranteed to be enabled. 67 * 68 * On many hardware disabling the vblank interrupt cannot be done in a race-free 69 * manner, see &drm_driver.vblank_disable_immediate and 70 * &drm_driver.max_vblank_count. In that case the vblank core only disables the 71 * vblanks after a timer has expired, which can be configured through the 72 * ``vblankoffdelay`` module parameter. 73 * 74 * Drivers for hardware without support for vertical-blanking interrupts 75 * must not call drm_vblank_init(). For such drivers, atomic helpers will 76 * automatically generate fake vblank events as part of the display update. 77 * This functionality also can be controlled by the driver by enabling and 78 * disabling struct drm_crtc_state.no_vblank. 79 */ 80 81 /* Retry timestamp calculation up to 3 times to satisfy 82 * drm_timestamp_precision before giving up. 83 */ 84 #define DRM_TIMESTAMP_MAXRETRIES 3 85 86 /* Threshold in nanoseconds for detection of redundant 87 * vblank irq in drm_handle_vblank(). 1 msec should be ok. 88 */ 89 #define DRM_REDUNDANT_VBLIRQ_THRESH_NS 1000000 90 91 static bool 92 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe, 93 ktime_t *tvblank, bool in_vblank_irq); 94 95 static unsigned int drm_timestamp_precision = 20; /* Default to 20 usecs. */ 96 97 static int drm_vblank_offdelay = 5000; /* Default to 5000 msecs. */ 98 99 module_param_named(vblankoffdelay, drm_vblank_offdelay, int, 0600); 100 module_param_named(timestamp_precision_usec, drm_timestamp_precision, int, 0600); 101 MODULE_PARM_DESC(vblankoffdelay, "Delay until vblank irq auto-disable [msecs] (0: never disable, <0: disable immediately)"); 102 MODULE_PARM_DESC(timestamp_precision_usec, "Max. error on timestamps [usecs]"); 103 104 static void store_vblank(struct drm_device *dev, unsigned int pipe, 105 u32 vblank_count_inc, 106 ktime_t t_vblank, u32 last) 107 { 108 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 109 110 assert_spin_locked(&dev->vblank_time_lock); 111 112 vblank->last = last; 113 114 write_seqlock(&vblank->seqlock); 115 vblank->time = t_vblank; 116 atomic64_add(vblank_count_inc, &vblank->count); 117 write_sequnlock(&vblank->seqlock); 118 } 119 120 static u32 drm_max_vblank_count(struct drm_device *dev, unsigned int pipe) 121 { 122 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 123 124 return vblank->max_vblank_count ?: dev->max_vblank_count; 125 } 126 127 /* 128 * "No hw counter" fallback implementation of .get_vblank_counter() hook, 129 * if there is no useable hardware frame counter available. 130 */ 131 static u32 drm_vblank_no_hw_counter(struct drm_device *dev, unsigned int pipe) 132 { 133 WARN_ON_ONCE(drm_max_vblank_count(dev, pipe) != 0); 134 return 0; 135 } 136 137 static u32 __get_vblank_counter(struct drm_device *dev, unsigned int pipe) 138 { 139 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 140 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 141 142 if (WARN_ON(!crtc)) 143 return 0; 144 145 if (crtc->funcs->get_vblank_counter) 146 return crtc->funcs->get_vblank_counter(crtc); 147 } else if (dev->driver->get_vblank_counter) { 148 return dev->driver->get_vblank_counter(dev, pipe); 149 } 150 151 return drm_vblank_no_hw_counter(dev, pipe); 152 } 153 154 /* 155 * Reset the stored timestamp for the current vblank count to correspond 156 * to the last vblank occurred. 157 * 158 * Only to be called from drm_crtc_vblank_on(). 159 * 160 * Note: caller must hold &drm_device.vbl_lock since this reads & writes 161 * device vblank fields. 162 */ 163 static void drm_reset_vblank_timestamp(struct drm_device *dev, unsigned int pipe) 164 { 165 u32 cur_vblank; 166 bool rc; 167 ktime_t t_vblank; 168 int count = DRM_TIMESTAMP_MAXRETRIES; 169 170 spin_lock(&dev->vblank_time_lock); 171 172 /* 173 * sample the current counter to avoid random jumps 174 * when drm_vblank_enable() applies the diff 175 */ 176 do { 177 cur_vblank = __get_vblank_counter(dev, pipe); 178 rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false); 179 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0); 180 181 /* 182 * Only reinitialize corresponding vblank timestamp if high-precision query 183 * available and didn't fail. Otherwise reinitialize delayed at next vblank 184 * interrupt and assign 0 for now, to mark the vblanktimestamp as invalid. 185 */ 186 if (!rc) 187 t_vblank = (struct timeval) {0, 0}; 188 189 /* 190 * +1 to make sure user will never see the same 191 * vblank counter value before and after a modeset 192 */ 193 store_vblank(dev, pipe, 1, t_vblank, cur_vblank); 194 195 spin_unlock(&dev->vblank_time_lock); 196 } 197 198 /* 199 * Call back into the driver to update the appropriate vblank counter 200 * (specified by @pipe). Deal with wraparound, if it occurred, and 201 * update the last read value so we can deal with wraparound on the next 202 * call if necessary. 203 * 204 * Only necessary when going from off->on, to account for frames we 205 * didn't get an interrupt for. 206 * 207 * Note: caller must hold &drm_device.vbl_lock since this reads & writes 208 * device vblank fields. 209 */ 210 static void drm_update_vblank_count(struct drm_device *dev, unsigned int pipe, 211 bool in_vblank_irq) 212 { 213 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 214 u32 cur_vblank, diff; 215 bool rc; 216 ktime_t t_vblank; 217 int count = DRM_TIMESTAMP_MAXRETRIES; 218 int framedur_ns = vblank->framedur_ns; 219 u32 max_vblank_count = drm_max_vblank_count(dev, pipe); 220 221 /* 222 * Interrupts were disabled prior to this call, so deal with counter 223 * wrap if needed. 224 * NOTE! It's possible we lost a full dev->max_vblank_count + 1 events 225 * here if the register is small or we had vblank interrupts off for 226 * a long time. 227 * 228 * We repeat the hardware vblank counter & timestamp query until 229 * we get consistent results. This to prevent races between gpu 230 * updating its hardware counter while we are retrieving the 231 * corresponding vblank timestamp. 232 */ 233 do { 234 cur_vblank = __get_vblank_counter(dev, pipe); 235 rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, in_vblank_irq); 236 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0); 237 238 if (max_vblank_count) { 239 /* trust the hw counter when it's around */ 240 diff = (cur_vblank - vblank->last) & max_vblank_count; 241 } else if (rc && framedur_ns) { 242 u64 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time)); 243 244 /* 245 * Figure out how many vblanks we've missed based 246 * on the difference in the timestamps and the 247 * frame/field duration. 248 */ 249 250 DRM_DEBUG_VBL("crtc %u: Calculating number of vblanks." 251 " diff_ns = %lld, framedur_ns = %d)\n", 252 pipe, (long long) diff_ns, framedur_ns); 253 254 diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns); 255 256 if (diff == 0 && in_vblank_irq) 257 DRM_DEBUG_VBL("crtc %u: Redundant vblirq ignored\n", 258 pipe); 259 } else { 260 /* some kind of default for drivers w/o accurate vbl timestamping */ 261 diff = in_vblank_irq ? 1 : 0; 262 } 263 264 /* 265 * Within a drm_vblank_pre_modeset - drm_vblank_post_modeset 266 * interval? If so then vblank irqs keep running and it will likely 267 * happen that the hardware vblank counter is not trustworthy as it 268 * might reset at some point in that interval and vblank timestamps 269 * are not trustworthy either in that interval. Iow. this can result 270 * in a bogus diff >> 1 which must be avoided as it would cause 271 * random large forward jumps of the software vblank counter. 272 */ 273 if (diff > 1 && (vblank->inmodeset & 0x2)) { 274 DRM_DEBUG_VBL("clamping vblank bump to 1 on crtc %u: diffr=%u" 275 " due to pre-modeset.\n", pipe, diff); 276 diff = 1; 277 } 278 279 DRM_DEBUG_VBL("updating vblank count on crtc %u:" 280 " current=%llu, diff=%u, hw=%u hw_last=%u\n", 281 pipe, atomic64_read(&vblank->count), diff, 282 cur_vblank, vblank->last); 283 284 if (diff == 0) { 285 WARN_ON_ONCE(cur_vblank != vblank->last); 286 return; 287 } 288 289 /* 290 * Only reinitialize corresponding vblank timestamp if high-precision query 291 * available and didn't fail, or we were called from the vblank interrupt. 292 * Otherwise reinitialize delayed at next vblank interrupt and assign 0 293 * for now, to mark the vblanktimestamp as invalid. 294 */ 295 if (!rc && !in_vblank_irq) 296 t_vblank = (struct timeval) {0, 0}; 297 298 store_vblank(dev, pipe, diff, t_vblank, cur_vblank); 299 } 300 301 static u64 drm_vblank_count(struct drm_device *dev, unsigned int pipe) 302 { 303 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 304 u64 count; 305 306 if (WARN_ON(pipe >= dev->num_crtcs)) 307 return 0; 308 309 count = atomic64_read(&vblank->count); 310 311 /* 312 * This read barrier corresponds to the implicit write barrier of the 313 * write seqlock in store_vblank(). Note that this is the only place 314 * where we need an explicit barrier, since all other access goes 315 * through drm_vblank_count_and_time(), which already has the required 316 * read barrier curtesy of the read seqlock. 317 */ 318 smp_rmb(); 319 320 return count; 321 } 322 323 /** 324 * drm_crtc_accurate_vblank_count - retrieve the master vblank counter 325 * @crtc: which counter to retrieve 326 * 327 * This function is similar to drm_crtc_vblank_count() but this function 328 * interpolates to handle a race with vblank interrupts using the high precision 329 * timestamping support. 330 * 331 * This is mostly useful for hardware that can obtain the scanout position, but 332 * doesn't have a hardware frame counter. 333 */ 334 u64 drm_crtc_accurate_vblank_count(struct drm_crtc *crtc) 335 { 336 struct drm_device *dev = crtc->dev; 337 unsigned int pipe = drm_crtc_index(crtc); 338 u64 vblank; 339 unsigned long flags; 340 341 WARN_ONCE(drm_debug_enabled(DRM_UT_VBL) && 342 !crtc->funcs->get_vblank_timestamp, 343 "This function requires support for accurate vblank timestamps."); 344 345 spin_lock_irqsave(&dev->vblank_time_lock, flags); 346 347 drm_update_vblank_count(dev, pipe, false); 348 vblank = drm_vblank_count(dev, pipe); 349 350 spin_unlock_irqrestore(&dev->vblank_time_lock, flags); 351 352 return vblank; 353 } 354 EXPORT_SYMBOL(drm_crtc_accurate_vblank_count); 355 356 static void __disable_vblank(struct drm_device *dev, unsigned int pipe) 357 { 358 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 359 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 360 361 if (WARN_ON(!crtc)) 362 return; 363 364 if (crtc->funcs->disable_vblank) 365 crtc->funcs->disable_vblank(crtc); 366 } else { 367 dev->driver->disable_vblank(dev, pipe); 368 } 369 } 370 371 /* 372 * Disable vblank irq's on crtc, make sure that last vblank count 373 * of hardware and corresponding consistent software vblank counter 374 * are preserved, even if there are any spurious vblank irq's after 375 * disable. 376 */ 377 void drm_vblank_disable_and_save(struct drm_device *dev, unsigned int pipe) 378 { 379 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 380 unsigned long irqflags; 381 382 assert_spin_locked(&dev->vbl_lock); 383 384 /* Prevent vblank irq processing while disabling vblank irqs, 385 * so no updates of timestamps or count can happen after we've 386 * disabled. Needed to prevent races in case of delayed irq's. 387 */ 388 spin_lock_irqsave(&dev->vblank_time_lock, irqflags); 389 390 /* 391 * Update vblank count and disable vblank interrupts only if the 392 * interrupts were enabled. This avoids calling the ->disable_vblank() 393 * operation in atomic context with the hardware potentially runtime 394 * suspended. 395 */ 396 if (!vblank->enabled) 397 goto out; 398 399 /* 400 * Update the count and timestamp to maintain the 401 * appearance that the counter has been ticking all along until 402 * this time. This makes the count account for the entire time 403 * between drm_crtc_vblank_on() and drm_crtc_vblank_off(). 404 */ 405 drm_update_vblank_count(dev, pipe, false); 406 __disable_vblank(dev, pipe); 407 vblank->enabled = false; 408 409 out: 410 spin_unlock_irqrestore(&dev->vblank_time_lock, irqflags); 411 } 412 413 static void vblank_disable_fn(unsigned long arg) 414 { 415 struct drm_vblank_crtc *vblank = (void *)arg; 416 struct drm_device *dev = vblank->dev; 417 unsigned int pipe = vblank->pipe; 418 unsigned long irqflags; 419 420 spin_lock_irqsave(&dev->vbl_lock, irqflags); 421 if (atomic_read(&vblank->refcount) == 0 && vblank->enabled) { 422 DRM_DEBUG("disabling vblank on crtc %u\n", pipe); 423 drm_vblank_disable_and_save(dev, pipe); 424 } 425 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 426 } 427 428 void drm_vblank_cleanup(struct drm_device *dev) 429 { 430 unsigned int pipe; 431 432 /* Bail if the driver didn't call drm_vblank_init() */ 433 if (dev->num_crtcs == 0) 434 return; 435 436 for (pipe = 0; pipe < dev->num_crtcs; pipe++) { 437 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 438 439 WARN_ON(READ_ONCE(vblank->enabled) && 440 drm_core_check_feature(dev, DRIVER_MODESET)); 441 442 del_timer_sync(&vblank->disable_timer); 443 } 444 445 kfree(dev->vblank); 446 447 dev->num_crtcs = 0; 448 } 449 450 /** 451 * drm_vblank_init - initialize vblank support 452 * @dev: DRM device 453 * @num_crtcs: number of CRTCs supported by @dev 454 * 455 * This function initializes vblank support for @num_crtcs display pipelines. 456 * Cleanup is handled by the DRM core, or through calling drm_dev_fini() for 457 * drivers with a &drm_driver.release callback. 458 * 459 * Returns: 460 * Zero on success or a negative error code on failure. 461 */ 462 int drm_vblank_init(struct drm_device *dev, unsigned int num_crtcs) 463 { 464 int ret = -ENOMEM; 465 unsigned int i; 466 467 mtx_init(&dev->vbl_lock, IPL_TTY); 468 mtx_init(&dev->vblank_time_lock, IPL_TTY); 469 470 dev->num_crtcs = num_crtcs; 471 472 dev->vblank = kcalloc(num_crtcs, sizeof(*dev->vblank), GFP_KERNEL); 473 if (!dev->vblank) 474 goto err; 475 476 for (i = 0; i < num_crtcs; i++) { 477 struct drm_vblank_crtc *vblank = &dev->vblank[i]; 478 479 vblank->dev = dev; 480 vblank->pipe = i; 481 init_waitqueue_head(&vblank->queue); 482 setup_timer(&vblank->disable_timer, vblank_disable_fn, 483 (unsigned long)vblank); 484 seqlock_init(&vblank->seqlock, IPL_NONE); 485 } 486 487 DRM_INFO("Supports vblank timestamp caching Rev 2 (21.10.2013).\n"); 488 489 return 0; 490 491 err: 492 dev->num_crtcs = 0; 493 return ret; 494 } 495 EXPORT_SYMBOL(drm_vblank_init); 496 497 /** 498 * drm_dev_has_vblank - test if vblanking has been initialized for 499 * a device 500 * @dev: the device 501 * 502 * Drivers may call this function to test if vblank support is 503 * initialized for a device. For most hardware this means that vblanking 504 * can also be enabled. 505 * 506 * Atomic helpers use this function to initialize 507 * &drm_crtc_state.no_vblank. See also drm_atomic_helper_check_modeset(). 508 * 509 * Returns: 510 * True if vblanking has been initialized for the given device, false 511 * otherwise. 512 */ 513 bool drm_dev_has_vblank(const struct drm_device *dev) 514 { 515 return dev->num_crtcs != 0; 516 } 517 EXPORT_SYMBOL(drm_dev_has_vblank); 518 519 /** 520 * drm_crtc_vblank_waitqueue - get vblank waitqueue for the CRTC 521 * @crtc: which CRTC's vblank waitqueue to retrieve 522 * 523 * This function returns a pointer to the vblank waitqueue for the CRTC. 524 * Drivers can use this to implement vblank waits using wait_event() and related 525 * functions. 526 */ 527 wait_queue_head_t *drm_crtc_vblank_waitqueue(struct drm_crtc *crtc) 528 { 529 return &crtc->dev->vblank[drm_crtc_index(crtc)].queue; 530 } 531 EXPORT_SYMBOL(drm_crtc_vblank_waitqueue); 532 533 534 /** 535 * drm_calc_timestamping_constants - calculate vblank timestamp constants 536 * @crtc: drm_crtc whose timestamp constants should be updated. 537 * @mode: display mode containing the scanout timings 538 * 539 * Calculate and store various constants which are later needed by vblank and 540 * swap-completion timestamping, e.g, by 541 * drm_crtc_vblank_helper_get_vblank_timestamp(). They are derived from 542 * CRTC's true scanout timing, so they take things like panel scaling or 543 * other adjustments into account. 544 */ 545 void drm_calc_timestamping_constants(struct drm_crtc *crtc, 546 const struct drm_display_mode *mode) 547 { 548 struct drm_device *dev = crtc->dev; 549 unsigned int pipe = drm_crtc_index(crtc); 550 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 551 int linedur_ns = 0, framedur_ns = 0; 552 int dotclock = mode->crtc_clock; 553 554 if (!dev->num_crtcs) 555 return; 556 557 if (WARN_ON(pipe >= dev->num_crtcs)) 558 return; 559 560 /* Valid dotclock? */ 561 if (dotclock > 0) { 562 int frame_size = mode->crtc_htotal * mode->crtc_vtotal; 563 564 /* 565 * Convert scanline length in pixels and video 566 * dot clock to line duration and frame duration 567 * in nanoseconds: 568 */ 569 linedur_ns = div_u64((u64) mode->crtc_htotal * 1000000, dotclock); 570 framedur_ns = div_u64((u64) frame_size * 1000000, dotclock); 571 572 /* 573 * Fields of interlaced scanout modes are only half a frame duration. 574 */ 575 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 576 framedur_ns /= 2; 577 } else 578 DRM_ERROR("crtc %u: Can't calculate constants, dotclock = 0!\n", 579 crtc->base.id); 580 581 vblank->linedur_ns = linedur_ns; 582 vblank->framedur_ns = framedur_ns; 583 vblank->hwmode = *mode; 584 585 DRM_DEBUG("crtc %u: hwmode: htotal %d, vtotal %d, vdisplay %d\n", 586 crtc->base.id, mode->crtc_htotal, 587 mode->crtc_vtotal, mode->crtc_vdisplay); 588 DRM_DEBUG("crtc %u: clock %d kHz framedur %d linedur %d\n", 589 crtc->base.id, dotclock, framedur_ns, linedur_ns); 590 } 591 EXPORT_SYMBOL(drm_calc_timestamping_constants); 592 593 /** 594 * drm_crtc_vblank_helper_get_vblank_timestamp_internal - precise vblank 595 * timestamp helper 596 * @crtc: CRTC whose vblank timestamp to retrieve 597 * @max_error: Desired maximum allowable error in timestamps (nanosecs) 598 * On return contains true maximum error of timestamp 599 * @vblank_time: Pointer to time which should receive the timestamp 600 * @in_vblank_irq: 601 * True when called from drm_crtc_handle_vblank(). Some drivers 602 * need to apply some workarounds for gpu-specific vblank irq quirks 603 * if flag is set. 604 * @get_scanout_position: 605 * Callback function to retrieve the scanout position. See 606 * @struct drm_crtc_helper_funcs.get_scanout_position. 607 * 608 * Implements calculation of exact vblank timestamps from given drm_display_mode 609 * timings and current video scanout position of a CRTC. 610 * 611 * The current implementation only handles standard video modes. For double scan 612 * and interlaced modes the driver is supposed to adjust the hardware mode 613 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to 614 * match the scanout position reported. 615 * 616 * Note that atomic drivers must call drm_calc_timestamping_constants() before 617 * enabling a CRTC. The atomic helpers already take care of that in 618 * drm_atomic_helper_update_legacy_modeset_state(). 619 * 620 * Returns: 621 * 622 * Returns true on success, and false on failure, i.e. when no accurate 623 * timestamp could be acquired. 624 */ 625 bool 626 drm_crtc_vblank_helper_get_vblank_timestamp_internal( 627 struct drm_crtc *crtc, int *max_error, ktime_t *vblank_time, 628 bool in_vblank_irq, 629 drm_vblank_get_scanout_position_func get_scanout_position) 630 { 631 struct drm_device *dev = crtc->dev; 632 unsigned int pipe = crtc->index; 633 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 634 struct timespec64 ts_etime, ts_vblank_time; 635 ktime_t stime, etime; 636 bool vbl_status; 637 const struct drm_display_mode *mode; 638 int vpos, hpos, i; 639 int delta_ns, duration_ns; 640 641 if (pipe >= dev->num_crtcs) { 642 DRM_ERROR("Invalid crtc %u\n", pipe); 643 return false; 644 } 645 646 /* Scanout position query not supported? Should not happen. */ 647 if (!get_scanout_position) { 648 DRM_ERROR("Called from CRTC w/o get_scanout_position()!?\n"); 649 return false; 650 } 651 652 if (drm_drv_uses_atomic_modeset(dev)) 653 mode = &vblank->hwmode; 654 else 655 mode = &crtc->hwmode; 656 657 /* If mode timing undefined, just return as no-op: 658 * Happens during initial modesetting of a crtc. 659 */ 660 if (mode->crtc_clock == 0) { 661 DRM_DEBUG("crtc %u: Noop due to uninitialized mode.\n", pipe); 662 WARN_ON_ONCE(drm_drv_uses_atomic_modeset(dev)); 663 return false; 664 } 665 666 /* Get current scanout position with system timestamp. 667 * Repeat query up to DRM_TIMESTAMP_MAXRETRIES times 668 * if single query takes longer than max_error nanoseconds. 669 * 670 * This guarantees a tight bound on maximum error if 671 * code gets preempted or delayed for some reason. 672 */ 673 for (i = 0; i < DRM_TIMESTAMP_MAXRETRIES; i++) { 674 /* 675 * Get vertical and horizontal scanout position vpos, hpos, 676 * and bounding timestamps stime, etime, pre/post query. 677 */ 678 vbl_status = get_scanout_position(crtc, in_vblank_irq, 679 &vpos, &hpos, 680 &stime, &etime, 681 mode); 682 683 /* Return as no-op if scanout query unsupported or failed. */ 684 if (!vbl_status) { 685 DRM_DEBUG("crtc %u : scanoutpos query failed.\n", 686 pipe); 687 return false; 688 } 689 690 /* Compute uncertainty in timestamp of scanout position query. */ 691 duration_ns = ktime_to_ns(etime) - ktime_to_ns(stime); 692 693 /* Accept result with < max_error nsecs timing uncertainty. */ 694 if (duration_ns <= *max_error) 695 break; 696 } 697 698 /* Noisy system timing? */ 699 if (i == DRM_TIMESTAMP_MAXRETRIES) { 700 DRM_DEBUG("crtc %u: Noisy timestamp %d us > %d us [%d reps].\n", 701 pipe, duration_ns/1000, *max_error/1000, i); 702 } 703 704 /* Return upper bound of timestamp precision error. */ 705 *max_error = duration_ns; 706 707 /* Convert scanout position into elapsed time at raw_time query 708 * since start of scanout at first display scanline. delta_ns 709 * can be negative if start of scanout hasn't happened yet. 710 */ 711 delta_ns = div_s64(1000000LL * (vpos * mode->crtc_htotal + hpos), 712 mode->crtc_clock); 713 714 /* Subtract time delta from raw timestamp to get final 715 * vblank_time timestamp for end of vblank. 716 */ 717 *vblank_time = ktime_sub_ns(etime, delta_ns); 718 719 if (!drm_debug_enabled(DRM_UT_VBL)) 720 return true; 721 722 ts_etime = ktime_to_timespec64(etime); 723 ts_vblank_time = ktime_to_timespec64(*vblank_time); 724 725 DRM_DEBUG_VBL("crtc %u : v p(%d,%d)@ %lld.%06ld -> %lld.%06ld [e %d us, %d rep]\n", 726 pipe, hpos, vpos, 727 (u64)ts_etime.tv_sec, ts_etime.tv_nsec / 1000, 728 (u64)ts_vblank_time.tv_sec, ts_vblank_time.tv_nsec / 1000, 729 duration_ns / 1000, i); 730 731 return true; 732 } 733 EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp_internal); 734 735 /** 736 * drm_crtc_vblank_helper_get_vblank_timestamp - precise vblank timestamp 737 * helper 738 * @crtc: CRTC whose vblank timestamp to retrieve 739 * @max_error: Desired maximum allowable error in timestamps (nanosecs) 740 * On return contains true maximum error of timestamp 741 * @vblank_time: Pointer to time which should receive the timestamp 742 * @in_vblank_irq: 743 * True when called from drm_crtc_handle_vblank(). Some drivers 744 * need to apply some workarounds for gpu-specific vblank irq quirks 745 * if flag is set. 746 * 747 * Implements calculation of exact vblank timestamps from given drm_display_mode 748 * timings and current video scanout position of a CRTC. This can be directly 749 * used as the &drm_crtc_funcs.get_vblank_timestamp implementation of a kms 750 * driver if &drm_crtc_helper_funcs.get_scanout_position is implemented. 751 * 752 * The current implementation only handles standard video modes. For double scan 753 * and interlaced modes the driver is supposed to adjust the hardware mode 754 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to 755 * match the scanout position reported. 756 * 757 * Note that atomic drivers must call drm_calc_timestamping_constants() before 758 * enabling a CRTC. The atomic helpers already take care of that in 759 * drm_atomic_helper_update_legacy_modeset_state(). 760 * 761 * Returns: 762 * 763 * Returns true on success, and false on failure, i.e. when no accurate 764 * timestamp could be acquired. 765 */ 766 bool drm_crtc_vblank_helper_get_vblank_timestamp(struct drm_crtc *crtc, 767 int *max_error, 768 ktime_t *vblank_time, 769 bool in_vblank_irq) 770 { 771 return drm_crtc_vblank_helper_get_vblank_timestamp_internal( 772 crtc, max_error, vblank_time, in_vblank_irq, 773 crtc->helper_private->get_scanout_position); 774 } 775 EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp); 776 777 /** 778 * drm_get_last_vbltimestamp - retrieve raw timestamp for the most recent 779 * vblank interval 780 * @dev: DRM device 781 * @pipe: index of CRTC whose vblank timestamp to retrieve 782 * @tvblank: Pointer to target time which should receive the timestamp 783 * @in_vblank_irq: 784 * True when called from drm_crtc_handle_vblank(). Some drivers 785 * need to apply some workarounds for gpu-specific vblank irq quirks 786 * if flag is set. 787 * 788 * Fetches the system timestamp corresponding to the time of the most recent 789 * vblank interval on specified CRTC. May call into kms-driver to 790 * compute the timestamp with a high-precision GPU specific method. 791 * 792 * Returns zero if timestamp originates from uncorrected do_gettimeofday() 793 * call, i.e., it isn't very precisely locked to the true vblank. 794 * 795 * Returns: 796 * True if timestamp is considered to be very precise, false otherwise. 797 */ 798 static bool 799 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe, 800 ktime_t *tvblank, bool in_vblank_irq) 801 { 802 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 803 bool ret = false; 804 805 /* Define requested maximum error on timestamps (nanoseconds). */ 806 int max_error = (int) drm_timestamp_precision * 1000; 807 808 /* Query driver if possible and precision timestamping enabled. */ 809 if (crtc && crtc->funcs->get_vblank_timestamp && max_error > 0) { 810 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 811 812 ret = crtc->funcs->get_vblank_timestamp(crtc, &max_error, 813 tvblank, in_vblank_irq); 814 } 815 816 /* GPU high precision timestamp query unsupported or failed. 817 * Return current monotonic/gettimeofday timestamp as best estimate. 818 */ 819 if (!ret) 820 *tvblank = ktime_get(); 821 822 return ret; 823 } 824 825 /** 826 * drm_crtc_vblank_count - retrieve "cooked" vblank counter value 827 * @crtc: which counter to retrieve 828 * 829 * Fetches the "cooked" vblank count value that represents the number of 830 * vblank events since the system was booted, including lost events due to 831 * modesetting activity. Note that this timer isn't correct against a racing 832 * vblank interrupt (since it only reports the software vblank counter), see 833 * drm_crtc_accurate_vblank_count() for such use-cases. 834 * 835 * Note that for a given vblank counter value drm_crtc_handle_vblank() 836 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time() 837 * provide a barrier: Any writes done before calling 838 * drm_crtc_handle_vblank() will be visible to callers of the later 839 * functions, iff the vblank count is the same or a later one. 840 * 841 * See also &drm_vblank_crtc.count. 842 * 843 * Returns: 844 * The software vblank counter. 845 */ 846 u64 drm_crtc_vblank_count(struct drm_crtc *crtc) 847 { 848 return drm_vblank_count(crtc->dev, drm_crtc_index(crtc)); 849 } 850 EXPORT_SYMBOL(drm_crtc_vblank_count); 851 852 /** 853 * drm_vblank_count_and_time - retrieve "cooked" vblank counter value and the 854 * system timestamp corresponding to that vblank counter value. 855 * @dev: DRM device 856 * @pipe: index of CRTC whose counter to retrieve 857 * @vblanktime: Pointer to ktime_t to receive the vblank timestamp. 858 * 859 * Fetches the "cooked" vblank count value that represents the number of 860 * vblank events since the system was booted, including lost events due to 861 * modesetting activity. Returns corresponding system timestamp of the time 862 * of the vblank interval that corresponds to the current vblank counter value. 863 * 864 * This is the legacy version of drm_crtc_vblank_count_and_time(). 865 */ 866 static u64 drm_vblank_count_and_time(struct drm_device *dev, unsigned int pipe, 867 ktime_t *vblanktime) 868 { 869 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 870 u64 vblank_count; 871 unsigned int seq; 872 873 if (WARN_ON(pipe >= dev->num_crtcs)) { 874 *vblanktime = (struct timeval) {0, 0}; 875 return 0; 876 } 877 878 do { 879 seq = read_seqbegin(&vblank->seqlock); 880 vblank_count = atomic64_read(&vblank->count); 881 *vblanktime = vblank->time; 882 } while (read_seqretry(&vblank->seqlock, seq)); 883 884 return vblank_count; 885 } 886 887 /** 888 * drm_crtc_vblank_count_and_time - retrieve "cooked" vblank counter value 889 * and the system timestamp corresponding to that vblank counter value 890 * @crtc: which counter to retrieve 891 * @vblanktime: Pointer to time to receive the vblank timestamp. 892 * 893 * Fetches the "cooked" vblank count value that represents the number of 894 * vblank events since the system was booted, including lost events due to 895 * modesetting activity. Returns corresponding system timestamp of the time 896 * of the vblank interval that corresponds to the current vblank counter value. 897 * 898 * Note that for a given vblank counter value drm_crtc_handle_vblank() 899 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time() 900 * provide a barrier: Any writes done before calling 901 * drm_crtc_handle_vblank() will be visible to callers of the later 902 * functions, iff the vblank count is the same or a later one. 903 * 904 * See also &drm_vblank_crtc.count. 905 */ 906 u64 drm_crtc_vblank_count_and_time(struct drm_crtc *crtc, 907 ktime_t *vblanktime) 908 { 909 return drm_vblank_count_and_time(crtc->dev, drm_crtc_index(crtc), 910 vblanktime); 911 } 912 EXPORT_SYMBOL(drm_crtc_vblank_count_and_time); 913 914 static void send_vblank_event(struct drm_device *dev, 915 struct drm_pending_vblank_event *e, 916 u64 seq, ktime_t now) 917 { 918 struct timespec64 tv; 919 920 switch (e->event.base.type) { 921 case DRM_EVENT_VBLANK: 922 case DRM_EVENT_FLIP_COMPLETE: 923 tv = ktime_to_timespec64(now); 924 e->event.vbl.sequence = seq; 925 /* 926 * e->event is a user space structure, with hardcoded unsigned 927 * 32-bit seconds/microseconds. This is safe as we always use 928 * monotonic timestamps since linux-4.15 929 */ 930 e->event.vbl.tv_sec = tv.tv_sec; 931 e->event.vbl.tv_usec = tv.tv_nsec / 1000; 932 break; 933 case DRM_EVENT_CRTC_SEQUENCE: 934 if (seq) 935 e->event.seq.sequence = seq; 936 e->event.seq.time_ns = ktime_to_ns(now); 937 break; 938 } 939 trace_drm_vblank_event_delivered(e->base.file_priv, e->pipe, seq); 940 drm_send_event_locked(dev, &e->base); 941 } 942 943 /** 944 * drm_crtc_arm_vblank_event - arm vblank event after pageflip 945 * @crtc: the source CRTC of the vblank event 946 * @e: the event to send 947 * 948 * A lot of drivers need to generate vblank events for the very next vblank 949 * interrupt. For example when the page flip interrupt happens when the page 950 * flip gets armed, but not when it actually executes within the next vblank 951 * period. This helper function implements exactly the required vblank arming 952 * behaviour. 953 * 954 * NOTE: Drivers using this to send out the &drm_crtc_state.event as part of an 955 * atomic commit must ensure that the next vblank happens at exactly the same 956 * time as the atomic commit is committed to the hardware. This function itself 957 * does **not** protect against the next vblank interrupt racing with either this 958 * function call or the atomic commit operation. A possible sequence could be: 959 * 960 * 1. Driver commits new hardware state into vblank-synchronized registers. 961 * 2. A vblank happens, committing the hardware state. Also the corresponding 962 * vblank interrupt is fired off and fully processed by the interrupt 963 * handler. 964 * 3. The atomic commit operation proceeds to call drm_crtc_arm_vblank_event(). 965 * 4. The event is only send out for the next vblank, which is wrong. 966 * 967 * An equivalent race can happen when the driver calls 968 * drm_crtc_arm_vblank_event() before writing out the new hardware state. 969 * 970 * The only way to make this work safely is to prevent the vblank from firing 971 * (and the hardware from committing anything else) until the entire atomic 972 * commit sequence has run to completion. If the hardware does not have such a 973 * feature (e.g. using a "go" bit), then it is unsafe to use this functions. 974 * Instead drivers need to manually send out the event from their interrupt 975 * handler by calling drm_crtc_send_vblank_event() and make sure that there's no 976 * possible race with the hardware committing the atomic update. 977 * 978 * Caller must hold a vblank reference for the event @e acquired by a 979 * drm_crtc_vblank_get(), which will be dropped when the next vblank arrives. 980 */ 981 void drm_crtc_arm_vblank_event(struct drm_crtc *crtc, 982 struct drm_pending_vblank_event *e) 983 { 984 struct drm_device *dev = crtc->dev; 985 unsigned int pipe = drm_crtc_index(crtc); 986 987 assert_spin_locked(&dev->event_lock); 988 989 e->pipe = pipe; 990 e->sequence = drm_crtc_accurate_vblank_count(crtc) + 1; 991 list_add_tail(&e->base.link, &dev->vblank_event_list); 992 } 993 EXPORT_SYMBOL(drm_crtc_arm_vblank_event); 994 995 /** 996 * drm_crtc_send_vblank_event - helper to send vblank event after pageflip 997 * @crtc: the source CRTC of the vblank event 998 * @e: the event to send 999 * 1000 * Updates sequence # and timestamp on event for the most recently processed 1001 * vblank, and sends it to userspace. Caller must hold event lock. 1002 * 1003 * See drm_crtc_arm_vblank_event() for a helper which can be used in certain 1004 * situation, especially to send out events for atomic commit operations. 1005 */ 1006 void drm_crtc_send_vblank_event(struct drm_crtc *crtc, 1007 struct drm_pending_vblank_event *e) 1008 { 1009 struct drm_device *dev = crtc->dev; 1010 u64 seq; 1011 unsigned int pipe = drm_crtc_index(crtc); 1012 ktime_t now; 1013 1014 if (dev->num_crtcs > 0) { 1015 seq = drm_vblank_count_and_time(dev, pipe, &now); 1016 } else { 1017 seq = 0; 1018 1019 now = ktime_get(); 1020 } 1021 e->pipe = pipe; 1022 send_vblank_event(dev, e, seq, now); 1023 } 1024 EXPORT_SYMBOL(drm_crtc_send_vblank_event); 1025 1026 static int __enable_vblank(struct drm_device *dev, unsigned int pipe) 1027 { 1028 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 1029 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 1030 1031 if (WARN_ON(!crtc)) 1032 return 0; 1033 1034 if (crtc->funcs->enable_vblank) 1035 return crtc->funcs->enable_vblank(crtc); 1036 } else if (dev->driver->enable_vblank) { 1037 return dev->driver->enable_vblank(dev, pipe); 1038 } 1039 1040 return -EINVAL; 1041 } 1042 1043 static int drm_vblank_enable(struct drm_device *dev, unsigned int pipe) 1044 { 1045 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1046 int ret = 0; 1047 1048 assert_spin_locked(&dev->vbl_lock); 1049 1050 spin_lock(&dev->vblank_time_lock); 1051 1052 if (!vblank->enabled) { 1053 /* 1054 * Enable vblank irqs under vblank_time_lock protection. 1055 * All vblank count & timestamp updates are held off 1056 * until we are done reinitializing master counter and 1057 * timestamps. Filtercode in drm_handle_vblank() will 1058 * prevent double-accounting of same vblank interval. 1059 */ 1060 ret = __enable_vblank(dev, pipe); 1061 DRM_DEBUG("enabling vblank on crtc %u, ret: %d\n", pipe, ret); 1062 if (ret) { 1063 atomic_dec(&vblank->refcount); 1064 } else { 1065 drm_update_vblank_count(dev, pipe, 0); 1066 /* drm_update_vblank_count() includes a wmb so we just 1067 * need to ensure that the compiler emits the write 1068 * to mark the vblank as enabled after the call 1069 * to drm_update_vblank_count(). 1070 */ 1071 WRITE_ONCE(vblank->enabled, true); 1072 } 1073 } 1074 1075 spin_unlock(&dev->vblank_time_lock); 1076 1077 return ret; 1078 } 1079 1080 static int drm_vblank_get(struct drm_device *dev, unsigned int pipe) 1081 { 1082 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1083 unsigned long irqflags; 1084 int ret = 0; 1085 1086 if (!dev->num_crtcs) 1087 return -EINVAL; 1088 1089 if (WARN_ON(pipe >= dev->num_crtcs)) 1090 return -EINVAL; 1091 1092 spin_lock_irqsave(&dev->vbl_lock, irqflags); 1093 /* Going from 0->1 means we have to enable interrupts again */ 1094 if (atomic_add_return(1, &vblank->refcount) == 1) { 1095 ret = drm_vblank_enable(dev, pipe); 1096 } else { 1097 if (!vblank->enabled) { 1098 atomic_dec(&vblank->refcount); 1099 ret = -EINVAL; 1100 } 1101 } 1102 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 1103 1104 return ret; 1105 } 1106 1107 /** 1108 * drm_crtc_vblank_get - get a reference count on vblank events 1109 * @crtc: which CRTC to own 1110 * 1111 * Acquire a reference count on vblank events to avoid having them disabled 1112 * while in use. 1113 * 1114 * Returns: 1115 * Zero on success or a negative error code on failure. 1116 */ 1117 int drm_crtc_vblank_get(struct drm_crtc *crtc) 1118 { 1119 return drm_vblank_get(crtc->dev, drm_crtc_index(crtc)); 1120 } 1121 EXPORT_SYMBOL(drm_crtc_vblank_get); 1122 1123 static void drm_vblank_put(struct drm_device *dev, unsigned int pipe) 1124 { 1125 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1126 1127 if (WARN_ON(pipe >= dev->num_crtcs)) 1128 return; 1129 1130 if (WARN_ON(atomic_read(&vblank->refcount) == 0)) 1131 return; 1132 1133 /* Last user schedules interrupt disable */ 1134 if (atomic_dec_and_test(&vblank->refcount)) { 1135 if (drm_vblank_offdelay == 0) 1136 return; 1137 else if (drm_vblank_offdelay < 0) 1138 vblank_disable_fn((unsigned long)vblank); 1139 else if (!dev->vblank_disable_immediate) 1140 mod_timer(&vblank->disable_timer, 1141 jiffies + ((drm_vblank_offdelay * HZ)/1000)); 1142 } 1143 } 1144 1145 /** 1146 * drm_crtc_vblank_put - give up ownership of vblank events 1147 * @crtc: which counter to give up 1148 * 1149 * Release ownership of a given vblank counter, turning off interrupts 1150 * if possible. Disable interrupts after drm_vblank_offdelay milliseconds. 1151 */ 1152 void drm_crtc_vblank_put(struct drm_crtc *crtc) 1153 { 1154 drm_vblank_put(crtc->dev, drm_crtc_index(crtc)); 1155 } 1156 EXPORT_SYMBOL(drm_crtc_vblank_put); 1157 1158 /** 1159 * drm_wait_one_vblank - wait for one vblank 1160 * @dev: DRM device 1161 * @pipe: CRTC index 1162 * 1163 * This waits for one vblank to pass on @pipe, using the irq driver interfaces. 1164 * It is a failure to call this when the vblank irq for @pipe is disabled, e.g. 1165 * due to lack of driver support or because the crtc is off. 1166 * 1167 * This is the legacy version of drm_crtc_wait_one_vblank(). 1168 */ 1169 void drm_wait_one_vblank(struct drm_device *dev, unsigned int pipe) 1170 { 1171 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1172 int ret; 1173 u64 last; 1174 1175 if (WARN_ON(pipe >= dev->num_crtcs)) 1176 return; 1177 1178 #ifdef __OpenBSD__ 1179 /* 1180 * If we're cold, vblank interrupts won't happen even if 1181 * they're turned on by the driver. Just stall long enough 1182 * for a vblank to pass. This assumes a vrefresh of at least 1183 * 25 Hz. 1184 */ 1185 if (cold) { 1186 delay(40000); 1187 return; 1188 } 1189 #endif 1190 1191 ret = drm_vblank_get(dev, pipe); 1192 if (WARN(ret, "vblank not available on crtc %i, ret=%i\n", pipe, ret)) 1193 return; 1194 1195 last = drm_vblank_count(dev, pipe); 1196 1197 ret = wait_event_timeout(vblank->queue, 1198 last != drm_vblank_count(dev, pipe), 1199 msecs_to_jiffies(100)); 1200 1201 WARN(ret == 0, "vblank wait timed out on crtc %i\n", pipe); 1202 1203 drm_vblank_put(dev, pipe); 1204 } 1205 EXPORT_SYMBOL(drm_wait_one_vblank); 1206 1207 /** 1208 * drm_crtc_wait_one_vblank - wait for one vblank 1209 * @crtc: DRM crtc 1210 * 1211 * This waits for one vblank to pass on @crtc, using the irq driver interfaces. 1212 * It is a failure to call this when the vblank irq for @crtc is disabled, e.g. 1213 * due to lack of driver support or because the crtc is off. 1214 */ 1215 void drm_crtc_wait_one_vblank(struct drm_crtc *crtc) 1216 { 1217 drm_wait_one_vblank(crtc->dev, drm_crtc_index(crtc)); 1218 } 1219 EXPORT_SYMBOL(drm_crtc_wait_one_vblank); 1220 1221 /** 1222 * drm_crtc_vblank_off - disable vblank events on a CRTC 1223 * @crtc: CRTC in question 1224 * 1225 * Drivers can use this function to shut down the vblank interrupt handling when 1226 * disabling a crtc. This function ensures that the latest vblank frame count is 1227 * stored so that drm_vblank_on can restore it again. 1228 * 1229 * Drivers must use this function when the hardware vblank counter can get 1230 * reset, e.g. when suspending or disabling the @crtc in general. 1231 */ 1232 void drm_crtc_vblank_off(struct drm_crtc *crtc) 1233 { 1234 struct drm_device *dev = crtc->dev; 1235 unsigned int pipe = drm_crtc_index(crtc); 1236 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1237 struct drm_pending_vblank_event *e, *t; 1238 1239 ktime_t now; 1240 unsigned long irqflags; 1241 u64 seq; 1242 1243 if (WARN_ON(pipe >= dev->num_crtcs)) 1244 return; 1245 1246 spin_lock_irqsave(&dev->event_lock, irqflags); 1247 1248 spin_lock(&dev->vbl_lock); 1249 DRM_DEBUG_VBL("crtc %d, vblank enabled %d, inmodeset %d\n", 1250 pipe, vblank->enabled, vblank->inmodeset); 1251 1252 /* Avoid redundant vblank disables without previous 1253 * drm_crtc_vblank_on(). */ 1254 if (drm_core_check_feature(dev, DRIVER_ATOMIC) || !vblank->inmodeset) 1255 drm_vblank_disable_and_save(dev, pipe); 1256 1257 wake_up(&vblank->queue); 1258 1259 /* 1260 * Prevent subsequent drm_vblank_get() from re-enabling 1261 * the vblank interrupt by bumping the refcount. 1262 */ 1263 if (!vblank->inmodeset) { 1264 atomic_inc(&vblank->refcount); 1265 vblank->inmodeset = 1; 1266 } 1267 spin_unlock(&dev->vbl_lock); 1268 1269 /* Send any queued vblank events, lest the natives grow disquiet */ 1270 seq = drm_vblank_count_and_time(dev, pipe, &now); 1271 1272 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) { 1273 if (e->pipe != pipe) 1274 continue; 1275 DRM_DEBUG("Sending premature vblank event on disable: " 1276 "wanted %llu, current %llu\n", 1277 e->sequence, seq); 1278 list_del(&e->base.link); 1279 drm_vblank_put(dev, pipe); 1280 send_vblank_event(dev, e, seq, now); 1281 } 1282 spin_unlock_irqrestore(&dev->event_lock, irqflags); 1283 1284 /* Will be reset by the modeset helpers when re-enabling the crtc by 1285 * calling drm_calc_timestamping_constants(). */ 1286 vblank->hwmode.crtc_clock = 0; 1287 } 1288 EXPORT_SYMBOL(drm_crtc_vblank_off); 1289 1290 /** 1291 * drm_crtc_vblank_reset - reset vblank state to off on a CRTC 1292 * @crtc: CRTC in question 1293 * 1294 * Drivers can use this function to reset the vblank state to off at load time. 1295 * Drivers should use this together with the drm_crtc_vblank_off() and 1296 * drm_crtc_vblank_on() functions. The difference compared to 1297 * drm_crtc_vblank_off() is that this function doesn't save the vblank counter 1298 * and hence doesn't need to call any driver hooks. 1299 * 1300 * This is useful for recovering driver state e.g. on driver load, or on resume. 1301 */ 1302 void drm_crtc_vblank_reset(struct drm_crtc *crtc) 1303 { 1304 struct drm_device *dev = crtc->dev; 1305 unsigned long irqflags; 1306 unsigned int pipe = drm_crtc_index(crtc); 1307 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1308 1309 spin_lock_irqsave(&dev->vbl_lock, irqflags); 1310 /* 1311 * Prevent subsequent drm_vblank_get() from enabling the vblank 1312 * interrupt by bumping the refcount. 1313 */ 1314 if (!vblank->inmodeset) { 1315 atomic_inc(&vblank->refcount); 1316 vblank->inmodeset = 1; 1317 } 1318 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 1319 1320 WARN_ON(!list_empty(&dev->vblank_event_list)); 1321 } 1322 EXPORT_SYMBOL(drm_crtc_vblank_reset); 1323 1324 /** 1325 * drm_crtc_set_max_vblank_count - configure the hw max vblank counter value 1326 * @crtc: CRTC in question 1327 * @max_vblank_count: max hardware vblank counter value 1328 * 1329 * Update the maximum hardware vblank counter value for @crtc 1330 * at runtime. Useful for hardware where the operation of the 1331 * hardware vblank counter depends on the currently active 1332 * display configuration. 1333 * 1334 * For example, if the hardware vblank counter does not work 1335 * when a specific connector is active the maximum can be set 1336 * to zero. And when that specific connector isn't active the 1337 * maximum can again be set to the appropriate non-zero value. 1338 * 1339 * If used, must be called before drm_vblank_on(). 1340 */ 1341 void drm_crtc_set_max_vblank_count(struct drm_crtc *crtc, 1342 u32 max_vblank_count) 1343 { 1344 struct drm_device *dev = crtc->dev; 1345 unsigned int pipe = drm_crtc_index(crtc); 1346 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1347 1348 WARN_ON(dev->max_vblank_count); 1349 WARN_ON(!READ_ONCE(vblank->inmodeset)); 1350 1351 vblank->max_vblank_count = max_vblank_count; 1352 } 1353 EXPORT_SYMBOL(drm_crtc_set_max_vblank_count); 1354 1355 /** 1356 * drm_crtc_vblank_on - enable vblank events on a CRTC 1357 * @crtc: CRTC in question 1358 * 1359 * This functions restores the vblank interrupt state captured with 1360 * drm_crtc_vblank_off() again and is generally called when enabling @crtc. Note 1361 * that calls to drm_crtc_vblank_on() and drm_crtc_vblank_off() can be 1362 * unbalanced and so can also be unconditionally called in driver load code to 1363 * reflect the current hardware state of the crtc. 1364 */ 1365 void drm_crtc_vblank_on(struct drm_crtc *crtc) 1366 { 1367 struct drm_device *dev = crtc->dev; 1368 unsigned int pipe = drm_crtc_index(crtc); 1369 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1370 unsigned long irqflags; 1371 1372 if (WARN_ON(pipe >= dev->num_crtcs)) 1373 return; 1374 1375 spin_lock_irqsave(&dev->vbl_lock, irqflags); 1376 DRM_DEBUG_VBL("crtc %d, vblank enabled %d, inmodeset %d\n", 1377 pipe, vblank->enabled, vblank->inmodeset); 1378 1379 /* Drop our private "prevent drm_vblank_get" refcount */ 1380 if (vblank->inmodeset) { 1381 atomic_dec(&vblank->refcount); 1382 vblank->inmodeset = 0; 1383 } 1384 1385 drm_reset_vblank_timestamp(dev, pipe); 1386 1387 /* 1388 * re-enable interrupts if there are users left, or the 1389 * user wishes vblank interrupts to be enabled all the time. 1390 */ 1391 if (atomic_read(&vblank->refcount) != 0 || drm_vblank_offdelay == 0) 1392 WARN_ON(drm_vblank_enable(dev, pipe)); 1393 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 1394 } 1395 EXPORT_SYMBOL(drm_crtc_vblank_on); 1396 1397 /** 1398 * drm_vblank_restore - estimate missed vblanks and update vblank count. 1399 * @dev: DRM device 1400 * @pipe: CRTC index 1401 * 1402 * Power manamement features can cause frame counter resets between vblank 1403 * disable and enable. Drivers can use this function in their 1404 * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since 1405 * the last &drm_crtc_funcs.disable_vblank using timestamps and update the 1406 * vblank counter. 1407 * 1408 * This function is the legacy version of drm_crtc_vblank_restore(). 1409 */ 1410 void drm_vblank_restore(struct drm_device *dev, unsigned int pipe) 1411 { 1412 ktime_t t_vblank; 1413 struct drm_vblank_crtc *vblank; 1414 int framedur_ns; 1415 u64 diff_ns; 1416 u32 cur_vblank, diff = 1; 1417 int count = DRM_TIMESTAMP_MAXRETRIES; 1418 1419 if (WARN_ON(pipe >= dev->num_crtcs)) 1420 return; 1421 1422 assert_spin_locked(&dev->vbl_lock); 1423 assert_spin_locked(&dev->vblank_time_lock); 1424 1425 vblank = &dev->vblank[pipe]; 1426 WARN_ONCE(drm_debug_enabled(DRM_UT_VBL) && !vblank->framedur_ns, 1427 "Cannot compute missed vblanks without frame duration\n"); 1428 framedur_ns = vblank->framedur_ns; 1429 1430 do { 1431 cur_vblank = __get_vblank_counter(dev, pipe); 1432 drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false); 1433 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0); 1434 1435 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time)); 1436 if (framedur_ns) 1437 diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns); 1438 1439 1440 DRM_DEBUG_VBL("missed %d vblanks in %lld ns, frame duration=%d ns, hw_diff=%d\n", 1441 diff, diff_ns, framedur_ns, cur_vblank - vblank->last); 1442 store_vblank(dev, pipe, diff, t_vblank, cur_vblank); 1443 } 1444 EXPORT_SYMBOL(drm_vblank_restore); 1445 1446 /** 1447 * drm_crtc_vblank_restore - estimate missed vblanks and update vblank count. 1448 * @crtc: CRTC in question 1449 * 1450 * Power manamement features can cause frame counter resets between vblank 1451 * disable and enable. Drivers can use this function in their 1452 * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since 1453 * the last &drm_crtc_funcs.disable_vblank using timestamps and update the 1454 * vblank counter. 1455 */ 1456 void drm_crtc_vblank_restore(struct drm_crtc *crtc) 1457 { 1458 drm_vblank_restore(crtc->dev, drm_crtc_index(crtc)); 1459 } 1460 EXPORT_SYMBOL(drm_crtc_vblank_restore); 1461 1462 static void drm_legacy_vblank_pre_modeset(struct drm_device *dev, 1463 unsigned int pipe) 1464 { 1465 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1466 1467 /* vblank is not initialized (IRQ not installed ?), or has been freed */ 1468 if (!dev->num_crtcs) 1469 return; 1470 1471 if (WARN_ON(pipe >= dev->num_crtcs)) 1472 return; 1473 1474 /* 1475 * To avoid all the problems that might happen if interrupts 1476 * were enabled/disabled around or between these calls, we just 1477 * have the kernel take a reference on the CRTC (just once though 1478 * to avoid corrupting the count if multiple, mismatch calls occur), 1479 * so that interrupts remain enabled in the interim. 1480 */ 1481 if (!vblank->inmodeset) { 1482 vblank->inmodeset = 0x1; 1483 if (drm_vblank_get(dev, pipe) == 0) 1484 vblank->inmodeset |= 0x2; 1485 } 1486 } 1487 1488 static void drm_legacy_vblank_post_modeset(struct drm_device *dev, 1489 unsigned int pipe) 1490 { 1491 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1492 unsigned long irqflags; 1493 1494 /* vblank is not initialized (IRQ not installed ?), or has been freed */ 1495 if (!dev->num_crtcs) 1496 return; 1497 1498 if (WARN_ON(pipe >= dev->num_crtcs)) 1499 return; 1500 1501 if (vblank->inmodeset) { 1502 spin_lock_irqsave(&dev->vbl_lock, irqflags); 1503 drm_reset_vblank_timestamp(dev, pipe); 1504 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 1505 1506 if (vblank->inmodeset & 0x2) 1507 drm_vblank_put(dev, pipe); 1508 1509 vblank->inmodeset = 0; 1510 } 1511 } 1512 1513 int drm_legacy_modeset_ctl_ioctl(struct drm_device *dev, void *data, 1514 struct drm_file *file_priv) 1515 { 1516 struct drm_modeset_ctl *modeset = data; 1517 unsigned int pipe; 1518 1519 /* If drm_vblank_init() hasn't been called yet, just no-op */ 1520 if (!dev->num_crtcs) 1521 return 0; 1522 1523 /* KMS drivers handle this internally */ 1524 if (!drm_core_check_feature(dev, DRIVER_LEGACY)) 1525 return 0; 1526 1527 pipe = modeset->crtc; 1528 if (pipe >= dev->num_crtcs) 1529 return -EINVAL; 1530 1531 switch (modeset->cmd) { 1532 case _DRM_PRE_MODESET: 1533 drm_legacy_vblank_pre_modeset(dev, pipe); 1534 break; 1535 case _DRM_POST_MODESET: 1536 drm_legacy_vblank_post_modeset(dev, pipe); 1537 break; 1538 default: 1539 return -EINVAL; 1540 } 1541 1542 return 0; 1543 } 1544 1545 static inline bool vblank_passed(u64 seq, u64 ref) 1546 { 1547 return (seq - ref) <= (1 << 23); 1548 } 1549 1550 static int drm_queue_vblank_event(struct drm_device *dev, unsigned int pipe, 1551 u64 req_seq, 1552 union drm_wait_vblank *vblwait, 1553 struct drm_file *file_priv) 1554 { 1555 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1556 struct drm_pending_vblank_event *e; 1557 ktime_t now; 1558 unsigned long flags; 1559 u64 seq; 1560 int ret; 1561 1562 e = kzalloc(sizeof(*e), GFP_KERNEL); 1563 if (e == NULL) { 1564 ret = -ENOMEM; 1565 goto err_put; 1566 } 1567 1568 e->pipe = pipe; 1569 e->event.base.type = DRM_EVENT_VBLANK; 1570 e->event.base.length = sizeof(e->event.vbl); 1571 e->event.vbl.user_data = vblwait->request.signal; 1572 e->event.vbl.crtc_id = 0; 1573 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 1574 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 1575 if (crtc) 1576 e->event.vbl.crtc_id = crtc->base.id; 1577 } 1578 1579 spin_lock_irqsave(&dev->event_lock, flags); 1580 1581 /* 1582 * drm_crtc_vblank_off() might have been called after we called 1583 * drm_vblank_get(). drm_crtc_vblank_off() holds event_lock around the 1584 * vblank disable, so no need for further locking. The reference from 1585 * drm_vblank_get() protects against vblank disable from another source. 1586 */ 1587 if (!READ_ONCE(vblank->enabled)) { 1588 ret = -EINVAL; 1589 goto err_unlock; 1590 } 1591 1592 ret = drm_event_reserve_init_locked(dev, file_priv, &e->base, 1593 &e->event.base); 1594 1595 if (ret) 1596 goto err_unlock; 1597 1598 seq = drm_vblank_count_and_time(dev, pipe, &now); 1599 1600 DRM_DEBUG("event on vblank count %llu, current %llu, crtc %u\n", 1601 req_seq, seq, pipe); 1602 1603 trace_drm_vblank_event_queued(file_priv, pipe, req_seq); 1604 1605 e->sequence = req_seq; 1606 if (vblank_passed(seq, req_seq)) { 1607 drm_vblank_put(dev, pipe); 1608 send_vblank_event(dev, e, seq, now); 1609 vblwait->reply.sequence = seq; 1610 } else { 1611 /* drm_handle_vblank_events will call drm_vblank_put */ 1612 list_add_tail(&e->base.link, &dev->vblank_event_list); 1613 vblwait->reply.sequence = req_seq; 1614 } 1615 1616 spin_unlock_irqrestore(&dev->event_lock, flags); 1617 1618 return 0; 1619 1620 err_unlock: 1621 spin_unlock_irqrestore(&dev->event_lock, flags); 1622 kfree(e); 1623 err_put: 1624 drm_vblank_put(dev, pipe); 1625 return ret; 1626 } 1627 1628 static bool drm_wait_vblank_is_query(union drm_wait_vblank *vblwait) 1629 { 1630 if (vblwait->request.sequence) 1631 return false; 1632 1633 return _DRM_VBLANK_RELATIVE == 1634 (vblwait->request.type & (_DRM_VBLANK_TYPES_MASK | 1635 _DRM_VBLANK_EVENT | 1636 _DRM_VBLANK_NEXTONMISS)); 1637 } 1638 1639 /* 1640 * Widen a 32-bit param to 64-bits. 1641 * 1642 * \param narrow 32-bit value (missing upper 32 bits) 1643 * \param near 64-bit value that should be 'close' to near 1644 * 1645 * This function returns a 64-bit value using the lower 32-bits from 1646 * 'narrow' and constructing the upper 32-bits so that the result is 1647 * as close as possible to 'near'. 1648 */ 1649 1650 static u64 widen_32_to_64(u32 narrow, u64 near) 1651 { 1652 return near + (s32) (narrow - near); 1653 } 1654 1655 static void drm_wait_vblank_reply(struct drm_device *dev, unsigned int pipe, 1656 struct drm_wait_vblank_reply *reply) 1657 { 1658 ktime_t now; 1659 struct timespec64 ts; 1660 1661 /* 1662 * drm_wait_vblank_reply is a UAPI structure that uses 'long' 1663 * to store the seconds. This is safe as we always use monotonic 1664 * timestamps since linux-4.15. 1665 */ 1666 reply->sequence = drm_vblank_count_and_time(dev, pipe, &now); 1667 ts = ktime_to_timespec64(now); 1668 reply->tval_sec = (u32)ts.tv_sec; 1669 reply->tval_usec = ts.tv_nsec / 1000; 1670 } 1671 1672 int drm_wait_vblank_ioctl(struct drm_device *dev, void *data, 1673 struct drm_file *file_priv) 1674 { 1675 struct drm_crtc *crtc; 1676 struct drm_vblank_crtc *vblank; 1677 union drm_wait_vblank *vblwait = data; 1678 int ret; 1679 u64 req_seq, seq; 1680 unsigned int pipe_index; 1681 unsigned int flags, pipe, high_pipe; 1682 1683 if (!dev->irq_enabled) 1684 return -EOPNOTSUPP; 1685 1686 if (vblwait->request.type & _DRM_VBLANK_SIGNAL) 1687 return -EINVAL; 1688 1689 if (vblwait->request.type & 1690 ~(_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK | 1691 _DRM_VBLANK_HIGH_CRTC_MASK)) { 1692 DRM_DEBUG("Unsupported type value 0x%x, supported mask 0x%x\n", 1693 vblwait->request.type, 1694 (_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK | 1695 _DRM_VBLANK_HIGH_CRTC_MASK)); 1696 return -EINVAL; 1697 } 1698 1699 flags = vblwait->request.type & _DRM_VBLANK_FLAGS_MASK; 1700 high_pipe = (vblwait->request.type & _DRM_VBLANK_HIGH_CRTC_MASK); 1701 if (high_pipe) 1702 pipe_index = high_pipe >> _DRM_VBLANK_HIGH_CRTC_SHIFT; 1703 else 1704 pipe_index = flags & _DRM_VBLANK_SECONDARY ? 1 : 0; 1705 1706 /* Convert lease-relative crtc index into global crtc index */ 1707 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 1708 pipe = 0; 1709 drm_for_each_crtc(crtc, dev) { 1710 if (drm_lease_held(file_priv, crtc->base.id)) { 1711 if (pipe_index == 0) 1712 break; 1713 pipe_index--; 1714 } 1715 pipe++; 1716 } 1717 } else { 1718 pipe = pipe_index; 1719 } 1720 1721 if (pipe >= dev->num_crtcs) 1722 return -EINVAL; 1723 1724 vblank = &dev->vblank[pipe]; 1725 1726 /* If the counter is currently enabled and accurate, short-circuit 1727 * queries to return the cached timestamp of the last vblank. 1728 */ 1729 if (dev->vblank_disable_immediate && 1730 drm_wait_vblank_is_query(vblwait) && 1731 READ_ONCE(vblank->enabled)) { 1732 drm_wait_vblank_reply(dev, pipe, &vblwait->reply); 1733 return 0; 1734 } 1735 1736 ret = drm_vblank_get(dev, pipe); 1737 if (ret) { 1738 DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret); 1739 return ret; 1740 } 1741 seq = drm_vblank_count(dev, pipe); 1742 1743 switch (vblwait->request.type & _DRM_VBLANK_TYPES_MASK) { 1744 case _DRM_VBLANK_RELATIVE: 1745 req_seq = seq + vblwait->request.sequence; 1746 vblwait->request.sequence = req_seq; 1747 vblwait->request.type &= ~_DRM_VBLANK_RELATIVE; 1748 break; 1749 case _DRM_VBLANK_ABSOLUTE: 1750 req_seq = widen_32_to_64(vblwait->request.sequence, seq); 1751 break; 1752 default: 1753 ret = -EINVAL; 1754 goto done; 1755 } 1756 1757 if ((flags & _DRM_VBLANK_NEXTONMISS) && 1758 vblank_passed(seq, req_seq)) { 1759 req_seq = seq + 1; 1760 vblwait->request.type &= ~_DRM_VBLANK_NEXTONMISS; 1761 vblwait->request.sequence = req_seq; 1762 } 1763 1764 if (flags & _DRM_VBLANK_EVENT) { 1765 /* must hold on to the vblank ref until the event fires 1766 * drm_vblank_put will be called asynchronously 1767 */ 1768 return drm_queue_vblank_event(dev, pipe, req_seq, vblwait, file_priv); 1769 } 1770 1771 if (req_seq != seq) { 1772 int wait; 1773 1774 DRM_DEBUG("waiting on vblank count %llu, crtc %u\n", 1775 req_seq, pipe); 1776 wait = wait_event_interruptible_timeout(vblank->queue, 1777 vblank_passed(drm_vblank_count(dev, pipe), req_seq) || 1778 !READ_ONCE(vblank->enabled), 1779 msecs_to_jiffies(3000)); 1780 1781 switch (wait) { 1782 case 0: 1783 /* timeout */ 1784 ret = -EBUSY; 1785 break; 1786 case -ERESTARTSYS: 1787 /* interrupted by signal */ 1788 ret = -EINTR; 1789 break; 1790 default: 1791 ret = 0; 1792 break; 1793 } 1794 } 1795 1796 if (ret != -EINTR) { 1797 drm_wait_vblank_reply(dev, pipe, &vblwait->reply); 1798 1799 DRM_DEBUG("crtc %d returning %u to client\n", 1800 pipe, vblwait->reply.sequence); 1801 } else { 1802 DRM_DEBUG("crtc %d vblank wait interrupted by signal\n", pipe); 1803 } 1804 1805 done: 1806 drm_vblank_put(dev, pipe); 1807 return ret; 1808 } 1809 1810 static void drm_handle_vblank_events(struct drm_device *dev, unsigned int pipe) 1811 { 1812 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 1813 bool high_prec = false; 1814 struct drm_pending_vblank_event *e, *t; 1815 ktime_t now; 1816 u64 seq; 1817 1818 assert_spin_locked(&dev->event_lock); 1819 1820 seq = drm_vblank_count_and_time(dev, pipe, &now); 1821 1822 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) { 1823 if (e->pipe != pipe) 1824 continue; 1825 if (!vblank_passed(seq, e->sequence)) 1826 continue; 1827 1828 DRM_DEBUG("vblank event on %llu, current %llu\n", 1829 e->sequence, seq); 1830 1831 list_del(&e->base.link); 1832 drm_vblank_put(dev, pipe); 1833 send_vblank_event(dev, e, seq, now); 1834 } 1835 1836 if (crtc && crtc->funcs->get_vblank_timestamp) 1837 high_prec = true; 1838 1839 trace_drm_vblank_event(pipe, seq, now, high_prec); 1840 } 1841 1842 /** 1843 * drm_handle_vblank - handle a vblank event 1844 * @dev: DRM device 1845 * @pipe: index of CRTC where this event occurred 1846 * 1847 * Drivers should call this routine in their vblank interrupt handlers to 1848 * update the vblank counter and send any signals that may be pending. 1849 * 1850 * This is the legacy version of drm_crtc_handle_vblank(). 1851 */ 1852 bool drm_handle_vblank(struct drm_device *dev, unsigned int pipe) 1853 { 1854 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1855 unsigned long irqflags; 1856 bool disable_irq; 1857 1858 if (WARN_ON_ONCE(!dev->num_crtcs)) 1859 return false; 1860 1861 if (WARN_ON(pipe >= dev->num_crtcs)) 1862 return false; 1863 1864 spin_lock_irqsave(&dev->event_lock, irqflags); 1865 1866 /* Need timestamp lock to prevent concurrent execution with 1867 * vblank enable/disable, as this would cause inconsistent 1868 * or corrupted timestamps and vblank counts. 1869 */ 1870 spin_lock(&dev->vblank_time_lock); 1871 1872 /* Vblank irq handling disabled. Nothing to do. */ 1873 if (!vblank->enabled) { 1874 spin_unlock(&dev->vblank_time_lock); 1875 spin_unlock_irqrestore(&dev->event_lock, irqflags); 1876 return false; 1877 } 1878 1879 drm_update_vblank_count(dev, pipe, true); 1880 1881 spin_unlock(&dev->vblank_time_lock); 1882 1883 wake_up(&vblank->queue); 1884 1885 /* With instant-off, we defer disabling the interrupt until after 1886 * we finish processing the following vblank after all events have 1887 * been signaled. The disable has to be last (after 1888 * drm_handle_vblank_events) so that the timestamp is always accurate. 1889 */ 1890 disable_irq = (dev->vblank_disable_immediate && 1891 drm_vblank_offdelay > 0 && 1892 !atomic_read(&vblank->refcount)); 1893 1894 drm_handle_vblank_events(dev, pipe); 1895 1896 spin_unlock_irqrestore(&dev->event_lock, irqflags); 1897 1898 if (disable_irq) 1899 vblank_disable_fn((unsigned long)vblank); 1900 1901 return true; 1902 } 1903 EXPORT_SYMBOL(drm_handle_vblank); 1904 1905 /** 1906 * drm_crtc_handle_vblank - handle a vblank event 1907 * @crtc: where this event occurred 1908 * 1909 * Drivers should call this routine in their vblank interrupt handlers to 1910 * update the vblank counter and send any signals that may be pending. 1911 * 1912 * This is the native KMS version of drm_handle_vblank(). 1913 * 1914 * Note that for a given vblank counter value drm_crtc_handle_vblank() 1915 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time() 1916 * provide a barrier: Any writes done before calling 1917 * drm_crtc_handle_vblank() will be visible to callers of the later 1918 * functions, iff the vblank count is the same or a later one. 1919 * 1920 * See also &drm_vblank_crtc.count. 1921 * 1922 * Returns: 1923 * True if the event was successfully handled, false on failure. 1924 */ 1925 bool drm_crtc_handle_vblank(struct drm_crtc *crtc) 1926 { 1927 return drm_handle_vblank(crtc->dev, drm_crtc_index(crtc)); 1928 } 1929 EXPORT_SYMBOL(drm_crtc_handle_vblank); 1930 1931 /* 1932 * Get crtc VBLANK count. 1933 * 1934 * \param dev DRM device 1935 * \param data user arguement, pointing to a drm_crtc_get_sequence structure. 1936 * \param file_priv drm file private for the user's open file descriptor 1937 */ 1938 1939 int drm_crtc_get_sequence_ioctl(struct drm_device *dev, void *data, 1940 struct drm_file *file_priv) 1941 { 1942 struct drm_crtc *crtc; 1943 struct drm_vblank_crtc *vblank; 1944 int pipe; 1945 struct drm_crtc_get_sequence *get_seq = data; 1946 ktime_t now; 1947 bool vblank_enabled; 1948 int ret; 1949 1950 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 1951 return -EOPNOTSUPP; 1952 1953 if (!dev->irq_enabled) 1954 return -EOPNOTSUPP; 1955 1956 crtc = drm_crtc_find(dev, file_priv, get_seq->crtc_id); 1957 if (!crtc) 1958 return -ENOENT; 1959 1960 pipe = drm_crtc_index(crtc); 1961 1962 vblank = &dev->vblank[pipe]; 1963 vblank_enabled = dev->vblank_disable_immediate && READ_ONCE(vblank->enabled); 1964 1965 if (!vblank_enabled) { 1966 ret = drm_crtc_vblank_get(crtc); 1967 if (ret) { 1968 DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret); 1969 return ret; 1970 } 1971 } 1972 drm_modeset_lock(&crtc->mutex, NULL); 1973 if (crtc->state) 1974 get_seq->active = crtc->state->enable; 1975 else 1976 get_seq->active = crtc->enabled; 1977 drm_modeset_unlock(&crtc->mutex); 1978 get_seq->sequence = drm_vblank_count_and_time(dev, pipe, &now); 1979 get_seq->sequence_ns = ktime_to_ns(now); 1980 if (!vblank_enabled) 1981 drm_crtc_vblank_put(crtc); 1982 return 0; 1983 } 1984 1985 /* 1986 * Queue a event for VBLANK sequence 1987 * 1988 * \param dev DRM device 1989 * \param data user arguement, pointing to a drm_crtc_queue_sequence structure. 1990 * \param file_priv drm file private for the user's open file descriptor 1991 */ 1992 1993 int drm_crtc_queue_sequence_ioctl(struct drm_device *dev, void *data, 1994 struct drm_file *file_priv) 1995 { 1996 struct drm_crtc *crtc; 1997 struct drm_vblank_crtc *vblank; 1998 int pipe; 1999 struct drm_crtc_queue_sequence *queue_seq = data; 2000 ktime_t now; 2001 struct drm_pending_vblank_event *e; 2002 u32 flags; 2003 u64 seq; 2004 u64 req_seq; 2005 int ret; 2006 unsigned long spin_flags; 2007 2008 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 2009 return -EOPNOTSUPP; 2010 2011 if (!dev->irq_enabled) 2012 return -EOPNOTSUPP; 2013 2014 crtc = drm_crtc_find(dev, file_priv, queue_seq->crtc_id); 2015 if (!crtc) 2016 return -ENOENT; 2017 2018 flags = queue_seq->flags; 2019 /* Check valid flag bits */ 2020 if (flags & ~(DRM_CRTC_SEQUENCE_RELATIVE| 2021 DRM_CRTC_SEQUENCE_NEXT_ON_MISS)) 2022 return -EINVAL; 2023 2024 pipe = drm_crtc_index(crtc); 2025 2026 vblank = &dev->vblank[pipe]; 2027 2028 e = kzalloc(sizeof(*e), GFP_KERNEL); 2029 if (e == NULL) 2030 return -ENOMEM; 2031 2032 ret = drm_crtc_vblank_get(crtc); 2033 if (ret) { 2034 DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret); 2035 goto err_free; 2036 } 2037 2038 seq = drm_vblank_count_and_time(dev, pipe, &now); 2039 req_seq = queue_seq->sequence; 2040 2041 if (flags & DRM_CRTC_SEQUENCE_RELATIVE) 2042 req_seq += seq; 2043 2044 if ((flags & DRM_CRTC_SEQUENCE_NEXT_ON_MISS) && vblank_passed(seq, req_seq)) 2045 req_seq = seq + 1; 2046 2047 e->pipe = pipe; 2048 e->event.base.type = DRM_EVENT_CRTC_SEQUENCE; 2049 e->event.base.length = sizeof(e->event.seq); 2050 e->event.seq.user_data = queue_seq->user_data; 2051 2052 spin_lock_irqsave(&dev->event_lock, spin_flags); 2053 2054 /* 2055 * drm_crtc_vblank_off() might have been called after we called 2056 * drm_crtc_vblank_get(). drm_crtc_vblank_off() holds event_lock around the 2057 * vblank disable, so no need for further locking. The reference from 2058 * drm_crtc_vblank_get() protects against vblank disable from another source. 2059 */ 2060 if (!READ_ONCE(vblank->enabled)) { 2061 ret = -EINVAL; 2062 goto err_unlock; 2063 } 2064 2065 ret = drm_event_reserve_init_locked(dev, file_priv, &e->base, 2066 &e->event.base); 2067 2068 if (ret) 2069 goto err_unlock; 2070 2071 e->sequence = req_seq; 2072 2073 if (vblank_passed(seq, req_seq)) { 2074 drm_crtc_vblank_put(crtc); 2075 send_vblank_event(dev, e, seq, now); 2076 queue_seq->sequence = seq; 2077 } else { 2078 /* drm_handle_vblank_events will call drm_vblank_put */ 2079 list_add_tail(&e->base.link, &dev->vblank_event_list); 2080 queue_seq->sequence = req_seq; 2081 } 2082 2083 spin_unlock_irqrestore(&dev->event_lock, spin_flags); 2084 return 0; 2085 2086 err_unlock: 2087 spin_unlock_irqrestore(&dev->event_lock, spin_flags); 2088 drm_crtc_vblank_put(crtc); 2089 err_free: 2090 kfree(e); 2091 return ret; 2092 } 2093