1 /* 2 * drm_irq.c IRQ and vblank support 3 * 4 * \author Rickard E. (Rik) Faith <faith@valinux.com> 5 * \author Gareth Hughes <gareth@valinux.com> 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the "Software"), 9 * to deal in the Software without restriction, including without limitation 10 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 11 * and/or sell copies of the Software, and to permit persons to whom the 12 * Software is furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the next 15 * paragraph) shall be included in all copies or substantial portions of the 16 * Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 22 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 23 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 24 * OTHER DEALINGS IN THE SOFTWARE. 25 */ 26 27 #include <linux/export.h> 28 #include <linux/kthread.h> 29 #include <linux/moduleparam.h> 30 31 #include <drm/drm_crtc.h> 32 #include <drm/drm_drv.h> 33 #include <drm/drm_framebuffer.h> 34 #include <drm/drm_managed.h> 35 #include <drm/drm_modeset_helper_vtables.h> 36 #include <drm/drm_print.h> 37 #include <drm/drm_vblank.h> 38 39 #include "drm_internal.h" 40 #include "drm_trace.h" 41 42 /** 43 * DOC: vblank handling 44 * 45 * From the computer's perspective, every time the monitor displays 46 * a new frame the scanout engine has "scanned out" the display image 47 * from top to bottom, one row of pixels at a time. The current row 48 * of pixels is referred to as the current scanline. 49 * 50 * In addition to the display's visible area, there's usually a couple of 51 * extra scanlines which aren't actually displayed on the screen. 52 * These extra scanlines don't contain image data and are occasionally used 53 * for features like audio and infoframes. The region made up of these 54 * scanlines is referred to as the vertical blanking region, or vblank for 55 * short. 56 * 57 * For historical reference, the vertical blanking period was designed to 58 * give the electron gun (on CRTs) enough time to move back to the top of 59 * the screen to start scanning out the next frame. Similar for horizontal 60 * blanking periods. They were designed to give the electron gun enough 61 * time to move back to the other side of the screen to start scanning the 62 * next scanline. 63 * 64 * :: 65 * 66 * 67 * physical → ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽ 68 * top of | | 69 * display | | 70 * | New frame | 71 * | | 72 * |↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓| 73 * |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~| ← Scanline, 74 * |↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓| updates the 75 * | | frame as it 76 * | | travels down 77 * | | ("sacn out") 78 * | Old frame | 79 * | | 80 * | | 81 * | | 82 * | | physical 83 * | | bottom of 84 * vertical |⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽| ← display 85 * blanking ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆ 86 * region → ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆ 87 * ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆ 88 * start of → ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽ 89 * new frame 90 * 91 * "Physical top of display" is the reference point for the high-precision/ 92 * corrected timestamp. 93 * 94 * On a lot of display hardware, programming needs to take effect during the 95 * vertical blanking period so that settings like gamma, the image buffer 96 * buffer to be scanned out, etc. can safely be changed without showing 97 * any visual artifacts on the screen. In some unforgiving hardware, some of 98 * this programming has to both start and end in the same vblank. To help 99 * with the timing of the hardware programming, an interrupt is usually 100 * available to notify the driver when it can start the updating of registers. 101 * The interrupt is in this context named the vblank interrupt. 102 * 103 * The vblank interrupt may be fired at different points depending on the 104 * hardware. Some hardware implementations will fire the interrupt when the 105 * new frame start, other implementations will fire the interrupt at different 106 * points in time. 107 * 108 * Vertical blanking plays a major role in graphics rendering. To achieve 109 * tear-free display, users must synchronize page flips and/or rendering to 110 * vertical blanking. The DRM API offers ioctls to perform page flips 111 * synchronized to vertical blanking and wait for vertical blanking. 112 * 113 * The DRM core handles most of the vertical blanking management logic, which 114 * involves filtering out spurious interrupts, keeping race-free blanking 115 * counters, coping with counter wrap-around and resets and keeping use counts. 116 * It relies on the driver to generate vertical blanking interrupts and 117 * optionally provide a hardware vertical blanking counter. 118 * 119 * Drivers must initialize the vertical blanking handling core with a call to 120 * drm_vblank_init(). Minimally, a driver needs to implement 121 * &drm_crtc_funcs.enable_vblank and &drm_crtc_funcs.disable_vblank plus call 122 * drm_crtc_handle_vblank() in its vblank interrupt handler for working vblank 123 * support. 124 * 125 * Vertical blanking interrupts can be enabled by the DRM core or by drivers 126 * themselves (for instance to handle page flipping operations). The DRM core 127 * maintains a vertical blanking use count to ensure that the interrupts are not 128 * disabled while a user still needs them. To increment the use count, drivers 129 * call drm_crtc_vblank_get() and release the vblank reference again with 130 * drm_crtc_vblank_put(). In between these two calls vblank interrupts are 131 * guaranteed to be enabled. 132 * 133 * On many hardware disabling the vblank interrupt cannot be done in a race-free 134 * manner, see &drm_driver.vblank_disable_immediate and 135 * &drm_driver.max_vblank_count. In that case the vblank core only disables the 136 * vblanks after a timer has expired, which can be configured through the 137 * ``vblankoffdelay`` module parameter. 138 * 139 * Drivers for hardware without support for vertical-blanking interrupts 140 * must not call drm_vblank_init(). For such drivers, atomic helpers will 141 * automatically generate fake vblank events as part of the display update. 142 * This functionality also can be controlled by the driver by enabling and 143 * disabling struct drm_crtc_state.no_vblank. 144 */ 145 146 /* Retry timestamp calculation up to 3 times to satisfy 147 * drm_timestamp_precision before giving up. 148 */ 149 #define DRM_TIMESTAMP_MAXRETRIES 3 150 151 /* Threshold in nanoseconds for detection of redundant 152 * vblank irq in drm_handle_vblank(). 1 msec should be ok. 153 */ 154 #define DRM_REDUNDANT_VBLIRQ_THRESH_NS 1000000 155 156 static bool 157 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe, 158 ktime_t *tvblank, bool in_vblank_irq); 159 160 static unsigned int drm_timestamp_precision = 20; /* Default to 20 usecs. */ 161 162 static int drm_vblank_offdelay = 5000; /* Default to 5000 msecs. */ 163 164 module_param_named(vblankoffdelay, drm_vblank_offdelay, int, 0600); 165 module_param_named(timestamp_precision_usec, drm_timestamp_precision, int, 0600); 166 MODULE_PARM_DESC(vblankoffdelay, "Delay until vblank irq auto-disable [msecs] (0: never disable, <0: disable immediately)"); 167 MODULE_PARM_DESC(timestamp_precision_usec, "Max. error on timestamps [usecs]"); 168 169 static void store_vblank(struct drm_device *dev, unsigned int pipe, 170 u32 vblank_count_inc, 171 ktime_t t_vblank, u32 last) 172 { 173 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 174 175 assert_spin_locked(&dev->vblank_time_lock); 176 177 vblank->last = last; 178 179 write_seqlock(&vblank->seqlock); 180 vblank->time = t_vblank; 181 atomic64_add(vblank_count_inc, &vblank->count); 182 write_sequnlock(&vblank->seqlock); 183 } 184 185 static u32 drm_max_vblank_count(struct drm_device *dev, unsigned int pipe) 186 { 187 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 188 189 return vblank->max_vblank_count ?: dev->max_vblank_count; 190 } 191 192 /* 193 * "No hw counter" fallback implementation of .get_vblank_counter() hook, 194 * if there is no useable hardware frame counter available. 195 */ 196 static u32 drm_vblank_no_hw_counter(struct drm_device *dev, unsigned int pipe) 197 { 198 drm_WARN_ON_ONCE(dev, drm_max_vblank_count(dev, pipe) != 0); 199 return 0; 200 } 201 202 static u32 __get_vblank_counter(struct drm_device *dev, unsigned int pipe) 203 { 204 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 205 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 206 207 if (drm_WARN_ON(dev, !crtc)) 208 return 0; 209 210 if (crtc->funcs->get_vblank_counter) 211 return crtc->funcs->get_vblank_counter(crtc); 212 } else if (dev->driver->get_vblank_counter) { 213 return dev->driver->get_vblank_counter(dev, pipe); 214 } 215 216 return drm_vblank_no_hw_counter(dev, pipe); 217 } 218 219 /* 220 * Reset the stored timestamp for the current vblank count to correspond 221 * to the last vblank occurred. 222 * 223 * Only to be called from drm_crtc_vblank_on(). 224 * 225 * Note: caller must hold &drm_device.vbl_lock since this reads & writes 226 * device vblank fields. 227 */ 228 static void drm_reset_vblank_timestamp(struct drm_device *dev, unsigned int pipe) 229 { 230 u32 cur_vblank; 231 bool rc; 232 ktime_t t_vblank; 233 int count = DRM_TIMESTAMP_MAXRETRIES; 234 235 spin_lock(&dev->vblank_time_lock); 236 237 /* 238 * sample the current counter to avoid random jumps 239 * when drm_vblank_enable() applies the diff 240 */ 241 do { 242 cur_vblank = __get_vblank_counter(dev, pipe); 243 rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false); 244 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0); 245 246 /* 247 * Only reinitialize corresponding vblank timestamp if high-precision query 248 * available and didn't fail. Otherwise reinitialize delayed at next vblank 249 * interrupt and assign 0 for now, to mark the vblanktimestamp as invalid. 250 */ 251 if (!rc) 252 t_vblank = 0; 253 254 /* 255 * +1 to make sure user will never see the same 256 * vblank counter value before and after a modeset 257 */ 258 store_vblank(dev, pipe, 1, t_vblank, cur_vblank); 259 260 spin_unlock(&dev->vblank_time_lock); 261 } 262 263 /* 264 * Call back into the driver to update the appropriate vblank counter 265 * (specified by @pipe). Deal with wraparound, if it occurred, and 266 * update the last read value so we can deal with wraparound on the next 267 * call if necessary. 268 * 269 * Only necessary when going from off->on, to account for frames we 270 * didn't get an interrupt for. 271 * 272 * Note: caller must hold &drm_device.vbl_lock since this reads & writes 273 * device vblank fields. 274 */ 275 static void drm_update_vblank_count(struct drm_device *dev, unsigned int pipe, 276 bool in_vblank_irq) 277 { 278 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 279 u32 cur_vblank, diff; 280 bool rc; 281 ktime_t t_vblank; 282 int count = DRM_TIMESTAMP_MAXRETRIES; 283 int framedur_ns = vblank->framedur_ns; 284 u32 max_vblank_count = drm_max_vblank_count(dev, pipe); 285 286 /* 287 * Interrupts were disabled prior to this call, so deal with counter 288 * wrap if needed. 289 * NOTE! It's possible we lost a full dev->max_vblank_count + 1 events 290 * here if the register is small or we had vblank interrupts off for 291 * a long time. 292 * 293 * We repeat the hardware vblank counter & timestamp query until 294 * we get consistent results. This to prevent races between gpu 295 * updating its hardware counter while we are retrieving the 296 * corresponding vblank timestamp. 297 */ 298 do { 299 cur_vblank = __get_vblank_counter(dev, pipe); 300 rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, in_vblank_irq); 301 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0); 302 303 if (max_vblank_count) { 304 /* trust the hw counter when it's around */ 305 diff = (cur_vblank - vblank->last) & max_vblank_count; 306 } else if (rc && framedur_ns) { 307 u64 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time)); 308 309 /* 310 * Figure out how many vblanks we've missed based 311 * on the difference in the timestamps and the 312 * frame/field duration. 313 */ 314 315 drm_dbg_vbl(dev, "crtc %u: Calculating number of vblanks." 316 " diff_ns = %lld, framedur_ns = %d)\n", 317 pipe, (long long)diff_ns, framedur_ns); 318 319 diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns); 320 321 if (diff == 0 && in_vblank_irq) 322 drm_dbg_vbl(dev, "crtc %u: Redundant vblirq ignored\n", 323 pipe); 324 } else { 325 /* some kind of default for drivers w/o accurate vbl timestamping */ 326 diff = in_vblank_irq ? 1 : 0; 327 } 328 329 /* 330 * Within a drm_vblank_pre_modeset - drm_vblank_post_modeset 331 * interval? If so then vblank irqs keep running and it will likely 332 * happen that the hardware vblank counter is not trustworthy as it 333 * might reset at some point in that interval and vblank timestamps 334 * are not trustworthy either in that interval. Iow. this can result 335 * in a bogus diff >> 1 which must be avoided as it would cause 336 * random large forward jumps of the software vblank counter. 337 */ 338 if (diff > 1 && (vblank->inmodeset & 0x2)) { 339 drm_dbg_vbl(dev, 340 "clamping vblank bump to 1 on crtc %u: diffr=%u" 341 " due to pre-modeset.\n", pipe, diff); 342 diff = 1; 343 } 344 345 drm_dbg_vbl(dev, "updating vblank count on crtc %u:" 346 " current=%llu, diff=%u, hw=%u hw_last=%u\n", 347 pipe, (unsigned long long)atomic64_read(&vblank->count), 348 diff, cur_vblank, vblank->last); 349 350 if (diff == 0) { 351 drm_WARN_ON_ONCE(dev, cur_vblank != vblank->last); 352 return; 353 } 354 355 /* 356 * Only reinitialize corresponding vblank timestamp if high-precision query 357 * available and didn't fail, or we were called from the vblank interrupt. 358 * Otherwise reinitialize delayed at next vblank interrupt and assign 0 359 * for now, to mark the vblanktimestamp as invalid. 360 */ 361 if (!rc && !in_vblank_irq) 362 t_vblank = 0; 363 364 store_vblank(dev, pipe, diff, t_vblank, cur_vblank); 365 } 366 367 u64 drm_vblank_count(struct drm_device *dev, unsigned int pipe) 368 { 369 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 370 u64 count; 371 372 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 373 return 0; 374 375 count = atomic64_read(&vblank->count); 376 377 /* 378 * This read barrier corresponds to the implicit write barrier of the 379 * write seqlock in store_vblank(). Note that this is the only place 380 * where we need an explicit barrier, since all other access goes 381 * through drm_vblank_count_and_time(), which already has the required 382 * read barrier curtesy of the read seqlock. 383 */ 384 smp_rmb(); 385 386 return count; 387 } 388 389 /** 390 * drm_crtc_accurate_vblank_count - retrieve the master vblank counter 391 * @crtc: which counter to retrieve 392 * 393 * This function is similar to drm_crtc_vblank_count() but this function 394 * interpolates to handle a race with vblank interrupts using the high precision 395 * timestamping support. 396 * 397 * This is mostly useful for hardware that can obtain the scanout position, but 398 * doesn't have a hardware frame counter. 399 */ 400 u64 drm_crtc_accurate_vblank_count(struct drm_crtc *crtc) 401 { 402 struct drm_device *dev = crtc->dev; 403 unsigned int pipe = drm_crtc_index(crtc); 404 u64 vblank; 405 unsigned long flags; 406 407 drm_WARN_ONCE(dev, drm_debug_enabled(DRM_UT_VBL) && 408 !crtc->funcs->get_vblank_timestamp, 409 "This function requires support for accurate vblank timestamps."); 410 411 spin_lock_irqsave(&dev->vblank_time_lock, flags); 412 413 drm_update_vblank_count(dev, pipe, false); 414 vblank = drm_vblank_count(dev, pipe); 415 416 spin_unlock_irqrestore(&dev->vblank_time_lock, flags); 417 418 return vblank; 419 } 420 EXPORT_SYMBOL(drm_crtc_accurate_vblank_count); 421 422 static void __disable_vblank(struct drm_device *dev, unsigned int pipe) 423 { 424 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 425 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 426 427 if (drm_WARN_ON(dev, !crtc)) 428 return; 429 430 if (crtc->funcs->disable_vblank) 431 crtc->funcs->disable_vblank(crtc); 432 } else { 433 dev->driver->disable_vblank(dev, pipe); 434 } 435 } 436 437 /* 438 * Disable vblank irq's on crtc, make sure that last vblank count 439 * of hardware and corresponding consistent software vblank counter 440 * are preserved, even if there are any spurious vblank irq's after 441 * disable. 442 */ 443 void drm_vblank_disable_and_save(struct drm_device *dev, unsigned int pipe) 444 { 445 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 446 unsigned long irqflags; 447 448 assert_spin_locked(&dev->vbl_lock); 449 450 /* Prevent vblank irq processing while disabling vblank irqs, 451 * so no updates of timestamps or count can happen after we've 452 * disabled. Needed to prevent races in case of delayed irq's. 453 */ 454 spin_lock_irqsave(&dev->vblank_time_lock, irqflags); 455 456 /* 457 * Update vblank count and disable vblank interrupts only if the 458 * interrupts were enabled. This avoids calling the ->disable_vblank() 459 * operation in atomic context with the hardware potentially runtime 460 * suspended. 461 */ 462 if (!vblank->enabled) 463 goto out; 464 465 /* 466 * Update the count and timestamp to maintain the 467 * appearance that the counter has been ticking all along until 468 * this time. This makes the count account for the entire time 469 * between drm_crtc_vblank_on() and drm_crtc_vblank_off(). 470 */ 471 drm_update_vblank_count(dev, pipe, false); 472 __disable_vblank(dev, pipe); 473 vblank->enabled = false; 474 475 out: 476 spin_unlock_irqrestore(&dev->vblank_time_lock, irqflags); 477 } 478 479 static void vblank_disable_fn(void *arg) 480 { 481 struct drm_vblank_crtc *vblank = arg; 482 struct drm_device *dev = vblank->dev; 483 unsigned int pipe = vblank->pipe; 484 unsigned long irqflags; 485 486 spin_lock_irqsave(&dev->vbl_lock, irqflags); 487 if (atomic_read(&vblank->refcount) == 0 && vblank->enabled) { 488 drm_dbg_core(dev, "disabling vblank on crtc %u\n", pipe); 489 drm_vblank_disable_and_save(dev, pipe); 490 } 491 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 492 } 493 494 static void drm_vblank_init_release(struct drm_device *dev, void *ptr) 495 { 496 struct drm_vblank_crtc *vblank = ptr; 497 498 drm_WARN_ON(dev, READ_ONCE(vblank->enabled) && 499 drm_core_check_feature(dev, DRIVER_MODESET)); 500 501 drm_vblank_destroy_worker(vblank); 502 del_timer_sync(&vblank->disable_timer); 503 } 504 505 /** 506 * drm_vblank_init - initialize vblank support 507 * @dev: DRM device 508 * @num_crtcs: number of CRTCs supported by @dev 509 * 510 * This function initializes vblank support for @num_crtcs display pipelines. 511 * Cleanup is handled automatically through a cleanup function added with 512 * drmm_add_action_or_reset(). 513 * 514 * Returns: 515 * Zero on success or a negative error code on failure. 516 */ 517 int drm_vblank_init(struct drm_device *dev, unsigned int num_crtcs) 518 { 519 int ret; 520 unsigned int i; 521 522 mtx_init(&dev->vbl_lock, IPL_TTY); 523 mtx_init(&dev->vblank_time_lock, IPL_TTY); 524 525 dev->vblank = drmm_kcalloc(dev, num_crtcs, sizeof(*dev->vblank), GFP_KERNEL); 526 if (!dev->vblank) 527 return -ENOMEM; 528 529 dev->num_crtcs = num_crtcs; 530 531 for (i = 0; i < num_crtcs; i++) { 532 struct drm_vblank_crtc *vblank = &dev->vblank[i]; 533 534 vblank->dev = dev; 535 vblank->pipe = i; 536 init_waitqueue_head(&vblank->queue); 537 #ifdef __linux__ 538 timer_setup(&vblank->disable_timer, vblank_disable_fn, 0); 539 #else 540 timeout_set(&vblank->disable_timer, vblank_disable_fn, vblank); 541 #endif 542 seqlock_init(&vblank->seqlock, IPL_TTY); 543 544 ret = drmm_add_action_or_reset(dev, drm_vblank_init_release, 545 vblank); 546 if (ret) 547 return ret; 548 549 ret = drm_vblank_worker_init(vblank); 550 if (ret) 551 return ret; 552 } 553 554 return 0; 555 } 556 EXPORT_SYMBOL(drm_vblank_init); 557 558 /** 559 * drm_dev_has_vblank - test if vblanking has been initialized for 560 * a device 561 * @dev: the device 562 * 563 * Drivers may call this function to test if vblank support is 564 * initialized for a device. For most hardware this means that vblanking 565 * can also be enabled. 566 * 567 * Atomic helpers use this function to initialize 568 * &drm_crtc_state.no_vblank. See also drm_atomic_helper_check_modeset(). 569 * 570 * Returns: 571 * True if vblanking has been initialized for the given device, false 572 * otherwise. 573 */ 574 bool drm_dev_has_vblank(const struct drm_device *dev) 575 { 576 return dev->num_crtcs != 0; 577 } 578 EXPORT_SYMBOL(drm_dev_has_vblank); 579 580 /** 581 * drm_crtc_vblank_waitqueue - get vblank waitqueue for the CRTC 582 * @crtc: which CRTC's vblank waitqueue to retrieve 583 * 584 * This function returns a pointer to the vblank waitqueue for the CRTC. 585 * Drivers can use this to implement vblank waits using wait_event() and related 586 * functions. 587 */ 588 wait_queue_head_t *drm_crtc_vblank_waitqueue(struct drm_crtc *crtc) 589 { 590 return &crtc->dev->vblank[drm_crtc_index(crtc)].queue; 591 } 592 EXPORT_SYMBOL(drm_crtc_vblank_waitqueue); 593 594 595 /** 596 * drm_calc_timestamping_constants - calculate vblank timestamp constants 597 * @crtc: drm_crtc whose timestamp constants should be updated. 598 * @mode: display mode containing the scanout timings 599 * 600 * Calculate and store various constants which are later needed by vblank and 601 * swap-completion timestamping, e.g, by 602 * drm_crtc_vblank_helper_get_vblank_timestamp(). They are derived from 603 * CRTC's true scanout timing, so they take things like panel scaling or 604 * other adjustments into account. 605 */ 606 void drm_calc_timestamping_constants(struct drm_crtc *crtc, 607 const struct drm_display_mode *mode) 608 { 609 struct drm_device *dev = crtc->dev; 610 unsigned int pipe = drm_crtc_index(crtc); 611 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 612 int linedur_ns = 0, framedur_ns = 0; 613 int dotclock = mode->crtc_clock; 614 615 if (!drm_dev_has_vblank(dev)) 616 return; 617 618 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 619 return; 620 621 /* Valid dotclock? */ 622 if (dotclock > 0) { 623 int frame_size = mode->crtc_htotal * mode->crtc_vtotal; 624 625 /* 626 * Convert scanline length in pixels and video 627 * dot clock to line duration and frame duration 628 * in nanoseconds: 629 */ 630 linedur_ns = div_u64((u64) mode->crtc_htotal * 1000000, dotclock); 631 framedur_ns = div_u64((u64) frame_size * 1000000, dotclock); 632 633 /* 634 * Fields of interlaced scanout modes are only half a frame duration. 635 */ 636 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 637 framedur_ns /= 2; 638 } else { 639 drm_err(dev, "crtc %u: Can't calculate constants, dotclock = 0!\n", 640 crtc->base.id); 641 } 642 643 vblank->linedur_ns = linedur_ns; 644 vblank->framedur_ns = framedur_ns; 645 vblank->hwmode = *mode; 646 647 drm_dbg_core(dev, 648 "crtc %u: hwmode: htotal %d, vtotal %d, vdisplay %d\n", 649 crtc->base.id, mode->crtc_htotal, 650 mode->crtc_vtotal, mode->crtc_vdisplay); 651 drm_dbg_core(dev, "crtc %u: clock %d kHz framedur %d linedur %d\n", 652 crtc->base.id, dotclock, framedur_ns, linedur_ns); 653 } 654 EXPORT_SYMBOL(drm_calc_timestamping_constants); 655 656 /** 657 * drm_crtc_vblank_helper_get_vblank_timestamp_internal - precise vblank 658 * timestamp helper 659 * @crtc: CRTC whose vblank timestamp to retrieve 660 * @max_error: Desired maximum allowable error in timestamps (nanosecs) 661 * On return contains true maximum error of timestamp 662 * @vblank_time: Pointer to time which should receive the timestamp 663 * @in_vblank_irq: 664 * True when called from drm_crtc_handle_vblank(). Some drivers 665 * need to apply some workarounds for gpu-specific vblank irq quirks 666 * if flag is set. 667 * @get_scanout_position: 668 * Callback function to retrieve the scanout position. See 669 * @struct drm_crtc_helper_funcs.get_scanout_position. 670 * 671 * Implements calculation of exact vblank timestamps from given drm_display_mode 672 * timings and current video scanout position of a CRTC. 673 * 674 * The current implementation only handles standard video modes. For double scan 675 * and interlaced modes the driver is supposed to adjust the hardware mode 676 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to 677 * match the scanout position reported. 678 * 679 * Note that atomic drivers must call drm_calc_timestamping_constants() before 680 * enabling a CRTC. The atomic helpers already take care of that in 681 * drm_atomic_helper_calc_timestamping_constants(). 682 * 683 * Returns: 684 * 685 * Returns true on success, and false on failure, i.e. when no accurate 686 * timestamp could be acquired. 687 */ 688 bool 689 drm_crtc_vblank_helper_get_vblank_timestamp_internal( 690 struct drm_crtc *crtc, int *max_error, ktime_t *vblank_time, 691 bool in_vblank_irq, 692 drm_vblank_get_scanout_position_func get_scanout_position) 693 { 694 struct drm_device *dev = crtc->dev; 695 unsigned int pipe = crtc->index; 696 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 697 struct timespec64 ts_etime, ts_vblank_time; 698 ktime_t stime, etime; 699 bool vbl_status; 700 const struct drm_display_mode *mode; 701 int vpos, hpos, i; 702 int delta_ns, duration_ns; 703 704 if (pipe >= dev->num_crtcs) { 705 drm_err(dev, "Invalid crtc %u\n", pipe); 706 return false; 707 } 708 709 /* Scanout position query not supported? Should not happen. */ 710 if (!get_scanout_position) { 711 drm_err(dev, "Called from CRTC w/o get_scanout_position()!?\n"); 712 return false; 713 } 714 715 if (drm_drv_uses_atomic_modeset(dev)) 716 mode = &vblank->hwmode; 717 else 718 mode = &crtc->hwmode; 719 720 /* If mode timing undefined, just return as no-op: 721 * Happens during initial modesetting of a crtc. 722 */ 723 if (mode->crtc_clock == 0) { 724 drm_dbg_core(dev, "crtc %u: Noop due to uninitialized mode.\n", 725 pipe); 726 drm_WARN_ON_ONCE(dev, drm_drv_uses_atomic_modeset(dev)); 727 return false; 728 } 729 730 /* Get current scanout position with system timestamp. 731 * Repeat query up to DRM_TIMESTAMP_MAXRETRIES times 732 * if single query takes longer than max_error nanoseconds. 733 * 734 * This guarantees a tight bound on maximum error if 735 * code gets preempted or delayed for some reason. 736 */ 737 for (i = 0; i < DRM_TIMESTAMP_MAXRETRIES; i++) { 738 /* 739 * Get vertical and horizontal scanout position vpos, hpos, 740 * and bounding timestamps stime, etime, pre/post query. 741 */ 742 vbl_status = get_scanout_position(crtc, in_vblank_irq, 743 &vpos, &hpos, 744 &stime, &etime, 745 mode); 746 747 /* Return as no-op if scanout query unsupported or failed. */ 748 if (!vbl_status) { 749 drm_dbg_core(dev, 750 "crtc %u : scanoutpos query failed.\n", 751 pipe); 752 return false; 753 } 754 755 /* Compute uncertainty in timestamp of scanout position query. */ 756 duration_ns = ktime_to_ns(etime) - ktime_to_ns(stime); 757 758 /* Accept result with < max_error nsecs timing uncertainty. */ 759 if (duration_ns <= *max_error) 760 break; 761 } 762 763 /* Noisy system timing? */ 764 if (i == DRM_TIMESTAMP_MAXRETRIES) { 765 drm_dbg_core(dev, 766 "crtc %u: Noisy timestamp %d us > %d us [%d reps].\n", 767 pipe, duration_ns / 1000, *max_error / 1000, i); 768 } 769 770 /* Return upper bound of timestamp precision error. */ 771 *max_error = duration_ns; 772 773 /* Convert scanout position into elapsed time at raw_time query 774 * since start of scanout at first display scanline. delta_ns 775 * can be negative if start of scanout hasn't happened yet. 776 */ 777 delta_ns = div_s64(1000000LL * (vpos * mode->crtc_htotal + hpos), 778 mode->crtc_clock); 779 780 /* Subtract time delta from raw timestamp to get final 781 * vblank_time timestamp for end of vblank. 782 */ 783 *vblank_time = ktime_sub_ns(etime, delta_ns); 784 785 if (!drm_debug_enabled(DRM_UT_VBL)) 786 return true; 787 788 ts_etime = ktime_to_timespec64(etime); 789 ts_vblank_time = ktime_to_timespec64(*vblank_time); 790 791 drm_dbg_vbl(dev, 792 "crtc %u : v p(%d,%d)@ %lld.%06ld -> %lld.%06ld [e %d us, %d rep]\n", 793 pipe, hpos, vpos, 794 (u64)ts_etime.tv_sec, ts_etime.tv_nsec / 1000, 795 (u64)ts_vblank_time.tv_sec, ts_vblank_time.tv_nsec / 1000, 796 duration_ns / 1000, i); 797 798 return true; 799 } 800 EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp_internal); 801 802 /** 803 * drm_crtc_vblank_helper_get_vblank_timestamp - precise vblank timestamp 804 * helper 805 * @crtc: CRTC whose vblank timestamp to retrieve 806 * @max_error: Desired maximum allowable error in timestamps (nanosecs) 807 * On return contains true maximum error of timestamp 808 * @vblank_time: Pointer to time which should receive the timestamp 809 * @in_vblank_irq: 810 * True when called from drm_crtc_handle_vblank(). Some drivers 811 * need to apply some workarounds for gpu-specific vblank irq quirks 812 * if flag is set. 813 * 814 * Implements calculation of exact vblank timestamps from given drm_display_mode 815 * timings and current video scanout position of a CRTC. This can be directly 816 * used as the &drm_crtc_funcs.get_vblank_timestamp implementation of a kms 817 * driver if &drm_crtc_helper_funcs.get_scanout_position is implemented. 818 * 819 * The current implementation only handles standard video modes. For double scan 820 * and interlaced modes the driver is supposed to adjust the hardware mode 821 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to 822 * match the scanout position reported. 823 * 824 * Note that atomic drivers must call drm_calc_timestamping_constants() before 825 * enabling a CRTC. The atomic helpers already take care of that in 826 * drm_atomic_helper_calc_timestamping_constants(). 827 * 828 * Returns: 829 * 830 * Returns true on success, and false on failure, i.e. when no accurate 831 * timestamp could be acquired. 832 */ 833 bool drm_crtc_vblank_helper_get_vblank_timestamp(struct drm_crtc *crtc, 834 int *max_error, 835 ktime_t *vblank_time, 836 bool in_vblank_irq) 837 { 838 return drm_crtc_vblank_helper_get_vblank_timestamp_internal( 839 crtc, max_error, vblank_time, in_vblank_irq, 840 crtc->helper_private->get_scanout_position); 841 } 842 EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp); 843 844 /** 845 * drm_get_last_vbltimestamp - retrieve raw timestamp for the most recent 846 * vblank interval 847 * @dev: DRM device 848 * @pipe: index of CRTC whose vblank timestamp to retrieve 849 * @tvblank: Pointer to target time which should receive the timestamp 850 * @in_vblank_irq: 851 * True when called from drm_crtc_handle_vblank(). Some drivers 852 * need to apply some workarounds for gpu-specific vblank irq quirks 853 * if flag is set. 854 * 855 * Fetches the system timestamp corresponding to the time of the most recent 856 * vblank interval on specified CRTC. May call into kms-driver to 857 * compute the timestamp with a high-precision GPU specific method. 858 * 859 * Returns zero if timestamp originates from uncorrected do_gettimeofday() 860 * call, i.e., it isn't very precisely locked to the true vblank. 861 * 862 * Returns: 863 * True if timestamp is considered to be very precise, false otherwise. 864 */ 865 static bool 866 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe, 867 ktime_t *tvblank, bool in_vblank_irq) 868 { 869 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 870 bool ret = false; 871 872 /* Define requested maximum error on timestamps (nanoseconds). */ 873 int max_error = (int) drm_timestamp_precision * 1000; 874 875 /* Query driver if possible and precision timestamping enabled. */ 876 if (crtc && crtc->funcs->get_vblank_timestamp && max_error > 0) { 877 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 878 879 ret = crtc->funcs->get_vblank_timestamp(crtc, &max_error, 880 tvblank, in_vblank_irq); 881 } 882 883 /* GPU high precision timestamp query unsupported or failed. 884 * Return current monotonic/gettimeofday timestamp as best estimate. 885 */ 886 if (!ret) 887 *tvblank = ktime_get(); 888 889 return ret; 890 } 891 892 /** 893 * drm_crtc_vblank_count - retrieve "cooked" vblank counter value 894 * @crtc: which counter to retrieve 895 * 896 * Fetches the "cooked" vblank count value that represents the number of 897 * vblank events since the system was booted, including lost events due to 898 * modesetting activity. Note that this timer isn't correct against a racing 899 * vblank interrupt (since it only reports the software vblank counter), see 900 * drm_crtc_accurate_vblank_count() for such use-cases. 901 * 902 * Note that for a given vblank counter value drm_crtc_handle_vblank() 903 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time() 904 * provide a barrier: Any writes done before calling 905 * drm_crtc_handle_vblank() will be visible to callers of the later 906 * functions, iff the vblank count is the same or a later one. 907 * 908 * See also &drm_vblank_crtc.count. 909 * 910 * Returns: 911 * The software vblank counter. 912 */ 913 u64 drm_crtc_vblank_count(struct drm_crtc *crtc) 914 { 915 return drm_vblank_count(crtc->dev, drm_crtc_index(crtc)); 916 } 917 EXPORT_SYMBOL(drm_crtc_vblank_count); 918 919 /** 920 * drm_vblank_count_and_time - retrieve "cooked" vblank counter value and the 921 * system timestamp corresponding to that vblank counter value. 922 * @dev: DRM device 923 * @pipe: index of CRTC whose counter to retrieve 924 * @vblanktime: Pointer to ktime_t to receive the vblank timestamp. 925 * 926 * Fetches the "cooked" vblank count value that represents the number of 927 * vblank events since the system was booted, including lost events due to 928 * modesetting activity. Returns corresponding system timestamp of the time 929 * of the vblank interval that corresponds to the current vblank counter value. 930 * 931 * This is the legacy version of drm_crtc_vblank_count_and_time(). 932 */ 933 static u64 drm_vblank_count_and_time(struct drm_device *dev, unsigned int pipe, 934 ktime_t *vblanktime) 935 { 936 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 937 u64 vblank_count; 938 unsigned int seq; 939 940 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) { 941 *vblanktime = 0; 942 return 0; 943 } 944 945 do { 946 seq = read_seqbegin(&vblank->seqlock); 947 vblank_count = atomic64_read(&vblank->count); 948 *vblanktime = vblank->time; 949 } while (read_seqretry(&vblank->seqlock, seq)); 950 951 return vblank_count; 952 } 953 954 /** 955 * drm_crtc_vblank_count_and_time - retrieve "cooked" vblank counter value 956 * and the system timestamp corresponding to that vblank counter value 957 * @crtc: which counter to retrieve 958 * @vblanktime: Pointer to time to receive the vblank timestamp. 959 * 960 * Fetches the "cooked" vblank count value that represents the number of 961 * vblank events since the system was booted, including lost events due to 962 * modesetting activity. Returns corresponding system timestamp of the time 963 * of the vblank interval that corresponds to the current vblank counter value. 964 * 965 * Note that for a given vblank counter value drm_crtc_handle_vblank() 966 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time() 967 * provide a barrier: Any writes done before calling 968 * drm_crtc_handle_vblank() will be visible to callers of the later 969 * functions, iff the vblank count is the same or a later one. 970 * 971 * See also &drm_vblank_crtc.count. 972 */ 973 u64 drm_crtc_vblank_count_and_time(struct drm_crtc *crtc, 974 ktime_t *vblanktime) 975 { 976 return drm_vblank_count_and_time(crtc->dev, drm_crtc_index(crtc), 977 vblanktime); 978 } 979 EXPORT_SYMBOL(drm_crtc_vblank_count_and_time); 980 981 static void send_vblank_event(struct drm_device *dev, 982 struct drm_pending_vblank_event *e, 983 u64 seq, ktime_t now) 984 { 985 struct timespec64 tv; 986 987 switch (e->event.base.type) { 988 case DRM_EVENT_VBLANK: 989 case DRM_EVENT_FLIP_COMPLETE: 990 tv = ktime_to_timespec64(now); 991 e->event.vbl.sequence = seq; 992 /* 993 * e->event is a user space structure, with hardcoded unsigned 994 * 32-bit seconds/microseconds. This is safe as we always use 995 * monotonic timestamps since linux-4.15 996 */ 997 e->event.vbl.tv_sec = tv.tv_sec; 998 e->event.vbl.tv_usec = tv.tv_nsec / 1000; 999 break; 1000 case DRM_EVENT_CRTC_SEQUENCE: 1001 if (seq) 1002 e->event.seq.sequence = seq; 1003 e->event.seq.time_ns = ktime_to_ns(now); 1004 break; 1005 } 1006 trace_drm_vblank_event_delivered(e->base.file_priv, e->pipe, seq); 1007 drm_send_event_locked(dev, &e->base); 1008 } 1009 1010 /** 1011 * drm_crtc_arm_vblank_event - arm vblank event after pageflip 1012 * @crtc: the source CRTC of the vblank event 1013 * @e: the event to send 1014 * 1015 * A lot of drivers need to generate vblank events for the very next vblank 1016 * interrupt. For example when the page flip interrupt happens when the page 1017 * flip gets armed, but not when it actually executes within the next vblank 1018 * period. This helper function implements exactly the required vblank arming 1019 * behaviour. 1020 * 1021 * NOTE: Drivers using this to send out the &drm_crtc_state.event as part of an 1022 * atomic commit must ensure that the next vblank happens at exactly the same 1023 * time as the atomic commit is committed to the hardware. This function itself 1024 * does **not** protect against the next vblank interrupt racing with either this 1025 * function call or the atomic commit operation. A possible sequence could be: 1026 * 1027 * 1. Driver commits new hardware state into vblank-synchronized registers. 1028 * 2. A vblank happens, committing the hardware state. Also the corresponding 1029 * vblank interrupt is fired off and fully processed by the interrupt 1030 * handler. 1031 * 3. The atomic commit operation proceeds to call drm_crtc_arm_vblank_event(). 1032 * 4. The event is only send out for the next vblank, which is wrong. 1033 * 1034 * An equivalent race can happen when the driver calls 1035 * drm_crtc_arm_vblank_event() before writing out the new hardware state. 1036 * 1037 * The only way to make this work safely is to prevent the vblank from firing 1038 * (and the hardware from committing anything else) until the entire atomic 1039 * commit sequence has run to completion. If the hardware does not have such a 1040 * feature (e.g. using a "go" bit), then it is unsafe to use this functions. 1041 * Instead drivers need to manually send out the event from their interrupt 1042 * handler by calling drm_crtc_send_vblank_event() and make sure that there's no 1043 * possible race with the hardware committing the atomic update. 1044 * 1045 * Caller must hold a vblank reference for the event @e acquired by a 1046 * drm_crtc_vblank_get(), which will be dropped when the next vblank arrives. 1047 */ 1048 void drm_crtc_arm_vblank_event(struct drm_crtc *crtc, 1049 struct drm_pending_vblank_event *e) 1050 { 1051 struct drm_device *dev = crtc->dev; 1052 unsigned int pipe = drm_crtc_index(crtc); 1053 1054 assert_spin_locked(&dev->event_lock); 1055 1056 e->pipe = pipe; 1057 e->sequence = drm_crtc_accurate_vblank_count(crtc) + 1; 1058 list_add_tail(&e->base.link, &dev->vblank_event_list); 1059 } 1060 EXPORT_SYMBOL(drm_crtc_arm_vblank_event); 1061 1062 /** 1063 * drm_crtc_send_vblank_event - helper to send vblank event after pageflip 1064 * @crtc: the source CRTC of the vblank event 1065 * @e: the event to send 1066 * 1067 * Updates sequence # and timestamp on event for the most recently processed 1068 * vblank, and sends it to userspace. Caller must hold event lock. 1069 * 1070 * See drm_crtc_arm_vblank_event() for a helper which can be used in certain 1071 * situation, especially to send out events for atomic commit operations. 1072 */ 1073 void drm_crtc_send_vblank_event(struct drm_crtc *crtc, 1074 struct drm_pending_vblank_event *e) 1075 { 1076 struct drm_device *dev = crtc->dev; 1077 u64 seq; 1078 unsigned int pipe = drm_crtc_index(crtc); 1079 ktime_t now; 1080 1081 if (drm_dev_has_vblank(dev)) { 1082 seq = drm_vblank_count_and_time(dev, pipe, &now); 1083 } else { 1084 seq = 0; 1085 1086 now = ktime_get(); 1087 } 1088 e->pipe = pipe; 1089 send_vblank_event(dev, e, seq, now); 1090 } 1091 EXPORT_SYMBOL(drm_crtc_send_vblank_event); 1092 1093 static int __enable_vblank(struct drm_device *dev, unsigned int pipe) 1094 { 1095 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 1096 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 1097 1098 if (drm_WARN_ON(dev, !crtc)) 1099 return 0; 1100 1101 if (crtc->funcs->enable_vblank) 1102 return crtc->funcs->enable_vblank(crtc); 1103 } else if (dev->driver->enable_vblank) { 1104 return dev->driver->enable_vblank(dev, pipe); 1105 } 1106 1107 return -EINVAL; 1108 } 1109 1110 static int drm_vblank_enable(struct drm_device *dev, unsigned int pipe) 1111 { 1112 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1113 int ret = 0; 1114 1115 assert_spin_locked(&dev->vbl_lock); 1116 1117 spin_lock(&dev->vblank_time_lock); 1118 1119 if (!vblank->enabled) { 1120 /* 1121 * Enable vblank irqs under vblank_time_lock protection. 1122 * All vblank count & timestamp updates are held off 1123 * until we are done reinitializing master counter and 1124 * timestamps. Filtercode in drm_handle_vblank() will 1125 * prevent double-accounting of same vblank interval. 1126 */ 1127 ret = __enable_vblank(dev, pipe); 1128 drm_dbg_core(dev, "enabling vblank on crtc %u, ret: %d\n", 1129 pipe, ret); 1130 if (ret) { 1131 atomic_dec(&vblank->refcount); 1132 } else { 1133 drm_update_vblank_count(dev, pipe, 0); 1134 /* drm_update_vblank_count() includes a wmb so we just 1135 * need to ensure that the compiler emits the write 1136 * to mark the vblank as enabled after the call 1137 * to drm_update_vblank_count(). 1138 */ 1139 WRITE_ONCE(vblank->enabled, true); 1140 } 1141 } 1142 1143 spin_unlock(&dev->vblank_time_lock); 1144 1145 return ret; 1146 } 1147 1148 int drm_vblank_get(struct drm_device *dev, unsigned int pipe) 1149 { 1150 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1151 unsigned long irqflags; 1152 int ret = 0; 1153 1154 if (!drm_dev_has_vblank(dev)) 1155 return -EINVAL; 1156 1157 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1158 return -EINVAL; 1159 1160 spin_lock_irqsave(&dev->vbl_lock, irqflags); 1161 /* Going from 0->1 means we have to enable interrupts again */ 1162 if (atomic_add_return(1, &vblank->refcount) == 1) { 1163 ret = drm_vblank_enable(dev, pipe); 1164 } else { 1165 if (!vblank->enabled) { 1166 atomic_dec(&vblank->refcount); 1167 ret = -EINVAL; 1168 } 1169 } 1170 spin_unlock_irqrestore(&dev->vbl_lock, irqflags); 1171 1172 return ret; 1173 } 1174 1175 /** 1176 * drm_crtc_vblank_get - get a reference count on vblank events 1177 * @crtc: which CRTC to own 1178 * 1179 * Acquire a reference count on vblank events to avoid having them disabled 1180 * while in use. 1181 * 1182 * Returns: 1183 * Zero on success or a negative error code on failure. 1184 */ 1185 int drm_crtc_vblank_get(struct drm_crtc *crtc) 1186 { 1187 return drm_vblank_get(crtc->dev, drm_crtc_index(crtc)); 1188 } 1189 EXPORT_SYMBOL(drm_crtc_vblank_get); 1190 1191 void drm_vblank_put(struct drm_device *dev, unsigned int pipe) 1192 { 1193 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1194 1195 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1196 return; 1197 1198 if (drm_WARN_ON(dev, atomic_read(&vblank->refcount) == 0)) 1199 return; 1200 1201 /* Last user schedules interrupt disable */ 1202 if (atomic_dec_and_test(&vblank->refcount)) { 1203 if (drm_vblank_offdelay == 0) 1204 return; 1205 else if (drm_vblank_offdelay < 0) 1206 vblank_disable_fn(vblank); 1207 else if (!dev->vblank_disable_immediate) 1208 mod_timer(&vblank->disable_timer, 1209 jiffies + ((drm_vblank_offdelay * HZ)/1000)); 1210 } 1211 } 1212 1213 /** 1214 * drm_crtc_vblank_put - give up ownership of vblank events 1215 * @crtc: which counter to give up 1216 * 1217 * Release ownership of a given vblank counter, turning off interrupts 1218 * if possible. Disable interrupts after drm_vblank_offdelay milliseconds. 1219 */ 1220 void drm_crtc_vblank_put(struct drm_crtc *crtc) 1221 { 1222 drm_vblank_put(crtc->dev, drm_crtc_index(crtc)); 1223 } 1224 EXPORT_SYMBOL(drm_crtc_vblank_put); 1225 1226 /** 1227 * drm_wait_one_vblank - wait for one vblank 1228 * @dev: DRM device 1229 * @pipe: CRTC index 1230 * 1231 * This waits for one vblank to pass on @pipe, using the irq driver interfaces. 1232 * It is a failure to call this when the vblank irq for @pipe is disabled, e.g. 1233 * due to lack of driver support or because the crtc is off. 1234 * 1235 * This is the legacy version of drm_crtc_wait_one_vblank(). 1236 */ 1237 void drm_wait_one_vblank(struct drm_device *dev, unsigned int pipe) 1238 { 1239 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1240 int ret; 1241 u64 last; 1242 1243 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1244 return; 1245 1246 #ifdef __OpenBSD__ 1247 /* 1248 * If we're cold, vblank interrupts won't happen even if 1249 * they're turned on by the driver. Just stall long enough 1250 * for a vblank to pass. This assumes a vrefresh of at least 1251 * 25 Hz. 1252 */ 1253 if (cold) { 1254 delay(40000); 1255 return; 1256 } 1257 #endif 1258 1259 ret = drm_vblank_get(dev, pipe); 1260 if (drm_WARN(dev, ret, "vblank not available on crtc %i, ret=%i\n", 1261 pipe, ret)) 1262 return; 1263 1264 last = drm_vblank_count(dev, pipe); 1265 1266 ret = wait_event_timeout(vblank->queue, 1267 last != drm_vblank_count(dev, pipe), 1268 msecs_to_jiffies(100)); 1269 1270 drm_WARN(dev, ret == 0, "vblank wait timed out on crtc %i\n", pipe); 1271 1272 drm_vblank_put(dev, pipe); 1273 } 1274 EXPORT_SYMBOL(drm_wait_one_vblank); 1275 1276 /** 1277 * drm_crtc_wait_one_vblank - wait for one vblank 1278 * @crtc: DRM crtc 1279 * 1280 * This waits for one vblank to pass on @crtc, using the irq driver interfaces. 1281 * It is a failure to call this when the vblank irq for @crtc is disabled, e.g. 1282 * due to lack of driver support or because the crtc is off. 1283 */ 1284 void drm_crtc_wait_one_vblank(struct drm_crtc *crtc) 1285 { 1286 drm_wait_one_vblank(crtc->dev, drm_crtc_index(crtc)); 1287 } 1288 EXPORT_SYMBOL(drm_crtc_wait_one_vblank); 1289 1290 /** 1291 * drm_crtc_vblank_off - disable vblank events on a CRTC 1292 * @crtc: CRTC in question 1293 * 1294 * Drivers can use this function to shut down the vblank interrupt handling when 1295 * disabling a crtc. This function ensures that the latest vblank frame count is 1296 * stored so that drm_vblank_on can restore it again. 1297 * 1298 * Drivers must use this function when the hardware vblank counter can get 1299 * reset, e.g. when suspending or disabling the @crtc in general. 1300 */ 1301 void drm_crtc_vblank_off(struct drm_crtc *crtc) 1302 { 1303 struct drm_device *dev = crtc->dev; 1304 unsigned int pipe = drm_crtc_index(crtc); 1305 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1306 struct drm_pending_vblank_event *e, *t; 1307 ktime_t now; 1308 u64 seq; 1309 1310 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1311 return; 1312 1313 /* 1314 * Grab event_lock early to prevent vblank work from being scheduled 1315 * while we're in the middle of shutting down vblank interrupts 1316 */ 1317 spin_lock_irq(&dev->event_lock); 1318 1319 spin_lock(&dev->vbl_lock); 1320 drm_dbg_vbl(dev, "crtc %d, vblank enabled %d, inmodeset %d\n", 1321 pipe, vblank->enabled, vblank->inmodeset); 1322 1323 /* Avoid redundant vblank disables without previous 1324 * drm_crtc_vblank_on(). */ 1325 if (drm_core_check_feature(dev, DRIVER_ATOMIC) || !vblank->inmodeset) 1326 drm_vblank_disable_and_save(dev, pipe); 1327 1328 wake_up(&vblank->queue); 1329 1330 /* 1331 * Prevent subsequent drm_vblank_get() from re-enabling 1332 * the vblank interrupt by bumping the refcount. 1333 */ 1334 if (!vblank->inmodeset) { 1335 atomic_inc(&vblank->refcount); 1336 vblank->inmodeset = 1; 1337 } 1338 spin_unlock(&dev->vbl_lock); 1339 1340 /* Send any queued vblank events, lest the natives grow disquiet */ 1341 seq = drm_vblank_count_and_time(dev, pipe, &now); 1342 1343 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) { 1344 if (e->pipe != pipe) 1345 continue; 1346 drm_dbg_core(dev, "Sending premature vblank event on disable: " 1347 "wanted %llu, current %llu\n", 1348 e->sequence, seq); 1349 list_del(&e->base.link); 1350 drm_vblank_put(dev, pipe); 1351 send_vblank_event(dev, e, seq, now); 1352 } 1353 1354 /* Cancel any leftover pending vblank work */ 1355 drm_vblank_cancel_pending_works(vblank); 1356 1357 spin_unlock_irq(&dev->event_lock); 1358 1359 /* Will be reset by the modeset helpers when re-enabling the crtc by 1360 * calling drm_calc_timestamping_constants(). */ 1361 vblank->hwmode.crtc_clock = 0; 1362 1363 /* Wait for any vblank work that's still executing to finish */ 1364 drm_vblank_flush_worker(vblank); 1365 } 1366 EXPORT_SYMBOL(drm_crtc_vblank_off); 1367 1368 /** 1369 * drm_crtc_vblank_reset - reset vblank state to off on a CRTC 1370 * @crtc: CRTC in question 1371 * 1372 * Drivers can use this function to reset the vblank state to off at load time. 1373 * Drivers should use this together with the drm_crtc_vblank_off() and 1374 * drm_crtc_vblank_on() functions. The difference compared to 1375 * drm_crtc_vblank_off() is that this function doesn't save the vblank counter 1376 * and hence doesn't need to call any driver hooks. 1377 * 1378 * This is useful for recovering driver state e.g. on driver load, or on resume. 1379 */ 1380 void drm_crtc_vblank_reset(struct drm_crtc *crtc) 1381 { 1382 struct drm_device *dev = crtc->dev; 1383 unsigned int pipe = drm_crtc_index(crtc); 1384 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1385 1386 spin_lock_irq(&dev->vbl_lock); 1387 /* 1388 * Prevent subsequent drm_vblank_get() from enabling the vblank 1389 * interrupt by bumping the refcount. 1390 */ 1391 if (!vblank->inmodeset) { 1392 atomic_inc(&vblank->refcount); 1393 vblank->inmodeset = 1; 1394 } 1395 spin_unlock_irq(&dev->vbl_lock); 1396 1397 drm_WARN_ON(dev, !list_empty(&dev->vblank_event_list)); 1398 drm_WARN_ON(dev, !list_empty(&vblank->pending_work)); 1399 } 1400 EXPORT_SYMBOL(drm_crtc_vblank_reset); 1401 1402 /** 1403 * drm_crtc_set_max_vblank_count - configure the hw max vblank counter value 1404 * @crtc: CRTC in question 1405 * @max_vblank_count: max hardware vblank counter value 1406 * 1407 * Update the maximum hardware vblank counter value for @crtc 1408 * at runtime. Useful for hardware where the operation of the 1409 * hardware vblank counter depends on the currently active 1410 * display configuration. 1411 * 1412 * For example, if the hardware vblank counter does not work 1413 * when a specific connector is active the maximum can be set 1414 * to zero. And when that specific connector isn't active the 1415 * maximum can again be set to the appropriate non-zero value. 1416 * 1417 * If used, must be called before drm_vblank_on(). 1418 */ 1419 void drm_crtc_set_max_vblank_count(struct drm_crtc *crtc, 1420 u32 max_vblank_count) 1421 { 1422 struct drm_device *dev = crtc->dev; 1423 unsigned int pipe = drm_crtc_index(crtc); 1424 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1425 1426 drm_WARN_ON(dev, dev->max_vblank_count); 1427 drm_WARN_ON(dev, !READ_ONCE(vblank->inmodeset)); 1428 1429 vblank->max_vblank_count = max_vblank_count; 1430 } 1431 EXPORT_SYMBOL(drm_crtc_set_max_vblank_count); 1432 1433 /** 1434 * drm_crtc_vblank_on - enable vblank events on a CRTC 1435 * @crtc: CRTC in question 1436 * 1437 * This functions restores the vblank interrupt state captured with 1438 * drm_crtc_vblank_off() again and is generally called when enabling @crtc. Note 1439 * that calls to drm_crtc_vblank_on() and drm_crtc_vblank_off() can be 1440 * unbalanced and so can also be unconditionally called in driver load code to 1441 * reflect the current hardware state of the crtc. 1442 */ 1443 void drm_crtc_vblank_on(struct drm_crtc *crtc) 1444 { 1445 struct drm_device *dev = crtc->dev; 1446 unsigned int pipe = drm_crtc_index(crtc); 1447 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1448 1449 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1450 return; 1451 1452 spin_lock_irq(&dev->vbl_lock); 1453 drm_dbg_vbl(dev, "crtc %d, vblank enabled %d, inmodeset %d\n", 1454 pipe, vblank->enabled, vblank->inmodeset); 1455 1456 /* Drop our private "prevent drm_vblank_get" refcount */ 1457 if (vblank->inmodeset) { 1458 atomic_dec(&vblank->refcount); 1459 vblank->inmodeset = 0; 1460 } 1461 1462 drm_reset_vblank_timestamp(dev, pipe); 1463 1464 /* 1465 * re-enable interrupts if there are users left, or the 1466 * user wishes vblank interrupts to be enabled all the time. 1467 */ 1468 if (atomic_read(&vblank->refcount) != 0 || drm_vblank_offdelay == 0) 1469 drm_WARN_ON(dev, drm_vblank_enable(dev, pipe)); 1470 spin_unlock_irq(&dev->vbl_lock); 1471 } 1472 EXPORT_SYMBOL(drm_crtc_vblank_on); 1473 1474 /** 1475 * drm_vblank_restore - estimate missed vblanks and update vblank count. 1476 * @dev: DRM device 1477 * @pipe: CRTC index 1478 * 1479 * Power manamement features can cause frame counter resets between vblank 1480 * disable and enable. Drivers can use this function in their 1481 * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since 1482 * the last &drm_crtc_funcs.disable_vblank using timestamps and update the 1483 * vblank counter. 1484 * 1485 * This function is the legacy version of drm_crtc_vblank_restore(). 1486 */ 1487 void drm_vblank_restore(struct drm_device *dev, unsigned int pipe) 1488 { 1489 ktime_t t_vblank; 1490 struct drm_vblank_crtc *vblank; 1491 int framedur_ns; 1492 u64 diff_ns; 1493 u32 cur_vblank, diff = 1; 1494 int count = DRM_TIMESTAMP_MAXRETRIES; 1495 1496 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1497 return; 1498 1499 assert_spin_locked(&dev->vbl_lock); 1500 assert_spin_locked(&dev->vblank_time_lock); 1501 1502 vblank = &dev->vblank[pipe]; 1503 drm_WARN_ONCE(dev, 1504 drm_debug_enabled(DRM_UT_VBL) && !vblank->framedur_ns, 1505 "Cannot compute missed vblanks without frame duration\n"); 1506 framedur_ns = vblank->framedur_ns; 1507 1508 do { 1509 cur_vblank = __get_vblank_counter(dev, pipe); 1510 drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false); 1511 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0); 1512 1513 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time)); 1514 if (framedur_ns) 1515 diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns); 1516 1517 1518 drm_dbg_vbl(dev, 1519 "missed %d vblanks in %lld ns, frame duration=%d ns, hw_diff=%d\n", 1520 diff, diff_ns, framedur_ns, cur_vblank - vblank->last); 1521 store_vblank(dev, pipe, diff, t_vblank, cur_vblank); 1522 } 1523 EXPORT_SYMBOL(drm_vblank_restore); 1524 1525 /** 1526 * drm_crtc_vblank_restore - estimate missed vblanks and update vblank count. 1527 * @crtc: CRTC in question 1528 * 1529 * Power manamement features can cause frame counter resets between vblank 1530 * disable and enable. Drivers can use this function in their 1531 * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since 1532 * the last &drm_crtc_funcs.disable_vblank using timestamps and update the 1533 * vblank counter. 1534 */ 1535 void drm_crtc_vblank_restore(struct drm_crtc *crtc) 1536 { 1537 drm_vblank_restore(crtc->dev, drm_crtc_index(crtc)); 1538 } 1539 EXPORT_SYMBOL(drm_crtc_vblank_restore); 1540 1541 static void drm_legacy_vblank_pre_modeset(struct drm_device *dev, 1542 unsigned int pipe) 1543 { 1544 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1545 1546 /* vblank is not initialized (IRQ not installed ?), or has been freed */ 1547 if (!drm_dev_has_vblank(dev)) 1548 return; 1549 1550 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1551 return; 1552 1553 /* 1554 * To avoid all the problems that might happen if interrupts 1555 * were enabled/disabled around or between these calls, we just 1556 * have the kernel take a reference on the CRTC (just once though 1557 * to avoid corrupting the count if multiple, mismatch calls occur), 1558 * so that interrupts remain enabled in the interim. 1559 */ 1560 if (!vblank->inmodeset) { 1561 vblank->inmodeset = 0x1; 1562 if (drm_vblank_get(dev, pipe) == 0) 1563 vblank->inmodeset |= 0x2; 1564 } 1565 } 1566 1567 static void drm_legacy_vblank_post_modeset(struct drm_device *dev, 1568 unsigned int pipe) 1569 { 1570 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1571 1572 /* vblank is not initialized (IRQ not installed ?), or has been freed */ 1573 if (!drm_dev_has_vblank(dev)) 1574 return; 1575 1576 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1577 return; 1578 1579 if (vblank->inmodeset) { 1580 spin_lock_irq(&dev->vbl_lock); 1581 drm_reset_vblank_timestamp(dev, pipe); 1582 spin_unlock_irq(&dev->vbl_lock); 1583 1584 if (vblank->inmodeset & 0x2) 1585 drm_vblank_put(dev, pipe); 1586 1587 vblank->inmodeset = 0; 1588 } 1589 } 1590 1591 int drm_legacy_modeset_ctl_ioctl(struct drm_device *dev, void *data, 1592 struct drm_file *file_priv) 1593 { 1594 struct drm_modeset_ctl *modeset = data; 1595 unsigned int pipe; 1596 1597 /* If drm_vblank_init() hasn't been called yet, just no-op */ 1598 if (!drm_dev_has_vblank(dev)) 1599 return 0; 1600 1601 /* KMS drivers handle this internally */ 1602 if (!drm_core_check_feature(dev, DRIVER_LEGACY)) 1603 return 0; 1604 1605 pipe = modeset->crtc; 1606 if (pipe >= dev->num_crtcs) 1607 return -EINVAL; 1608 1609 switch (modeset->cmd) { 1610 case _DRM_PRE_MODESET: 1611 drm_legacy_vblank_pre_modeset(dev, pipe); 1612 break; 1613 case _DRM_POST_MODESET: 1614 drm_legacy_vblank_post_modeset(dev, pipe); 1615 break; 1616 default: 1617 return -EINVAL; 1618 } 1619 1620 return 0; 1621 } 1622 1623 static int drm_queue_vblank_event(struct drm_device *dev, unsigned int pipe, 1624 u64 req_seq, 1625 union drm_wait_vblank *vblwait, 1626 struct drm_file *file_priv) 1627 { 1628 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1629 struct drm_pending_vblank_event *e; 1630 ktime_t now; 1631 u64 seq; 1632 int ret; 1633 1634 e = kzalloc(sizeof(*e), GFP_KERNEL); 1635 if (e == NULL) { 1636 ret = -ENOMEM; 1637 goto err_put; 1638 } 1639 1640 e->pipe = pipe; 1641 e->event.base.type = DRM_EVENT_VBLANK; 1642 e->event.base.length = sizeof(e->event.vbl); 1643 e->event.vbl.user_data = vblwait->request.signal; 1644 e->event.vbl.crtc_id = 0; 1645 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 1646 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 1647 1648 if (crtc) 1649 e->event.vbl.crtc_id = crtc->base.id; 1650 } 1651 1652 spin_lock_irq(&dev->event_lock); 1653 1654 /* 1655 * drm_crtc_vblank_off() might have been called after we called 1656 * drm_vblank_get(). drm_crtc_vblank_off() holds event_lock around the 1657 * vblank disable, so no need for further locking. The reference from 1658 * drm_vblank_get() protects against vblank disable from another source. 1659 */ 1660 if (!READ_ONCE(vblank->enabled)) { 1661 ret = -EINVAL; 1662 goto err_unlock; 1663 } 1664 1665 ret = drm_event_reserve_init_locked(dev, file_priv, &e->base, 1666 &e->event.base); 1667 1668 if (ret) 1669 goto err_unlock; 1670 1671 seq = drm_vblank_count_and_time(dev, pipe, &now); 1672 1673 drm_dbg_core(dev, "event on vblank count %llu, current %llu, crtc %u\n", 1674 req_seq, seq, pipe); 1675 1676 trace_drm_vblank_event_queued(file_priv, pipe, req_seq); 1677 1678 e->sequence = req_seq; 1679 if (drm_vblank_passed(seq, req_seq)) { 1680 drm_vblank_put(dev, pipe); 1681 send_vblank_event(dev, e, seq, now); 1682 vblwait->reply.sequence = seq; 1683 } else { 1684 /* drm_handle_vblank_events will call drm_vblank_put */ 1685 list_add_tail(&e->base.link, &dev->vblank_event_list); 1686 vblwait->reply.sequence = req_seq; 1687 } 1688 1689 spin_unlock_irq(&dev->event_lock); 1690 1691 return 0; 1692 1693 err_unlock: 1694 spin_unlock_irq(&dev->event_lock); 1695 kfree(e); 1696 err_put: 1697 drm_vblank_put(dev, pipe); 1698 return ret; 1699 } 1700 1701 static bool drm_wait_vblank_is_query(union drm_wait_vblank *vblwait) 1702 { 1703 if (vblwait->request.sequence) 1704 return false; 1705 1706 return _DRM_VBLANK_RELATIVE == 1707 (vblwait->request.type & (_DRM_VBLANK_TYPES_MASK | 1708 _DRM_VBLANK_EVENT | 1709 _DRM_VBLANK_NEXTONMISS)); 1710 } 1711 1712 /* 1713 * Widen a 32-bit param to 64-bits. 1714 * 1715 * \param narrow 32-bit value (missing upper 32 bits) 1716 * \param near 64-bit value that should be 'close' to near 1717 * 1718 * This function returns a 64-bit value using the lower 32-bits from 1719 * 'narrow' and constructing the upper 32-bits so that the result is 1720 * as close as possible to 'near'. 1721 */ 1722 1723 static u64 widen_32_to_64(u32 narrow, u64 near) 1724 { 1725 return near + (s32) (narrow - near); 1726 } 1727 1728 static void drm_wait_vblank_reply(struct drm_device *dev, unsigned int pipe, 1729 struct drm_wait_vblank_reply *reply) 1730 { 1731 ktime_t now; 1732 struct timespec64 ts; 1733 1734 /* 1735 * drm_wait_vblank_reply is a UAPI structure that uses 'long' 1736 * to store the seconds. This is safe as we always use monotonic 1737 * timestamps since linux-4.15. 1738 */ 1739 reply->sequence = drm_vblank_count_and_time(dev, pipe, &now); 1740 ts = ktime_to_timespec64(now); 1741 reply->tval_sec = (u32)ts.tv_sec; 1742 reply->tval_usec = ts.tv_nsec / 1000; 1743 } 1744 1745 int drm_wait_vblank_ioctl(struct drm_device *dev, void *data, 1746 struct drm_file *file_priv) 1747 { 1748 struct drm_crtc *crtc; 1749 struct drm_vblank_crtc *vblank; 1750 union drm_wait_vblank *vblwait = data; 1751 int ret; 1752 u64 req_seq, seq; 1753 unsigned int pipe_index; 1754 unsigned int flags, pipe, high_pipe; 1755 1756 if (!dev->irq_enabled) 1757 return -EOPNOTSUPP; 1758 1759 if (vblwait->request.type & _DRM_VBLANK_SIGNAL) 1760 return -EINVAL; 1761 1762 if (vblwait->request.type & 1763 ~(_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK | 1764 _DRM_VBLANK_HIGH_CRTC_MASK)) { 1765 drm_dbg_core(dev, 1766 "Unsupported type value 0x%x, supported mask 0x%x\n", 1767 vblwait->request.type, 1768 (_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK | 1769 _DRM_VBLANK_HIGH_CRTC_MASK)); 1770 return -EINVAL; 1771 } 1772 1773 flags = vblwait->request.type & _DRM_VBLANK_FLAGS_MASK; 1774 high_pipe = (vblwait->request.type & _DRM_VBLANK_HIGH_CRTC_MASK); 1775 if (high_pipe) 1776 pipe_index = high_pipe >> _DRM_VBLANK_HIGH_CRTC_SHIFT; 1777 else 1778 pipe_index = flags & _DRM_VBLANK_SECONDARY ? 1 : 0; 1779 1780 /* Convert lease-relative crtc index into global crtc index */ 1781 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 1782 pipe = 0; 1783 drm_for_each_crtc(crtc, dev) { 1784 if (drm_lease_held(file_priv, crtc->base.id)) { 1785 if (pipe_index == 0) 1786 break; 1787 pipe_index--; 1788 } 1789 pipe++; 1790 } 1791 } else { 1792 pipe = pipe_index; 1793 } 1794 1795 if (pipe >= dev->num_crtcs) 1796 return -EINVAL; 1797 1798 vblank = &dev->vblank[pipe]; 1799 1800 /* If the counter is currently enabled and accurate, short-circuit 1801 * queries to return the cached timestamp of the last vblank. 1802 */ 1803 if (dev->vblank_disable_immediate && 1804 drm_wait_vblank_is_query(vblwait) && 1805 READ_ONCE(vblank->enabled)) { 1806 drm_wait_vblank_reply(dev, pipe, &vblwait->reply); 1807 return 0; 1808 } 1809 1810 ret = drm_vblank_get(dev, pipe); 1811 if (ret) { 1812 drm_dbg_core(dev, 1813 "crtc %d failed to acquire vblank counter, %d\n", 1814 pipe, ret); 1815 return ret; 1816 } 1817 seq = drm_vblank_count(dev, pipe); 1818 1819 switch (vblwait->request.type & _DRM_VBLANK_TYPES_MASK) { 1820 case _DRM_VBLANK_RELATIVE: 1821 req_seq = seq + vblwait->request.sequence; 1822 vblwait->request.sequence = req_seq; 1823 vblwait->request.type &= ~_DRM_VBLANK_RELATIVE; 1824 break; 1825 case _DRM_VBLANK_ABSOLUTE: 1826 req_seq = widen_32_to_64(vblwait->request.sequence, seq); 1827 break; 1828 default: 1829 ret = -EINVAL; 1830 goto done; 1831 } 1832 1833 if ((flags & _DRM_VBLANK_NEXTONMISS) && 1834 drm_vblank_passed(seq, req_seq)) { 1835 req_seq = seq + 1; 1836 vblwait->request.type &= ~_DRM_VBLANK_NEXTONMISS; 1837 vblwait->request.sequence = req_seq; 1838 } 1839 1840 if (flags & _DRM_VBLANK_EVENT) { 1841 /* must hold on to the vblank ref until the event fires 1842 * drm_vblank_put will be called asynchronously 1843 */ 1844 return drm_queue_vblank_event(dev, pipe, req_seq, vblwait, file_priv); 1845 } 1846 1847 if (req_seq != seq) { 1848 int wait; 1849 1850 drm_dbg_core(dev, "waiting on vblank count %llu, crtc %u\n", 1851 req_seq, pipe); 1852 wait = wait_event_interruptible_timeout(vblank->queue, 1853 drm_vblank_passed(drm_vblank_count(dev, pipe), req_seq) || 1854 !READ_ONCE(vblank->enabled), 1855 msecs_to_jiffies(3000)); 1856 1857 switch (wait) { 1858 case 0: 1859 /* timeout */ 1860 ret = -EBUSY; 1861 break; 1862 case -ERESTARTSYS: 1863 /* interrupted by signal */ 1864 ret = -EINTR; 1865 break; 1866 default: 1867 ret = 0; 1868 break; 1869 } 1870 } 1871 1872 if (ret != -EINTR) { 1873 drm_wait_vblank_reply(dev, pipe, &vblwait->reply); 1874 1875 drm_dbg_core(dev, "crtc %d returning %u to client\n", 1876 pipe, vblwait->reply.sequence); 1877 } else { 1878 drm_dbg_core(dev, "crtc %d vblank wait interrupted by signal\n", 1879 pipe); 1880 } 1881 1882 done: 1883 drm_vblank_put(dev, pipe); 1884 return ret; 1885 } 1886 1887 static void drm_handle_vblank_events(struct drm_device *dev, unsigned int pipe) 1888 { 1889 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe); 1890 bool high_prec = false; 1891 struct drm_pending_vblank_event *e, *t; 1892 ktime_t now; 1893 u64 seq; 1894 1895 assert_spin_locked(&dev->event_lock); 1896 1897 seq = drm_vblank_count_and_time(dev, pipe, &now); 1898 1899 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) { 1900 if (e->pipe != pipe) 1901 continue; 1902 if (!drm_vblank_passed(seq, e->sequence)) 1903 continue; 1904 1905 drm_dbg_core(dev, "vblank event on %llu, current %llu\n", 1906 e->sequence, seq); 1907 1908 list_del(&e->base.link); 1909 drm_vblank_put(dev, pipe); 1910 send_vblank_event(dev, e, seq, now); 1911 } 1912 1913 if (crtc && crtc->funcs->get_vblank_timestamp) 1914 high_prec = true; 1915 1916 trace_drm_vblank_event(pipe, seq, now, high_prec); 1917 } 1918 1919 /** 1920 * drm_handle_vblank - handle a vblank event 1921 * @dev: DRM device 1922 * @pipe: index of CRTC where this event occurred 1923 * 1924 * Drivers should call this routine in their vblank interrupt handlers to 1925 * update the vblank counter and send any signals that may be pending. 1926 * 1927 * This is the legacy version of drm_crtc_handle_vblank(). 1928 */ 1929 bool drm_handle_vblank(struct drm_device *dev, unsigned int pipe) 1930 { 1931 struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; 1932 unsigned long irqflags; 1933 bool disable_irq; 1934 1935 if (drm_WARN_ON_ONCE(dev, !drm_dev_has_vblank(dev))) 1936 return false; 1937 1938 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) 1939 return false; 1940 1941 spin_lock_irqsave(&dev->event_lock, irqflags); 1942 1943 /* Need timestamp lock to prevent concurrent execution with 1944 * vblank enable/disable, as this would cause inconsistent 1945 * or corrupted timestamps and vblank counts. 1946 */ 1947 spin_lock(&dev->vblank_time_lock); 1948 1949 /* Vblank irq handling disabled. Nothing to do. */ 1950 if (!vblank->enabled) { 1951 spin_unlock(&dev->vblank_time_lock); 1952 spin_unlock_irqrestore(&dev->event_lock, irqflags); 1953 return false; 1954 } 1955 1956 drm_update_vblank_count(dev, pipe, true); 1957 1958 spin_unlock(&dev->vblank_time_lock); 1959 1960 wake_up(&vblank->queue); 1961 1962 /* With instant-off, we defer disabling the interrupt until after 1963 * we finish processing the following vblank after all events have 1964 * been signaled. The disable has to be last (after 1965 * drm_handle_vblank_events) so that the timestamp is always accurate. 1966 */ 1967 disable_irq = (dev->vblank_disable_immediate && 1968 drm_vblank_offdelay > 0 && 1969 !atomic_read(&vblank->refcount)); 1970 1971 drm_handle_vblank_events(dev, pipe); 1972 drm_handle_vblank_works(vblank); 1973 1974 spin_unlock_irqrestore(&dev->event_lock, irqflags); 1975 1976 if (disable_irq) 1977 vblank_disable_fn(vblank); 1978 1979 return true; 1980 } 1981 EXPORT_SYMBOL(drm_handle_vblank); 1982 1983 /** 1984 * drm_crtc_handle_vblank - handle a vblank event 1985 * @crtc: where this event occurred 1986 * 1987 * Drivers should call this routine in their vblank interrupt handlers to 1988 * update the vblank counter and send any signals that may be pending. 1989 * 1990 * This is the native KMS version of drm_handle_vblank(). 1991 * 1992 * Note that for a given vblank counter value drm_crtc_handle_vblank() 1993 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time() 1994 * provide a barrier: Any writes done before calling 1995 * drm_crtc_handle_vblank() will be visible to callers of the later 1996 * functions, iff the vblank count is the same or a later one. 1997 * 1998 * See also &drm_vblank_crtc.count. 1999 * 2000 * Returns: 2001 * True if the event was successfully handled, false on failure. 2002 */ 2003 bool drm_crtc_handle_vblank(struct drm_crtc *crtc) 2004 { 2005 return drm_handle_vblank(crtc->dev, drm_crtc_index(crtc)); 2006 } 2007 EXPORT_SYMBOL(drm_crtc_handle_vblank); 2008 2009 /* 2010 * Get crtc VBLANK count. 2011 * 2012 * \param dev DRM device 2013 * \param data user arguement, pointing to a drm_crtc_get_sequence structure. 2014 * \param file_priv drm file private for the user's open file descriptor 2015 */ 2016 2017 int drm_crtc_get_sequence_ioctl(struct drm_device *dev, void *data, 2018 struct drm_file *file_priv) 2019 { 2020 struct drm_crtc *crtc; 2021 struct drm_vblank_crtc *vblank; 2022 int pipe; 2023 struct drm_crtc_get_sequence *get_seq = data; 2024 ktime_t now; 2025 bool vblank_enabled; 2026 int ret; 2027 2028 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 2029 return -EOPNOTSUPP; 2030 2031 if (!dev->irq_enabled) 2032 return -EOPNOTSUPP; 2033 2034 crtc = drm_crtc_find(dev, file_priv, get_seq->crtc_id); 2035 if (!crtc) 2036 return -ENOENT; 2037 2038 pipe = drm_crtc_index(crtc); 2039 2040 vblank = &dev->vblank[pipe]; 2041 vblank_enabled = dev->vblank_disable_immediate && READ_ONCE(vblank->enabled); 2042 2043 if (!vblank_enabled) { 2044 ret = drm_crtc_vblank_get(crtc); 2045 if (ret) { 2046 drm_dbg_core(dev, 2047 "crtc %d failed to acquire vblank counter, %d\n", 2048 pipe, ret); 2049 return ret; 2050 } 2051 } 2052 drm_modeset_lock(&crtc->mutex, NULL); 2053 if (crtc->state) 2054 get_seq->active = crtc->state->enable; 2055 else 2056 get_seq->active = crtc->enabled; 2057 drm_modeset_unlock(&crtc->mutex); 2058 get_seq->sequence = drm_vblank_count_and_time(dev, pipe, &now); 2059 get_seq->sequence_ns = ktime_to_ns(now); 2060 if (!vblank_enabled) 2061 drm_crtc_vblank_put(crtc); 2062 return 0; 2063 } 2064 2065 /* 2066 * Queue a event for VBLANK sequence 2067 * 2068 * \param dev DRM device 2069 * \param data user arguement, pointing to a drm_crtc_queue_sequence structure. 2070 * \param file_priv drm file private for the user's open file descriptor 2071 */ 2072 2073 int drm_crtc_queue_sequence_ioctl(struct drm_device *dev, void *data, 2074 struct drm_file *file_priv) 2075 { 2076 struct drm_crtc *crtc; 2077 struct drm_vblank_crtc *vblank; 2078 int pipe; 2079 struct drm_crtc_queue_sequence *queue_seq = data; 2080 ktime_t now; 2081 struct drm_pending_vblank_event *e; 2082 u32 flags; 2083 u64 seq; 2084 u64 req_seq; 2085 int ret; 2086 2087 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 2088 return -EOPNOTSUPP; 2089 2090 if (!dev->irq_enabled) 2091 return -EOPNOTSUPP; 2092 2093 crtc = drm_crtc_find(dev, file_priv, queue_seq->crtc_id); 2094 if (!crtc) 2095 return -ENOENT; 2096 2097 flags = queue_seq->flags; 2098 /* Check valid flag bits */ 2099 if (flags & ~(DRM_CRTC_SEQUENCE_RELATIVE| 2100 DRM_CRTC_SEQUENCE_NEXT_ON_MISS)) 2101 return -EINVAL; 2102 2103 pipe = drm_crtc_index(crtc); 2104 2105 vblank = &dev->vblank[pipe]; 2106 2107 e = kzalloc(sizeof(*e), GFP_KERNEL); 2108 if (e == NULL) 2109 return -ENOMEM; 2110 2111 ret = drm_crtc_vblank_get(crtc); 2112 if (ret) { 2113 drm_dbg_core(dev, 2114 "crtc %d failed to acquire vblank counter, %d\n", 2115 pipe, ret); 2116 goto err_free; 2117 } 2118 2119 seq = drm_vblank_count_and_time(dev, pipe, &now); 2120 req_seq = queue_seq->sequence; 2121 2122 if (flags & DRM_CRTC_SEQUENCE_RELATIVE) 2123 req_seq += seq; 2124 2125 if ((flags & DRM_CRTC_SEQUENCE_NEXT_ON_MISS) && drm_vblank_passed(seq, req_seq)) 2126 req_seq = seq + 1; 2127 2128 e->pipe = pipe; 2129 e->event.base.type = DRM_EVENT_CRTC_SEQUENCE; 2130 e->event.base.length = sizeof(e->event.seq); 2131 e->event.seq.user_data = queue_seq->user_data; 2132 2133 spin_lock_irq(&dev->event_lock); 2134 2135 /* 2136 * drm_crtc_vblank_off() might have been called after we called 2137 * drm_crtc_vblank_get(). drm_crtc_vblank_off() holds event_lock around the 2138 * vblank disable, so no need for further locking. The reference from 2139 * drm_crtc_vblank_get() protects against vblank disable from another source. 2140 */ 2141 if (!READ_ONCE(vblank->enabled)) { 2142 ret = -EINVAL; 2143 goto err_unlock; 2144 } 2145 2146 ret = drm_event_reserve_init_locked(dev, file_priv, &e->base, 2147 &e->event.base); 2148 2149 if (ret) 2150 goto err_unlock; 2151 2152 e->sequence = req_seq; 2153 2154 if (drm_vblank_passed(seq, req_seq)) { 2155 drm_crtc_vblank_put(crtc); 2156 send_vblank_event(dev, e, seq, now); 2157 queue_seq->sequence = seq; 2158 } else { 2159 /* drm_handle_vblank_events will call drm_vblank_put */ 2160 list_add_tail(&e->base.link, &dev->vblank_event_list); 2161 queue_seq->sequence = req_seq; 2162 } 2163 2164 spin_unlock_irq(&dev->event_lock); 2165 return 0; 2166 2167 err_unlock: 2168 spin_unlock_irq(&dev->event_lock); 2169 drm_crtc_vblank_put(crtc); 2170 err_free: 2171 kfree(e); 2172 return ret; 2173 } 2174 2175