1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2008,2010 Intel Corporation 5 */ 6 7 #include <linux/dma-resv.h> 8 #include <linux/highmem.h> 9 #include <linux/sync_file.h> 10 #include <linux/uaccess.h> 11 12 #include <drm/drm_syncobj.h> 13 14 #include <dev/pci/pcivar.h> 15 #include <dev/pci/agpvar.h> 16 17 #include "display/intel_frontbuffer.h" 18 19 #include "gem/i915_gem_ioctls.h" 20 #include "gt/intel_context.h" 21 #include "gt/intel_gpu_commands.h" 22 #include "gt/intel_gt.h" 23 #include "gt/intel_gt_buffer_pool.h" 24 #include "gt/intel_gt_pm.h" 25 #include "gt/intel_ring.h" 26 27 #include "pxp/intel_pxp.h" 28 29 #include "i915_cmd_parser.h" 30 #include "i915_drv.h" 31 #include "i915_file_private.h" 32 #include "i915_gem_clflush.h" 33 #include "i915_gem_context.h" 34 #include "i915_gem_evict.h" 35 #include "i915_gem_ioctls.h" 36 #include "i915_trace.h" 37 #include "i915_user_extensions.h" 38 39 struct eb_vma { 40 struct i915_vma *vma; 41 unsigned int flags; 42 43 /** This vma's place in the execbuf reservation list */ 44 struct drm_i915_gem_exec_object2 *exec; 45 struct list_head bind_link; 46 struct list_head reloc_link; 47 48 struct hlist_node node; 49 u32 handle; 50 }; 51 52 enum { 53 FORCE_CPU_RELOC = 1, 54 FORCE_GTT_RELOC, 55 FORCE_GPU_RELOC, 56 #define DBG_FORCE_RELOC 0 /* choose one of the above! */ 57 }; 58 59 /* __EXEC_OBJECT_NO_RESERVE is BIT(31), defined in i915_vma.h */ 60 #define __EXEC_OBJECT_HAS_PIN BIT(30) 61 #define __EXEC_OBJECT_HAS_FENCE BIT(29) 62 #define __EXEC_OBJECT_USERPTR_INIT BIT(28) 63 #define __EXEC_OBJECT_NEEDS_MAP BIT(27) 64 #define __EXEC_OBJECT_NEEDS_BIAS BIT(26) 65 #define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 26) /* all of the above + */ 66 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE) 67 68 #define __EXEC_HAS_RELOC BIT(31) 69 #define __EXEC_ENGINE_PINNED BIT(30) 70 #define __EXEC_USERPTR_USED BIT(29) 71 #define __EXEC_INTERNAL_FLAGS (~0u << 29) 72 #define UPDATE PIN_OFFSET_FIXED 73 74 #define BATCH_OFFSET_BIAS (256*1024) 75 76 #define __I915_EXEC_ILLEGAL_FLAGS \ 77 (__I915_EXEC_UNKNOWN_FLAGS | \ 78 I915_EXEC_CONSTANTS_MASK | \ 79 I915_EXEC_RESOURCE_STREAMER) 80 81 /* Catch emission of unexpected errors for CI! */ 82 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) 83 #undef EINVAL 84 #define EINVAL ({ \ 85 DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \ 86 22; \ 87 }) 88 #endif 89 90 /** 91 * DOC: User command execution 92 * 93 * Userspace submits commands to be executed on the GPU as an instruction 94 * stream within a GEM object we call a batchbuffer. This instructions may 95 * refer to other GEM objects containing auxiliary state such as kernels, 96 * samplers, render targets and even secondary batchbuffers. Userspace does 97 * not know where in the GPU memory these objects reside and so before the 98 * batchbuffer is passed to the GPU for execution, those addresses in the 99 * batchbuffer and auxiliary objects are updated. This is known as relocation, 100 * or patching. To try and avoid having to relocate each object on the next 101 * execution, userspace is told the location of those objects in this pass, 102 * but this remains just a hint as the kernel may choose a new location for 103 * any object in the future. 104 * 105 * At the level of talking to the hardware, submitting a batchbuffer for the 106 * GPU to execute is to add content to a buffer from which the HW 107 * command streamer is reading. 108 * 109 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e. 110 * Execlists, this command is not placed on the same buffer as the 111 * remaining items. 112 * 113 * 2. Add a command to invalidate caches to the buffer. 114 * 115 * 3. Add a batchbuffer start command to the buffer; the start command is 116 * essentially a token together with the GPU address of the batchbuffer 117 * to be executed. 118 * 119 * 4. Add a pipeline flush to the buffer. 120 * 121 * 5. Add a memory write command to the buffer to record when the GPU 122 * is done executing the batchbuffer. The memory write writes the 123 * global sequence number of the request, ``i915_request::global_seqno``; 124 * the i915 driver uses the current value in the register to determine 125 * if the GPU has completed the batchbuffer. 126 * 127 * 6. Add a user interrupt command to the buffer. This command instructs 128 * the GPU to issue an interrupt when the command, pipeline flush and 129 * memory write are completed. 130 * 131 * 7. Inform the hardware of the additional commands added to the buffer 132 * (by updating the tail pointer). 133 * 134 * Processing an execbuf ioctl is conceptually split up into a few phases. 135 * 136 * 1. Validation - Ensure all the pointers, handles and flags are valid. 137 * 2. Reservation - Assign GPU address space for every object 138 * 3. Relocation - Update any addresses to point to the final locations 139 * 4. Serialisation - Order the request with respect to its dependencies 140 * 5. Construction - Construct a request to execute the batchbuffer 141 * 6. Submission (at some point in the future execution) 142 * 143 * Reserving resources for the execbuf is the most complicated phase. We 144 * neither want to have to migrate the object in the address space, nor do 145 * we want to have to update any relocations pointing to this object. Ideally, 146 * we want to leave the object where it is and for all the existing relocations 147 * to match. If the object is given a new address, or if userspace thinks the 148 * object is elsewhere, we have to parse all the relocation entries and update 149 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that 150 * all the target addresses in all of its objects match the value in the 151 * relocation entries and that they all match the presumed offsets given by the 152 * list of execbuffer objects. Using this knowledge, we know that if we haven't 153 * moved any buffers, all the relocation entries are valid and we can skip 154 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU 155 * hang.) The requirement for using I915_EXEC_NO_RELOC are: 156 * 157 * The addresses written in the objects must match the corresponding 158 * reloc.presumed_offset which in turn must match the corresponding 159 * execobject.offset. 160 * 161 * Any render targets written to in the batch must be flagged with 162 * EXEC_OBJECT_WRITE. 163 * 164 * To avoid stalling, execobject.offset should match the current 165 * address of that object within the active context. 166 * 167 * The reservation is done is multiple phases. First we try and keep any 168 * object already bound in its current location - so as long as meets the 169 * constraints imposed by the new execbuffer. Any object left unbound after the 170 * first pass is then fitted into any available idle space. If an object does 171 * not fit, all objects are removed from the reservation and the process rerun 172 * after sorting the objects into a priority order (more difficult to fit 173 * objects are tried first). Failing that, the entire VM is cleared and we try 174 * to fit the execbuf once last time before concluding that it simply will not 175 * fit. 176 * 177 * A small complication to all of this is that we allow userspace not only to 178 * specify an alignment and a size for the object in the address space, but 179 * we also allow userspace to specify the exact offset. This objects are 180 * simpler to place (the location is known a priori) all we have to do is make 181 * sure the space is available. 182 * 183 * Once all the objects are in place, patching up the buried pointers to point 184 * to the final locations is a fairly simple job of walking over the relocation 185 * entry arrays, looking up the right address and rewriting the value into 186 * the object. Simple! ... The relocation entries are stored in user memory 187 * and so to access them we have to copy them into a local buffer. That copy 188 * has to avoid taking any pagefaults as they may lead back to a GEM object 189 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split 190 * the relocation into multiple passes. First we try to do everything within an 191 * atomic context (avoid the pagefaults) which requires that we never wait. If 192 * we detect that we may wait, or if we need to fault, then we have to fallback 193 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm 194 * bells yet?) Dropping the mutex means that we lose all the state we have 195 * built up so far for the execbuf and we must reset any global data. However, 196 * we do leave the objects pinned in their final locations - which is a 197 * potential issue for concurrent execbufs. Once we have left the mutex, we can 198 * allocate and copy all the relocation entries into a large array at our 199 * leisure, reacquire the mutex, reclaim all the objects and other state and 200 * then proceed to update any incorrect addresses with the objects. 201 * 202 * As we process the relocation entries, we maintain a record of whether the 203 * object is being written to. Using NORELOC, we expect userspace to provide 204 * this information instead. We also check whether we can skip the relocation 205 * by comparing the expected value inside the relocation entry with the target's 206 * final address. If they differ, we have to map the current object and rewrite 207 * the 4 or 8 byte pointer within. 208 * 209 * Serialising an execbuf is quite simple according to the rules of the GEM 210 * ABI. Execution within each context is ordered by the order of submission. 211 * Writes to any GEM object are in order of submission and are exclusive. Reads 212 * from a GEM object are unordered with respect to other reads, but ordered by 213 * writes. A write submitted after a read cannot occur before the read, and 214 * similarly any read submitted after a write cannot occur before the write. 215 * Writes are ordered between engines such that only one write occurs at any 216 * time (completing any reads beforehand) - using semaphores where available 217 * and CPU serialisation otherwise. Other GEM access obey the same rules, any 218 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU 219 * reads before starting, and any read (either using set-domain or pread) must 220 * flush all GPU writes before starting. (Note we only employ a barrier before, 221 * we currently rely on userspace not concurrently starting a new execution 222 * whilst reading or writing to an object. This may be an advantage or not 223 * depending on how much you trust userspace not to shoot themselves in the 224 * foot.) Serialisation may just result in the request being inserted into 225 * a DAG awaiting its turn, but most simple is to wait on the CPU until 226 * all dependencies are resolved. 227 * 228 * After all of that, is just a matter of closing the request and handing it to 229 * the hardware (well, leaving it in a queue to be executed). However, we also 230 * offer the ability for batchbuffers to be run with elevated privileges so 231 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.) 232 * Before any batch is given extra privileges we first must check that it 233 * contains no nefarious instructions, we check that each instruction is from 234 * our whitelist and all registers are also from an allowed list. We first 235 * copy the user's batchbuffer to a shadow (so that the user doesn't have 236 * access to it, either by the CPU or GPU as we scan it) and then parse each 237 * instruction. If everything is ok, we set a flag telling the hardware to run 238 * the batchbuffer in trusted mode, otherwise the ioctl is rejected. 239 */ 240 241 struct eb_fence { 242 struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */ 243 struct dma_fence *dma_fence; 244 u64 value; 245 struct dma_fence_chain *chain_fence; 246 }; 247 248 struct i915_execbuffer { 249 struct drm_i915_private *i915; /** i915 backpointer */ 250 struct drm_file *file; /** per-file lookup tables and limits */ 251 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */ 252 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */ 253 struct eb_vma *vma; 254 255 struct intel_gt *gt; /* gt for the execbuf */ 256 struct intel_context *context; /* logical state for the request */ 257 struct i915_gem_context *gem_context; /** caller's context */ 258 259 /** our requests to build */ 260 struct i915_request *requests[MAX_ENGINE_INSTANCE + 1]; 261 /** identity of the batch obj/vma */ 262 struct eb_vma *batches[MAX_ENGINE_INSTANCE + 1]; 263 struct i915_vma *trampoline; /** trampoline used for chaining */ 264 265 /** used for excl fence in dma_resv objects when > 1 BB submitted */ 266 struct dma_fence *composite_fence; 267 268 /** actual size of execobj[] as we may extend it for the cmdparser */ 269 unsigned int buffer_count; 270 271 /* number of batches in execbuf IOCTL */ 272 unsigned int num_batches; 273 274 /** list of vma not yet bound during reservation phase */ 275 struct list_head unbound; 276 277 /** list of vma that have execobj.relocation_count */ 278 struct list_head relocs; 279 280 struct i915_gem_ww_ctx ww; 281 282 /** 283 * Track the most recently used object for relocations, as we 284 * frequently have to perform multiple relocations within the same 285 * obj/page 286 */ 287 struct reloc_cache { 288 struct drm_mm_node node; /** temporary GTT binding */ 289 unsigned long vaddr; /** Current kmap address */ 290 unsigned long page; /** Currently mapped page index */ 291 unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */ 292 bool use_64bit_reloc : 1; 293 bool has_llc : 1; 294 bool has_fence : 1; 295 bool needs_unfenced : 1; 296 297 struct agp_map *map; 298 bus_space_tag_t iot; 299 bus_space_handle_t ioh; 300 } reloc_cache; 301 302 u64 invalid_flags; /** Set of execobj.flags that are invalid */ 303 304 /** Length of batch within object */ 305 u64 batch_len[MAX_ENGINE_INSTANCE + 1]; 306 u32 batch_start_offset; /** Location within object of batch */ 307 u32 batch_flags; /** Flags composed for emit_bb_start() */ 308 struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */ 309 310 /** 311 * Indicate either the size of the hastable used to resolve 312 * relocation handles, or if negative that we are using a direct 313 * index into the execobj[]. 314 */ 315 int lut_size; 316 struct hlist_head *buckets; /** ht for relocation handles */ 317 318 struct eb_fence *fences; 319 unsigned long num_fences; 320 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 321 struct i915_capture_list *capture_lists[MAX_ENGINE_INSTANCE + 1]; 322 #endif 323 }; 324 325 static int eb_parse(struct i915_execbuffer *eb); 326 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle); 327 static void eb_unpin_engine(struct i915_execbuffer *eb); 328 static void eb_capture_release(struct i915_execbuffer *eb); 329 330 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb) 331 { 332 return intel_engine_requires_cmd_parser(eb->context->engine) || 333 (intel_engine_using_cmd_parser(eb->context->engine) && 334 eb->args->batch_len); 335 } 336 337 static int eb_create(struct i915_execbuffer *eb) 338 { 339 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) { 340 unsigned int size = 1 + ilog2(eb->buffer_count); 341 342 /* 343 * Without a 1:1 association between relocation handles and 344 * the execobject[] index, we instead create a hashtable. 345 * We size it dynamically based on available memory, starting 346 * first with 1:1 assocative hash and scaling back until 347 * the allocation succeeds. 348 * 349 * Later on we use a positive lut_size to indicate we are 350 * using this hashtable, and a negative value to indicate a 351 * direct lookup. 352 */ 353 do { 354 gfp_t flags; 355 356 /* While we can still reduce the allocation size, don't 357 * raise a warning and allow the allocation to fail. 358 * On the last pass though, we want to try as hard 359 * as possible to perform the allocation and warn 360 * if it fails. 361 */ 362 flags = GFP_KERNEL; 363 if (size > 1) 364 flags |= __GFP_NORETRY | __GFP_NOWARN; 365 366 eb->buckets = kzalloc(sizeof(struct hlist_head) << size, 367 flags); 368 if (eb->buckets) 369 break; 370 } while (--size); 371 372 if (unlikely(!size)) 373 return -ENOMEM; 374 375 eb->lut_size = size; 376 } else { 377 eb->lut_size = -eb->buffer_count; 378 } 379 380 return 0; 381 } 382 383 static bool 384 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry, 385 const struct i915_vma *vma, 386 unsigned int flags) 387 { 388 if (vma->node.size < entry->pad_to_size) 389 return true; 390 391 if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment)) 392 return true; 393 394 if (flags & EXEC_OBJECT_PINNED && 395 vma->node.start != entry->offset) 396 return true; 397 398 if (flags & __EXEC_OBJECT_NEEDS_BIAS && 399 vma->node.start < BATCH_OFFSET_BIAS) 400 return true; 401 402 if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) && 403 (vma->node.start + vma->node.size + 4095) >> 32) 404 return true; 405 406 if (flags & __EXEC_OBJECT_NEEDS_MAP && 407 !i915_vma_is_map_and_fenceable(vma)) 408 return true; 409 410 return false; 411 } 412 413 static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry, 414 unsigned int exec_flags) 415 { 416 u64 pin_flags = 0; 417 418 if (exec_flags & EXEC_OBJECT_NEEDS_GTT) 419 pin_flags |= PIN_GLOBAL; 420 421 /* 422 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset, 423 * limit address to the first 4GBs for unflagged objects. 424 */ 425 if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) 426 pin_flags |= PIN_ZONE_4G; 427 428 if (exec_flags & __EXEC_OBJECT_NEEDS_MAP) 429 pin_flags |= PIN_MAPPABLE; 430 431 if (exec_flags & EXEC_OBJECT_PINNED) 432 pin_flags |= entry->offset | PIN_OFFSET_FIXED; 433 else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) 434 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS; 435 436 return pin_flags; 437 } 438 439 static inline int 440 eb_pin_vma(struct i915_execbuffer *eb, 441 const struct drm_i915_gem_exec_object2 *entry, 442 struct eb_vma *ev) 443 { 444 struct i915_vma *vma = ev->vma; 445 u64 pin_flags; 446 int err; 447 448 if (vma->node.size) 449 pin_flags = vma->node.start; 450 else 451 pin_flags = entry->offset & PIN_OFFSET_MASK; 452 453 pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED | PIN_VALIDATE; 454 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT)) 455 pin_flags |= PIN_GLOBAL; 456 457 /* Attempt to reuse the current location if available */ 458 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags); 459 if (err == -EDEADLK) 460 return err; 461 462 if (unlikely(err)) { 463 if (entry->flags & EXEC_OBJECT_PINNED) 464 return err; 465 466 /* Failing that pick any _free_ space if suitable */ 467 err = i915_vma_pin_ww(vma, &eb->ww, 468 entry->pad_to_size, 469 entry->alignment, 470 eb_pin_flags(entry, ev->flags) | 471 PIN_USER | PIN_NOEVICT | PIN_VALIDATE); 472 if (unlikely(err)) 473 return err; 474 } 475 476 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) { 477 err = i915_vma_pin_fence(vma); 478 if (unlikely(err)) 479 return err; 480 481 if (vma->fence) 482 ev->flags |= __EXEC_OBJECT_HAS_FENCE; 483 } 484 485 ev->flags |= __EXEC_OBJECT_HAS_PIN; 486 if (eb_vma_misplaced(entry, vma, ev->flags)) 487 return -EBADSLT; 488 489 return 0; 490 } 491 492 static inline void 493 eb_unreserve_vma(struct eb_vma *ev) 494 { 495 if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE)) 496 __i915_vma_unpin_fence(ev->vma); 497 498 ev->flags &= ~__EXEC_OBJECT_RESERVED; 499 } 500 501 static int 502 eb_validate_vma(struct i915_execbuffer *eb, 503 struct drm_i915_gem_exec_object2 *entry, 504 struct i915_vma *vma) 505 { 506 /* Relocations are disallowed for all platforms after TGL-LP. This 507 * also covers all platforms with local memory. 508 */ 509 if (entry->relocation_count && 510 GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915)) 511 return -EINVAL; 512 513 if (unlikely(entry->flags & eb->invalid_flags)) 514 return -EINVAL; 515 516 if (unlikely(entry->alignment && 517 !is_power_of_2_u64(entry->alignment))) 518 return -EINVAL; 519 520 /* 521 * Offset can be used as input (EXEC_OBJECT_PINNED), reject 522 * any non-page-aligned or non-canonical addresses. 523 */ 524 if (unlikely(entry->flags & EXEC_OBJECT_PINNED && 525 entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK))) 526 return -EINVAL; 527 528 /* pad_to_size was once a reserved field, so sanitize it */ 529 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) { 530 if (unlikely(offset_in_page(entry->pad_to_size))) 531 return -EINVAL; 532 } else { 533 entry->pad_to_size = 0; 534 } 535 /* 536 * From drm_mm perspective address space is continuous, 537 * so from this point we're always using non-canonical 538 * form internally. 539 */ 540 entry->offset = gen8_noncanonical_addr(entry->offset); 541 542 if (!eb->reloc_cache.has_fence) { 543 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE; 544 } else { 545 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE || 546 eb->reloc_cache.needs_unfenced) && 547 i915_gem_object_is_tiled(vma->obj)) 548 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP; 549 } 550 551 return 0; 552 } 553 554 static inline bool 555 is_batch_buffer(struct i915_execbuffer *eb, unsigned int buffer_idx) 556 { 557 return eb->args->flags & I915_EXEC_BATCH_FIRST ? 558 buffer_idx < eb->num_batches : 559 buffer_idx >= eb->args->buffer_count - eb->num_batches; 560 } 561 562 static int 563 eb_add_vma(struct i915_execbuffer *eb, 564 unsigned int *current_batch, 565 unsigned int i, 566 struct i915_vma *vma) 567 { 568 struct drm_i915_private *i915 = eb->i915; 569 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; 570 struct eb_vma *ev = &eb->vma[i]; 571 572 ev->vma = vma; 573 ev->exec = entry; 574 ev->flags = entry->flags; 575 576 if (eb->lut_size > 0) { 577 ev->handle = entry->handle; 578 hlist_add_head(&ev->node, 579 &eb->buckets[hash_32(entry->handle, 580 eb->lut_size)]); 581 } 582 583 if (entry->relocation_count) 584 list_add_tail(&ev->reloc_link, &eb->relocs); 585 586 /* 587 * SNA is doing fancy tricks with compressing batch buffers, which leads 588 * to negative relocation deltas. Usually that works out ok since the 589 * relocate address is still positive, except when the batch is placed 590 * very low in the GTT. Ensure this doesn't happen. 591 * 592 * Note that actual hangs have only been observed on gen7, but for 593 * paranoia do it everywhere. 594 */ 595 if (is_batch_buffer(eb, i)) { 596 if (entry->relocation_count && 597 !(ev->flags & EXEC_OBJECT_PINNED)) 598 ev->flags |= __EXEC_OBJECT_NEEDS_BIAS; 599 if (eb->reloc_cache.has_fence) 600 ev->flags |= EXEC_OBJECT_NEEDS_FENCE; 601 602 eb->batches[*current_batch] = ev; 603 604 if (unlikely(ev->flags & EXEC_OBJECT_WRITE)) { 605 drm_dbg(&i915->drm, 606 "Attempting to use self-modifying batch buffer\n"); 607 return -EINVAL; 608 } 609 610 if (range_overflows_t(u64, 611 eb->batch_start_offset, 612 eb->args->batch_len, 613 ev->vma->size)) { 614 drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n"); 615 return -EINVAL; 616 } 617 618 if (eb->args->batch_len == 0) 619 eb->batch_len[*current_batch] = ev->vma->size - 620 eb->batch_start_offset; 621 else 622 eb->batch_len[*current_batch] = eb->args->batch_len; 623 if (unlikely(eb->batch_len[*current_batch] == 0)) { /* impossible! */ 624 drm_dbg(&i915->drm, "Invalid batch length\n"); 625 return -EINVAL; 626 } 627 628 ++*current_batch; 629 } 630 631 return 0; 632 } 633 634 static inline int use_cpu_reloc(const struct reloc_cache *cache, 635 const struct drm_i915_gem_object *obj) 636 { 637 if (!i915_gem_object_has_struct_page(obj)) 638 return false; 639 640 if (DBG_FORCE_RELOC == FORCE_CPU_RELOC) 641 return true; 642 643 if (DBG_FORCE_RELOC == FORCE_GTT_RELOC) 644 return false; 645 646 return (cache->has_llc || 647 obj->cache_dirty || 648 obj->cache_level != I915_CACHE_NONE); 649 } 650 651 static int eb_reserve_vma(struct i915_execbuffer *eb, 652 struct eb_vma *ev, 653 u64 pin_flags) 654 { 655 struct drm_i915_gem_exec_object2 *entry = ev->exec; 656 struct i915_vma *vma = ev->vma; 657 int err; 658 659 if (drm_mm_node_allocated(&vma->node) && 660 eb_vma_misplaced(entry, vma, ev->flags)) { 661 err = i915_vma_unbind(vma); 662 if (err) 663 return err; 664 } 665 666 err = i915_vma_pin_ww(vma, &eb->ww, 667 entry->pad_to_size, entry->alignment, 668 eb_pin_flags(entry, ev->flags) | pin_flags); 669 if (err) 670 return err; 671 672 if (entry->offset != vma->node.start) { 673 entry->offset = vma->node.start | UPDATE; 674 eb->args->flags |= __EXEC_HAS_RELOC; 675 } 676 677 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) { 678 err = i915_vma_pin_fence(vma); 679 if (unlikely(err)) 680 return err; 681 682 if (vma->fence) 683 ev->flags |= __EXEC_OBJECT_HAS_FENCE; 684 } 685 686 ev->flags |= __EXEC_OBJECT_HAS_PIN; 687 GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags)); 688 689 return 0; 690 } 691 692 static bool eb_unbind(struct i915_execbuffer *eb, bool force) 693 { 694 const unsigned int count = eb->buffer_count; 695 unsigned int i; 696 struct list_head last; 697 bool unpinned = false; 698 699 /* Resort *all* the objects into priority order */ 700 INIT_LIST_HEAD(&eb->unbound); 701 INIT_LIST_HEAD(&last); 702 703 for (i = 0; i < count; i++) { 704 struct eb_vma *ev = &eb->vma[i]; 705 unsigned int flags = ev->flags; 706 707 if (!force && flags & EXEC_OBJECT_PINNED && 708 flags & __EXEC_OBJECT_HAS_PIN) 709 continue; 710 711 unpinned = true; 712 eb_unreserve_vma(ev); 713 714 if (flags & EXEC_OBJECT_PINNED) 715 /* Pinned must have their slot */ 716 list_add(&ev->bind_link, &eb->unbound); 717 else if (flags & __EXEC_OBJECT_NEEDS_MAP) 718 /* Map require the lowest 256MiB (aperture) */ 719 list_add_tail(&ev->bind_link, &eb->unbound); 720 else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) 721 /* Prioritise 4GiB region for restricted bo */ 722 list_add(&ev->bind_link, &last); 723 else 724 list_add_tail(&ev->bind_link, &last); 725 } 726 727 list_splice_tail(&last, &eb->unbound); 728 return unpinned; 729 } 730 731 static int eb_reserve(struct i915_execbuffer *eb) 732 { 733 struct eb_vma *ev; 734 unsigned int pass; 735 int err = 0; 736 bool unpinned; 737 738 /* 739 * We have one more buffers that we couldn't bind, which could be due to 740 * various reasons. To resolve this we have 4 passes, with every next 741 * level turning the screws tighter: 742 * 743 * 0. Unbind all objects that do not match the GTT constraints for the 744 * execbuffer (fenceable, mappable, alignment etc). Bind all new 745 * objects. This avoids unnecessary unbinding of later objects in order 746 * to make room for the earlier objects *unless* we need to defragment. 747 * 748 * 1. Reorder the buffers, where objects with the most restrictive 749 * placement requirements go first (ignoring fixed location buffers for 750 * now). For example, objects needing the mappable aperture (the first 751 * 256M of GTT), should go first vs objects that can be placed just 752 * about anywhere. Repeat the previous pass. 753 * 754 * 2. Consider buffers that are pinned at a fixed location. Also try to 755 * evict the entire VM this time, leaving only objects that we were 756 * unable to lock. Try again to bind the buffers. (still using the new 757 * buffer order). 758 * 759 * 3. We likely have object lock contention for one or more stubborn 760 * objects in the VM, for which we need to evict to make forward 761 * progress (perhaps we are fighting the shrinker?). When evicting the 762 * VM this time around, anything that we can't lock we now track using 763 * the busy_bo, using the full lock (after dropping the vm->mutex to 764 * prevent deadlocks), instead of trylock. We then continue to evict the 765 * VM, this time with the stubborn object locked, which we can now 766 * hopefully unbind (if still bound in the VM). Repeat until the VM is 767 * evicted. Finally we should be able bind everything. 768 */ 769 for (pass = 0; pass <= 3; pass++) { 770 int pin_flags = PIN_USER | PIN_VALIDATE; 771 772 if (pass == 0) 773 pin_flags |= PIN_NONBLOCK; 774 775 if (pass >= 1) 776 unpinned = eb_unbind(eb, pass >= 2); 777 778 if (pass == 2) { 779 err = mutex_lock_interruptible(&eb->context->vm->mutex); 780 if (!err) { 781 err = i915_gem_evict_vm(eb->context->vm, &eb->ww, NULL); 782 mutex_unlock(&eb->context->vm->mutex); 783 } 784 if (err) 785 return err; 786 } 787 788 if (pass == 3) { 789 retry: 790 err = mutex_lock_interruptible(&eb->context->vm->mutex); 791 if (!err) { 792 struct drm_i915_gem_object *busy_bo = NULL; 793 794 err = i915_gem_evict_vm(eb->context->vm, &eb->ww, &busy_bo); 795 mutex_unlock(&eb->context->vm->mutex); 796 if (err && busy_bo) { 797 err = i915_gem_object_lock(busy_bo, &eb->ww); 798 i915_gem_object_put(busy_bo); 799 if (!err) 800 goto retry; 801 } 802 } 803 if (err) 804 return err; 805 } 806 807 list_for_each_entry(ev, &eb->unbound, bind_link) { 808 err = eb_reserve_vma(eb, ev, pin_flags); 809 if (err) 810 break; 811 } 812 813 if (err != -ENOSPC) 814 break; 815 } 816 817 return err; 818 } 819 820 static int eb_select_context(struct i915_execbuffer *eb) 821 { 822 struct i915_gem_context *ctx; 823 824 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1); 825 if (unlikely(IS_ERR(ctx))) 826 return PTR_ERR(ctx); 827 828 eb->gem_context = ctx; 829 if (i915_gem_context_has_full_ppgtt(ctx)) 830 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT; 831 832 return 0; 833 } 834 835 static int __eb_add_lut(struct i915_execbuffer *eb, 836 u32 handle, struct i915_vma *vma) 837 { 838 struct i915_gem_context *ctx = eb->gem_context; 839 struct i915_lut_handle *lut; 840 int err; 841 842 lut = i915_lut_handle_alloc(); 843 if (unlikely(!lut)) 844 return -ENOMEM; 845 846 i915_vma_get(vma); 847 if (!atomic_fetch_inc(&vma->open_count)) 848 i915_vma_reopen(vma); 849 lut->handle = handle; 850 lut->ctx = ctx; 851 852 /* Check that the context hasn't been closed in the meantime */ 853 err = -EINTR; 854 if (!mutex_lock_interruptible(&ctx->lut_mutex)) { 855 if (likely(!i915_gem_context_is_closed(ctx))) 856 err = radix_tree_insert(&ctx->handles_vma, handle, vma); 857 else 858 err = -ENOENT; 859 if (err == 0) { /* And nor has this handle */ 860 struct drm_i915_gem_object *obj = vma->obj; 861 862 spin_lock(&obj->lut_lock); 863 if (idr_find(&eb->file->object_idr, handle) == obj) { 864 list_add(&lut->obj_link, &obj->lut_list); 865 } else { 866 radix_tree_delete(&ctx->handles_vma, handle); 867 err = -ENOENT; 868 } 869 spin_unlock(&obj->lut_lock); 870 } 871 mutex_unlock(&ctx->lut_mutex); 872 } 873 if (unlikely(err)) 874 goto err; 875 876 return 0; 877 878 err: 879 i915_vma_close(vma); 880 i915_vma_put(vma); 881 i915_lut_handle_free(lut); 882 return err; 883 } 884 885 static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle) 886 { 887 struct i915_address_space *vm = eb->context->vm; 888 889 do { 890 struct drm_i915_gem_object *obj; 891 struct i915_vma *vma; 892 int err; 893 894 rcu_read_lock(); 895 vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle); 896 if (likely(vma && vma->vm == vm)) 897 vma = i915_vma_tryget(vma); 898 rcu_read_unlock(); 899 if (likely(vma)) 900 return vma; 901 902 obj = i915_gem_object_lookup(eb->file, handle); 903 if (unlikely(!obj)) 904 return ERR_PTR(-ENOENT); 905 906 /* 907 * If the user has opted-in for protected-object tracking, make 908 * sure the object encryption can be used. 909 * We only need to do this when the object is first used with 910 * this context, because the context itself will be banned when 911 * the protected objects become invalid. 912 */ 913 if (i915_gem_context_uses_protected_content(eb->gem_context) && 914 i915_gem_object_is_protected(obj)) { 915 err = intel_pxp_key_check(&vm->gt->pxp, obj, true); 916 if (err) { 917 i915_gem_object_put(obj); 918 return ERR_PTR(err); 919 } 920 } 921 922 vma = i915_vma_instance(obj, vm, NULL); 923 if (IS_ERR(vma)) { 924 i915_gem_object_put(obj); 925 return vma; 926 } 927 928 err = __eb_add_lut(eb, handle, vma); 929 if (likely(!err)) 930 return vma; 931 932 i915_gem_object_put(obj); 933 if (err != -EEXIST) 934 return ERR_PTR(err); 935 } while (1); 936 } 937 938 static int eb_lookup_vmas(struct i915_execbuffer *eb) 939 { 940 unsigned int i, current_batch = 0; 941 int err = 0; 942 943 INIT_LIST_HEAD(&eb->relocs); 944 945 for (i = 0; i < eb->buffer_count; i++) { 946 struct i915_vma *vma; 947 948 vma = eb_lookup_vma(eb, eb->exec[i].handle); 949 if (IS_ERR(vma)) { 950 err = PTR_ERR(vma); 951 goto err; 952 } 953 954 err = eb_validate_vma(eb, &eb->exec[i], vma); 955 if (unlikely(err)) { 956 i915_vma_put(vma); 957 goto err; 958 } 959 960 err = eb_add_vma(eb, ¤t_batch, i, vma); 961 if (err) 962 return err; 963 964 if (i915_gem_object_is_userptr(vma->obj)) { 965 err = i915_gem_object_userptr_submit_init(vma->obj); 966 if (err) { 967 if (i + 1 < eb->buffer_count) { 968 /* 969 * Execbuffer code expects last vma entry to be NULL, 970 * since we already initialized this entry, 971 * set the next value to NULL or we mess up 972 * cleanup handling. 973 */ 974 eb->vma[i + 1].vma = NULL; 975 } 976 977 return err; 978 } 979 980 eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT; 981 eb->args->flags |= __EXEC_USERPTR_USED; 982 } 983 } 984 985 return 0; 986 987 err: 988 eb->vma[i].vma = NULL; 989 return err; 990 } 991 992 static int eb_lock_vmas(struct i915_execbuffer *eb) 993 { 994 unsigned int i; 995 int err; 996 997 for (i = 0; i < eb->buffer_count; i++) { 998 struct eb_vma *ev = &eb->vma[i]; 999 struct i915_vma *vma = ev->vma; 1000 1001 err = i915_gem_object_lock(vma->obj, &eb->ww); 1002 if (err) 1003 return err; 1004 } 1005 1006 return 0; 1007 } 1008 1009 static int eb_validate_vmas(struct i915_execbuffer *eb) 1010 { 1011 unsigned int i; 1012 int err; 1013 1014 INIT_LIST_HEAD(&eb->unbound); 1015 1016 err = eb_lock_vmas(eb); 1017 if (err) 1018 return err; 1019 1020 for (i = 0; i < eb->buffer_count; i++) { 1021 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; 1022 struct eb_vma *ev = &eb->vma[i]; 1023 struct i915_vma *vma = ev->vma; 1024 1025 err = eb_pin_vma(eb, entry, ev); 1026 if (err == -EDEADLK) 1027 return err; 1028 1029 if (!err) { 1030 if (entry->offset != vma->node.start) { 1031 entry->offset = vma->node.start | UPDATE; 1032 eb->args->flags |= __EXEC_HAS_RELOC; 1033 } 1034 } else { 1035 eb_unreserve_vma(ev); 1036 1037 list_add_tail(&ev->bind_link, &eb->unbound); 1038 if (drm_mm_node_allocated(&vma->node)) { 1039 err = i915_vma_unbind(vma); 1040 if (err) 1041 return err; 1042 } 1043 } 1044 1045 /* Reserve enough slots to accommodate composite fences */ 1046 err = dma_resv_reserve_fences(vma->obj->base.resv, eb->num_batches); 1047 if (err) 1048 return err; 1049 1050 GEM_BUG_ON(drm_mm_node_allocated(&vma->node) && 1051 eb_vma_misplaced(&eb->exec[i], vma, ev->flags)); 1052 } 1053 1054 if (!list_empty(&eb->unbound)) 1055 return eb_reserve(eb); 1056 1057 return 0; 1058 } 1059 1060 static struct eb_vma * 1061 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle) 1062 { 1063 if (eb->lut_size < 0) { 1064 if (handle >= -eb->lut_size) 1065 return NULL; 1066 return &eb->vma[handle]; 1067 } else { 1068 struct hlist_head *head; 1069 struct eb_vma *ev; 1070 1071 head = &eb->buckets[hash_32(handle, eb->lut_size)]; 1072 hlist_for_each_entry(ev, head, node) { 1073 if (ev->handle == handle) 1074 return ev; 1075 } 1076 return NULL; 1077 } 1078 } 1079 1080 static void eb_release_vmas(struct i915_execbuffer *eb, bool final) 1081 { 1082 const unsigned int count = eb->buffer_count; 1083 unsigned int i; 1084 1085 for (i = 0; i < count; i++) { 1086 struct eb_vma *ev = &eb->vma[i]; 1087 struct i915_vma *vma = ev->vma; 1088 1089 if (!vma) 1090 break; 1091 1092 eb_unreserve_vma(ev); 1093 1094 if (final) 1095 i915_vma_put(vma); 1096 } 1097 1098 eb_capture_release(eb); 1099 eb_unpin_engine(eb); 1100 } 1101 1102 static void eb_destroy(const struct i915_execbuffer *eb) 1103 { 1104 if (eb->lut_size > 0) 1105 kfree(eb->buckets); 1106 } 1107 1108 static inline u64 1109 relocation_target(const struct drm_i915_gem_relocation_entry *reloc, 1110 const struct i915_vma *target) 1111 { 1112 return gen8_canonical_addr((int)reloc->delta + target->node.start); 1113 } 1114 1115 static void reloc_cache_init(struct reloc_cache *cache, 1116 struct drm_i915_private *i915) 1117 { 1118 cache->page = -1; 1119 cache->vaddr = 0; 1120 /* Must be a variable in the struct to allow GCC to unroll. */ 1121 cache->graphics_ver = GRAPHICS_VER(i915); 1122 cache->has_llc = HAS_LLC(i915); 1123 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915); 1124 cache->has_fence = cache->graphics_ver < 4; 1125 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment; 1126 cache->node.flags = 0; 1127 1128 cache->map = i915->agph; 1129 cache->iot = i915->bst; 1130 } 1131 1132 static inline void *unmask_page(unsigned long p) 1133 { 1134 return (void *)(uintptr_t)(p & LINUX_PAGE_MASK); 1135 } 1136 1137 static inline unsigned int unmask_flags(unsigned long p) 1138 { 1139 return p & ~LINUX_PAGE_MASK; 1140 } 1141 1142 #define KMAP 0x4 /* after CLFLUSH_FLAGS */ 1143 1144 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache) 1145 { 1146 struct drm_i915_private *i915 = 1147 container_of(cache, struct i915_execbuffer, reloc_cache)->i915; 1148 return to_gt(i915)->ggtt; 1149 } 1150 1151 static void reloc_cache_unmap(struct reloc_cache *cache) 1152 { 1153 void *vaddr; 1154 1155 if (!cache->vaddr) 1156 return; 1157 1158 vaddr = unmask_page(cache->vaddr); 1159 if (cache->vaddr & KMAP) 1160 kunmap_atomic(vaddr); 1161 else 1162 #ifdef __linux__ 1163 io_mapping_unmap_atomic((void __iomem *)vaddr); 1164 #else 1165 agp_unmap_atomic(cache->map, cache->ioh); 1166 #endif 1167 } 1168 1169 static void reloc_cache_remap(struct reloc_cache *cache, 1170 struct drm_i915_gem_object *obj) 1171 { 1172 void *vaddr; 1173 1174 if (!cache->vaddr) 1175 return; 1176 1177 if (cache->vaddr & KMAP) { 1178 struct vm_page *page = i915_gem_object_get_page(obj, cache->page); 1179 1180 vaddr = kmap_atomic(page); 1181 cache->vaddr = unmask_flags(cache->vaddr) | 1182 (unsigned long)vaddr; 1183 } else { 1184 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1185 unsigned long offset; 1186 1187 offset = cache->node.start; 1188 if (!drm_mm_node_allocated(&cache->node)) 1189 offset += cache->page << PAGE_SHIFT; 1190 1191 #ifdef __linux__ 1192 cache->vaddr = (unsigned long) 1193 io_mapping_map_atomic_wc(&ggtt->iomap, offset); 1194 #else 1195 agp_map_atomic(cache->map, offset, &cache->ioh); 1196 cache->vaddr = (unsigned long) 1197 bus_space_vaddr(cache->iot, cache->ioh); 1198 #endif 1199 } 1200 } 1201 1202 static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb) 1203 { 1204 void *vaddr; 1205 1206 if (!cache->vaddr) 1207 return; 1208 1209 vaddr = unmask_page(cache->vaddr); 1210 if (cache->vaddr & KMAP) { 1211 struct drm_i915_gem_object *obj = 1212 (struct drm_i915_gem_object *)cache->node.mm; 1213 if (cache->vaddr & CLFLUSH_AFTER) 1214 mb(); 1215 1216 kunmap_atomic(vaddr); 1217 i915_gem_object_finish_access(obj); 1218 } else { 1219 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1220 1221 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 1222 #ifdef __linux__ 1223 io_mapping_unmap_atomic((void __iomem *)vaddr); 1224 #else 1225 agp_unmap_atomic(cache->map, cache->ioh); 1226 #endif 1227 1228 if (drm_mm_node_allocated(&cache->node)) { 1229 ggtt->vm.clear_range(&ggtt->vm, 1230 cache->node.start, 1231 cache->node.size); 1232 mutex_lock(&ggtt->vm.mutex); 1233 drm_mm_remove_node(&cache->node); 1234 mutex_unlock(&ggtt->vm.mutex); 1235 } else { 1236 i915_vma_unpin((struct i915_vma *)cache->node.mm); 1237 } 1238 } 1239 1240 cache->vaddr = 0; 1241 cache->page = -1; 1242 } 1243 1244 static void *reloc_kmap(struct drm_i915_gem_object *obj, 1245 struct reloc_cache *cache, 1246 unsigned long pageno) 1247 { 1248 void *vaddr; 1249 struct vm_page *page; 1250 1251 if (cache->vaddr) { 1252 kunmap_atomic(unmask_page(cache->vaddr)); 1253 } else { 1254 unsigned int flushes; 1255 int err; 1256 1257 err = i915_gem_object_prepare_write(obj, &flushes); 1258 if (err) 1259 return ERR_PTR(err); 1260 1261 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS); 1262 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & LINUX_PAGE_MASK); 1263 1264 cache->vaddr = flushes | KMAP; 1265 cache->node.mm = (void *)obj; 1266 if (flushes) 1267 mb(); 1268 } 1269 1270 page = i915_gem_object_get_page(obj, pageno); 1271 if (!obj->mm.dirty) 1272 set_page_dirty(page); 1273 1274 vaddr = kmap_atomic(page); 1275 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr; 1276 cache->page = pageno; 1277 1278 return vaddr; 1279 } 1280 1281 static void *reloc_iomap(struct i915_vma *batch, 1282 struct i915_execbuffer *eb, 1283 unsigned long page) 1284 { 1285 struct drm_i915_gem_object *obj = batch->obj; 1286 struct reloc_cache *cache = &eb->reloc_cache; 1287 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1288 unsigned long offset; 1289 void *vaddr; 1290 1291 if (cache->vaddr) { 1292 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 1293 #ifdef __linux__ 1294 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr)); 1295 #else 1296 agp_unmap_atomic(cache->map, cache->ioh); 1297 #endif 1298 } else { 1299 struct i915_vma *vma = ERR_PTR(-ENODEV); 1300 int err; 1301 1302 if (i915_gem_object_is_tiled(obj)) 1303 return ERR_PTR(-EINVAL); 1304 1305 if (use_cpu_reloc(cache, obj)) 1306 return NULL; 1307 1308 err = i915_gem_object_set_to_gtt_domain(obj, true); 1309 if (err) 1310 return ERR_PTR(err); 1311 1312 /* 1313 * i915_gem_object_ggtt_pin_ww may attempt to remove the batch 1314 * VMA from the object list because we no longer pin. 1315 * 1316 * Only attempt to pin the batch buffer to ggtt if the current batch 1317 * is not inside ggtt, or the batch buffer is not misplaced. 1318 */ 1319 if (!i915_is_ggtt(batch->vm) || 1320 !i915_vma_misplaced(batch, 0, 0, PIN_MAPPABLE)) { 1321 vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0, 1322 PIN_MAPPABLE | 1323 PIN_NONBLOCK /* NOWARN */ | 1324 PIN_NOEVICT); 1325 } 1326 1327 if (vma == ERR_PTR(-EDEADLK)) 1328 return vma; 1329 1330 if (IS_ERR(vma)) { 1331 memset(&cache->node, 0, sizeof(cache->node)); 1332 mutex_lock(&ggtt->vm.mutex); 1333 err = drm_mm_insert_node_in_range 1334 (&ggtt->vm.mm, &cache->node, 1335 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE, 1336 0, ggtt->mappable_end, 1337 DRM_MM_INSERT_LOW); 1338 mutex_unlock(&ggtt->vm.mutex); 1339 if (err) /* no inactive aperture space, use cpu reloc */ 1340 return NULL; 1341 } else { 1342 cache->node.start = vma->node.start; 1343 cache->node.mm = (void *)vma; 1344 } 1345 } 1346 1347 offset = cache->node.start; 1348 if (drm_mm_node_allocated(&cache->node)) { 1349 ggtt->vm.insert_page(&ggtt->vm, 1350 i915_gem_object_get_dma_address(obj, page), 1351 offset, I915_CACHE_NONE, 0); 1352 } else { 1353 offset += page << PAGE_SHIFT; 1354 } 1355 1356 #ifdef __linux__ 1357 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap, 1358 offset); 1359 #else 1360 agp_map_atomic(cache->map, offset, &cache->ioh); 1361 vaddr = bus_space_vaddr(cache->iot, cache->ioh); 1362 #endif 1363 cache->page = page; 1364 cache->vaddr = (unsigned long)vaddr; 1365 1366 return vaddr; 1367 } 1368 1369 static void *reloc_vaddr(struct i915_vma *vma, 1370 struct i915_execbuffer *eb, 1371 unsigned long page) 1372 { 1373 struct reloc_cache *cache = &eb->reloc_cache; 1374 void *vaddr; 1375 1376 if (cache->page == page) { 1377 vaddr = unmask_page(cache->vaddr); 1378 } else { 1379 vaddr = NULL; 1380 if ((cache->vaddr & KMAP) == 0) 1381 vaddr = reloc_iomap(vma, eb, page); 1382 if (!vaddr) 1383 vaddr = reloc_kmap(vma->obj, cache, page); 1384 } 1385 1386 return vaddr; 1387 } 1388 1389 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes) 1390 { 1391 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) { 1392 if (flushes & CLFLUSH_BEFORE) 1393 drm_clflush_virt_range(addr, sizeof(*addr)); 1394 1395 *addr = value; 1396 1397 /* 1398 * Writes to the same cacheline are serialised by the CPU 1399 * (including clflush). On the write path, we only require 1400 * that it hits memory in an orderly fashion and place 1401 * mb barriers at the start and end of the relocation phase 1402 * to ensure ordering of clflush wrt to the system. 1403 */ 1404 if (flushes & CLFLUSH_AFTER) 1405 drm_clflush_virt_range(addr, sizeof(*addr)); 1406 } else 1407 *addr = value; 1408 } 1409 1410 static u64 1411 relocate_entry(struct i915_vma *vma, 1412 const struct drm_i915_gem_relocation_entry *reloc, 1413 struct i915_execbuffer *eb, 1414 const struct i915_vma *target) 1415 { 1416 u64 target_addr = relocation_target(reloc, target); 1417 u64 offset = reloc->offset; 1418 bool wide = eb->reloc_cache.use_64bit_reloc; 1419 void *vaddr; 1420 1421 repeat: 1422 vaddr = reloc_vaddr(vma, eb, 1423 offset >> PAGE_SHIFT); 1424 if (IS_ERR(vaddr)) 1425 return PTR_ERR(vaddr); 1426 1427 GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32))); 1428 clflush_write32(vaddr + offset_in_page(offset), 1429 lower_32_bits(target_addr), 1430 eb->reloc_cache.vaddr); 1431 1432 if (wide) { 1433 offset += sizeof(u32); 1434 target_addr >>= 32; 1435 wide = false; 1436 goto repeat; 1437 } 1438 1439 return target->node.start | UPDATE; 1440 } 1441 1442 static u64 1443 eb_relocate_entry(struct i915_execbuffer *eb, 1444 struct eb_vma *ev, 1445 const struct drm_i915_gem_relocation_entry *reloc) 1446 { 1447 struct drm_i915_private *i915 = eb->i915; 1448 struct eb_vma *target; 1449 int err; 1450 1451 /* we've already hold a reference to all valid objects */ 1452 target = eb_get_vma(eb, reloc->target_handle); 1453 if (unlikely(!target)) 1454 return -ENOENT; 1455 1456 /* Validate that the target is in a valid r/w GPU domain */ 1457 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) { 1458 drm_dbg(&i915->drm, "reloc with multiple write domains: " 1459 "target %d offset %d " 1460 "read %08x write %08x", 1461 reloc->target_handle, 1462 (int) reloc->offset, 1463 reloc->read_domains, 1464 reloc->write_domain); 1465 return -EINVAL; 1466 } 1467 if (unlikely((reloc->write_domain | reloc->read_domains) 1468 & ~I915_GEM_GPU_DOMAINS)) { 1469 drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: " 1470 "target %d offset %d " 1471 "read %08x write %08x", 1472 reloc->target_handle, 1473 (int) reloc->offset, 1474 reloc->read_domains, 1475 reloc->write_domain); 1476 return -EINVAL; 1477 } 1478 1479 if (reloc->write_domain) { 1480 target->flags |= EXEC_OBJECT_WRITE; 1481 1482 /* 1483 * Sandybridge PPGTT errata: We need a global gtt mapping 1484 * for MI and pipe_control writes because the gpu doesn't 1485 * properly redirect them through the ppgtt for non_secure 1486 * batchbuffers. 1487 */ 1488 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION && 1489 GRAPHICS_VER(eb->i915) == 6 && 1490 !i915_vma_is_bound(target->vma, I915_VMA_GLOBAL_BIND)) { 1491 struct i915_vma *vma = target->vma; 1492 1493 reloc_cache_unmap(&eb->reloc_cache); 1494 mutex_lock(&vma->vm->mutex); 1495 err = i915_vma_bind(target->vma, 1496 target->vma->obj->cache_level, 1497 PIN_GLOBAL, NULL, NULL); 1498 mutex_unlock(&vma->vm->mutex); 1499 reloc_cache_remap(&eb->reloc_cache, ev->vma->obj); 1500 if (err) 1501 return err; 1502 } 1503 } 1504 1505 /* 1506 * If the relocation already has the right value in it, no 1507 * more work needs to be done. 1508 */ 1509 if (!DBG_FORCE_RELOC && 1510 gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset) 1511 return 0; 1512 1513 /* Check that the relocation address is valid... */ 1514 if (unlikely(reloc->offset > 1515 ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) { 1516 drm_dbg(&i915->drm, "Relocation beyond object bounds: " 1517 "target %d offset %d size %d.\n", 1518 reloc->target_handle, 1519 (int)reloc->offset, 1520 (int)ev->vma->size); 1521 return -EINVAL; 1522 } 1523 if (unlikely(reloc->offset & 3)) { 1524 drm_dbg(&i915->drm, "Relocation not 4-byte aligned: " 1525 "target %d offset %d.\n", 1526 reloc->target_handle, 1527 (int)reloc->offset); 1528 return -EINVAL; 1529 } 1530 1531 /* 1532 * If we write into the object, we need to force the synchronisation 1533 * barrier, either with an asynchronous clflush or if we executed the 1534 * patching using the GPU (though that should be serialised by the 1535 * timeline). To be completely sure, and since we are required to 1536 * do relocations we are already stalling, disable the user's opt 1537 * out of our synchronisation. 1538 */ 1539 ev->flags &= ~EXEC_OBJECT_ASYNC; 1540 1541 /* and update the user's relocation entry */ 1542 return relocate_entry(ev->vma, reloc, eb, target->vma); 1543 } 1544 1545 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev) 1546 { 1547 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry)) 1548 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)]; 1549 const struct drm_i915_gem_exec_object2 *entry = ev->exec; 1550 struct drm_i915_gem_relocation_entry __user *urelocs = 1551 u64_to_user_ptr(entry->relocs_ptr); 1552 unsigned long remain = entry->relocation_count; 1553 1554 if (unlikely(remain > N_RELOC(ULONG_MAX))) 1555 return -EINVAL; 1556 1557 /* 1558 * We must check that the entire relocation array is safe 1559 * to read. However, if the array is not writable the user loses 1560 * the updated relocation values. 1561 */ 1562 if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs)))) 1563 return -EFAULT; 1564 1565 do { 1566 struct drm_i915_gem_relocation_entry *r = stack; 1567 unsigned int count = 1568 min_t(unsigned long, remain, ARRAY_SIZE(stack)); 1569 unsigned int copied; 1570 1571 /* 1572 * This is the fast path and we cannot handle a pagefault 1573 * whilst holding the struct mutex lest the user pass in the 1574 * relocations contained within a mmaped bo. For in such a case 1575 * we, the page fault handler would call i915_gem_fault() and 1576 * we would try to acquire the struct mutex again. Obviously 1577 * this is bad and so lockdep complains vehemently. 1578 */ 1579 pagefault_disable(); 1580 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0])); 1581 pagefault_enable(); 1582 if (unlikely(copied)) { 1583 remain = -EFAULT; 1584 goto out; 1585 } 1586 1587 remain -= count; 1588 do { 1589 u64 offset = eb_relocate_entry(eb, ev, r); 1590 1591 if (likely(offset == 0)) { 1592 } else if ((s64)offset < 0) { 1593 remain = (int)offset; 1594 goto out; 1595 } else { 1596 /* 1597 * Note that reporting an error now 1598 * leaves everything in an inconsistent 1599 * state as we have *already* changed 1600 * the relocation value inside the 1601 * object. As we have not changed the 1602 * reloc.presumed_offset or will not 1603 * change the execobject.offset, on the 1604 * call we may not rewrite the value 1605 * inside the object, leaving it 1606 * dangling and causing a GPU hang. Unless 1607 * userspace dynamically rebuilds the 1608 * relocations on each execbuf rather than 1609 * presume a static tree. 1610 * 1611 * We did previously check if the relocations 1612 * were writable (access_ok), an error now 1613 * would be a strange race with mprotect, 1614 * having already demonstrated that we 1615 * can read from this userspace address. 1616 */ 1617 offset = gen8_canonical_addr(offset & ~UPDATE); 1618 __put_user(offset, 1619 &urelocs[r - stack].presumed_offset); 1620 } 1621 } while (r++, --count); 1622 urelocs += ARRAY_SIZE(stack); 1623 } while (remain); 1624 out: 1625 reloc_cache_reset(&eb->reloc_cache, eb); 1626 return remain; 1627 } 1628 1629 static int 1630 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev) 1631 { 1632 const struct drm_i915_gem_exec_object2 *entry = ev->exec; 1633 struct drm_i915_gem_relocation_entry *relocs = 1634 u64_to_ptr(typeof(*relocs), entry->relocs_ptr); 1635 unsigned int i; 1636 int err; 1637 1638 for (i = 0; i < entry->relocation_count; i++) { 1639 u64 offset = eb_relocate_entry(eb, ev, &relocs[i]); 1640 1641 if ((s64)offset < 0) { 1642 err = (int)offset; 1643 goto err; 1644 } 1645 } 1646 err = 0; 1647 err: 1648 reloc_cache_reset(&eb->reloc_cache, eb); 1649 return err; 1650 } 1651 1652 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry) 1653 { 1654 const char __user *addr, *end; 1655 unsigned long size; 1656 char __maybe_unused c; 1657 1658 size = entry->relocation_count; 1659 if (size == 0) 1660 return 0; 1661 1662 if (size > N_RELOC(ULONG_MAX)) 1663 return -EINVAL; 1664 1665 addr = u64_to_user_ptr(entry->relocs_ptr); 1666 size *= sizeof(struct drm_i915_gem_relocation_entry); 1667 if (!access_ok(addr, size)) 1668 return -EFAULT; 1669 1670 end = addr + size; 1671 for (; addr < end; addr += PAGE_SIZE) { 1672 int err = __get_user(c, addr); 1673 if (err) 1674 return err; 1675 } 1676 return __get_user(c, end - 1); 1677 } 1678 1679 static int eb_copy_relocations(const struct i915_execbuffer *eb) 1680 { 1681 struct drm_i915_gem_relocation_entry *relocs; 1682 const unsigned int count = eb->buffer_count; 1683 unsigned int i; 1684 int err; 1685 1686 for (i = 0; i < count; i++) { 1687 const unsigned int nreloc = eb->exec[i].relocation_count; 1688 struct drm_i915_gem_relocation_entry __user *urelocs; 1689 unsigned long size; 1690 unsigned long copied; 1691 1692 if (nreloc == 0) 1693 continue; 1694 1695 err = check_relocations(&eb->exec[i]); 1696 if (err) 1697 goto err; 1698 1699 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr); 1700 size = nreloc * sizeof(*relocs); 1701 1702 relocs = kvmalloc_array(size, 1, GFP_KERNEL); 1703 if (!relocs) { 1704 err = -ENOMEM; 1705 goto err; 1706 } 1707 1708 /* copy_from_user is limited to < 4GiB */ 1709 copied = 0; 1710 do { 1711 unsigned int len = 1712 min_t(u64, BIT_ULL(31), size - copied); 1713 1714 if (__copy_from_user((char *)relocs + copied, 1715 (char __user *)urelocs + copied, 1716 len)) 1717 goto end; 1718 1719 copied += len; 1720 } while (copied < size); 1721 1722 /* 1723 * As we do not update the known relocation offsets after 1724 * relocating (due to the complexities in lock handling), 1725 * we need to mark them as invalid now so that we force the 1726 * relocation processing next time. Just in case the target 1727 * object is evicted and then rebound into its old 1728 * presumed_offset before the next execbuffer - if that 1729 * happened we would make the mistake of assuming that the 1730 * relocations were valid. 1731 */ 1732 if (!user_access_begin(urelocs, size)) 1733 goto end; 1734 1735 for (copied = 0; copied < nreloc; copied++) 1736 unsafe_put_user(-1, 1737 &urelocs[copied].presumed_offset, 1738 end_user); 1739 user_access_end(); 1740 1741 eb->exec[i].relocs_ptr = (uintptr_t)relocs; 1742 } 1743 1744 return 0; 1745 1746 end_user: 1747 user_access_end(); 1748 end: 1749 kvfree(relocs); 1750 err = -EFAULT; 1751 err: 1752 while (i--) { 1753 relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr); 1754 if (eb->exec[i].relocation_count) 1755 kvfree(relocs); 1756 } 1757 return err; 1758 } 1759 1760 static int eb_prefault_relocations(const struct i915_execbuffer *eb) 1761 { 1762 const unsigned int count = eb->buffer_count; 1763 unsigned int i; 1764 1765 for (i = 0; i < count; i++) { 1766 int err; 1767 1768 err = check_relocations(&eb->exec[i]); 1769 if (err) 1770 return err; 1771 } 1772 1773 return 0; 1774 } 1775 1776 static int eb_reinit_userptr(struct i915_execbuffer *eb) 1777 { 1778 const unsigned int count = eb->buffer_count; 1779 unsigned int i; 1780 int ret; 1781 1782 if (likely(!(eb->args->flags & __EXEC_USERPTR_USED))) 1783 return 0; 1784 1785 for (i = 0; i < count; i++) { 1786 struct eb_vma *ev = &eb->vma[i]; 1787 1788 if (!i915_gem_object_is_userptr(ev->vma->obj)) 1789 continue; 1790 1791 ret = i915_gem_object_userptr_submit_init(ev->vma->obj); 1792 if (ret) 1793 return ret; 1794 1795 ev->flags |= __EXEC_OBJECT_USERPTR_INIT; 1796 } 1797 1798 return 0; 1799 } 1800 1801 static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb) 1802 { 1803 bool have_copy = false; 1804 struct eb_vma *ev; 1805 int err = 0; 1806 1807 repeat: 1808 if (signal_pending(current)) { 1809 err = -ERESTARTSYS; 1810 goto out; 1811 } 1812 1813 /* We may process another execbuffer during the unlock... */ 1814 eb_release_vmas(eb, false); 1815 i915_gem_ww_ctx_fini(&eb->ww); 1816 1817 /* 1818 * We take 3 passes through the slowpatch. 1819 * 1820 * 1 - we try to just prefault all the user relocation entries and 1821 * then attempt to reuse the atomic pagefault disabled fast path again. 1822 * 1823 * 2 - we copy the user entries to a local buffer here outside of the 1824 * local and allow ourselves to wait upon any rendering before 1825 * relocations 1826 * 1827 * 3 - we already have a local copy of the relocation entries, but 1828 * were interrupted (EAGAIN) whilst waiting for the objects, try again. 1829 */ 1830 if (!err) { 1831 err = eb_prefault_relocations(eb); 1832 } else if (!have_copy) { 1833 err = eb_copy_relocations(eb); 1834 have_copy = err == 0; 1835 } else { 1836 cond_resched(); 1837 err = 0; 1838 } 1839 1840 if (!err) 1841 err = eb_reinit_userptr(eb); 1842 1843 i915_gem_ww_ctx_init(&eb->ww, true); 1844 if (err) 1845 goto out; 1846 1847 /* reacquire the objects */ 1848 repeat_validate: 1849 err = eb_pin_engine(eb, false); 1850 if (err) 1851 goto err; 1852 1853 err = eb_validate_vmas(eb); 1854 if (err) 1855 goto err; 1856 1857 GEM_BUG_ON(!eb->batches[0]); 1858 1859 list_for_each_entry(ev, &eb->relocs, reloc_link) { 1860 if (!have_copy) { 1861 err = eb_relocate_vma(eb, ev); 1862 if (err) 1863 break; 1864 } else { 1865 err = eb_relocate_vma_slow(eb, ev); 1866 if (err) 1867 break; 1868 } 1869 } 1870 1871 if (err == -EDEADLK) 1872 goto err; 1873 1874 if (err && !have_copy) 1875 goto repeat; 1876 1877 if (err) 1878 goto err; 1879 1880 /* as last step, parse the command buffer */ 1881 err = eb_parse(eb); 1882 if (err) 1883 goto err; 1884 1885 /* 1886 * Leave the user relocations as are, this is the painfully slow path, 1887 * and we want to avoid the complication of dropping the lock whilst 1888 * having buffers reserved in the aperture and so causing spurious 1889 * ENOSPC for random operations. 1890 */ 1891 1892 err: 1893 if (err == -EDEADLK) { 1894 eb_release_vmas(eb, false); 1895 err = i915_gem_ww_ctx_backoff(&eb->ww); 1896 if (!err) 1897 goto repeat_validate; 1898 } 1899 1900 if (err == -EAGAIN) 1901 goto repeat; 1902 1903 out: 1904 if (have_copy) { 1905 const unsigned int count = eb->buffer_count; 1906 unsigned int i; 1907 1908 for (i = 0; i < count; i++) { 1909 const struct drm_i915_gem_exec_object2 *entry = 1910 &eb->exec[i]; 1911 struct drm_i915_gem_relocation_entry *relocs; 1912 1913 if (!entry->relocation_count) 1914 continue; 1915 1916 relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr); 1917 kvfree(relocs); 1918 } 1919 } 1920 1921 return err; 1922 } 1923 1924 static int eb_relocate_parse(struct i915_execbuffer *eb) 1925 { 1926 int err; 1927 bool throttle = true; 1928 1929 retry: 1930 err = eb_pin_engine(eb, throttle); 1931 if (err) { 1932 if (err != -EDEADLK) 1933 return err; 1934 1935 goto err; 1936 } 1937 1938 /* only throttle once, even if we didn't need to throttle */ 1939 throttle = false; 1940 1941 err = eb_validate_vmas(eb); 1942 if (err == -EAGAIN) 1943 goto slow; 1944 else if (err) 1945 goto err; 1946 1947 /* The objects are in their final locations, apply the relocations. */ 1948 if (eb->args->flags & __EXEC_HAS_RELOC) { 1949 struct eb_vma *ev; 1950 1951 list_for_each_entry(ev, &eb->relocs, reloc_link) { 1952 err = eb_relocate_vma(eb, ev); 1953 if (err) 1954 break; 1955 } 1956 1957 if (err == -EDEADLK) 1958 goto err; 1959 else if (err) 1960 goto slow; 1961 } 1962 1963 if (!err) 1964 err = eb_parse(eb); 1965 1966 err: 1967 if (err == -EDEADLK) { 1968 eb_release_vmas(eb, false); 1969 err = i915_gem_ww_ctx_backoff(&eb->ww); 1970 if (!err) 1971 goto retry; 1972 } 1973 1974 return err; 1975 1976 slow: 1977 err = eb_relocate_parse_slow(eb); 1978 if (err) 1979 /* 1980 * If the user expects the execobject.offset and 1981 * reloc.presumed_offset to be an exact match, 1982 * as for using NO_RELOC, then we cannot update 1983 * the execobject.offset until we have completed 1984 * relocation. 1985 */ 1986 eb->args->flags &= ~__EXEC_HAS_RELOC; 1987 1988 return err; 1989 } 1990 1991 /* 1992 * Using two helper loops for the order of which requests / batches are created 1993 * and added the to backend. Requests are created in order from the parent to 1994 * the last child. Requests are added in the reverse order, from the last child 1995 * to parent. This is done for locking reasons as the timeline lock is acquired 1996 * during request creation and released when the request is added to the 1997 * backend. To make lockdep happy (see intel_context_timeline_lock) this must be 1998 * the ordering. 1999 */ 2000 #define for_each_batch_create_order(_eb, _i) \ 2001 for ((_i) = 0; (_i) < (_eb)->num_batches; ++(_i)) 2002 #define for_each_batch_add_order(_eb, _i) \ 2003 BUILD_BUG_ON(!typecheck(int, _i)); \ 2004 for ((_i) = (_eb)->num_batches - 1; (_i) >= 0; --(_i)) 2005 2006 static struct i915_request * 2007 eb_find_first_request_added(struct i915_execbuffer *eb) 2008 { 2009 int i; 2010 2011 for_each_batch_add_order(eb, i) 2012 if (eb->requests[i]) 2013 return eb->requests[i]; 2014 2015 GEM_BUG_ON("Request not found"); 2016 2017 return NULL; 2018 } 2019 2020 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 2021 2022 /* Stage with GFP_KERNEL allocations before we enter the signaling critical path */ 2023 static int eb_capture_stage(struct i915_execbuffer *eb) 2024 { 2025 const unsigned int count = eb->buffer_count; 2026 unsigned int i = count, j; 2027 2028 while (i--) { 2029 struct eb_vma *ev = &eb->vma[i]; 2030 struct i915_vma *vma = ev->vma; 2031 unsigned int flags = ev->flags; 2032 2033 if (!(flags & EXEC_OBJECT_CAPTURE)) 2034 continue; 2035 2036 if (i915_gem_context_is_recoverable(eb->gem_context) && 2037 (IS_DGFX(eb->i915) || GRAPHICS_VER_FULL(eb->i915) > IP_VER(12, 0))) 2038 return -EINVAL; 2039 2040 for_each_batch_create_order(eb, j) { 2041 struct i915_capture_list *capture; 2042 2043 capture = kmalloc(sizeof(*capture), GFP_KERNEL); 2044 if (!capture) 2045 continue; 2046 2047 capture->next = eb->capture_lists[j]; 2048 capture->vma_res = i915_vma_resource_get(vma->resource); 2049 eb->capture_lists[j] = capture; 2050 } 2051 } 2052 2053 return 0; 2054 } 2055 2056 /* Commit once we're in the critical path */ 2057 static void eb_capture_commit(struct i915_execbuffer *eb) 2058 { 2059 unsigned int j; 2060 2061 for_each_batch_create_order(eb, j) { 2062 struct i915_request *rq = eb->requests[j]; 2063 2064 if (!rq) 2065 break; 2066 2067 rq->capture_list = eb->capture_lists[j]; 2068 eb->capture_lists[j] = NULL; 2069 } 2070 } 2071 2072 /* 2073 * Release anything that didn't get committed due to errors. 2074 * The capture_list will otherwise be freed at request retire. 2075 */ 2076 static void eb_capture_release(struct i915_execbuffer *eb) 2077 { 2078 unsigned int j; 2079 2080 for_each_batch_create_order(eb, j) { 2081 if (eb->capture_lists[j]) { 2082 i915_request_free_capture_list(eb->capture_lists[j]); 2083 eb->capture_lists[j] = NULL; 2084 } 2085 } 2086 } 2087 2088 static void eb_capture_list_clear(struct i915_execbuffer *eb) 2089 { 2090 memset(eb->capture_lists, 0, sizeof(eb->capture_lists)); 2091 } 2092 2093 #else 2094 2095 static int eb_capture_stage(struct i915_execbuffer *eb) 2096 { 2097 return 0; 2098 } 2099 2100 static void eb_capture_commit(struct i915_execbuffer *eb) 2101 { 2102 } 2103 2104 static void eb_capture_release(struct i915_execbuffer *eb) 2105 { 2106 } 2107 2108 static void eb_capture_list_clear(struct i915_execbuffer *eb) 2109 { 2110 } 2111 2112 #endif 2113 2114 static int eb_move_to_gpu(struct i915_execbuffer *eb) 2115 { 2116 const unsigned int count = eb->buffer_count; 2117 unsigned int i = count; 2118 int err = 0, j; 2119 2120 while (i--) { 2121 struct eb_vma *ev = &eb->vma[i]; 2122 struct i915_vma *vma = ev->vma; 2123 unsigned int flags = ev->flags; 2124 struct drm_i915_gem_object *obj = vma->obj; 2125 2126 assert_vma_held(vma); 2127 2128 /* 2129 * If the GPU is not _reading_ through the CPU cache, we need 2130 * to make sure that any writes (both previous GPU writes from 2131 * before a change in snooping levels and normal CPU writes) 2132 * caught in that cache are flushed to main memory. 2133 * 2134 * We want to say 2135 * obj->cache_dirty && 2136 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ) 2137 * but gcc's optimiser doesn't handle that as well and emits 2138 * two jumps instead of one. Maybe one day... 2139 * 2140 * FIXME: There is also sync flushing in set_pages(), which 2141 * serves a different purpose(some of the time at least). 2142 * 2143 * We should consider: 2144 * 2145 * 1. Rip out the async flush code. 2146 * 2147 * 2. Or make the sync flushing use the async clflush path 2148 * using mandatory fences underneath. Currently the below 2149 * async flush happens after we bind the object. 2150 */ 2151 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) { 2152 if (i915_gem_clflush_object(obj, 0)) 2153 flags &= ~EXEC_OBJECT_ASYNC; 2154 } 2155 2156 /* We only need to await on the first request */ 2157 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) { 2158 err = i915_request_await_object 2159 (eb_find_first_request_added(eb), obj, 2160 flags & EXEC_OBJECT_WRITE); 2161 } 2162 2163 for_each_batch_add_order(eb, j) { 2164 if (err) 2165 break; 2166 if (!eb->requests[j]) 2167 continue; 2168 2169 err = _i915_vma_move_to_active(vma, eb->requests[j], 2170 j ? NULL : 2171 eb->composite_fence ? 2172 eb->composite_fence : 2173 &eb->requests[j]->fence, 2174 flags | __EXEC_OBJECT_NO_RESERVE); 2175 } 2176 } 2177 2178 #ifdef CONFIG_MMU_NOTIFIER 2179 if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) { 2180 read_lock(&eb->i915->mm.notifier_lock); 2181 2182 /* 2183 * count is always at least 1, otherwise __EXEC_USERPTR_USED 2184 * could not have been set 2185 */ 2186 for (i = 0; i < count; i++) { 2187 struct eb_vma *ev = &eb->vma[i]; 2188 struct drm_i915_gem_object *obj = ev->vma->obj; 2189 2190 if (!i915_gem_object_is_userptr(obj)) 2191 continue; 2192 2193 err = i915_gem_object_userptr_submit_done(obj); 2194 if (err) 2195 break; 2196 } 2197 2198 read_unlock(&eb->i915->mm.notifier_lock); 2199 } 2200 #endif 2201 2202 if (unlikely(err)) 2203 goto err_skip; 2204 2205 /* Unconditionally flush any chipset caches (for streaming writes). */ 2206 intel_gt_chipset_flush(eb->gt); 2207 eb_capture_commit(eb); 2208 2209 return 0; 2210 2211 err_skip: 2212 for_each_batch_create_order(eb, j) { 2213 if (!eb->requests[j]) 2214 break; 2215 2216 i915_request_set_error_once(eb->requests[j], err); 2217 } 2218 return err; 2219 } 2220 2221 static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec) 2222 { 2223 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS) 2224 return -EINVAL; 2225 2226 /* Kernel clipping was a DRI1 misfeature */ 2227 if (!(exec->flags & (I915_EXEC_FENCE_ARRAY | 2228 I915_EXEC_USE_EXTENSIONS))) { 2229 if (exec->num_cliprects || exec->cliprects_ptr) 2230 return -EINVAL; 2231 } 2232 2233 if (exec->DR4 == 0xffffffff) { 2234 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n"); 2235 exec->DR4 = 0; 2236 } 2237 if (exec->DR1 || exec->DR4) 2238 return -EINVAL; 2239 2240 if ((exec->batch_start_offset | exec->batch_len) & 0x7) 2241 return -EINVAL; 2242 2243 return 0; 2244 } 2245 2246 static int i915_reset_gen7_sol_offsets(struct i915_request *rq) 2247 { 2248 u32 *cs; 2249 int i; 2250 2251 if (GRAPHICS_VER(rq->engine->i915) != 7 || rq->engine->id != RCS0) { 2252 drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n"); 2253 return -EINVAL; 2254 } 2255 2256 cs = intel_ring_begin(rq, 4 * 2 + 2); 2257 if (IS_ERR(cs)) 2258 return PTR_ERR(cs); 2259 2260 *cs++ = MI_LOAD_REGISTER_IMM(4); 2261 for (i = 0; i < 4; i++) { 2262 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i)); 2263 *cs++ = 0; 2264 } 2265 *cs++ = MI_NOOP; 2266 intel_ring_advance(rq, cs); 2267 2268 return 0; 2269 } 2270 2271 static struct i915_vma * 2272 shadow_batch_pin(struct i915_execbuffer *eb, 2273 struct drm_i915_gem_object *obj, 2274 struct i915_address_space *vm, 2275 unsigned int flags) 2276 { 2277 struct i915_vma *vma; 2278 int err; 2279 2280 vma = i915_vma_instance(obj, vm, NULL); 2281 if (IS_ERR(vma)) 2282 return vma; 2283 2284 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags | PIN_VALIDATE); 2285 if (err) 2286 return ERR_PTR(err); 2287 2288 return vma; 2289 } 2290 2291 static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma) 2292 { 2293 /* 2294 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure 2295 * batch" bit. Hence we need to pin secure batches into the global gtt. 2296 * hsw should have this fixed, but bdw mucks it up again. */ 2297 if (eb->batch_flags & I915_DISPATCH_SECURE) 2298 return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, PIN_VALIDATE); 2299 2300 return NULL; 2301 } 2302 2303 static int eb_parse(struct i915_execbuffer *eb) 2304 { 2305 struct drm_i915_private *i915 = eb->i915; 2306 struct intel_gt_buffer_pool_node *pool = eb->batch_pool; 2307 struct i915_vma *shadow, *trampoline, *batch; 2308 unsigned long len; 2309 int err; 2310 2311 if (!eb_use_cmdparser(eb)) { 2312 batch = eb_dispatch_secure(eb, eb->batches[0]->vma); 2313 if (IS_ERR(batch)) 2314 return PTR_ERR(batch); 2315 2316 goto secure_batch; 2317 } 2318 2319 if (intel_context_is_parallel(eb->context)) 2320 return -EINVAL; 2321 2322 len = eb->batch_len[0]; 2323 if (!CMDPARSER_USES_GGTT(eb->i915)) { 2324 /* 2325 * ppGTT backed shadow buffers must be mapped RO, to prevent 2326 * post-scan tampering 2327 */ 2328 if (!eb->context->vm->has_read_only) { 2329 drm_dbg(&i915->drm, 2330 "Cannot prevent post-scan tampering without RO capable vm\n"); 2331 return -EINVAL; 2332 } 2333 } else { 2334 len += I915_CMD_PARSER_TRAMPOLINE_SIZE; 2335 } 2336 if (unlikely(len < eb->batch_len[0])) /* last paranoid check of overflow */ 2337 return -EINVAL; 2338 2339 if (!pool) { 2340 pool = intel_gt_get_buffer_pool(eb->gt, len, 2341 I915_MAP_WB); 2342 if (IS_ERR(pool)) 2343 return PTR_ERR(pool); 2344 eb->batch_pool = pool; 2345 } 2346 2347 err = i915_gem_object_lock(pool->obj, &eb->ww); 2348 if (err) 2349 return err; 2350 2351 shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER); 2352 if (IS_ERR(shadow)) 2353 return PTR_ERR(shadow); 2354 2355 intel_gt_buffer_pool_mark_used(pool); 2356 i915_gem_object_set_readonly(shadow->obj); 2357 shadow->private = pool; 2358 2359 trampoline = NULL; 2360 if (CMDPARSER_USES_GGTT(eb->i915)) { 2361 trampoline = shadow; 2362 2363 shadow = shadow_batch_pin(eb, pool->obj, 2364 &eb->gt->ggtt->vm, 2365 PIN_GLOBAL); 2366 if (IS_ERR(shadow)) 2367 return PTR_ERR(shadow); 2368 2369 shadow->private = pool; 2370 2371 eb->batch_flags |= I915_DISPATCH_SECURE; 2372 } 2373 2374 batch = eb_dispatch_secure(eb, shadow); 2375 if (IS_ERR(batch)) 2376 return PTR_ERR(batch); 2377 2378 err = dma_resv_reserve_fences(shadow->obj->base.resv, 1); 2379 if (err) 2380 return err; 2381 2382 err = intel_engine_cmd_parser(eb->context->engine, 2383 eb->batches[0]->vma, 2384 eb->batch_start_offset, 2385 eb->batch_len[0], 2386 shadow, trampoline); 2387 if (err) 2388 return err; 2389 2390 eb->batches[0] = &eb->vma[eb->buffer_count++]; 2391 eb->batches[0]->vma = i915_vma_get(shadow); 2392 eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN; 2393 2394 eb->trampoline = trampoline; 2395 eb->batch_start_offset = 0; 2396 2397 secure_batch: 2398 if (batch) { 2399 if (intel_context_is_parallel(eb->context)) 2400 return -EINVAL; 2401 2402 eb->batches[0] = &eb->vma[eb->buffer_count++]; 2403 eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN; 2404 eb->batches[0]->vma = i915_vma_get(batch); 2405 } 2406 return 0; 2407 } 2408 2409 static int eb_request_submit(struct i915_execbuffer *eb, 2410 struct i915_request *rq, 2411 struct i915_vma *batch, 2412 u64 batch_len) 2413 { 2414 int err; 2415 2416 if (intel_context_nopreempt(rq->context)) 2417 __set_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags); 2418 2419 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) { 2420 err = i915_reset_gen7_sol_offsets(rq); 2421 if (err) 2422 return err; 2423 } 2424 2425 /* 2426 * After we completed waiting for other engines (using HW semaphores) 2427 * then we can signal that this request/batch is ready to run. This 2428 * allows us to determine if the batch is still waiting on the GPU 2429 * or actually running by checking the breadcrumb. 2430 */ 2431 if (rq->context->engine->emit_init_breadcrumb) { 2432 err = rq->context->engine->emit_init_breadcrumb(rq); 2433 if (err) 2434 return err; 2435 } 2436 2437 err = rq->context->engine->emit_bb_start(rq, 2438 batch->node.start + 2439 eb->batch_start_offset, 2440 batch_len, 2441 eb->batch_flags); 2442 if (err) 2443 return err; 2444 2445 if (eb->trampoline) { 2446 GEM_BUG_ON(intel_context_is_parallel(rq->context)); 2447 GEM_BUG_ON(eb->batch_start_offset); 2448 err = rq->context->engine->emit_bb_start(rq, 2449 eb->trampoline->node.start + 2450 batch_len, 0, 0); 2451 if (err) 2452 return err; 2453 } 2454 2455 return 0; 2456 } 2457 2458 static int eb_submit(struct i915_execbuffer *eb) 2459 { 2460 unsigned int i; 2461 int err; 2462 2463 err = eb_move_to_gpu(eb); 2464 2465 for_each_batch_create_order(eb, i) { 2466 if (!eb->requests[i]) 2467 break; 2468 2469 trace_i915_request_queue(eb->requests[i], eb->batch_flags); 2470 if (!err) 2471 err = eb_request_submit(eb, eb->requests[i], 2472 eb->batches[i]->vma, 2473 eb->batch_len[i]); 2474 } 2475 2476 return err; 2477 } 2478 2479 static int num_vcs_engines(struct drm_i915_private *i915) 2480 { 2481 return hweight_long(VDBOX_MASK(to_gt(i915))); 2482 } 2483 2484 /* 2485 * Find one BSD ring to dispatch the corresponding BSD command. 2486 * The engine index is returned. 2487 */ 2488 static unsigned int 2489 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv, 2490 struct drm_file *file) 2491 { 2492 struct drm_i915_file_private *file_priv = file->driver_priv; 2493 2494 /* Check whether the file_priv has already selected one ring. */ 2495 if ((int)file_priv->bsd_engine < 0) 2496 file_priv->bsd_engine = 2497 prandom_u32_max(num_vcs_engines(dev_priv)); 2498 2499 return file_priv->bsd_engine; 2500 } 2501 2502 static const enum intel_engine_id user_ring_map[] = { 2503 [I915_EXEC_DEFAULT] = RCS0, 2504 [I915_EXEC_RENDER] = RCS0, 2505 [I915_EXEC_BLT] = BCS0, 2506 [I915_EXEC_BSD] = VCS0, 2507 [I915_EXEC_VEBOX] = VECS0 2508 }; 2509 2510 static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce) 2511 { 2512 struct intel_ring *ring = ce->ring; 2513 struct intel_timeline *tl = ce->timeline; 2514 struct i915_request *rq; 2515 2516 /* 2517 * Completely unscientific finger-in-the-air estimates for suitable 2518 * maximum user request size (to avoid blocking) and then backoff. 2519 */ 2520 if (intel_ring_update_space(ring) >= PAGE_SIZE) 2521 return NULL; 2522 2523 /* 2524 * Find a request that after waiting upon, there will be at least half 2525 * the ring available. The hysteresis allows us to compete for the 2526 * shared ring and should mean that we sleep less often prior to 2527 * claiming our resources, but not so long that the ring completely 2528 * drains before we can submit our next request. 2529 */ 2530 list_for_each_entry(rq, &tl->requests, link) { 2531 if (rq->ring != ring) 2532 continue; 2533 2534 if (__intel_ring_space(rq->postfix, 2535 ring->emit, ring->size) > ring->size / 2) 2536 break; 2537 } 2538 if (&rq->link == &tl->requests) 2539 return NULL; /* weird, we will check again later for real */ 2540 2541 return i915_request_get(rq); 2542 } 2543 2544 static int eb_pin_timeline(struct i915_execbuffer *eb, struct intel_context *ce, 2545 bool throttle) 2546 { 2547 struct intel_timeline *tl; 2548 struct i915_request *rq = NULL; 2549 2550 /* 2551 * Take a local wakeref for preparing to dispatch the execbuf as 2552 * we expect to access the hardware fairly frequently in the 2553 * process, and require the engine to be kept awake between accesses. 2554 * Upon dispatch, we acquire another prolonged wakeref that we hold 2555 * until the timeline is idle, which in turn releases the wakeref 2556 * taken on the engine, and the parent device. 2557 */ 2558 tl = intel_context_timeline_lock(ce); 2559 if (IS_ERR(tl)) 2560 return PTR_ERR(tl); 2561 2562 intel_context_enter(ce); 2563 if (throttle) 2564 rq = eb_throttle(eb, ce); 2565 intel_context_timeline_unlock(tl); 2566 2567 if (rq) { 2568 #ifdef __linux__ 2569 bool nonblock = eb->file->filp->f_flags & O_NONBLOCK; 2570 #else 2571 bool nonblock = eb->file->filp->f_flag & FNONBLOCK; 2572 #endif 2573 long timeout = nonblock ? 0 : MAX_SCHEDULE_TIMEOUT; 2574 2575 if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE, 2576 timeout) < 0) { 2577 i915_request_put(rq); 2578 2579 /* 2580 * Error path, cannot use intel_context_timeline_lock as 2581 * that is user interruptable and this clean up step 2582 * must be done. 2583 */ 2584 mutex_lock(&ce->timeline->mutex); 2585 intel_context_exit(ce); 2586 mutex_unlock(&ce->timeline->mutex); 2587 2588 if (nonblock) 2589 return -EWOULDBLOCK; 2590 else 2591 return -EINTR; 2592 } 2593 i915_request_put(rq); 2594 } 2595 2596 return 0; 2597 } 2598 2599 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle) 2600 { 2601 struct intel_context *ce = eb->context, *child; 2602 int err; 2603 int i = 0, j = 0; 2604 2605 GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED); 2606 2607 if (unlikely(intel_context_is_banned(ce))) 2608 return -EIO; 2609 2610 /* 2611 * Pinning the contexts may generate requests in order to acquire 2612 * GGTT space, so do this first before we reserve a seqno for 2613 * ourselves. 2614 */ 2615 err = intel_context_pin_ww(ce, &eb->ww); 2616 if (err) 2617 return err; 2618 for_each_child(ce, child) { 2619 err = intel_context_pin_ww(child, &eb->ww); 2620 GEM_BUG_ON(err); /* perma-pinned should incr a counter */ 2621 } 2622 2623 for_each_child(ce, child) { 2624 err = eb_pin_timeline(eb, child, throttle); 2625 if (err) 2626 goto unwind; 2627 ++i; 2628 } 2629 err = eb_pin_timeline(eb, ce, throttle); 2630 if (err) 2631 goto unwind; 2632 2633 eb->args->flags |= __EXEC_ENGINE_PINNED; 2634 return 0; 2635 2636 unwind: 2637 for_each_child(ce, child) { 2638 if (j++ < i) { 2639 mutex_lock(&child->timeline->mutex); 2640 intel_context_exit(child); 2641 mutex_unlock(&child->timeline->mutex); 2642 } 2643 } 2644 for_each_child(ce, child) 2645 intel_context_unpin(child); 2646 intel_context_unpin(ce); 2647 return err; 2648 } 2649 2650 static void eb_unpin_engine(struct i915_execbuffer *eb) 2651 { 2652 struct intel_context *ce = eb->context, *child; 2653 2654 if (!(eb->args->flags & __EXEC_ENGINE_PINNED)) 2655 return; 2656 2657 eb->args->flags &= ~__EXEC_ENGINE_PINNED; 2658 2659 for_each_child(ce, child) { 2660 mutex_lock(&child->timeline->mutex); 2661 intel_context_exit(child); 2662 mutex_unlock(&child->timeline->mutex); 2663 2664 intel_context_unpin(child); 2665 } 2666 2667 mutex_lock(&ce->timeline->mutex); 2668 intel_context_exit(ce); 2669 mutex_unlock(&ce->timeline->mutex); 2670 2671 intel_context_unpin(ce); 2672 } 2673 2674 static unsigned int 2675 eb_select_legacy_ring(struct i915_execbuffer *eb) 2676 { 2677 struct drm_i915_private *i915 = eb->i915; 2678 struct drm_i915_gem_execbuffer2 *args = eb->args; 2679 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK; 2680 2681 if (user_ring_id != I915_EXEC_BSD && 2682 (args->flags & I915_EXEC_BSD_MASK)) { 2683 drm_dbg(&i915->drm, 2684 "execbuf with non bsd ring but with invalid " 2685 "bsd dispatch flags: %d\n", (int)(args->flags)); 2686 return -1; 2687 } 2688 2689 if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) { 2690 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK; 2691 2692 if (bsd_idx == I915_EXEC_BSD_DEFAULT) { 2693 bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file); 2694 } else if (bsd_idx >= I915_EXEC_BSD_RING1 && 2695 bsd_idx <= I915_EXEC_BSD_RING2) { 2696 bsd_idx >>= I915_EXEC_BSD_SHIFT; 2697 bsd_idx--; 2698 } else { 2699 drm_dbg(&i915->drm, 2700 "execbuf with unknown bsd ring: %u\n", 2701 bsd_idx); 2702 return -1; 2703 } 2704 2705 return _VCS(bsd_idx); 2706 } 2707 2708 if (user_ring_id >= ARRAY_SIZE(user_ring_map)) { 2709 drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n", 2710 user_ring_id); 2711 return -1; 2712 } 2713 2714 return user_ring_map[user_ring_id]; 2715 } 2716 2717 static int 2718 eb_select_engine(struct i915_execbuffer *eb) 2719 { 2720 struct intel_context *ce, *child; 2721 unsigned int idx; 2722 int err; 2723 2724 if (i915_gem_context_user_engines(eb->gem_context)) 2725 idx = eb->args->flags & I915_EXEC_RING_MASK; 2726 else 2727 idx = eb_select_legacy_ring(eb); 2728 2729 ce = i915_gem_context_get_engine(eb->gem_context, idx); 2730 if (IS_ERR(ce)) 2731 return PTR_ERR(ce); 2732 2733 if (intel_context_is_parallel(ce)) { 2734 if (eb->buffer_count < ce->parallel.number_children + 1) { 2735 intel_context_put(ce); 2736 return -EINVAL; 2737 } 2738 if (eb->batch_start_offset || eb->args->batch_len) { 2739 intel_context_put(ce); 2740 return -EINVAL; 2741 } 2742 } 2743 eb->num_batches = ce->parallel.number_children + 1; 2744 2745 for_each_child(ce, child) 2746 intel_context_get(child); 2747 intel_gt_pm_get(ce->engine->gt); 2748 2749 if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) { 2750 err = intel_context_alloc_state(ce); 2751 if (err) 2752 goto err; 2753 } 2754 for_each_child(ce, child) { 2755 if (!test_bit(CONTEXT_ALLOC_BIT, &child->flags)) { 2756 err = intel_context_alloc_state(child); 2757 if (err) 2758 goto err; 2759 } 2760 } 2761 2762 /* 2763 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report 2764 * EIO if the GPU is already wedged. 2765 */ 2766 err = intel_gt_terminally_wedged(ce->engine->gt); 2767 if (err) 2768 goto err; 2769 2770 if (!i915_vm_tryget(ce->vm)) { 2771 err = -ENOENT; 2772 goto err; 2773 } 2774 2775 eb->context = ce; 2776 eb->gt = ce->engine->gt; 2777 2778 /* 2779 * Make sure engine pool stays alive even if we call intel_context_put 2780 * during ww handling. The pool is destroyed when last pm reference 2781 * is dropped, which breaks our -EDEADLK handling. 2782 */ 2783 return err; 2784 2785 err: 2786 intel_gt_pm_put(ce->engine->gt); 2787 for_each_child(ce, child) 2788 intel_context_put(child); 2789 intel_context_put(ce); 2790 return err; 2791 } 2792 2793 static void 2794 eb_put_engine(struct i915_execbuffer *eb) 2795 { 2796 struct intel_context *child; 2797 2798 i915_vm_put(eb->context->vm); 2799 intel_gt_pm_put(eb->gt); 2800 for_each_child(eb->context, child) 2801 intel_context_put(child); 2802 intel_context_put(eb->context); 2803 } 2804 2805 static void 2806 __free_fence_array(struct eb_fence *fences, unsigned int n) 2807 { 2808 while (n--) { 2809 drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2)); 2810 dma_fence_put(fences[n].dma_fence); 2811 dma_fence_chain_free(fences[n].chain_fence); 2812 } 2813 kvfree(fences); 2814 } 2815 2816 static int 2817 add_timeline_fence_array(struct i915_execbuffer *eb, 2818 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences) 2819 { 2820 struct drm_i915_gem_exec_fence __user *user_fences; 2821 u64 __user *user_values; 2822 struct eb_fence *f; 2823 u64 nfences; 2824 int err = 0; 2825 2826 nfences = timeline_fences->fence_count; 2827 if (!nfences) 2828 return 0; 2829 2830 /* Check multiplication overflow for access_ok() and kvmalloc_array() */ 2831 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long)); 2832 if (nfences > min_t(unsigned long, 2833 ULONG_MAX / sizeof(*user_fences), 2834 SIZE_MAX / sizeof(*f)) - eb->num_fences) 2835 return -EINVAL; 2836 2837 user_fences = u64_to_user_ptr(timeline_fences->handles_ptr); 2838 if (!access_ok(user_fences, nfences * sizeof(*user_fences))) 2839 return -EFAULT; 2840 2841 user_values = u64_to_user_ptr(timeline_fences->values_ptr); 2842 if (!access_ok(user_values, nfences * sizeof(*user_values))) 2843 return -EFAULT; 2844 2845 #ifdef __linux__ 2846 f = krealloc(eb->fences, 2847 (eb->num_fences + nfences) * sizeof(*f), 2848 __GFP_NOWARN | GFP_KERNEL); 2849 if (!f) 2850 return -ENOMEM; 2851 #else 2852 f = kmalloc((eb->num_fences + nfences) * sizeof(*f), 2853 __GFP_NOWARN | GFP_KERNEL); 2854 if (!f) 2855 return -ENOMEM; 2856 memcpy(f, eb->fences, eb->num_fences * sizeof(*f)); 2857 kfree(eb->fences); 2858 #endif 2859 2860 eb->fences = f; 2861 f += eb->num_fences; 2862 2863 #ifdef notyet 2864 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) & 2865 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS); 2866 #endif 2867 2868 while (nfences--) { 2869 struct drm_i915_gem_exec_fence user_fence; 2870 struct drm_syncobj *syncobj; 2871 struct dma_fence *fence = NULL; 2872 u64 point; 2873 2874 if (__copy_from_user(&user_fence, 2875 user_fences++, 2876 sizeof(user_fence))) 2877 return -EFAULT; 2878 2879 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) 2880 return -EINVAL; 2881 2882 if (__get_user(point, user_values++)) 2883 return -EFAULT; 2884 2885 syncobj = drm_syncobj_find(eb->file, user_fence.handle); 2886 if (!syncobj) { 2887 DRM_DEBUG("Invalid syncobj handle provided\n"); 2888 return -ENOENT; 2889 } 2890 2891 fence = drm_syncobj_fence_get(syncobj); 2892 2893 if (!fence && user_fence.flags && 2894 !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2895 DRM_DEBUG("Syncobj handle has no fence\n"); 2896 drm_syncobj_put(syncobj); 2897 return -EINVAL; 2898 } 2899 2900 if (fence) 2901 err = dma_fence_chain_find_seqno(&fence, point); 2902 2903 if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2904 DRM_DEBUG("Syncobj handle missing requested point %llu\n", point); 2905 dma_fence_put(fence); 2906 drm_syncobj_put(syncobj); 2907 return err; 2908 } 2909 2910 /* 2911 * A point might have been signaled already and 2912 * garbage collected from the timeline. In this case 2913 * just ignore the point and carry on. 2914 */ 2915 if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2916 drm_syncobj_put(syncobj); 2917 continue; 2918 } 2919 2920 /* 2921 * For timeline syncobjs we need to preallocate chains for 2922 * later signaling. 2923 */ 2924 if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) { 2925 /* 2926 * Waiting and signaling the same point (when point != 2927 * 0) would break the timeline. 2928 */ 2929 if (user_fence.flags & I915_EXEC_FENCE_WAIT) { 2930 DRM_DEBUG("Trying to wait & signal the same timeline point.\n"); 2931 dma_fence_put(fence); 2932 drm_syncobj_put(syncobj); 2933 return -EINVAL; 2934 } 2935 2936 f->chain_fence = dma_fence_chain_alloc(); 2937 if (!f->chain_fence) { 2938 drm_syncobj_put(syncobj); 2939 dma_fence_put(fence); 2940 return -ENOMEM; 2941 } 2942 } else { 2943 f->chain_fence = NULL; 2944 } 2945 2946 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2); 2947 f->dma_fence = fence; 2948 f->value = point; 2949 f++; 2950 eb->num_fences++; 2951 } 2952 2953 return 0; 2954 } 2955 2956 static int add_fence_array(struct i915_execbuffer *eb) 2957 { 2958 struct drm_i915_gem_execbuffer2 *args = eb->args; 2959 struct drm_i915_gem_exec_fence __user *user; 2960 unsigned long num_fences = args->num_cliprects; 2961 struct eb_fence *f; 2962 2963 if (!(args->flags & I915_EXEC_FENCE_ARRAY)) 2964 return 0; 2965 2966 if (!num_fences) 2967 return 0; 2968 2969 /* Check multiplication overflow for access_ok() and kvmalloc_array() */ 2970 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long)); 2971 if (num_fences > min_t(unsigned long, 2972 ULONG_MAX / sizeof(*user), 2973 SIZE_MAX / sizeof(*f) - eb->num_fences)) 2974 return -EINVAL; 2975 2976 user = u64_to_user_ptr(args->cliprects_ptr); 2977 if (!access_ok(user, num_fences * sizeof(*user))) 2978 return -EFAULT; 2979 2980 #ifdef __linux__ 2981 f = krealloc(eb->fences, 2982 (eb->num_fences + num_fences) * sizeof(*f), 2983 __GFP_NOWARN | GFP_KERNEL); 2984 if (!f) 2985 return -ENOMEM; 2986 #else 2987 f = kmalloc((eb->num_fences + num_fences) * sizeof(*f), 2988 __GFP_NOWARN | GFP_KERNEL); 2989 if (!f) 2990 return -ENOMEM; 2991 memcpy(f, eb->fences, eb->num_fences * sizeof(*f)); 2992 kfree(eb->fences); 2993 #endif 2994 2995 eb->fences = f; 2996 f += eb->num_fences; 2997 while (num_fences--) { 2998 struct drm_i915_gem_exec_fence user_fence; 2999 struct drm_syncobj *syncobj; 3000 struct dma_fence *fence = NULL; 3001 3002 if (__copy_from_user(&user_fence, user++, sizeof(user_fence))) 3003 return -EFAULT; 3004 3005 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) 3006 return -EINVAL; 3007 3008 syncobj = drm_syncobj_find(eb->file, user_fence.handle); 3009 if (!syncobj) { 3010 DRM_DEBUG("Invalid syncobj handle provided\n"); 3011 return -ENOENT; 3012 } 3013 3014 if (user_fence.flags & I915_EXEC_FENCE_WAIT) { 3015 fence = drm_syncobj_fence_get(syncobj); 3016 if (!fence) { 3017 DRM_DEBUG("Syncobj handle has no fence\n"); 3018 drm_syncobj_put(syncobj); 3019 return -EINVAL; 3020 } 3021 } 3022 3023 #ifdef notyet 3024 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) & 3025 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS); 3026 #endif 3027 3028 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2); 3029 f->dma_fence = fence; 3030 f->value = 0; 3031 f->chain_fence = NULL; 3032 f++; 3033 eb->num_fences++; 3034 } 3035 3036 return 0; 3037 } 3038 3039 static void put_fence_array(struct eb_fence *fences, int num_fences) 3040 { 3041 if (fences) 3042 __free_fence_array(fences, num_fences); 3043 } 3044 3045 static int 3046 await_fence_array(struct i915_execbuffer *eb, 3047 struct i915_request *rq) 3048 { 3049 unsigned int n; 3050 int err; 3051 3052 for (n = 0; n < eb->num_fences; n++) { 3053 struct drm_syncobj *syncobj; 3054 unsigned int flags; 3055 3056 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2); 3057 3058 if (!eb->fences[n].dma_fence) 3059 continue; 3060 3061 err = i915_request_await_dma_fence(rq, eb->fences[n].dma_fence); 3062 if (err < 0) 3063 return err; 3064 } 3065 3066 return 0; 3067 } 3068 3069 static void signal_fence_array(const struct i915_execbuffer *eb, 3070 struct dma_fence * const fence) 3071 { 3072 unsigned int n; 3073 3074 for (n = 0; n < eb->num_fences; n++) { 3075 struct drm_syncobj *syncobj; 3076 unsigned int flags; 3077 3078 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2); 3079 if (!(flags & I915_EXEC_FENCE_SIGNAL)) 3080 continue; 3081 3082 if (eb->fences[n].chain_fence) { 3083 drm_syncobj_add_point(syncobj, 3084 eb->fences[n].chain_fence, 3085 fence, 3086 eb->fences[n].value); 3087 /* 3088 * The chain's ownership is transferred to the 3089 * timeline. 3090 */ 3091 eb->fences[n].chain_fence = NULL; 3092 } else { 3093 drm_syncobj_replace_fence(syncobj, fence); 3094 } 3095 } 3096 } 3097 3098 static int 3099 parse_timeline_fences(struct i915_user_extension __user *ext, void *data) 3100 { 3101 struct i915_execbuffer *eb = data; 3102 struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences; 3103 3104 if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences))) 3105 return -EFAULT; 3106 3107 return add_timeline_fence_array(eb, &timeline_fences); 3108 } 3109 3110 static void retire_requests(struct intel_timeline *tl, struct i915_request *end) 3111 { 3112 struct i915_request *rq, *rn; 3113 3114 list_for_each_entry_safe(rq, rn, &tl->requests, link) 3115 if (rq == end || !i915_request_retire(rq)) 3116 break; 3117 } 3118 3119 static int eb_request_add(struct i915_execbuffer *eb, struct i915_request *rq, 3120 int err, bool last_parallel) 3121 { 3122 struct intel_timeline * const tl = i915_request_timeline(rq); 3123 struct i915_sched_attr attr = {}; 3124 struct i915_request *prev; 3125 3126 lockdep_assert_held(&tl->mutex); 3127 lockdep_unpin_lock(&tl->mutex, rq->cookie); 3128 3129 trace_i915_request_add(rq); 3130 3131 prev = __i915_request_commit(rq); 3132 3133 /* Check that the context wasn't destroyed before submission */ 3134 if (likely(!intel_context_is_closed(eb->context))) { 3135 attr = eb->gem_context->sched; 3136 } else { 3137 /* Serialise with context_close via the add_to_timeline */ 3138 i915_request_set_error_once(rq, -ENOENT); 3139 __i915_request_skip(rq); 3140 err = -ENOENT; /* override any transient errors */ 3141 } 3142 3143 if (intel_context_is_parallel(eb->context)) { 3144 if (err) { 3145 __i915_request_skip(rq); 3146 set_bit(I915_FENCE_FLAG_SKIP_PARALLEL, 3147 &rq->fence.flags); 3148 } 3149 if (last_parallel) 3150 set_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, 3151 &rq->fence.flags); 3152 } 3153 3154 __i915_request_queue(rq, &attr); 3155 3156 /* Try to clean up the client's timeline after submitting the request */ 3157 if (prev) 3158 retire_requests(tl, prev); 3159 3160 mutex_unlock(&tl->mutex); 3161 3162 return err; 3163 } 3164 3165 static int eb_requests_add(struct i915_execbuffer *eb, int err) 3166 { 3167 int i; 3168 3169 /* 3170 * We iterate in reverse order of creation to release timeline mutexes in 3171 * same order. 3172 */ 3173 for_each_batch_add_order(eb, i) { 3174 struct i915_request *rq = eb->requests[i]; 3175 3176 if (!rq) 3177 continue; 3178 err |= eb_request_add(eb, rq, err, i == 0); 3179 } 3180 3181 return err; 3182 } 3183 3184 static const i915_user_extension_fn execbuf_extensions[] = { 3185 [DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences, 3186 }; 3187 3188 static int 3189 parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args, 3190 struct i915_execbuffer *eb) 3191 { 3192 if (!(args->flags & I915_EXEC_USE_EXTENSIONS)) 3193 return 0; 3194 3195 /* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot 3196 * have another flag also using it at the same time. 3197 */ 3198 if (eb->args->flags & I915_EXEC_FENCE_ARRAY) 3199 return -EINVAL; 3200 3201 if (args->num_cliprects != 0) 3202 return -EINVAL; 3203 3204 return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr), 3205 execbuf_extensions, 3206 ARRAY_SIZE(execbuf_extensions), 3207 eb); 3208 } 3209 3210 static void eb_requests_get(struct i915_execbuffer *eb) 3211 { 3212 unsigned int i; 3213 3214 for_each_batch_create_order(eb, i) { 3215 if (!eb->requests[i]) 3216 break; 3217 3218 i915_request_get(eb->requests[i]); 3219 } 3220 } 3221 3222 static void eb_requests_put(struct i915_execbuffer *eb) 3223 { 3224 unsigned int i; 3225 3226 for_each_batch_create_order(eb, i) { 3227 if (!eb->requests[i]) 3228 break; 3229 3230 i915_request_put(eb->requests[i]); 3231 } 3232 } 3233 3234 static struct sync_file * 3235 eb_composite_fence_create(struct i915_execbuffer *eb, int out_fence_fd) 3236 { 3237 struct sync_file *out_fence = NULL; 3238 struct dma_fence_array *fence_array; 3239 struct dma_fence **fences; 3240 unsigned int i; 3241 3242 GEM_BUG_ON(!intel_context_is_parent(eb->context)); 3243 3244 fences = kmalloc_array(eb->num_batches, sizeof(*fences), GFP_KERNEL); 3245 if (!fences) 3246 return ERR_PTR(-ENOMEM); 3247 3248 for_each_batch_create_order(eb, i) { 3249 fences[i] = &eb->requests[i]->fence; 3250 __set_bit(I915_FENCE_FLAG_COMPOSITE, 3251 &eb->requests[i]->fence.flags); 3252 } 3253 3254 fence_array = dma_fence_array_create(eb->num_batches, 3255 fences, 3256 eb->context->parallel.fence_context, 3257 eb->context->parallel.seqno++, 3258 false); 3259 if (!fence_array) { 3260 kfree(fences); 3261 return ERR_PTR(-ENOMEM); 3262 } 3263 3264 /* Move ownership to the dma_fence_array created above */ 3265 for_each_batch_create_order(eb, i) 3266 dma_fence_get(fences[i]); 3267 3268 if (out_fence_fd != -1) { 3269 out_fence = sync_file_create(&fence_array->base); 3270 /* sync_file now owns fence_arry, drop creation ref */ 3271 dma_fence_put(&fence_array->base); 3272 if (!out_fence) 3273 return ERR_PTR(-ENOMEM); 3274 } 3275 3276 eb->composite_fence = &fence_array->base; 3277 3278 return out_fence; 3279 } 3280 3281 static struct sync_file * 3282 eb_fences_add(struct i915_execbuffer *eb, struct i915_request *rq, 3283 struct dma_fence *in_fence, int out_fence_fd) 3284 { 3285 struct sync_file *out_fence = NULL; 3286 int err; 3287 3288 if (unlikely(eb->gem_context->syncobj)) { 3289 struct dma_fence *fence; 3290 3291 fence = drm_syncobj_fence_get(eb->gem_context->syncobj); 3292 err = i915_request_await_dma_fence(rq, fence); 3293 dma_fence_put(fence); 3294 if (err) 3295 return ERR_PTR(err); 3296 } 3297 3298 if (in_fence) { 3299 if (eb->args->flags & I915_EXEC_FENCE_SUBMIT) 3300 err = i915_request_await_execution(rq, in_fence); 3301 else 3302 err = i915_request_await_dma_fence(rq, in_fence); 3303 if (err < 0) 3304 return ERR_PTR(err); 3305 } 3306 3307 if (eb->fences) { 3308 err = await_fence_array(eb, rq); 3309 if (err) 3310 return ERR_PTR(err); 3311 } 3312 3313 if (intel_context_is_parallel(eb->context)) { 3314 out_fence = eb_composite_fence_create(eb, out_fence_fd); 3315 if (IS_ERR(out_fence)) 3316 return ERR_PTR(-ENOMEM); 3317 } else if (out_fence_fd != -1) { 3318 out_fence = sync_file_create(&rq->fence); 3319 if (!out_fence) 3320 return ERR_PTR(-ENOMEM); 3321 } 3322 3323 return out_fence; 3324 } 3325 3326 static struct intel_context * 3327 eb_find_context(struct i915_execbuffer *eb, unsigned int context_number) 3328 { 3329 struct intel_context *child; 3330 3331 if (likely(context_number == 0)) 3332 return eb->context; 3333 3334 for_each_child(eb->context, child) 3335 if (!--context_number) 3336 return child; 3337 3338 GEM_BUG_ON("Context not found"); 3339 3340 return NULL; 3341 } 3342 3343 static struct sync_file * 3344 eb_requests_create(struct i915_execbuffer *eb, struct dma_fence *in_fence, 3345 int out_fence_fd) 3346 { 3347 struct sync_file *out_fence = NULL; 3348 unsigned int i; 3349 3350 for_each_batch_create_order(eb, i) { 3351 /* Allocate a request for this batch buffer nice and early. */ 3352 eb->requests[i] = i915_request_create(eb_find_context(eb, i)); 3353 if (IS_ERR(eb->requests[i])) { 3354 out_fence = ERR_CAST(eb->requests[i]); 3355 eb->requests[i] = NULL; 3356 return out_fence; 3357 } 3358 3359 /* 3360 * Only the first request added (committed to backend) has to 3361 * take the in fences into account as all subsequent requests 3362 * will have fences inserted inbetween them. 3363 */ 3364 if (i + 1 == eb->num_batches) { 3365 out_fence = eb_fences_add(eb, eb->requests[i], 3366 in_fence, out_fence_fd); 3367 if (IS_ERR(out_fence)) 3368 return out_fence; 3369 } 3370 3371 /* 3372 * Not really on stack, but we don't want to call 3373 * kfree on the batch_snapshot when we put it, so use the 3374 * _onstack interface. 3375 */ 3376 if (eb->batches[i]->vma) 3377 eb->requests[i]->batch_res = 3378 i915_vma_resource_get(eb->batches[i]->vma->resource); 3379 if (eb->batch_pool) { 3380 GEM_BUG_ON(intel_context_is_parallel(eb->context)); 3381 intel_gt_buffer_pool_mark_active(eb->batch_pool, 3382 eb->requests[i]); 3383 } 3384 } 3385 3386 return out_fence; 3387 } 3388 3389 static int 3390 i915_gem_do_execbuffer(struct drm_device *dev, 3391 struct drm_file *file, 3392 struct drm_i915_gem_execbuffer2 *args, 3393 struct drm_i915_gem_exec_object2 *exec) 3394 { 3395 struct drm_i915_private *i915 = to_i915(dev); 3396 struct i915_execbuffer eb; 3397 struct dma_fence *in_fence = NULL; 3398 struct sync_file *out_fence = NULL; 3399 int out_fence_fd = -1; 3400 int err; 3401 3402 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS); 3403 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS & 3404 ~__EXEC_OBJECT_UNKNOWN_FLAGS); 3405 3406 eb.i915 = i915; 3407 eb.file = file; 3408 eb.args = args; 3409 if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC)) 3410 args->flags |= __EXEC_HAS_RELOC; 3411 3412 eb.exec = exec; 3413 eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1); 3414 eb.vma[0].vma = NULL; 3415 eb.batch_pool = NULL; 3416 3417 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS; 3418 reloc_cache_init(&eb.reloc_cache, eb.i915); 3419 3420 eb.buffer_count = args->buffer_count; 3421 eb.batch_start_offset = args->batch_start_offset; 3422 eb.trampoline = NULL; 3423 3424 eb.fences = NULL; 3425 eb.num_fences = 0; 3426 3427 eb_capture_list_clear(&eb); 3428 3429 memset(eb.requests, 0, sizeof(struct i915_request *) * 3430 ARRAY_SIZE(eb.requests)); 3431 eb.composite_fence = NULL; 3432 3433 eb.batch_flags = 0; 3434 if (args->flags & I915_EXEC_SECURE) { 3435 if (GRAPHICS_VER(i915) >= 11) 3436 return -ENODEV; 3437 3438 /* Return -EPERM to trigger fallback code on old binaries. */ 3439 if (!HAS_SECURE_BATCHES(i915)) 3440 return -EPERM; 3441 3442 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN)) 3443 return -EPERM; 3444 3445 eb.batch_flags |= I915_DISPATCH_SECURE; 3446 } 3447 if (args->flags & I915_EXEC_IS_PINNED) 3448 eb.batch_flags |= I915_DISPATCH_PINNED; 3449 3450 err = parse_execbuf2_extensions(args, &eb); 3451 if (err) 3452 goto err_ext; 3453 3454 err = add_fence_array(&eb); 3455 if (err) 3456 goto err_ext; 3457 3458 #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT) 3459 if (args->flags & IN_FENCES) { 3460 if ((args->flags & IN_FENCES) == IN_FENCES) 3461 return -EINVAL; 3462 3463 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2)); 3464 if (!in_fence) { 3465 err = -EINVAL; 3466 goto err_ext; 3467 } 3468 } 3469 #undef IN_FENCES 3470 3471 if (args->flags & I915_EXEC_FENCE_OUT) { 3472 out_fence_fd = get_unused_fd_flags(O_CLOEXEC); 3473 if (out_fence_fd < 0) { 3474 err = out_fence_fd; 3475 goto err_in_fence; 3476 } 3477 } 3478 3479 err = eb_create(&eb); 3480 if (err) 3481 goto err_out_fence; 3482 3483 GEM_BUG_ON(!eb.lut_size); 3484 3485 err = eb_select_context(&eb); 3486 if (unlikely(err)) 3487 goto err_destroy; 3488 3489 err = eb_select_engine(&eb); 3490 if (unlikely(err)) 3491 goto err_context; 3492 3493 err = eb_lookup_vmas(&eb); 3494 if (err) { 3495 eb_release_vmas(&eb, true); 3496 goto err_engine; 3497 } 3498 3499 i915_gem_ww_ctx_init(&eb.ww, true); 3500 3501 err = eb_relocate_parse(&eb); 3502 if (err) { 3503 /* 3504 * If the user expects the execobject.offset and 3505 * reloc.presumed_offset to be an exact match, 3506 * as for using NO_RELOC, then we cannot update 3507 * the execobject.offset until we have completed 3508 * relocation. 3509 */ 3510 args->flags &= ~__EXEC_HAS_RELOC; 3511 goto err_vma; 3512 } 3513 3514 ww_acquire_done(&eb.ww.ctx); 3515 err = eb_capture_stage(&eb); 3516 if (err) 3517 goto err_vma; 3518 3519 out_fence = eb_requests_create(&eb, in_fence, out_fence_fd); 3520 if (IS_ERR(out_fence)) { 3521 err = PTR_ERR(out_fence); 3522 out_fence = NULL; 3523 if (eb.requests[0]) 3524 goto err_request; 3525 else 3526 goto err_vma; 3527 } 3528 3529 err = eb_submit(&eb); 3530 3531 err_request: 3532 eb_requests_get(&eb); 3533 err = eb_requests_add(&eb, err); 3534 3535 if (eb.fences) 3536 signal_fence_array(&eb, eb.composite_fence ? 3537 eb.composite_fence : 3538 &eb.requests[0]->fence); 3539 3540 if (unlikely(eb.gem_context->syncobj)) { 3541 drm_syncobj_replace_fence(eb.gem_context->syncobj, 3542 eb.composite_fence ? 3543 eb.composite_fence : 3544 &eb.requests[0]->fence); 3545 } 3546 3547 if (out_fence) { 3548 if (err == 0) { 3549 fd_install(out_fence_fd, out_fence->file); 3550 args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */ 3551 args->rsvd2 |= (u64)out_fence_fd << 32; 3552 out_fence_fd = -1; 3553 } else { 3554 fput(out_fence->file); 3555 } 3556 } 3557 3558 if (!out_fence && eb.composite_fence) 3559 dma_fence_put(eb.composite_fence); 3560 3561 eb_requests_put(&eb); 3562 3563 err_vma: 3564 eb_release_vmas(&eb, true); 3565 WARN_ON(err == -EDEADLK); 3566 i915_gem_ww_ctx_fini(&eb.ww); 3567 3568 if (eb.batch_pool) 3569 intel_gt_buffer_pool_put(eb.batch_pool); 3570 err_engine: 3571 eb_put_engine(&eb); 3572 err_context: 3573 i915_gem_context_put(eb.gem_context); 3574 err_destroy: 3575 eb_destroy(&eb); 3576 err_out_fence: 3577 if (out_fence_fd != -1) 3578 put_unused_fd(out_fence_fd); 3579 err_in_fence: 3580 dma_fence_put(in_fence); 3581 err_ext: 3582 put_fence_array(eb.fences, eb.num_fences); 3583 return err; 3584 } 3585 3586 static size_t eb_element_size(void) 3587 { 3588 return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma); 3589 } 3590 3591 static bool check_buffer_count(size_t count) 3592 { 3593 const size_t sz = eb_element_size(); 3594 3595 /* 3596 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup 3597 * array size (see eb_create()). Otherwise, we can accept an array as 3598 * large as can be addressed (though use large arrays at your peril)! 3599 */ 3600 3601 return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1); 3602 } 3603 3604 int 3605 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data, 3606 struct drm_file *file) 3607 { 3608 struct drm_i915_private *i915 = to_i915(dev); 3609 struct drm_i915_gem_execbuffer2 *args = data; 3610 struct drm_i915_gem_exec_object2 *exec2_list; 3611 const size_t count = args->buffer_count; 3612 int err; 3613 3614 if (!check_buffer_count(count)) { 3615 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count); 3616 return -EINVAL; 3617 } 3618 3619 err = i915_gem_check_execbuffer(args); 3620 if (err) 3621 return err; 3622 3623 /* Allocate extra slots for use by the command parser */ 3624 exec2_list = kvmalloc_array(count + 2, eb_element_size(), 3625 __GFP_NOWARN | GFP_KERNEL); 3626 if (exec2_list == NULL) { 3627 drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n", 3628 count); 3629 return -ENOMEM; 3630 } 3631 if (copy_from_user(exec2_list, 3632 u64_to_user_ptr(args->buffers_ptr), 3633 sizeof(*exec2_list) * count)) { 3634 drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count); 3635 kvfree(exec2_list); 3636 return -EFAULT; 3637 } 3638 3639 err = i915_gem_do_execbuffer(dev, file, args, exec2_list); 3640 3641 /* 3642 * Now that we have begun execution of the batchbuffer, we ignore 3643 * any new error after this point. Also given that we have already 3644 * updated the associated relocations, we try to write out the current 3645 * object locations irrespective of any error. 3646 */ 3647 if (args->flags & __EXEC_HAS_RELOC) { 3648 struct drm_i915_gem_exec_object2 __user *user_exec_list = 3649 u64_to_user_ptr(args->buffers_ptr); 3650 unsigned int i; 3651 3652 /* Copy the new buffer offsets back to the user's exec list. */ 3653 /* 3654 * Note: count * sizeof(*user_exec_list) does not overflow, 3655 * because we checked 'count' in check_buffer_count(). 3656 * 3657 * And this range already got effectively checked earlier 3658 * when we did the "copy_from_user()" above. 3659 */ 3660 if (!user_write_access_begin(user_exec_list, 3661 count * sizeof(*user_exec_list))) 3662 goto end; 3663 3664 for (i = 0; i < args->buffer_count; i++) { 3665 if (!(exec2_list[i].offset & UPDATE)) 3666 continue; 3667 3668 exec2_list[i].offset = 3669 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK); 3670 unsafe_put_user(exec2_list[i].offset, 3671 &user_exec_list[i].offset, 3672 end_user); 3673 } 3674 end_user: 3675 user_write_access_end(); 3676 end:; 3677 } 3678 3679 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS; 3680 kvfree(exec2_list); 3681 return err; 3682 } 3683