1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2008,2010 Intel Corporation 5 */ 6 7 #include <linux/intel-iommu.h> 8 #include <linux/dma-resv.h> 9 #include <linux/sync_file.h> 10 #include <linux/uaccess.h> 11 12 #include <drm/drm_syncobj.h> 13 14 #include <dev/pci/pcivar.h> 15 #include <dev/pci/agpvar.h> 16 17 #include "display/intel_frontbuffer.h" 18 19 #include "gem/i915_gem_ioctls.h" 20 #include "gt/intel_context.h" 21 #include "gt/intel_engine_pool.h" 22 #include "gt/intel_gt.h" 23 #include "gt/intel_gt_pm.h" 24 #include "gt/intel_ring.h" 25 26 #include "i915_drv.h" 27 #include "i915_gem_clflush.h" 28 #include "i915_gem_context.h" 29 #include "i915_gem_ioctls.h" 30 #include "i915_sw_fence_work.h" 31 #include "i915_trace.h" 32 33 struct eb_vma { 34 struct i915_vma *vma; 35 unsigned int flags; 36 37 /** This vma's place in the execbuf reservation list */ 38 struct drm_i915_gem_exec_object2 *exec; 39 struct list_head bind_link; 40 struct list_head reloc_link; 41 42 struct hlist_node node; 43 u32 handle; 44 }; 45 46 enum { 47 FORCE_CPU_RELOC = 1, 48 FORCE_GTT_RELOC, 49 FORCE_GPU_RELOC, 50 #define DBG_FORCE_RELOC 0 /* choose one of the above! */ 51 }; 52 53 #define __EXEC_OBJECT_HAS_PIN BIT(31) 54 #define __EXEC_OBJECT_HAS_FENCE BIT(30) 55 #define __EXEC_OBJECT_NEEDS_MAP BIT(29) 56 #define __EXEC_OBJECT_NEEDS_BIAS BIT(28) 57 #define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 28) /* all of the above */ 58 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE) 59 60 #define __EXEC_HAS_RELOC BIT(31) 61 #define __EXEC_INTERNAL_FLAGS (~0u << 31) 62 #define UPDATE PIN_OFFSET_FIXED 63 64 #define BATCH_OFFSET_BIAS (256*1024) 65 66 #define __I915_EXEC_ILLEGAL_FLAGS \ 67 (__I915_EXEC_UNKNOWN_FLAGS | \ 68 I915_EXEC_CONSTANTS_MASK | \ 69 I915_EXEC_RESOURCE_STREAMER) 70 71 /* Catch emission of unexpected errors for CI! */ 72 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) 73 #undef EINVAL 74 #define EINVAL ({ \ 75 DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \ 76 22; \ 77 }) 78 #endif 79 80 /** 81 * DOC: User command execution 82 * 83 * Userspace submits commands to be executed on the GPU as an instruction 84 * stream within a GEM object we call a batchbuffer. This instructions may 85 * refer to other GEM objects containing auxiliary state such as kernels, 86 * samplers, render targets and even secondary batchbuffers. Userspace does 87 * not know where in the GPU memory these objects reside and so before the 88 * batchbuffer is passed to the GPU for execution, those addresses in the 89 * batchbuffer and auxiliary objects are updated. This is known as relocation, 90 * or patching. To try and avoid having to relocate each object on the next 91 * execution, userspace is told the location of those objects in this pass, 92 * but this remains just a hint as the kernel may choose a new location for 93 * any object in the future. 94 * 95 * At the level of talking to the hardware, submitting a batchbuffer for the 96 * GPU to execute is to add content to a buffer from which the HW 97 * command streamer is reading. 98 * 99 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e. 100 * Execlists, this command is not placed on the same buffer as the 101 * remaining items. 102 * 103 * 2. Add a command to invalidate caches to the buffer. 104 * 105 * 3. Add a batchbuffer start command to the buffer; the start command is 106 * essentially a token together with the GPU address of the batchbuffer 107 * to be executed. 108 * 109 * 4. Add a pipeline flush to the buffer. 110 * 111 * 5. Add a memory write command to the buffer to record when the GPU 112 * is done executing the batchbuffer. The memory write writes the 113 * global sequence number of the request, ``i915_request::global_seqno``; 114 * the i915 driver uses the current value in the register to determine 115 * if the GPU has completed the batchbuffer. 116 * 117 * 6. Add a user interrupt command to the buffer. This command instructs 118 * the GPU to issue an interrupt when the command, pipeline flush and 119 * memory write are completed. 120 * 121 * 7. Inform the hardware of the additional commands added to the buffer 122 * (by updating the tail pointer). 123 * 124 * Processing an execbuf ioctl is conceptually split up into a few phases. 125 * 126 * 1. Validation - Ensure all the pointers, handles and flags are valid. 127 * 2. Reservation - Assign GPU address space for every object 128 * 3. Relocation - Update any addresses to point to the final locations 129 * 4. Serialisation - Order the request with respect to its dependencies 130 * 5. Construction - Construct a request to execute the batchbuffer 131 * 6. Submission (at some point in the future execution) 132 * 133 * Reserving resources for the execbuf is the most complicated phase. We 134 * neither want to have to migrate the object in the address space, nor do 135 * we want to have to update any relocations pointing to this object. Ideally, 136 * we want to leave the object where it is and for all the existing relocations 137 * to match. If the object is given a new address, or if userspace thinks the 138 * object is elsewhere, we have to parse all the relocation entries and update 139 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that 140 * all the target addresses in all of its objects match the value in the 141 * relocation entries and that they all match the presumed offsets given by the 142 * list of execbuffer objects. Using this knowledge, we know that if we haven't 143 * moved any buffers, all the relocation entries are valid and we can skip 144 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU 145 * hang.) The requirement for using I915_EXEC_NO_RELOC are: 146 * 147 * The addresses written in the objects must match the corresponding 148 * reloc.presumed_offset which in turn must match the corresponding 149 * execobject.offset. 150 * 151 * Any render targets written to in the batch must be flagged with 152 * EXEC_OBJECT_WRITE. 153 * 154 * To avoid stalling, execobject.offset should match the current 155 * address of that object within the active context. 156 * 157 * The reservation is done is multiple phases. First we try and keep any 158 * object already bound in its current location - so as long as meets the 159 * constraints imposed by the new execbuffer. Any object left unbound after the 160 * first pass is then fitted into any available idle space. If an object does 161 * not fit, all objects are removed from the reservation and the process rerun 162 * after sorting the objects into a priority order (more difficult to fit 163 * objects are tried first). Failing that, the entire VM is cleared and we try 164 * to fit the execbuf once last time before concluding that it simply will not 165 * fit. 166 * 167 * A small complication to all of this is that we allow userspace not only to 168 * specify an alignment and a size for the object in the address space, but 169 * we also allow userspace to specify the exact offset. This objects are 170 * simpler to place (the location is known a priori) all we have to do is make 171 * sure the space is available. 172 * 173 * Once all the objects are in place, patching up the buried pointers to point 174 * to the final locations is a fairly simple job of walking over the relocation 175 * entry arrays, looking up the right address and rewriting the value into 176 * the object. Simple! ... The relocation entries are stored in user memory 177 * and so to access them we have to copy them into a local buffer. That copy 178 * has to avoid taking any pagefaults as they may lead back to a GEM object 179 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split 180 * the relocation into multiple passes. First we try to do everything within an 181 * atomic context (avoid the pagefaults) which requires that we never wait. If 182 * we detect that we may wait, or if we need to fault, then we have to fallback 183 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm 184 * bells yet?) Dropping the mutex means that we lose all the state we have 185 * built up so far for the execbuf and we must reset any global data. However, 186 * we do leave the objects pinned in their final locations - which is a 187 * potential issue for concurrent execbufs. Once we have left the mutex, we can 188 * allocate and copy all the relocation entries into a large array at our 189 * leisure, reacquire the mutex, reclaim all the objects and other state and 190 * then proceed to update any incorrect addresses with the objects. 191 * 192 * As we process the relocation entries, we maintain a record of whether the 193 * object is being written to. Using NORELOC, we expect userspace to provide 194 * this information instead. We also check whether we can skip the relocation 195 * by comparing the expected value inside the relocation entry with the target's 196 * final address. If they differ, we have to map the current object and rewrite 197 * the 4 or 8 byte pointer within. 198 * 199 * Serialising an execbuf is quite simple according to the rules of the GEM 200 * ABI. Execution within each context is ordered by the order of submission. 201 * Writes to any GEM object are in order of submission and are exclusive. Reads 202 * from a GEM object are unordered with respect to other reads, but ordered by 203 * writes. A write submitted after a read cannot occur before the read, and 204 * similarly any read submitted after a write cannot occur before the write. 205 * Writes are ordered between engines such that only one write occurs at any 206 * time (completing any reads beforehand) - using semaphores where available 207 * and CPU serialisation otherwise. Other GEM access obey the same rules, any 208 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU 209 * reads before starting, and any read (either using set-domain or pread) must 210 * flush all GPU writes before starting. (Note we only employ a barrier before, 211 * we currently rely on userspace not concurrently starting a new execution 212 * whilst reading or writing to an object. This may be an advantage or not 213 * depending on how much you trust userspace not to shoot themselves in the 214 * foot.) Serialisation may just result in the request being inserted into 215 * a DAG awaiting its turn, but most simple is to wait on the CPU until 216 * all dependencies are resolved. 217 * 218 * After all of that, is just a matter of closing the request and handing it to 219 * the hardware (well, leaving it in a queue to be executed). However, we also 220 * offer the ability for batchbuffers to be run with elevated privileges so 221 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.) 222 * Before any batch is given extra privileges we first must check that it 223 * contains no nefarious instructions, we check that each instruction is from 224 * our whitelist and all registers are also from an allowed list. We first 225 * copy the user's batchbuffer to a shadow (so that the user doesn't have 226 * access to it, either by the CPU or GPU as we scan it) and then parse each 227 * instruction. If everything is ok, we set a flag telling the hardware to run 228 * the batchbuffer in trusted mode, otherwise the ioctl is rejected. 229 */ 230 231 struct i915_execbuffer { 232 struct drm_i915_private *i915; /** i915 backpointer */ 233 struct drm_file *file; /** per-file lookup tables and limits */ 234 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */ 235 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */ 236 struct eb_vma *vma; 237 238 struct intel_engine_cs *engine; /** engine to queue the request to */ 239 struct intel_context *context; /* logical state for the request */ 240 struct i915_gem_context *gem_context; /** caller's context */ 241 242 struct i915_request *request; /** our request to build */ 243 struct eb_vma *batch; /** identity of the batch obj/vma */ 244 struct i915_vma *trampoline; /** trampoline used for chaining */ 245 246 /** actual size of execobj[] as we may extend it for the cmdparser */ 247 unsigned int buffer_count; 248 249 /** list of vma not yet bound during reservation phase */ 250 struct list_head unbound; 251 252 /** list of vma that have execobj.relocation_count */ 253 struct list_head relocs; 254 255 /** 256 * Track the most recently used object for relocations, as we 257 * frequently have to perform multiple relocations within the same 258 * obj/page 259 */ 260 struct reloc_cache { 261 struct drm_mm_node node; /** temporary GTT binding */ 262 unsigned long vaddr; /** Current kmap address */ 263 unsigned long page; /** Currently mapped page index */ 264 unsigned int gen; /** Cached value of INTEL_GEN */ 265 bool use_64bit_reloc : 1; 266 bool has_llc : 1; 267 bool has_fence : 1; 268 bool needs_unfenced : 1; 269 270 struct i915_request *rq; 271 u32 *rq_cmd; 272 unsigned int rq_size; 273 274 struct agp_map *map; 275 bus_space_tag_t iot; 276 bus_space_handle_t ioh; 277 } reloc_cache; 278 279 u64 invalid_flags; /** Set of execobj.flags that are invalid */ 280 u32 context_flags; /** Set of execobj.flags to insert from the ctx */ 281 282 u32 batch_start_offset; /** Location within object of batch */ 283 u32 batch_len; /** Length of batch within object */ 284 u32 batch_flags; /** Flags composed for emit_bb_start() */ 285 286 /** 287 * Indicate either the size of the hastable used to resolve 288 * relocation handles, or if negative that we are using a direct 289 * index into the execobj[]. 290 */ 291 int lut_size; 292 struct hlist_head *buckets; /** ht for relocation handles */ 293 }; 294 295 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb) 296 { 297 return intel_engine_requires_cmd_parser(eb->engine) || 298 (intel_engine_using_cmd_parser(eb->engine) && 299 eb->args->batch_len); 300 } 301 302 static int eb_create(struct i915_execbuffer *eb) 303 { 304 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) { 305 unsigned int size = 1 + ilog2(eb->buffer_count); 306 307 /* 308 * Without a 1:1 association between relocation handles and 309 * the execobject[] index, we instead create a hashtable. 310 * We size it dynamically based on available memory, starting 311 * first with 1:1 assocative hash and scaling back until 312 * the allocation succeeds. 313 * 314 * Later on we use a positive lut_size to indicate we are 315 * using this hashtable, and a negative value to indicate a 316 * direct lookup. 317 */ 318 do { 319 gfp_t flags; 320 321 /* While we can still reduce the allocation size, don't 322 * raise a warning and allow the allocation to fail. 323 * On the last pass though, we want to try as hard 324 * as possible to perform the allocation and warn 325 * if it fails. 326 */ 327 flags = GFP_KERNEL; 328 if (size > 1) 329 flags |= __GFP_NORETRY | __GFP_NOWARN; 330 331 eb->buckets = kzalloc(sizeof(struct hlist_head) << size, 332 flags); 333 if (eb->buckets) 334 break; 335 } while (--size); 336 337 if (unlikely(!size)) 338 return -ENOMEM; 339 340 eb->lut_size = size; 341 } else { 342 eb->lut_size = -eb->buffer_count; 343 } 344 345 return 0; 346 } 347 348 static bool 349 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry, 350 const struct i915_vma *vma, 351 unsigned int flags) 352 { 353 if (vma->node.size < entry->pad_to_size) 354 return true; 355 356 if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment)) 357 return true; 358 359 if (flags & EXEC_OBJECT_PINNED && 360 vma->node.start != entry->offset) 361 return true; 362 363 if (flags & __EXEC_OBJECT_NEEDS_BIAS && 364 vma->node.start < BATCH_OFFSET_BIAS) 365 return true; 366 367 if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) && 368 (vma->node.start + vma->node.size - 1) >> 32) 369 return true; 370 371 if (flags & __EXEC_OBJECT_NEEDS_MAP && 372 !i915_vma_is_map_and_fenceable(vma)) 373 return true; 374 375 return false; 376 } 377 378 static inline bool 379 eb_pin_vma(struct i915_execbuffer *eb, 380 const struct drm_i915_gem_exec_object2 *entry, 381 struct eb_vma *ev) 382 { 383 struct i915_vma *vma = ev->vma; 384 u64 pin_flags; 385 386 if (vma->node.size) 387 pin_flags = vma->node.start; 388 else 389 pin_flags = entry->offset & PIN_OFFSET_MASK; 390 391 pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED; 392 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT)) 393 pin_flags |= PIN_GLOBAL; 394 395 if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags))) 396 return false; 397 398 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) { 399 if (unlikely(i915_vma_pin_fence(vma))) { 400 i915_vma_unpin(vma); 401 return false; 402 } 403 404 if (vma->fence) 405 ev->flags |= __EXEC_OBJECT_HAS_FENCE; 406 } 407 408 ev->flags |= __EXEC_OBJECT_HAS_PIN; 409 return !eb_vma_misplaced(entry, vma, ev->flags); 410 } 411 412 static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags) 413 { 414 GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN)); 415 416 if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE)) 417 __i915_vma_unpin_fence(vma); 418 419 __i915_vma_unpin(vma); 420 } 421 422 static inline void 423 eb_unreserve_vma(struct eb_vma *ev) 424 { 425 if (!(ev->flags & __EXEC_OBJECT_HAS_PIN)) 426 return; 427 428 __eb_unreserve_vma(ev->vma, ev->flags); 429 ev->flags &= ~__EXEC_OBJECT_RESERVED; 430 } 431 432 static int 433 eb_validate_vma(struct i915_execbuffer *eb, 434 struct drm_i915_gem_exec_object2 *entry, 435 struct i915_vma *vma) 436 { 437 if (unlikely(entry->flags & eb->invalid_flags)) 438 return -EINVAL; 439 440 if (unlikely(entry->alignment && 441 !is_power_of_2_u64(entry->alignment))) 442 return -EINVAL; 443 444 /* 445 * Offset can be used as input (EXEC_OBJECT_PINNED), reject 446 * any non-page-aligned or non-canonical addresses. 447 */ 448 if (unlikely(entry->flags & EXEC_OBJECT_PINNED && 449 entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK))) 450 return -EINVAL; 451 452 /* pad_to_size was once a reserved field, so sanitize it */ 453 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) { 454 if (unlikely(offset_in_page(entry->pad_to_size))) 455 return -EINVAL; 456 } else { 457 entry->pad_to_size = 0; 458 } 459 /* 460 * From drm_mm perspective address space is continuous, 461 * so from this point we're always using non-canonical 462 * form internally. 463 */ 464 entry->offset = gen8_noncanonical_addr(entry->offset); 465 466 if (!eb->reloc_cache.has_fence) { 467 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE; 468 } else { 469 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE || 470 eb->reloc_cache.needs_unfenced) && 471 i915_gem_object_is_tiled(vma->obj)) 472 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP; 473 } 474 475 if (!(entry->flags & EXEC_OBJECT_PINNED)) 476 entry->flags |= eb->context_flags; 477 478 return 0; 479 } 480 481 static void 482 eb_add_vma(struct i915_execbuffer *eb, 483 unsigned int i, unsigned batch_idx, 484 struct i915_vma *vma) 485 { 486 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; 487 struct eb_vma *ev = &eb->vma[i]; 488 489 GEM_BUG_ON(i915_vma_is_closed(vma)); 490 491 ev->vma = i915_vma_get(vma); 492 ev->exec = entry; 493 ev->flags = entry->flags; 494 495 if (eb->lut_size > 0) { 496 ev->handle = entry->handle; 497 hlist_add_head(&ev->node, 498 &eb->buckets[hash_32(entry->handle, 499 eb->lut_size)]); 500 } 501 502 if (entry->relocation_count) 503 list_add_tail(&ev->reloc_link, &eb->relocs); 504 505 /* 506 * SNA is doing fancy tricks with compressing batch buffers, which leads 507 * to negative relocation deltas. Usually that works out ok since the 508 * relocate address is still positive, except when the batch is placed 509 * very low in the GTT. Ensure this doesn't happen. 510 * 511 * Note that actual hangs have only been observed on gen7, but for 512 * paranoia do it everywhere. 513 */ 514 if (i == batch_idx) { 515 if (entry->relocation_count && 516 !(ev->flags & EXEC_OBJECT_PINNED)) 517 ev->flags |= __EXEC_OBJECT_NEEDS_BIAS; 518 if (eb->reloc_cache.has_fence) 519 ev->flags |= EXEC_OBJECT_NEEDS_FENCE; 520 521 eb->batch = ev; 522 } 523 524 if (eb_pin_vma(eb, entry, ev)) { 525 if (entry->offset != vma->node.start) { 526 entry->offset = vma->node.start | UPDATE; 527 eb->args->flags |= __EXEC_HAS_RELOC; 528 } 529 } else { 530 eb_unreserve_vma(ev); 531 list_add_tail(&ev->bind_link, &eb->unbound); 532 } 533 } 534 535 static inline int use_cpu_reloc(const struct reloc_cache *cache, 536 const struct drm_i915_gem_object *obj) 537 { 538 if (!i915_gem_object_has_struct_page(obj)) 539 return false; 540 541 if (DBG_FORCE_RELOC == FORCE_CPU_RELOC) 542 return true; 543 544 if (DBG_FORCE_RELOC == FORCE_GTT_RELOC) 545 return false; 546 547 return (cache->has_llc || 548 obj->cache_dirty || 549 obj->cache_level != I915_CACHE_NONE); 550 } 551 552 static int eb_reserve_vma(const struct i915_execbuffer *eb, 553 struct eb_vma *ev, 554 u64 pin_flags) 555 { 556 struct drm_i915_gem_exec_object2 *entry = ev->exec; 557 unsigned int exec_flags = ev->flags; 558 struct i915_vma *vma = ev->vma; 559 int err; 560 561 if (exec_flags & EXEC_OBJECT_NEEDS_GTT) 562 pin_flags |= PIN_GLOBAL; 563 564 /* 565 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset, 566 * limit address to the first 4GBs for unflagged objects. 567 */ 568 if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) 569 pin_flags |= PIN_ZONE_4G; 570 571 if (exec_flags & __EXEC_OBJECT_NEEDS_MAP) 572 pin_flags |= PIN_MAPPABLE; 573 574 if (exec_flags & EXEC_OBJECT_PINNED) 575 pin_flags |= entry->offset | PIN_OFFSET_FIXED; 576 else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) 577 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS; 578 579 if (drm_mm_node_allocated(&vma->node) && 580 eb_vma_misplaced(entry, vma, ev->flags)) { 581 err = i915_vma_unbind(vma); 582 if (err) 583 return err; 584 } 585 586 err = i915_vma_pin(vma, 587 entry->pad_to_size, entry->alignment, 588 pin_flags); 589 if (err) 590 return err; 591 592 if (entry->offset != vma->node.start) { 593 entry->offset = vma->node.start | UPDATE; 594 eb->args->flags |= __EXEC_HAS_RELOC; 595 } 596 597 if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) { 598 err = i915_vma_pin_fence(vma); 599 if (unlikely(err)) { 600 i915_vma_unpin(vma); 601 return err; 602 } 603 604 if (vma->fence) 605 exec_flags |= __EXEC_OBJECT_HAS_FENCE; 606 } 607 608 ev->flags = exec_flags | __EXEC_OBJECT_HAS_PIN; 609 GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags)); 610 611 return 0; 612 } 613 614 static int eb_reserve(struct i915_execbuffer *eb) 615 { 616 const unsigned int count = eb->buffer_count; 617 unsigned int pin_flags = PIN_USER | PIN_NONBLOCK; 618 struct list_head last; 619 struct eb_vma *ev; 620 unsigned int i, pass; 621 int err = 0; 622 623 /* 624 * Attempt to pin all of the buffers into the GTT. 625 * This is done in 3 phases: 626 * 627 * 1a. Unbind all objects that do not match the GTT constraints for 628 * the execbuffer (fenceable, mappable, alignment etc). 629 * 1b. Increment pin count for already bound objects. 630 * 2. Bind new objects. 631 * 3. Decrement pin count. 632 * 633 * This avoid unnecessary unbinding of later objects in order to make 634 * room for the earlier objects *unless* we need to defragment. 635 */ 636 637 if (mutex_lock_interruptible(&eb->i915->drm.struct_mutex)) 638 return -EINTR; 639 640 pass = 0; 641 do { 642 list_for_each_entry(ev, &eb->unbound, bind_link) { 643 err = eb_reserve_vma(eb, ev, pin_flags); 644 if (err) 645 break; 646 } 647 if (!(err == -ENOSPC || err == -EAGAIN)) 648 break; 649 650 /* Resort *all* the objects into priority order */ 651 INIT_LIST_HEAD(&eb->unbound); 652 INIT_LIST_HEAD(&last); 653 for (i = 0; i < count; i++) { 654 unsigned int flags; 655 656 ev = &eb->vma[i]; 657 flags = ev->flags; 658 if (flags & EXEC_OBJECT_PINNED && 659 flags & __EXEC_OBJECT_HAS_PIN) 660 continue; 661 662 eb_unreserve_vma(ev); 663 664 if (flags & EXEC_OBJECT_PINNED) 665 /* Pinned must have their slot */ 666 list_add(&ev->bind_link, &eb->unbound); 667 else if (flags & __EXEC_OBJECT_NEEDS_MAP) 668 /* Map require the lowest 256MiB (aperture) */ 669 list_add_tail(&ev->bind_link, &eb->unbound); 670 else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) 671 /* Prioritise 4GiB region for restricted bo */ 672 list_add(&ev->bind_link, &last); 673 else 674 list_add_tail(&ev->bind_link, &last); 675 } 676 list_splice_tail(&last, &eb->unbound); 677 678 if (err == -EAGAIN) { 679 mutex_unlock(&eb->i915->drm.struct_mutex); 680 flush_workqueue(eb->i915->mm.userptr_wq); 681 mutex_lock(&eb->i915->drm.struct_mutex); 682 continue; 683 } 684 685 switch (pass++) { 686 case 0: 687 break; 688 689 case 1: 690 /* Too fragmented, unbind everything and retry */ 691 mutex_lock(&eb->context->vm->mutex); 692 err = i915_gem_evict_vm(eb->context->vm); 693 mutex_unlock(&eb->context->vm->mutex); 694 if (err) 695 goto unlock; 696 break; 697 698 default: 699 err = -ENOSPC; 700 goto unlock; 701 } 702 703 pin_flags = PIN_USER; 704 } while (1); 705 706 unlock: 707 mutex_unlock(&eb->i915->drm.struct_mutex); 708 return err; 709 } 710 711 static unsigned int eb_batch_index(const struct i915_execbuffer *eb) 712 { 713 if (eb->args->flags & I915_EXEC_BATCH_FIRST) 714 return 0; 715 else 716 return eb->buffer_count - 1; 717 } 718 719 static int eb_select_context(struct i915_execbuffer *eb) 720 { 721 struct i915_gem_context *ctx; 722 723 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1); 724 if (unlikely(!ctx)) 725 return -ENOENT; 726 727 eb->gem_context = ctx; 728 if (rcu_access_pointer(ctx->vm)) 729 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT; 730 731 eb->context_flags = 0; 732 if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags)) 733 eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS; 734 735 return 0; 736 } 737 738 static int eb_lookup_vmas(struct i915_execbuffer *eb) 739 { 740 struct radix_tree_root *handles_vma = &eb->gem_context->handles_vma; 741 struct drm_i915_gem_object *obj; 742 unsigned int i, batch; 743 int err; 744 745 if (unlikely(i915_gem_context_is_closed(eb->gem_context))) 746 return -ENOENT; 747 748 INIT_LIST_HEAD(&eb->relocs); 749 INIT_LIST_HEAD(&eb->unbound); 750 751 batch = eb_batch_index(eb); 752 753 for (i = 0; i < eb->buffer_count; i++) { 754 u32 handle = eb->exec[i].handle; 755 struct i915_lut_handle *lut; 756 struct i915_vma *vma; 757 758 vma = radix_tree_lookup(handles_vma, handle); 759 if (likely(vma)) 760 goto add_vma; 761 762 obj = i915_gem_object_lookup(eb->file, handle); 763 if (unlikely(!obj)) { 764 err = -ENOENT; 765 goto err_vma; 766 } 767 768 vma = i915_vma_instance(obj, eb->context->vm, NULL); 769 if (IS_ERR(vma)) { 770 err = PTR_ERR(vma); 771 goto err_obj; 772 } 773 774 lut = i915_lut_handle_alloc(); 775 if (unlikely(!lut)) { 776 err = -ENOMEM; 777 goto err_obj; 778 } 779 780 err = radix_tree_insert(handles_vma, handle, vma); 781 if (unlikely(err)) { 782 i915_lut_handle_free(lut); 783 goto err_obj; 784 } 785 786 /* transfer ref to lut */ 787 if (!atomic_fetch_inc(&vma->open_count)) 788 i915_vma_reopen(vma); 789 lut->handle = handle; 790 lut->ctx = eb->gem_context; 791 792 i915_gem_object_lock(obj); 793 list_add(&lut->obj_link, &obj->lut_list); 794 i915_gem_object_unlock(obj); 795 796 add_vma: 797 err = eb_validate_vma(eb, &eb->exec[i], vma); 798 if (unlikely(err)) 799 goto err_vma; 800 801 eb_add_vma(eb, i, batch, vma); 802 } 803 804 return 0; 805 806 err_obj: 807 i915_gem_object_put(obj); 808 err_vma: 809 eb->vma[i].vma = NULL; 810 return err; 811 } 812 813 static struct eb_vma * 814 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle) 815 { 816 if (eb->lut_size < 0) { 817 if (handle >= -eb->lut_size) 818 return NULL; 819 return &eb->vma[handle]; 820 } else { 821 struct hlist_head *head; 822 struct eb_vma *ev; 823 824 head = &eb->buckets[hash_32(handle, eb->lut_size)]; 825 hlist_for_each_entry(ev, head, node) { 826 if (ev->handle == handle) 827 return ev; 828 } 829 return NULL; 830 } 831 } 832 833 static void eb_release_vmas(const struct i915_execbuffer *eb) 834 { 835 const unsigned int count = eb->buffer_count; 836 unsigned int i; 837 838 for (i = 0; i < count; i++) { 839 struct eb_vma *ev = &eb->vma[i]; 840 struct i915_vma *vma = ev->vma; 841 842 if (!vma) 843 break; 844 845 eb->vma[i].vma = NULL; 846 847 if (ev->flags & __EXEC_OBJECT_HAS_PIN) 848 __eb_unreserve_vma(vma, ev->flags); 849 850 i915_vma_put(vma); 851 } 852 } 853 854 static void eb_destroy(const struct i915_execbuffer *eb) 855 { 856 GEM_BUG_ON(eb->reloc_cache.rq); 857 858 if (eb->lut_size > 0) 859 kfree(eb->buckets); 860 } 861 862 static inline u64 863 relocation_target(const struct drm_i915_gem_relocation_entry *reloc, 864 const struct i915_vma *target) 865 { 866 return gen8_canonical_addr((int)reloc->delta + target->node.start); 867 } 868 869 static void reloc_cache_init(struct reloc_cache *cache, 870 struct drm_i915_private *i915) 871 { 872 cache->page = -1; 873 cache->vaddr = 0; 874 /* Must be a variable in the struct to allow GCC to unroll. */ 875 cache->gen = INTEL_GEN(i915); 876 cache->has_llc = HAS_LLC(i915); 877 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915); 878 cache->has_fence = cache->gen < 4; 879 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment; 880 cache->node.flags = 0; 881 cache->rq = NULL; 882 cache->rq_size = 0; 883 884 cache->map = i915->agph; 885 cache->iot = i915->bst; 886 } 887 888 static inline void *unmask_page(unsigned long p) 889 { 890 return (void *)(uintptr_t)(p & ~PAGE_MASK); 891 } 892 893 static inline unsigned int unmask_flags(unsigned long p) 894 { 895 return p & PAGE_MASK; 896 } 897 898 #define KMAP 0x4 /* after CLFLUSH_FLAGS */ 899 900 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache) 901 { 902 struct drm_i915_private *i915 = 903 container_of(cache, struct i915_execbuffer, reloc_cache)->i915; 904 return &i915->ggtt; 905 } 906 907 static void reloc_gpu_flush(struct reloc_cache *cache) 908 { 909 struct drm_i915_gem_object *obj = cache->rq->batch->obj; 910 911 GEM_BUG_ON(cache->rq_size >= obj->base.size / sizeof(u32)); 912 cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END; 913 914 __i915_gem_object_flush_map(obj, 0, sizeof(u32) * (cache->rq_size + 1)); 915 i915_gem_object_unpin_map(obj); 916 917 intel_gt_chipset_flush(cache->rq->engine->gt); 918 919 i915_request_add(cache->rq); 920 cache->rq = NULL; 921 } 922 923 static void reloc_cache_reset(struct reloc_cache *cache) 924 { 925 void *vaddr; 926 927 if (cache->rq) 928 reloc_gpu_flush(cache); 929 930 if (!cache->vaddr) 931 return; 932 933 vaddr = unmask_page(cache->vaddr); 934 if (cache->vaddr & KMAP) { 935 if (cache->vaddr & CLFLUSH_AFTER) 936 mb(); 937 938 kunmap_atomic(vaddr); 939 i915_gem_object_finish_access((struct drm_i915_gem_object *)cache->node.mm); 940 } else { 941 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 942 943 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 944 #ifdef __linux__ 945 io_mapping_unmap_atomic((void __iomem *)vaddr); 946 #else 947 agp_unmap_atomic(cache->map, cache->ioh); 948 #endif 949 950 if (drm_mm_node_allocated(&cache->node)) { 951 ggtt->vm.clear_range(&ggtt->vm, 952 cache->node.start, 953 cache->node.size); 954 mutex_lock(&ggtt->vm.mutex); 955 drm_mm_remove_node(&cache->node); 956 mutex_unlock(&ggtt->vm.mutex); 957 } else { 958 i915_vma_unpin((struct i915_vma *)cache->node.mm); 959 } 960 } 961 962 cache->vaddr = 0; 963 cache->page = -1; 964 } 965 966 static void *reloc_kmap(struct drm_i915_gem_object *obj, 967 struct reloc_cache *cache, 968 unsigned long page) 969 { 970 void *vaddr; 971 972 if (cache->vaddr) { 973 kunmap_atomic(unmask_page(cache->vaddr)); 974 } else { 975 unsigned int flushes; 976 int err; 977 978 err = i915_gem_object_prepare_write(obj, &flushes); 979 if (err) 980 return ERR_PTR(err); 981 982 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS); 983 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & ~PAGE_MASK); 984 985 cache->vaddr = flushes | KMAP; 986 cache->node.mm = (void *)obj; 987 if (flushes) 988 mb(); 989 } 990 991 vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page)); 992 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr; 993 cache->page = page; 994 995 return vaddr; 996 } 997 998 static void *reloc_iomap(struct drm_i915_gem_object *obj, 999 struct reloc_cache *cache, 1000 unsigned long page) 1001 { 1002 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1003 unsigned long offset; 1004 void *vaddr; 1005 1006 if (cache->vaddr) { 1007 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 1008 #ifdef __linux__ 1009 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr)); 1010 #else 1011 agp_unmap_atomic(cache->map, cache->ioh); 1012 #endif 1013 } else { 1014 struct i915_vma *vma; 1015 int err; 1016 1017 if (i915_gem_object_is_tiled(obj)) 1018 return ERR_PTR(-EINVAL); 1019 1020 if (use_cpu_reloc(cache, obj)) 1021 return NULL; 1022 1023 i915_gem_object_lock(obj); 1024 err = i915_gem_object_set_to_gtt_domain(obj, true); 1025 i915_gem_object_unlock(obj); 1026 if (err) 1027 return ERR_PTR(err); 1028 1029 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, 1030 PIN_MAPPABLE | 1031 PIN_NONBLOCK /* NOWARN */ | 1032 PIN_NOEVICT); 1033 if (IS_ERR(vma)) { 1034 memset(&cache->node, 0, sizeof(cache->node)); 1035 mutex_lock(&ggtt->vm.mutex); 1036 err = drm_mm_insert_node_in_range 1037 (&ggtt->vm.mm, &cache->node, 1038 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE, 1039 0, ggtt->mappable_end, 1040 DRM_MM_INSERT_LOW); 1041 mutex_unlock(&ggtt->vm.mutex); 1042 if (err) /* no inactive aperture space, use cpu reloc */ 1043 return NULL; 1044 } else { 1045 cache->node.start = vma->node.start; 1046 cache->node.mm = (void *)vma; 1047 } 1048 } 1049 1050 offset = cache->node.start; 1051 if (drm_mm_node_allocated(&cache->node)) { 1052 ggtt->vm.insert_page(&ggtt->vm, 1053 i915_gem_object_get_dma_address(obj, page), 1054 offset, I915_CACHE_NONE, 0); 1055 } else { 1056 offset += page << PAGE_SHIFT; 1057 } 1058 1059 #ifdef __linux__ 1060 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap, 1061 offset); 1062 #else 1063 agp_map_atomic(cache->map, offset, &cache->ioh); 1064 vaddr = bus_space_vaddr(cache->iot, cache->ioh); 1065 #endif 1066 cache->page = page; 1067 cache->vaddr = (unsigned long)vaddr; 1068 1069 return vaddr; 1070 } 1071 1072 static void *reloc_vaddr(struct drm_i915_gem_object *obj, 1073 struct reloc_cache *cache, 1074 unsigned long page) 1075 { 1076 void *vaddr; 1077 1078 if (cache->page == page) { 1079 vaddr = unmask_page(cache->vaddr); 1080 } else { 1081 vaddr = NULL; 1082 if ((cache->vaddr & KMAP) == 0) 1083 vaddr = reloc_iomap(obj, cache, page); 1084 if (!vaddr) 1085 vaddr = reloc_kmap(obj, cache, page); 1086 } 1087 1088 return vaddr; 1089 } 1090 1091 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes) 1092 { 1093 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) { 1094 if (flushes & CLFLUSH_BEFORE) { 1095 clflushopt(addr); 1096 mb(); 1097 } 1098 1099 *addr = value; 1100 1101 /* 1102 * Writes to the same cacheline are serialised by the CPU 1103 * (including clflush). On the write path, we only require 1104 * that it hits memory in an orderly fashion and place 1105 * mb barriers at the start and end of the relocation phase 1106 * to ensure ordering of clflush wrt to the system. 1107 */ 1108 if (flushes & CLFLUSH_AFTER) 1109 clflushopt(addr); 1110 } else 1111 *addr = value; 1112 } 1113 1114 static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma) 1115 { 1116 struct drm_i915_gem_object *obj = vma->obj; 1117 int err; 1118 1119 i915_vma_lock(vma); 1120 1121 if (obj->cache_dirty & ~obj->cache_coherent) 1122 i915_gem_clflush_object(obj, 0); 1123 obj->write_domain = 0; 1124 1125 err = i915_request_await_object(rq, vma->obj, true); 1126 if (err == 0) 1127 err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE); 1128 1129 i915_vma_unlock(vma); 1130 1131 return err; 1132 } 1133 1134 static int __reloc_gpu_alloc(struct i915_execbuffer *eb, 1135 struct i915_vma *vma, 1136 unsigned int len) 1137 { 1138 struct reloc_cache *cache = &eb->reloc_cache; 1139 struct intel_engine_pool_node *pool; 1140 struct i915_request *rq; 1141 struct i915_vma *batch; 1142 u32 *cmd; 1143 int err; 1144 1145 pool = intel_engine_get_pool(eb->engine, PAGE_SIZE); 1146 if (IS_ERR(pool)) 1147 return PTR_ERR(pool); 1148 1149 cmd = i915_gem_object_pin_map(pool->obj, 1150 cache->has_llc ? 1151 I915_MAP_FORCE_WB : 1152 I915_MAP_FORCE_WC); 1153 if (IS_ERR(cmd)) { 1154 err = PTR_ERR(cmd); 1155 goto out_pool; 1156 } 1157 1158 batch = i915_vma_instance(pool->obj, vma->vm, NULL); 1159 if (IS_ERR(batch)) { 1160 err = PTR_ERR(batch); 1161 goto err_unmap; 1162 } 1163 1164 err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK); 1165 if (err) 1166 goto err_unmap; 1167 1168 rq = i915_request_create(eb->context); 1169 if (IS_ERR(rq)) { 1170 err = PTR_ERR(rq); 1171 goto err_unpin; 1172 } 1173 1174 err = intel_engine_pool_mark_active(pool, rq); 1175 if (err) 1176 goto err_request; 1177 1178 err = reloc_move_to_gpu(rq, vma); 1179 if (err) 1180 goto err_request; 1181 1182 err = eb->engine->emit_bb_start(rq, 1183 batch->node.start, PAGE_SIZE, 1184 cache->gen > 5 ? 0 : I915_DISPATCH_SECURE); 1185 if (err) 1186 goto skip_request; 1187 1188 i915_vma_lock(batch); 1189 err = i915_request_await_object(rq, batch->obj, false); 1190 if (err == 0) 1191 err = i915_vma_move_to_active(batch, rq, 0); 1192 i915_vma_unlock(batch); 1193 if (err) 1194 goto skip_request; 1195 1196 rq->batch = batch; 1197 i915_vma_unpin(batch); 1198 1199 cache->rq = rq; 1200 cache->rq_cmd = cmd; 1201 cache->rq_size = 0; 1202 1203 /* Return with batch mapping (cmd) still pinned */ 1204 goto out_pool; 1205 1206 skip_request: 1207 i915_request_set_error_once(rq, err); 1208 err_request: 1209 i915_request_add(rq); 1210 err_unpin: 1211 i915_vma_unpin(batch); 1212 err_unmap: 1213 i915_gem_object_unpin_map(pool->obj); 1214 out_pool: 1215 intel_engine_pool_put(pool); 1216 return err; 1217 } 1218 1219 static u32 *reloc_gpu(struct i915_execbuffer *eb, 1220 struct i915_vma *vma, 1221 unsigned int len) 1222 { 1223 struct reloc_cache *cache = &eb->reloc_cache; 1224 u32 *cmd; 1225 1226 if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1)) 1227 reloc_gpu_flush(cache); 1228 1229 if (unlikely(!cache->rq)) { 1230 int err; 1231 1232 if (!intel_engine_can_store_dword(eb->engine)) 1233 return ERR_PTR(-ENODEV); 1234 1235 err = __reloc_gpu_alloc(eb, vma, len); 1236 if (unlikely(err)) 1237 return ERR_PTR(err); 1238 } 1239 1240 cmd = cache->rq_cmd + cache->rq_size; 1241 cache->rq_size += len; 1242 1243 return cmd; 1244 } 1245 1246 static u64 1247 relocate_entry(struct i915_vma *vma, 1248 const struct drm_i915_gem_relocation_entry *reloc, 1249 struct i915_execbuffer *eb, 1250 const struct i915_vma *target) 1251 { 1252 u64 offset = reloc->offset; 1253 u64 target_offset = relocation_target(reloc, target); 1254 bool wide = eb->reloc_cache.use_64bit_reloc; 1255 void *vaddr; 1256 1257 if (!eb->reloc_cache.vaddr && 1258 (DBG_FORCE_RELOC == FORCE_GPU_RELOC || 1259 !dma_resv_test_signaled_rcu(vma->resv, true))) { 1260 const unsigned int gen = eb->reloc_cache.gen; 1261 unsigned int len; 1262 u32 *batch; 1263 u64 addr; 1264 1265 if (wide) 1266 len = offset & 7 ? 8 : 5; 1267 else if (gen >= 4) 1268 len = 4; 1269 else 1270 len = 3; 1271 1272 batch = reloc_gpu(eb, vma, len); 1273 if (IS_ERR(batch)) 1274 goto repeat; 1275 1276 addr = gen8_canonical_addr(vma->node.start + offset); 1277 if (wide) { 1278 if (offset & 7) { 1279 *batch++ = MI_STORE_DWORD_IMM_GEN4; 1280 *batch++ = lower_32_bits(addr); 1281 *batch++ = upper_32_bits(addr); 1282 *batch++ = lower_32_bits(target_offset); 1283 1284 addr = gen8_canonical_addr(addr + 4); 1285 1286 *batch++ = MI_STORE_DWORD_IMM_GEN4; 1287 *batch++ = lower_32_bits(addr); 1288 *batch++ = upper_32_bits(addr); 1289 *batch++ = upper_32_bits(target_offset); 1290 } else { 1291 *batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1; 1292 *batch++ = lower_32_bits(addr); 1293 *batch++ = upper_32_bits(addr); 1294 *batch++ = lower_32_bits(target_offset); 1295 *batch++ = upper_32_bits(target_offset); 1296 } 1297 } else if (gen >= 6) { 1298 *batch++ = MI_STORE_DWORD_IMM_GEN4; 1299 *batch++ = 0; 1300 *batch++ = addr; 1301 *batch++ = target_offset; 1302 } else if (gen >= 4) { 1303 *batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; 1304 *batch++ = 0; 1305 *batch++ = addr; 1306 *batch++ = target_offset; 1307 } else { 1308 *batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL; 1309 *batch++ = addr; 1310 *batch++ = target_offset; 1311 } 1312 1313 goto out; 1314 } 1315 1316 repeat: 1317 vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT); 1318 if (IS_ERR(vaddr)) 1319 return PTR_ERR(vaddr); 1320 1321 clflush_write32(vaddr + offset_in_page(offset), 1322 lower_32_bits(target_offset), 1323 eb->reloc_cache.vaddr); 1324 1325 if (wide) { 1326 offset += sizeof(u32); 1327 target_offset >>= 32; 1328 wide = false; 1329 goto repeat; 1330 } 1331 1332 out: 1333 return target->node.start | UPDATE; 1334 } 1335 1336 static u64 1337 eb_relocate_entry(struct i915_execbuffer *eb, 1338 struct eb_vma *ev, 1339 const struct drm_i915_gem_relocation_entry *reloc) 1340 { 1341 struct drm_i915_private *i915 = eb->i915; 1342 struct eb_vma *target; 1343 int err; 1344 1345 /* we've already hold a reference to all valid objects */ 1346 target = eb_get_vma(eb, reloc->target_handle); 1347 if (unlikely(!target)) 1348 return -ENOENT; 1349 1350 /* Validate that the target is in a valid r/w GPU domain */ 1351 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) { 1352 drm_dbg(&i915->drm, "reloc with multiple write domains: " 1353 "target %d offset %d " 1354 "read %08x write %08x", 1355 reloc->target_handle, 1356 (int) reloc->offset, 1357 reloc->read_domains, 1358 reloc->write_domain); 1359 return -EINVAL; 1360 } 1361 if (unlikely((reloc->write_domain | reloc->read_domains) 1362 & ~I915_GEM_GPU_DOMAINS)) { 1363 drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: " 1364 "target %d offset %d " 1365 "read %08x write %08x", 1366 reloc->target_handle, 1367 (int) reloc->offset, 1368 reloc->read_domains, 1369 reloc->write_domain); 1370 return -EINVAL; 1371 } 1372 1373 if (reloc->write_domain) { 1374 target->flags |= EXEC_OBJECT_WRITE; 1375 1376 /* 1377 * Sandybridge PPGTT errata: We need a global gtt mapping 1378 * for MI and pipe_control writes because the gpu doesn't 1379 * properly redirect them through the ppgtt for non_secure 1380 * batchbuffers. 1381 */ 1382 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION && 1383 IS_GEN(eb->i915, 6)) { 1384 err = i915_vma_bind(target->vma, 1385 target->vma->obj->cache_level, 1386 PIN_GLOBAL, NULL); 1387 if (WARN_ONCE(err, 1388 "Unexpected failure to bind target VMA!")) 1389 return err; 1390 } 1391 } 1392 1393 /* 1394 * If the relocation already has the right value in it, no 1395 * more work needs to be done. 1396 */ 1397 if (!DBG_FORCE_RELOC && 1398 gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset) 1399 return 0; 1400 1401 /* Check that the relocation address is valid... */ 1402 if (unlikely(reloc->offset > 1403 ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) { 1404 drm_dbg(&i915->drm, "Relocation beyond object bounds: " 1405 "target %d offset %d size %d.\n", 1406 reloc->target_handle, 1407 (int)reloc->offset, 1408 (int)ev->vma->size); 1409 return -EINVAL; 1410 } 1411 if (unlikely(reloc->offset & 3)) { 1412 drm_dbg(&i915->drm, "Relocation not 4-byte aligned: " 1413 "target %d offset %d.\n", 1414 reloc->target_handle, 1415 (int)reloc->offset); 1416 return -EINVAL; 1417 } 1418 1419 /* 1420 * If we write into the object, we need to force the synchronisation 1421 * barrier, either with an asynchronous clflush or if we executed the 1422 * patching using the GPU (though that should be serialised by the 1423 * timeline). To be completely sure, and since we are required to 1424 * do relocations we are already stalling, disable the user's opt 1425 * out of our synchronisation. 1426 */ 1427 ev->flags &= ~EXEC_OBJECT_ASYNC; 1428 1429 /* and update the user's relocation entry */ 1430 return relocate_entry(ev->vma, reloc, eb, target->vma); 1431 } 1432 1433 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev) 1434 { 1435 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry)) 1436 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)]; 1437 struct drm_i915_gem_relocation_entry __user *urelocs; 1438 const struct drm_i915_gem_exec_object2 *entry = ev->exec; 1439 unsigned int remain; 1440 1441 urelocs = u64_to_user_ptr(entry->relocs_ptr); 1442 remain = entry->relocation_count; 1443 if (unlikely(remain > N_RELOC(ULONG_MAX))) 1444 return -EINVAL; 1445 1446 /* 1447 * We must check that the entire relocation array is safe 1448 * to read. However, if the array is not writable the user loses 1449 * the updated relocation values. 1450 */ 1451 if (unlikely(!access_ok(urelocs, remain*sizeof(*urelocs)))) 1452 return -EFAULT; 1453 1454 do { 1455 struct drm_i915_gem_relocation_entry *r = stack; 1456 unsigned int count = 1457 min_t(unsigned int, remain, ARRAY_SIZE(stack)); 1458 unsigned int copied; 1459 1460 /* 1461 * This is the fast path and we cannot handle a pagefault 1462 * whilst holding the struct mutex lest the user pass in the 1463 * relocations contained within a mmaped bo. For in such a case 1464 * we, the page fault handler would call i915_gem_fault() and 1465 * we would try to acquire the struct mutex again. Obviously 1466 * this is bad and so lockdep complains vehemently. 1467 */ 1468 copied = __copy_from_user(r, urelocs, count * sizeof(r[0])); 1469 if (unlikely(copied)) { 1470 remain = -EFAULT; 1471 goto out; 1472 } 1473 1474 remain -= count; 1475 do { 1476 u64 offset = eb_relocate_entry(eb, ev, r); 1477 1478 if (likely(offset == 0)) { 1479 } else if ((s64)offset < 0) { 1480 remain = (int)offset; 1481 goto out; 1482 } else { 1483 /* 1484 * Note that reporting an error now 1485 * leaves everything in an inconsistent 1486 * state as we have *already* changed 1487 * the relocation value inside the 1488 * object. As we have not changed the 1489 * reloc.presumed_offset or will not 1490 * change the execobject.offset, on the 1491 * call we may not rewrite the value 1492 * inside the object, leaving it 1493 * dangling and causing a GPU hang. Unless 1494 * userspace dynamically rebuilds the 1495 * relocations on each execbuf rather than 1496 * presume a static tree. 1497 * 1498 * We did previously check if the relocations 1499 * were writable (access_ok), an error now 1500 * would be a strange race with mprotect, 1501 * having already demonstrated that we 1502 * can read from this userspace address. 1503 */ 1504 offset = gen8_canonical_addr(offset & ~UPDATE); 1505 __put_user(offset, 1506 &urelocs[r - stack].presumed_offset); 1507 } 1508 } while (r++, --count); 1509 urelocs += ARRAY_SIZE(stack); 1510 } while (remain); 1511 out: 1512 reloc_cache_reset(&eb->reloc_cache); 1513 return remain; 1514 } 1515 1516 static int eb_relocate(struct i915_execbuffer *eb) 1517 { 1518 int err; 1519 1520 mutex_lock(&eb->gem_context->mutex); 1521 err = eb_lookup_vmas(eb); 1522 mutex_unlock(&eb->gem_context->mutex); 1523 if (err) 1524 return err; 1525 1526 if (!list_empty(&eb->unbound)) { 1527 err = eb_reserve(eb); 1528 if (err) 1529 return err; 1530 } 1531 1532 /* The objects are in their final locations, apply the relocations. */ 1533 if (eb->args->flags & __EXEC_HAS_RELOC) { 1534 struct eb_vma *ev; 1535 1536 list_for_each_entry(ev, &eb->relocs, reloc_link) { 1537 err = eb_relocate_vma(eb, ev); 1538 if (err) 1539 return err; 1540 } 1541 } 1542 1543 return 0; 1544 } 1545 1546 static int eb_move_to_gpu(struct i915_execbuffer *eb) 1547 { 1548 const unsigned int count = eb->buffer_count; 1549 struct ww_acquire_ctx acquire; 1550 unsigned int i; 1551 int err = 0; 1552 1553 ww_acquire_init(&acquire, &reservation_ww_class); 1554 1555 for (i = 0; i < count; i++) { 1556 struct eb_vma *ev = &eb->vma[i]; 1557 struct i915_vma *vma = ev->vma; 1558 1559 err = ww_mutex_lock_interruptible(&vma->resv->lock, &acquire); 1560 if (err == -EDEADLK) { 1561 GEM_BUG_ON(i == 0); 1562 do { 1563 int j = i - 1; 1564 1565 ww_mutex_unlock(&eb->vma[j].vma->resv->lock); 1566 1567 swap(eb->vma[i], eb->vma[j]); 1568 } while (--i); 1569 1570 err = ww_mutex_lock_slow_interruptible(&vma->resv->lock, 1571 &acquire); 1572 } 1573 if (err) 1574 break; 1575 } 1576 ww_acquire_done(&acquire); 1577 1578 while (i--) { 1579 struct eb_vma *ev = &eb->vma[i]; 1580 struct i915_vma *vma = ev->vma; 1581 unsigned int flags = ev->flags; 1582 struct drm_i915_gem_object *obj = vma->obj; 1583 1584 assert_vma_held(vma); 1585 1586 if (flags & EXEC_OBJECT_CAPTURE) { 1587 struct i915_capture_list *capture; 1588 1589 capture = kmalloc(sizeof(*capture), GFP_KERNEL); 1590 if (capture) { 1591 capture->next = eb->request->capture_list; 1592 capture->vma = vma; 1593 eb->request->capture_list = capture; 1594 } 1595 } 1596 1597 /* 1598 * If the GPU is not _reading_ through the CPU cache, we need 1599 * to make sure that any writes (both previous GPU writes from 1600 * before a change in snooping levels and normal CPU writes) 1601 * caught in that cache are flushed to main memory. 1602 * 1603 * We want to say 1604 * obj->cache_dirty && 1605 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ) 1606 * but gcc's optimiser doesn't handle that as well and emits 1607 * two jumps instead of one. Maybe one day... 1608 */ 1609 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) { 1610 if (i915_gem_clflush_object(obj, 0)) 1611 flags &= ~EXEC_OBJECT_ASYNC; 1612 } 1613 1614 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) { 1615 err = i915_request_await_object 1616 (eb->request, obj, flags & EXEC_OBJECT_WRITE); 1617 } 1618 1619 if (err == 0) 1620 err = i915_vma_move_to_active(vma, eb->request, flags); 1621 1622 i915_vma_unlock(vma); 1623 1624 __eb_unreserve_vma(vma, flags); 1625 i915_vma_put(vma); 1626 1627 ev->vma = NULL; 1628 } 1629 ww_acquire_fini(&acquire); 1630 1631 if (unlikely(err)) 1632 goto err_skip; 1633 1634 eb->exec = NULL; 1635 1636 /* Unconditionally flush any chipset caches (for streaming writes). */ 1637 intel_gt_chipset_flush(eb->engine->gt); 1638 return 0; 1639 1640 err_skip: 1641 i915_request_set_error_once(eb->request, err); 1642 return err; 1643 } 1644 1645 static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec) 1646 { 1647 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS) 1648 return -EINVAL; 1649 1650 /* Kernel clipping was a DRI1 misfeature */ 1651 if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) { 1652 if (exec->num_cliprects || exec->cliprects_ptr) 1653 return -EINVAL; 1654 } 1655 1656 if (exec->DR4 == 0xffffffff) { 1657 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n"); 1658 exec->DR4 = 0; 1659 } 1660 if (exec->DR1 || exec->DR4) 1661 return -EINVAL; 1662 1663 if ((exec->batch_start_offset | exec->batch_len) & 0x7) 1664 return -EINVAL; 1665 1666 return 0; 1667 } 1668 1669 static int i915_reset_gen7_sol_offsets(struct i915_request *rq) 1670 { 1671 u32 *cs; 1672 int i; 1673 1674 if (!IS_GEN(rq->i915, 7) || rq->engine->id != RCS0) { 1675 drm_dbg(&rq->i915->drm, "sol reset is gen7/rcs only\n"); 1676 return -EINVAL; 1677 } 1678 1679 cs = intel_ring_begin(rq, 4 * 2 + 2); 1680 if (IS_ERR(cs)) 1681 return PTR_ERR(cs); 1682 1683 *cs++ = MI_LOAD_REGISTER_IMM(4); 1684 for (i = 0; i < 4; i++) { 1685 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i)); 1686 *cs++ = 0; 1687 } 1688 *cs++ = MI_NOOP; 1689 intel_ring_advance(rq, cs); 1690 1691 return 0; 1692 } 1693 1694 static struct i915_vma * 1695 shadow_batch_pin(struct drm_i915_gem_object *obj, 1696 struct i915_address_space *vm, 1697 unsigned int flags) 1698 { 1699 struct i915_vma *vma; 1700 int err; 1701 1702 vma = i915_vma_instance(obj, vm, NULL); 1703 if (IS_ERR(vma)) 1704 return vma; 1705 1706 err = i915_vma_pin(vma, 0, 0, flags); 1707 if (err) 1708 return ERR_PTR(err); 1709 1710 return vma; 1711 } 1712 1713 struct eb_parse_work { 1714 struct dma_fence_work base; 1715 struct intel_engine_cs *engine; 1716 struct i915_vma *batch; 1717 struct i915_vma *shadow; 1718 struct i915_vma *trampoline; 1719 unsigned int batch_offset; 1720 unsigned int batch_length; 1721 }; 1722 1723 static int __eb_parse(struct dma_fence_work *work) 1724 { 1725 struct eb_parse_work *pw = container_of(work, typeof(*pw), base); 1726 1727 return intel_engine_cmd_parser(pw->engine, 1728 pw->batch, 1729 pw->batch_offset, 1730 pw->batch_length, 1731 pw->shadow, 1732 pw->trampoline); 1733 } 1734 1735 static void __eb_parse_release(struct dma_fence_work *work) 1736 { 1737 struct eb_parse_work *pw = container_of(work, typeof(*pw), base); 1738 1739 if (pw->trampoline) 1740 i915_active_release(&pw->trampoline->active); 1741 i915_active_release(&pw->shadow->active); 1742 i915_active_release(&pw->batch->active); 1743 } 1744 1745 static const struct dma_fence_work_ops eb_parse_ops = { 1746 .name = "eb_parse", 1747 .work = __eb_parse, 1748 .release = __eb_parse_release, 1749 }; 1750 1751 static int eb_parse_pipeline(struct i915_execbuffer *eb, 1752 struct i915_vma *shadow, 1753 struct i915_vma *trampoline) 1754 { 1755 struct eb_parse_work *pw; 1756 int err; 1757 1758 pw = kzalloc(sizeof(*pw), GFP_KERNEL); 1759 if (!pw) 1760 return -ENOMEM; 1761 1762 err = i915_active_acquire(&eb->batch->vma->active); 1763 if (err) 1764 goto err_free; 1765 1766 err = i915_active_acquire(&shadow->active); 1767 if (err) 1768 goto err_batch; 1769 1770 if (trampoline) { 1771 err = i915_active_acquire(&trampoline->active); 1772 if (err) 1773 goto err_shadow; 1774 } 1775 1776 dma_fence_work_init(&pw->base, &eb_parse_ops); 1777 1778 pw->engine = eb->engine; 1779 pw->batch = eb->batch->vma; 1780 pw->batch_offset = eb->batch_start_offset; 1781 pw->batch_length = eb->batch_len; 1782 pw->shadow = shadow; 1783 pw->trampoline = trampoline; 1784 1785 err = dma_resv_lock_interruptible(pw->batch->resv, NULL); 1786 if (err) 1787 goto err_trampoline; 1788 1789 err = dma_resv_reserve_shared(pw->batch->resv, 1); 1790 if (err) 1791 goto err_batch_unlock; 1792 1793 /* Wait for all writes (and relocs) into the batch to complete */ 1794 err = i915_sw_fence_await_reservation(&pw->base.chain, 1795 pw->batch->resv, NULL, false, 1796 0, I915_FENCE_GFP); 1797 if (err < 0) 1798 goto err_batch_unlock; 1799 1800 /* Keep the batch alive and unwritten as we parse */ 1801 dma_resv_add_shared_fence(pw->batch->resv, &pw->base.dma); 1802 1803 dma_resv_unlock(pw->batch->resv); 1804 1805 /* Force execution to wait for completion of the parser */ 1806 dma_resv_lock(shadow->resv, NULL); 1807 dma_resv_add_excl_fence(shadow->resv, &pw->base.dma); 1808 dma_resv_unlock(shadow->resv); 1809 1810 dma_fence_work_commit(&pw->base); 1811 return 0; 1812 1813 err_batch_unlock: 1814 dma_resv_unlock(pw->batch->resv); 1815 err_trampoline: 1816 if (trampoline) 1817 i915_active_release(&trampoline->active); 1818 err_shadow: 1819 i915_active_release(&shadow->active); 1820 err_batch: 1821 i915_active_release(&eb->batch->vma->active); 1822 err_free: 1823 kfree(pw); 1824 return err; 1825 } 1826 1827 static int eb_parse(struct i915_execbuffer *eb) 1828 { 1829 struct drm_i915_private *i915 = eb->i915; 1830 struct intel_engine_pool_node *pool; 1831 struct i915_vma *shadow, *trampoline; 1832 unsigned int len; 1833 int err; 1834 1835 if (!eb_use_cmdparser(eb)) 1836 return 0; 1837 1838 len = eb->batch_len; 1839 if (!CMDPARSER_USES_GGTT(eb->i915)) { 1840 /* 1841 * ppGTT backed shadow buffers must be mapped RO, to prevent 1842 * post-scan tampering 1843 */ 1844 if (!eb->context->vm->has_read_only) { 1845 drm_dbg(&i915->drm, 1846 "Cannot prevent post-scan tampering without RO capable vm\n"); 1847 return -EINVAL; 1848 } 1849 } else { 1850 len += I915_CMD_PARSER_TRAMPOLINE_SIZE; 1851 } 1852 1853 pool = intel_engine_get_pool(eb->engine, len); 1854 if (IS_ERR(pool)) 1855 return PTR_ERR(pool); 1856 1857 shadow = shadow_batch_pin(pool->obj, eb->context->vm, PIN_USER); 1858 if (IS_ERR(shadow)) { 1859 err = PTR_ERR(shadow); 1860 goto err; 1861 } 1862 i915_gem_object_set_readonly(shadow->obj); 1863 1864 trampoline = NULL; 1865 if (CMDPARSER_USES_GGTT(eb->i915)) { 1866 trampoline = shadow; 1867 1868 shadow = shadow_batch_pin(pool->obj, 1869 &eb->engine->gt->ggtt->vm, 1870 PIN_GLOBAL); 1871 if (IS_ERR(shadow)) { 1872 err = PTR_ERR(shadow); 1873 shadow = trampoline; 1874 goto err_shadow; 1875 } 1876 1877 eb->batch_flags |= I915_DISPATCH_SECURE; 1878 } 1879 1880 err = eb_parse_pipeline(eb, shadow, trampoline); 1881 if (err) 1882 goto err_trampoline; 1883 1884 eb->vma[eb->buffer_count].vma = i915_vma_get(shadow); 1885 eb->vma[eb->buffer_count].flags = __EXEC_OBJECT_HAS_PIN; 1886 eb->batch = &eb->vma[eb->buffer_count++]; 1887 1888 eb->trampoline = trampoline; 1889 eb->batch_start_offset = 0; 1890 1891 shadow->private = pool; 1892 return 0; 1893 1894 err_trampoline: 1895 if (trampoline) 1896 i915_vma_unpin(trampoline); 1897 err_shadow: 1898 i915_vma_unpin(shadow); 1899 err: 1900 intel_engine_pool_put(pool); 1901 return err; 1902 } 1903 1904 static void 1905 add_to_client(struct i915_request *rq, struct drm_file *file) 1906 { 1907 struct drm_i915_file_private *file_priv = file->driver_priv; 1908 1909 rq->file_priv = file_priv; 1910 1911 spin_lock(&file_priv->mm.lock); 1912 list_add_tail(&rq->client_link, &file_priv->mm.request_list); 1913 spin_unlock(&file_priv->mm.lock); 1914 } 1915 1916 static int eb_submit(struct i915_execbuffer *eb, struct i915_vma *batch) 1917 { 1918 int err; 1919 1920 err = eb_move_to_gpu(eb); 1921 if (err) 1922 return err; 1923 1924 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) { 1925 err = i915_reset_gen7_sol_offsets(eb->request); 1926 if (err) 1927 return err; 1928 } 1929 1930 /* 1931 * After we completed waiting for other engines (using HW semaphores) 1932 * then we can signal that this request/batch is ready to run. This 1933 * allows us to determine if the batch is still waiting on the GPU 1934 * or actually running by checking the breadcrumb. 1935 */ 1936 if (eb->engine->emit_init_breadcrumb) { 1937 err = eb->engine->emit_init_breadcrumb(eb->request); 1938 if (err) 1939 return err; 1940 } 1941 1942 err = eb->engine->emit_bb_start(eb->request, 1943 batch->node.start + 1944 eb->batch_start_offset, 1945 eb->batch_len, 1946 eb->batch_flags); 1947 if (err) 1948 return err; 1949 1950 if (eb->trampoline) { 1951 GEM_BUG_ON(eb->batch_start_offset); 1952 err = eb->engine->emit_bb_start(eb->request, 1953 eb->trampoline->node.start + 1954 eb->batch_len, 1955 0, 0); 1956 if (err) 1957 return err; 1958 } 1959 1960 if (intel_context_nopreempt(eb->context)) 1961 __set_bit(I915_FENCE_FLAG_NOPREEMPT, &eb->request->fence.flags); 1962 1963 return 0; 1964 } 1965 1966 static int num_vcs_engines(const struct drm_i915_private *i915) 1967 { 1968 return hweight64(INTEL_INFO(i915)->engine_mask & 1969 GENMASK_ULL(VCS0 + I915_MAX_VCS - 1, VCS0)); 1970 } 1971 1972 /* 1973 * Find one BSD ring to dispatch the corresponding BSD command. 1974 * The engine index is returned. 1975 */ 1976 static unsigned int 1977 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv, 1978 struct drm_file *file) 1979 { 1980 struct drm_i915_file_private *file_priv = file->driver_priv; 1981 1982 /* Check whether the file_priv has already selected one ring. */ 1983 if ((int)file_priv->bsd_engine < 0) 1984 file_priv->bsd_engine = 1985 get_random_int() % num_vcs_engines(dev_priv); 1986 1987 return file_priv->bsd_engine; 1988 } 1989 1990 static const enum intel_engine_id user_ring_map[] = { 1991 [I915_EXEC_DEFAULT] = RCS0, 1992 [I915_EXEC_RENDER] = RCS0, 1993 [I915_EXEC_BLT] = BCS0, 1994 [I915_EXEC_BSD] = VCS0, 1995 [I915_EXEC_VEBOX] = VECS0 1996 }; 1997 1998 static struct i915_request *eb_throttle(struct intel_context *ce) 1999 { 2000 struct intel_ring *ring = ce->ring; 2001 struct intel_timeline *tl = ce->timeline; 2002 struct i915_request *rq; 2003 2004 /* 2005 * Completely unscientific finger-in-the-air estimates for suitable 2006 * maximum user request size (to avoid blocking) and then backoff. 2007 */ 2008 if (intel_ring_update_space(ring) >= PAGE_SIZE) 2009 return NULL; 2010 2011 /* 2012 * Find a request that after waiting upon, there will be at least half 2013 * the ring available. The hysteresis allows us to compete for the 2014 * shared ring and should mean that we sleep less often prior to 2015 * claiming our resources, but not so long that the ring completely 2016 * drains before we can submit our next request. 2017 */ 2018 list_for_each_entry(rq, &tl->requests, link) { 2019 if (rq->ring != ring) 2020 continue; 2021 2022 if (__intel_ring_space(rq->postfix, 2023 ring->emit, ring->size) > ring->size / 2) 2024 break; 2025 } 2026 if (&rq->link == &tl->requests) 2027 return NULL; /* weird, we will check again later for real */ 2028 2029 return i915_request_get(rq); 2030 } 2031 2032 static int __eb_pin_engine(struct i915_execbuffer *eb, struct intel_context *ce) 2033 { 2034 struct intel_timeline *tl; 2035 struct i915_request *rq; 2036 int err; 2037 2038 /* 2039 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report 2040 * EIO if the GPU is already wedged. 2041 */ 2042 err = intel_gt_terminally_wedged(ce->engine->gt); 2043 if (err) 2044 return err; 2045 2046 if (unlikely(intel_context_is_banned(ce))) 2047 return -EIO; 2048 2049 /* 2050 * Pinning the contexts may generate requests in order to acquire 2051 * GGTT space, so do this first before we reserve a seqno for 2052 * ourselves. 2053 */ 2054 err = intel_context_pin(ce); 2055 if (err) 2056 return err; 2057 2058 /* 2059 * Take a local wakeref for preparing to dispatch the execbuf as 2060 * we expect to access the hardware fairly frequently in the 2061 * process, and require the engine to be kept awake between accesses. 2062 * Upon dispatch, we acquire another prolonged wakeref that we hold 2063 * until the timeline is idle, which in turn releases the wakeref 2064 * taken on the engine, and the parent device. 2065 */ 2066 tl = intel_context_timeline_lock(ce); 2067 if (IS_ERR(tl)) { 2068 err = PTR_ERR(tl); 2069 goto err_unpin; 2070 } 2071 2072 intel_context_enter(ce); 2073 rq = eb_throttle(ce); 2074 2075 intel_context_timeline_unlock(tl); 2076 2077 if (rq) { 2078 #ifdef __linux__ 2079 bool nonblock = eb->file->filp->f_flags & O_NONBLOCK; 2080 #else 2081 bool nonblock = eb->file->filp->f_flag & FNONBLOCK; 2082 #endif 2083 long timeout; 2084 2085 timeout = MAX_SCHEDULE_TIMEOUT; 2086 if (nonblock) 2087 timeout = 0; 2088 2089 timeout = i915_request_wait(rq, 2090 I915_WAIT_INTERRUPTIBLE, 2091 timeout); 2092 i915_request_put(rq); 2093 2094 if (timeout < 0) { 2095 err = nonblock ? -EWOULDBLOCK : timeout; 2096 goto err_exit; 2097 } 2098 } 2099 2100 eb->engine = ce->engine; 2101 eb->context = ce; 2102 return 0; 2103 2104 err_exit: 2105 mutex_lock(&tl->mutex); 2106 intel_context_exit(ce); 2107 intel_context_timeline_unlock(tl); 2108 err_unpin: 2109 intel_context_unpin(ce); 2110 return err; 2111 } 2112 2113 static void eb_unpin_engine(struct i915_execbuffer *eb) 2114 { 2115 struct intel_context *ce = eb->context; 2116 struct intel_timeline *tl = ce->timeline; 2117 2118 mutex_lock(&tl->mutex); 2119 intel_context_exit(ce); 2120 mutex_unlock(&tl->mutex); 2121 2122 intel_context_unpin(ce); 2123 } 2124 2125 static unsigned int 2126 eb_select_legacy_ring(struct i915_execbuffer *eb, 2127 struct drm_file *file, 2128 struct drm_i915_gem_execbuffer2 *args) 2129 { 2130 struct drm_i915_private *i915 = eb->i915; 2131 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK; 2132 2133 if (user_ring_id != I915_EXEC_BSD && 2134 (args->flags & I915_EXEC_BSD_MASK)) { 2135 drm_dbg(&i915->drm, 2136 "execbuf with non bsd ring but with invalid " 2137 "bsd dispatch flags: %d\n", (int)(args->flags)); 2138 return -1; 2139 } 2140 2141 if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) { 2142 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK; 2143 2144 if (bsd_idx == I915_EXEC_BSD_DEFAULT) { 2145 bsd_idx = gen8_dispatch_bsd_engine(i915, file); 2146 } else if (bsd_idx >= I915_EXEC_BSD_RING1 && 2147 bsd_idx <= I915_EXEC_BSD_RING2) { 2148 bsd_idx >>= I915_EXEC_BSD_SHIFT; 2149 bsd_idx--; 2150 } else { 2151 drm_dbg(&i915->drm, 2152 "execbuf with unknown bsd ring: %u\n", 2153 bsd_idx); 2154 return -1; 2155 } 2156 2157 return _VCS(bsd_idx); 2158 } 2159 2160 if (user_ring_id >= ARRAY_SIZE(user_ring_map)) { 2161 drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n", 2162 user_ring_id); 2163 return -1; 2164 } 2165 2166 return user_ring_map[user_ring_id]; 2167 } 2168 2169 static int 2170 eb_pin_engine(struct i915_execbuffer *eb, 2171 struct drm_file *file, 2172 struct drm_i915_gem_execbuffer2 *args) 2173 { 2174 struct intel_context *ce; 2175 unsigned int idx; 2176 int err; 2177 2178 if (i915_gem_context_user_engines(eb->gem_context)) 2179 idx = args->flags & I915_EXEC_RING_MASK; 2180 else 2181 idx = eb_select_legacy_ring(eb, file, args); 2182 2183 ce = i915_gem_context_get_engine(eb->gem_context, idx); 2184 if (IS_ERR(ce)) 2185 return PTR_ERR(ce); 2186 2187 err = __eb_pin_engine(eb, ce); 2188 intel_context_put(ce); 2189 2190 return err; 2191 } 2192 2193 static void 2194 __free_fence_array(struct drm_syncobj **fences, unsigned int n) 2195 { 2196 while (n--) 2197 drm_syncobj_put(ptr_mask_bits(fences[n], 2)); 2198 kvfree(fences); 2199 } 2200 2201 static struct drm_syncobj ** 2202 get_fence_array(struct drm_i915_gem_execbuffer2 *args, 2203 struct drm_file *file) 2204 { 2205 const unsigned long nfences = args->num_cliprects; 2206 struct drm_i915_gem_exec_fence __user *user; 2207 struct drm_syncobj **fences; 2208 unsigned long n; 2209 int err; 2210 2211 if (!(args->flags & I915_EXEC_FENCE_ARRAY)) 2212 return NULL; 2213 2214 /* Check multiplication overflow for access_ok() and kvmalloc_array() */ 2215 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long)); 2216 if (nfences > min_t(unsigned long, 2217 ULONG_MAX / sizeof(*user), 2218 SIZE_MAX / sizeof(*fences))) 2219 return ERR_PTR(-EINVAL); 2220 2221 user = u64_to_user_ptr(args->cliprects_ptr); 2222 if (!access_ok(user, nfences * sizeof(*user))) 2223 return ERR_PTR(-EFAULT); 2224 2225 fences = kvmalloc_array(nfences, sizeof(*fences), 2226 __GFP_NOWARN | GFP_KERNEL); 2227 if (!fences) 2228 return ERR_PTR(-ENOMEM); 2229 2230 for (n = 0; n < nfences; n++) { 2231 struct drm_i915_gem_exec_fence fence; 2232 struct drm_syncobj *syncobj; 2233 2234 if (__copy_from_user(&fence, user++, sizeof(fence))) { 2235 err = -EFAULT; 2236 goto err; 2237 } 2238 2239 if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) { 2240 err = -EINVAL; 2241 goto err; 2242 } 2243 2244 syncobj = drm_syncobj_find(file, fence.handle); 2245 if (!syncobj) { 2246 DRM_DEBUG("Invalid syncobj handle provided\n"); 2247 err = -ENOENT; 2248 goto err; 2249 } 2250 2251 #ifdef notyet 2252 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) & 2253 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS); 2254 #endif 2255 2256 fences[n] = ptr_pack_bits(syncobj, fence.flags, 2); 2257 } 2258 2259 return fences; 2260 2261 err: 2262 __free_fence_array(fences, n); 2263 return ERR_PTR(err); 2264 } 2265 2266 static void 2267 put_fence_array(struct drm_i915_gem_execbuffer2 *args, 2268 struct drm_syncobj **fences) 2269 { 2270 if (fences) 2271 __free_fence_array(fences, args->num_cliprects); 2272 } 2273 2274 static int 2275 await_fence_array(struct i915_execbuffer *eb, 2276 struct drm_syncobj **fences) 2277 { 2278 const unsigned int nfences = eb->args->num_cliprects; 2279 unsigned int n; 2280 int err; 2281 2282 for (n = 0; n < nfences; n++) { 2283 struct drm_syncobj *syncobj; 2284 struct dma_fence *fence; 2285 unsigned int flags; 2286 2287 syncobj = ptr_unpack_bits(fences[n], &flags, 2); 2288 if (!(flags & I915_EXEC_FENCE_WAIT)) 2289 continue; 2290 2291 fence = drm_syncobj_fence_get(syncobj); 2292 if (!fence) 2293 return -EINVAL; 2294 2295 err = i915_request_await_dma_fence(eb->request, fence); 2296 dma_fence_put(fence); 2297 if (err < 0) 2298 return err; 2299 } 2300 2301 return 0; 2302 } 2303 2304 static void 2305 signal_fence_array(struct i915_execbuffer *eb, 2306 struct drm_syncobj **fences) 2307 { 2308 const unsigned int nfences = eb->args->num_cliprects; 2309 struct dma_fence * const fence = &eb->request->fence; 2310 unsigned int n; 2311 2312 for (n = 0; n < nfences; n++) { 2313 struct drm_syncobj *syncobj; 2314 unsigned int flags; 2315 2316 syncobj = ptr_unpack_bits(fences[n], &flags, 2); 2317 if (!(flags & I915_EXEC_FENCE_SIGNAL)) 2318 continue; 2319 2320 drm_syncobj_replace_fence(syncobj, fence); 2321 } 2322 } 2323 2324 static void retire_requests(struct intel_timeline *tl, struct i915_request *end) 2325 { 2326 struct i915_request *rq, *rn; 2327 2328 list_for_each_entry_safe(rq, rn, &tl->requests, link) 2329 if (rq == end || !i915_request_retire(rq)) 2330 break; 2331 } 2332 2333 static void eb_request_add(struct i915_execbuffer *eb) 2334 { 2335 struct i915_request *rq = eb->request; 2336 struct intel_timeline * const tl = i915_request_timeline(rq); 2337 struct i915_sched_attr attr = {}; 2338 struct i915_request *prev; 2339 2340 lockdep_assert_held(&tl->mutex); 2341 lockdep_unpin_lock(&tl->mutex, rq->cookie); 2342 2343 trace_i915_request_add(rq); 2344 2345 prev = __i915_request_commit(rq); 2346 2347 /* Check that the context wasn't destroyed before submission */ 2348 if (likely(!intel_context_is_closed(eb->context))) { 2349 attr = eb->gem_context->sched; 2350 2351 /* 2352 * Boost actual workloads past semaphores! 2353 * 2354 * With semaphores we spin on one engine waiting for another, 2355 * simply to reduce the latency of starting our work when 2356 * the signaler completes. However, if there is any other 2357 * work that we could be doing on this engine instead, that 2358 * is better utilisation and will reduce the overall duration 2359 * of the current work. To avoid PI boosting a semaphore 2360 * far in the distance past over useful work, we keep a history 2361 * of any semaphore use along our dependency chain. 2362 */ 2363 if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN)) 2364 attr.priority |= I915_PRIORITY_NOSEMAPHORE; 2365 2366 /* 2367 * Boost priorities to new clients (new request flows). 2368 * 2369 * Allow interactive/synchronous clients to jump ahead of 2370 * the bulk clients. (FQ_CODEL) 2371 */ 2372 if (list_empty(&rq->sched.signalers_list)) 2373 attr.priority |= I915_PRIORITY_WAIT; 2374 } else { 2375 /* Serialise with context_close via the add_to_timeline */ 2376 i915_request_set_error_once(rq, -ENOENT); 2377 __i915_request_skip(rq); 2378 } 2379 2380 local_bh_disable(); 2381 __i915_request_queue(rq, &attr); 2382 local_bh_enable(); /* Kick the execlists tasklet if just scheduled */ 2383 2384 /* Try to clean up the client's timeline after submitting the request */ 2385 if (prev) 2386 retire_requests(tl, prev); 2387 2388 mutex_unlock(&tl->mutex); 2389 } 2390 2391 static int 2392 i915_gem_do_execbuffer(struct drm_device *dev, 2393 struct drm_file *file, 2394 struct drm_i915_gem_execbuffer2 *args, 2395 struct drm_i915_gem_exec_object2 *exec, 2396 struct drm_syncobj **fences) 2397 { 2398 struct drm_i915_private *i915 = to_i915(dev); 2399 struct i915_execbuffer eb; 2400 struct dma_fence *in_fence = NULL; 2401 struct dma_fence *exec_fence = NULL; 2402 struct sync_file *out_fence = NULL; 2403 struct i915_vma *batch; 2404 int out_fence_fd = -1; 2405 int err; 2406 2407 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS); 2408 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS & 2409 ~__EXEC_OBJECT_UNKNOWN_FLAGS); 2410 2411 eb.i915 = i915; 2412 eb.file = file; 2413 eb.args = args; 2414 if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC)) 2415 args->flags |= __EXEC_HAS_RELOC; 2416 2417 eb.exec = exec; 2418 eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1); 2419 eb.vma[0].vma = NULL; 2420 2421 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS; 2422 reloc_cache_init(&eb.reloc_cache, eb.i915); 2423 2424 eb.buffer_count = args->buffer_count; 2425 eb.batch_start_offset = args->batch_start_offset; 2426 eb.batch_len = args->batch_len; 2427 eb.trampoline = NULL; 2428 2429 eb.batch_flags = 0; 2430 if (args->flags & I915_EXEC_SECURE) { 2431 if (INTEL_GEN(i915) >= 11) 2432 return -ENODEV; 2433 2434 /* Return -EPERM to trigger fallback code on old binaries. */ 2435 if (!HAS_SECURE_BATCHES(i915)) 2436 return -EPERM; 2437 2438 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN)) 2439 return -EPERM; 2440 2441 eb.batch_flags |= I915_DISPATCH_SECURE; 2442 } 2443 if (args->flags & I915_EXEC_IS_PINNED) 2444 eb.batch_flags |= I915_DISPATCH_PINNED; 2445 2446 if (args->flags & I915_EXEC_FENCE_IN) { 2447 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2)); 2448 if (!in_fence) 2449 return -EINVAL; 2450 } 2451 2452 if (args->flags & I915_EXEC_FENCE_SUBMIT) { 2453 if (in_fence) { 2454 err = -EINVAL; 2455 goto err_in_fence; 2456 } 2457 2458 exec_fence = sync_file_get_fence(lower_32_bits(args->rsvd2)); 2459 if (!exec_fence) { 2460 err = -EINVAL; 2461 goto err_in_fence; 2462 } 2463 } 2464 2465 if (args->flags & I915_EXEC_FENCE_OUT) { 2466 out_fence_fd = get_unused_fd_flags(O_CLOEXEC); 2467 if (out_fence_fd < 0) { 2468 err = out_fence_fd; 2469 goto err_exec_fence; 2470 } 2471 } 2472 2473 err = eb_create(&eb); 2474 if (err) 2475 goto err_out_fence; 2476 2477 GEM_BUG_ON(!eb.lut_size); 2478 2479 err = eb_select_context(&eb); 2480 if (unlikely(err)) 2481 goto err_destroy; 2482 2483 err = eb_pin_engine(&eb, file, args); 2484 if (unlikely(err)) 2485 goto err_context; 2486 2487 err = eb_relocate(&eb); 2488 if (err) { 2489 /* 2490 * If the user expects the execobject.offset and 2491 * reloc.presumed_offset to be an exact match, 2492 * as for using NO_RELOC, then we cannot update 2493 * the execobject.offset until we have completed 2494 * relocation. 2495 */ 2496 args->flags &= ~__EXEC_HAS_RELOC; 2497 goto err_vma; 2498 } 2499 2500 if (unlikely(eb.batch->flags & EXEC_OBJECT_WRITE)) { 2501 drm_dbg(&i915->drm, 2502 "Attempting to use self-modifying batch buffer\n"); 2503 err = -EINVAL; 2504 goto err_vma; 2505 } 2506 2507 if (range_overflows_t(u64, 2508 eb.batch_start_offset, eb.batch_len, 2509 eb.batch->vma->size)) { 2510 drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n"); 2511 err = -EINVAL; 2512 goto err_vma; 2513 } 2514 2515 if (eb.batch_len == 0) 2516 eb.batch_len = eb.batch->vma->size - eb.batch_start_offset; 2517 2518 err = eb_parse(&eb); 2519 if (err) 2520 goto err_vma; 2521 2522 /* 2523 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure 2524 * batch" bit. Hence we need to pin secure batches into the global gtt. 2525 * hsw should have this fixed, but bdw mucks it up again. */ 2526 batch = eb.batch->vma; 2527 if (eb.batch_flags & I915_DISPATCH_SECURE) { 2528 struct i915_vma *vma; 2529 2530 /* 2531 * So on first glance it looks freaky that we pin the batch here 2532 * outside of the reservation loop. But: 2533 * - The batch is already pinned into the relevant ppgtt, so we 2534 * already have the backing storage fully allocated. 2535 * - No other BO uses the global gtt (well contexts, but meh), 2536 * so we don't really have issues with multiple objects not 2537 * fitting due to fragmentation. 2538 * So this is actually safe. 2539 */ 2540 vma = i915_gem_object_ggtt_pin(batch->obj, NULL, 0, 0, 0); 2541 if (IS_ERR(vma)) { 2542 err = PTR_ERR(vma); 2543 goto err_parse; 2544 } 2545 2546 batch = vma; 2547 } 2548 2549 /* All GPU relocation batches must be submitted prior to the user rq */ 2550 GEM_BUG_ON(eb.reloc_cache.rq); 2551 2552 /* Allocate a request for this batch buffer nice and early. */ 2553 eb.request = i915_request_create(eb.context); 2554 if (IS_ERR(eb.request)) { 2555 err = PTR_ERR(eb.request); 2556 goto err_batch_unpin; 2557 } 2558 2559 if (in_fence) { 2560 err = i915_request_await_dma_fence(eb.request, in_fence); 2561 if (err < 0) 2562 goto err_request; 2563 } 2564 2565 if (exec_fence) { 2566 err = i915_request_await_execution(eb.request, exec_fence, 2567 eb.engine->bond_execute); 2568 if (err < 0) 2569 goto err_request; 2570 } 2571 2572 if (fences) { 2573 err = await_fence_array(&eb, fences); 2574 if (err) 2575 goto err_request; 2576 } 2577 2578 if (out_fence_fd != -1) { 2579 out_fence = sync_file_create(&eb.request->fence); 2580 if (!out_fence) { 2581 err = -ENOMEM; 2582 goto err_request; 2583 } 2584 } 2585 2586 /* 2587 * Whilst this request exists, batch_obj will be on the 2588 * active_list, and so will hold the active reference. Only when this 2589 * request is retired will the the batch_obj be moved onto the 2590 * inactive_list and lose its active reference. Hence we do not need 2591 * to explicitly hold another reference here. 2592 */ 2593 eb.request->batch = batch; 2594 if (batch->private) 2595 intel_engine_pool_mark_active(batch->private, eb.request); 2596 2597 trace_i915_request_queue(eb.request, eb.batch_flags); 2598 err = eb_submit(&eb, batch); 2599 err_request: 2600 add_to_client(eb.request, file); 2601 i915_request_get(eb.request); 2602 eb_request_add(&eb); 2603 2604 if (fences) 2605 signal_fence_array(&eb, fences); 2606 2607 if (out_fence) { 2608 if (err == 0) { 2609 fd_install(out_fence_fd, out_fence->file); 2610 args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */ 2611 args->rsvd2 |= (u64)out_fence_fd << 32; 2612 out_fence_fd = -1; 2613 } else { 2614 fput(out_fence->file); 2615 } 2616 } 2617 i915_request_put(eb.request); 2618 2619 err_batch_unpin: 2620 if (eb.batch_flags & I915_DISPATCH_SECURE) 2621 i915_vma_unpin(batch); 2622 err_parse: 2623 if (batch->private) 2624 intel_engine_pool_put(batch->private); 2625 err_vma: 2626 if (eb.exec) 2627 eb_release_vmas(&eb); 2628 if (eb.trampoline) 2629 i915_vma_unpin(eb.trampoline); 2630 eb_unpin_engine(&eb); 2631 err_context: 2632 i915_gem_context_put(eb.gem_context); 2633 err_destroy: 2634 eb_destroy(&eb); 2635 err_out_fence: 2636 if (out_fence_fd != -1) 2637 put_unused_fd(out_fence_fd); 2638 err_exec_fence: 2639 dma_fence_put(exec_fence); 2640 err_in_fence: 2641 dma_fence_put(in_fence); 2642 return err; 2643 } 2644 2645 static size_t eb_element_size(void) 2646 { 2647 return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma); 2648 } 2649 2650 static bool check_buffer_count(size_t count) 2651 { 2652 const size_t sz = eb_element_size(); 2653 2654 /* 2655 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup 2656 * array size (see eb_create()). Otherwise, we can accept an array as 2657 * large as can be addressed (though use large arrays at your peril)! 2658 */ 2659 2660 return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1); 2661 } 2662 2663 /* 2664 * Legacy execbuffer just creates an exec2 list from the original exec object 2665 * list array and passes it to the real function. 2666 */ 2667 int 2668 i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data, 2669 struct drm_file *file) 2670 { 2671 struct drm_i915_private *i915 = to_i915(dev); 2672 struct drm_i915_gem_execbuffer *args = data; 2673 struct drm_i915_gem_execbuffer2 exec2; 2674 struct drm_i915_gem_exec_object *exec_list = NULL; 2675 struct drm_i915_gem_exec_object2 *exec2_list = NULL; 2676 const size_t count = args->buffer_count; 2677 unsigned int i; 2678 int err; 2679 2680 if (!check_buffer_count(count)) { 2681 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count); 2682 return -EINVAL; 2683 } 2684 2685 exec2.buffers_ptr = args->buffers_ptr; 2686 exec2.buffer_count = args->buffer_count; 2687 exec2.batch_start_offset = args->batch_start_offset; 2688 exec2.batch_len = args->batch_len; 2689 exec2.DR1 = args->DR1; 2690 exec2.DR4 = args->DR4; 2691 exec2.num_cliprects = args->num_cliprects; 2692 exec2.cliprects_ptr = args->cliprects_ptr; 2693 exec2.flags = I915_EXEC_RENDER; 2694 i915_execbuffer2_set_context_id(exec2, 0); 2695 2696 err = i915_gem_check_execbuffer(&exec2); 2697 if (err) 2698 return err; 2699 2700 /* Copy in the exec list from userland */ 2701 exec_list = kvmalloc_array(count, sizeof(*exec_list), 2702 __GFP_NOWARN | GFP_KERNEL); 2703 exec2_list = kvmalloc_array(count + 1, eb_element_size(), 2704 __GFP_NOWARN | GFP_KERNEL); 2705 if (exec_list == NULL || exec2_list == NULL) { 2706 drm_dbg(&i915->drm, 2707 "Failed to allocate exec list for %d buffers\n", 2708 args->buffer_count); 2709 kvfree(exec_list); 2710 kvfree(exec2_list); 2711 return -ENOMEM; 2712 } 2713 err = copy_from_user(exec_list, 2714 u64_to_user_ptr(args->buffers_ptr), 2715 sizeof(*exec_list) * count); 2716 if (err) { 2717 drm_dbg(&i915->drm, "copy %d exec entries failed %d\n", 2718 args->buffer_count, err); 2719 kvfree(exec_list); 2720 kvfree(exec2_list); 2721 return -EFAULT; 2722 } 2723 2724 for (i = 0; i < args->buffer_count; i++) { 2725 exec2_list[i].handle = exec_list[i].handle; 2726 exec2_list[i].relocation_count = exec_list[i].relocation_count; 2727 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr; 2728 exec2_list[i].alignment = exec_list[i].alignment; 2729 exec2_list[i].offset = exec_list[i].offset; 2730 if (INTEL_GEN(to_i915(dev)) < 4) 2731 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE; 2732 else 2733 exec2_list[i].flags = 0; 2734 } 2735 2736 err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL); 2737 if (exec2.flags & __EXEC_HAS_RELOC) { 2738 struct drm_i915_gem_exec_object __user *user_exec_list = 2739 u64_to_user_ptr(args->buffers_ptr); 2740 2741 /* Copy the new buffer offsets back to the user's exec list. */ 2742 for (i = 0; i < args->buffer_count; i++) { 2743 if (!(exec2_list[i].offset & UPDATE)) 2744 continue; 2745 2746 exec2_list[i].offset = 2747 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK); 2748 exec2_list[i].offset &= PIN_OFFSET_MASK; 2749 if (__copy_to_user(&user_exec_list[i].offset, 2750 &exec2_list[i].offset, 2751 sizeof(user_exec_list[i].offset))) 2752 break; 2753 } 2754 } 2755 2756 kvfree(exec_list); 2757 kvfree(exec2_list); 2758 return err; 2759 } 2760 2761 int 2762 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data, 2763 struct drm_file *file) 2764 { 2765 struct drm_i915_private *i915 = to_i915(dev); 2766 struct drm_i915_gem_execbuffer2 *args = data; 2767 struct drm_i915_gem_exec_object2 *exec2_list; 2768 struct drm_syncobj **fences = NULL; 2769 const size_t count = args->buffer_count; 2770 int err; 2771 2772 if (!check_buffer_count(count)) { 2773 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count); 2774 return -EINVAL; 2775 } 2776 2777 err = i915_gem_check_execbuffer(args); 2778 if (err) 2779 return err; 2780 2781 /* Allocate an extra slot for use by the command parser */ 2782 exec2_list = kvmalloc_array(count + 1, eb_element_size(), 2783 __GFP_NOWARN | GFP_KERNEL); 2784 if (exec2_list == NULL) { 2785 drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n", 2786 count); 2787 return -ENOMEM; 2788 } 2789 if (copy_from_user(exec2_list, 2790 u64_to_user_ptr(args->buffers_ptr), 2791 sizeof(*exec2_list) * count)) { 2792 drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count); 2793 kvfree(exec2_list); 2794 return -EFAULT; 2795 } 2796 2797 if (args->flags & I915_EXEC_FENCE_ARRAY) { 2798 fences = get_fence_array(args, file); 2799 if (IS_ERR(fences)) { 2800 kvfree(exec2_list); 2801 return PTR_ERR(fences); 2802 } 2803 } 2804 2805 err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences); 2806 2807 /* 2808 * Now that we have begun execution of the batchbuffer, we ignore 2809 * any new error after this point. Also given that we have already 2810 * updated the associated relocations, we try to write out the current 2811 * object locations irrespective of any error. 2812 */ 2813 if (args->flags & __EXEC_HAS_RELOC) { 2814 struct drm_i915_gem_exec_object2 __user *user_exec_list = 2815 u64_to_user_ptr(args->buffers_ptr); 2816 unsigned int i; 2817 2818 /* Copy the new buffer offsets back to the user's exec list. */ 2819 /* 2820 * Note: count * sizeof(*user_exec_list) does not overflow, 2821 * because we checked 'count' in check_buffer_count(). 2822 * 2823 * And this range already got effectively checked earlier 2824 * when we did the "copy_from_user()" above. 2825 */ 2826 if (!user_access_begin(user_exec_list, count * sizeof(*user_exec_list))) 2827 goto end; 2828 2829 for (i = 0; i < args->buffer_count; i++) { 2830 if (!(exec2_list[i].offset & UPDATE)) 2831 continue; 2832 2833 exec2_list[i].offset = 2834 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK); 2835 unsafe_put_user(exec2_list[i].offset, 2836 &user_exec_list[i].offset, 2837 end_user); 2838 } 2839 end_user: 2840 user_access_end(); 2841 end:; 2842 } 2843 2844 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS; 2845 put_fence_array(args, fences); 2846 kvfree(exec2_list); 2847 return err; 2848 } 2849