xref: /openbsd/sys/dev/pci/drm/i915/gt/intel_engine_cs.c (revision 9ea232b5)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2016 Intel Corporation
4  */
5 
6 #include <linux/string_helpers.h>
7 
8 #include <drm/drm_print.h>
9 
10 #include "gem/i915_gem_context.h"
11 #include "gem/i915_gem_internal.h"
12 #include "gt/intel_gt_print.h"
13 #include "gt/intel_gt_regs.h"
14 
15 #include "i915_cmd_parser.h"
16 #include "i915_drv.h"
17 #include "i915_irq.h"
18 #include "i915_reg.h"
19 #include "intel_breadcrumbs.h"
20 #include "intel_context.h"
21 #include "intel_engine.h"
22 #include "intel_engine_pm.h"
23 #include "intel_engine_regs.h"
24 #include "intel_engine_user.h"
25 #include "intel_execlists_submission.h"
26 #include "intel_gt.h"
27 #include "intel_gt_mcr.h"
28 #include "intel_gt_pm.h"
29 #include "intel_gt_requests.h"
30 #include "intel_lrc.h"
31 #include "intel_lrc_reg.h"
32 #include "intel_reset.h"
33 #include "intel_ring.h"
34 #include "uc/intel_guc_submission.h"
35 
36 /* Haswell does have the CXT_SIZE register however it does not appear to be
37  * valid. Now, docs explain in dwords what is in the context object. The full
38  * size is 70720 bytes, however, the power context and execlist context will
39  * never be saved (power context is stored elsewhere, and execlists don't work
40  * on HSW) - so the final size, including the extra state required for the
41  * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
42  */
43 #define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)
44 
45 #define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
46 #define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
47 #define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
48 #define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
49 
50 #define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)
51 
52 #define MAX_MMIO_BASES 3
53 struct engine_info {
54 	u8 class;
55 	u8 instance;
56 	/* mmio bases table *must* be sorted in reverse graphics_ver order */
57 	struct engine_mmio_base {
58 		u32 graphics_ver : 8;
59 		u32 base : 24;
60 	} mmio_bases[MAX_MMIO_BASES];
61 };
62 
63 static const struct engine_info intel_engines[] = {
64 	[RCS0] = {
65 		.class = RENDER_CLASS,
66 		.instance = 0,
67 		.mmio_bases = {
68 			{ .graphics_ver = 1, .base = RENDER_RING_BASE }
69 		},
70 	},
71 	[BCS0] = {
72 		.class = COPY_ENGINE_CLASS,
73 		.instance = 0,
74 		.mmio_bases = {
75 			{ .graphics_ver = 6, .base = BLT_RING_BASE }
76 		},
77 	},
78 	[BCS1] = {
79 		.class = COPY_ENGINE_CLASS,
80 		.instance = 1,
81 		.mmio_bases = {
82 			{ .graphics_ver = 12, .base = XEHPC_BCS1_RING_BASE }
83 		},
84 	},
85 	[BCS2] = {
86 		.class = COPY_ENGINE_CLASS,
87 		.instance = 2,
88 		.mmio_bases = {
89 			{ .graphics_ver = 12, .base = XEHPC_BCS2_RING_BASE }
90 		},
91 	},
92 	[BCS3] = {
93 		.class = COPY_ENGINE_CLASS,
94 		.instance = 3,
95 		.mmio_bases = {
96 			{ .graphics_ver = 12, .base = XEHPC_BCS3_RING_BASE }
97 		},
98 	},
99 	[BCS4] = {
100 		.class = COPY_ENGINE_CLASS,
101 		.instance = 4,
102 		.mmio_bases = {
103 			{ .graphics_ver = 12, .base = XEHPC_BCS4_RING_BASE }
104 		},
105 	},
106 	[BCS5] = {
107 		.class = COPY_ENGINE_CLASS,
108 		.instance = 5,
109 		.mmio_bases = {
110 			{ .graphics_ver = 12, .base = XEHPC_BCS5_RING_BASE }
111 		},
112 	},
113 	[BCS6] = {
114 		.class = COPY_ENGINE_CLASS,
115 		.instance = 6,
116 		.mmio_bases = {
117 			{ .graphics_ver = 12, .base = XEHPC_BCS6_RING_BASE }
118 		},
119 	},
120 	[BCS7] = {
121 		.class = COPY_ENGINE_CLASS,
122 		.instance = 7,
123 		.mmio_bases = {
124 			{ .graphics_ver = 12, .base = XEHPC_BCS7_RING_BASE }
125 		},
126 	},
127 	[BCS8] = {
128 		.class = COPY_ENGINE_CLASS,
129 		.instance = 8,
130 		.mmio_bases = {
131 			{ .graphics_ver = 12, .base = XEHPC_BCS8_RING_BASE }
132 		},
133 	},
134 	[VCS0] = {
135 		.class = VIDEO_DECODE_CLASS,
136 		.instance = 0,
137 		.mmio_bases = {
138 			{ .graphics_ver = 11, .base = GEN11_BSD_RING_BASE },
139 			{ .graphics_ver = 6, .base = GEN6_BSD_RING_BASE },
140 			{ .graphics_ver = 4, .base = BSD_RING_BASE }
141 		},
142 	},
143 	[VCS1] = {
144 		.class = VIDEO_DECODE_CLASS,
145 		.instance = 1,
146 		.mmio_bases = {
147 			{ .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE },
148 			{ .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE }
149 		},
150 	},
151 	[VCS2] = {
152 		.class = VIDEO_DECODE_CLASS,
153 		.instance = 2,
154 		.mmio_bases = {
155 			{ .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE }
156 		},
157 	},
158 	[VCS3] = {
159 		.class = VIDEO_DECODE_CLASS,
160 		.instance = 3,
161 		.mmio_bases = {
162 			{ .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE }
163 		},
164 	},
165 	[VCS4] = {
166 		.class = VIDEO_DECODE_CLASS,
167 		.instance = 4,
168 		.mmio_bases = {
169 			{ .graphics_ver = 12, .base = XEHP_BSD5_RING_BASE }
170 		},
171 	},
172 	[VCS5] = {
173 		.class = VIDEO_DECODE_CLASS,
174 		.instance = 5,
175 		.mmio_bases = {
176 			{ .graphics_ver = 12, .base = XEHP_BSD6_RING_BASE }
177 		},
178 	},
179 	[VCS6] = {
180 		.class = VIDEO_DECODE_CLASS,
181 		.instance = 6,
182 		.mmio_bases = {
183 			{ .graphics_ver = 12, .base = XEHP_BSD7_RING_BASE }
184 		},
185 	},
186 	[VCS7] = {
187 		.class = VIDEO_DECODE_CLASS,
188 		.instance = 7,
189 		.mmio_bases = {
190 			{ .graphics_ver = 12, .base = XEHP_BSD8_RING_BASE }
191 		},
192 	},
193 	[VECS0] = {
194 		.class = VIDEO_ENHANCEMENT_CLASS,
195 		.instance = 0,
196 		.mmio_bases = {
197 			{ .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE },
198 			{ .graphics_ver = 7, .base = VEBOX_RING_BASE }
199 		},
200 	},
201 	[VECS1] = {
202 		.class = VIDEO_ENHANCEMENT_CLASS,
203 		.instance = 1,
204 		.mmio_bases = {
205 			{ .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE }
206 		},
207 	},
208 	[VECS2] = {
209 		.class = VIDEO_ENHANCEMENT_CLASS,
210 		.instance = 2,
211 		.mmio_bases = {
212 			{ .graphics_ver = 12, .base = XEHP_VEBOX3_RING_BASE }
213 		},
214 	},
215 	[VECS3] = {
216 		.class = VIDEO_ENHANCEMENT_CLASS,
217 		.instance = 3,
218 		.mmio_bases = {
219 			{ .graphics_ver = 12, .base = XEHP_VEBOX4_RING_BASE }
220 		},
221 	},
222 	[CCS0] = {
223 		.class = COMPUTE_CLASS,
224 		.instance = 0,
225 		.mmio_bases = {
226 			{ .graphics_ver = 12, .base = GEN12_COMPUTE0_RING_BASE }
227 		}
228 	},
229 	[CCS1] = {
230 		.class = COMPUTE_CLASS,
231 		.instance = 1,
232 		.mmio_bases = {
233 			{ .graphics_ver = 12, .base = GEN12_COMPUTE1_RING_BASE }
234 		}
235 	},
236 	[CCS2] = {
237 		.class = COMPUTE_CLASS,
238 		.instance = 2,
239 		.mmio_bases = {
240 			{ .graphics_ver = 12, .base = GEN12_COMPUTE2_RING_BASE }
241 		}
242 	},
243 	[CCS3] = {
244 		.class = COMPUTE_CLASS,
245 		.instance = 3,
246 		.mmio_bases = {
247 			{ .graphics_ver = 12, .base = GEN12_COMPUTE3_RING_BASE }
248 		}
249 	},
250 	[GSC0] = {
251 		.class = OTHER_CLASS,
252 		.instance = OTHER_GSC_INSTANCE,
253 		.mmio_bases = {
254 			{ .graphics_ver = 12, .base = MTL_GSC_RING_BASE }
255 		}
256 	},
257 };
258 
259 /**
260  * intel_engine_context_size() - return the size of the context for an engine
261  * @gt: the gt
262  * @class: engine class
263  *
264  * Each engine class may require a different amount of space for a context
265  * image.
266  *
267  * Return: size (in bytes) of an engine class specific context image
268  *
269  * Note: this size includes the HWSP, which is part of the context image
270  * in LRC mode, but does not include the "shared data page" used with
271  * GuC submission. The caller should account for this if using the GuC.
272  */
273 u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
274 {
275 	struct intel_uncore *uncore = gt->uncore;
276 	u32 cxt_size;
277 
278 	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
279 
280 	switch (class) {
281 	case COMPUTE_CLASS:
282 		fallthrough;
283 	case RENDER_CLASS:
284 		switch (GRAPHICS_VER(gt->i915)) {
285 		default:
286 			MISSING_CASE(GRAPHICS_VER(gt->i915));
287 			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
288 		case 12:
289 		case 11:
290 			return GEN11_LR_CONTEXT_RENDER_SIZE;
291 		case 9:
292 			return GEN9_LR_CONTEXT_RENDER_SIZE;
293 		case 8:
294 			return GEN8_LR_CONTEXT_RENDER_SIZE;
295 		case 7:
296 			if (IS_HASWELL(gt->i915))
297 				return HSW_CXT_TOTAL_SIZE;
298 
299 			cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
300 			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
301 					PAGE_SIZE);
302 		case 6:
303 			cxt_size = intel_uncore_read(uncore, CXT_SIZE);
304 			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
305 					PAGE_SIZE);
306 		case 5:
307 		case 4:
308 			/*
309 			 * There is a discrepancy here between the size reported
310 			 * by the register and the size of the context layout
311 			 * in the docs. Both are described as authorative!
312 			 *
313 			 * The discrepancy is on the order of a few cachelines,
314 			 * but the total is under one page (4k), which is our
315 			 * minimum allocation anyway so it should all come
316 			 * out in the wash.
317 			 */
318 			cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
319 			drm_dbg(&gt->i915->drm,
320 				"graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n",
321 				GRAPHICS_VER(gt->i915), cxt_size * 64,
322 				cxt_size - 1);
323 			return round_up(cxt_size * 64, PAGE_SIZE);
324 		case 3:
325 		case 2:
326 		/* For the special day when i810 gets merged. */
327 		case 1:
328 			return 0;
329 		}
330 		break;
331 	default:
332 		MISSING_CASE(class);
333 		fallthrough;
334 	case VIDEO_DECODE_CLASS:
335 	case VIDEO_ENHANCEMENT_CLASS:
336 	case COPY_ENGINE_CLASS:
337 	case OTHER_CLASS:
338 		if (GRAPHICS_VER(gt->i915) < 8)
339 			return 0;
340 		return GEN8_LR_CONTEXT_OTHER_SIZE;
341 	}
342 }
343 
344 static u32 __engine_mmio_base(struct drm_i915_private *i915,
345 			      const struct engine_mmio_base *bases)
346 {
347 	int i;
348 
349 	for (i = 0; i < MAX_MMIO_BASES; i++)
350 		if (GRAPHICS_VER(i915) >= bases[i].graphics_ver)
351 			break;
352 
353 	GEM_BUG_ON(i == MAX_MMIO_BASES);
354 	GEM_BUG_ON(!bases[i].base);
355 
356 	return bases[i].base;
357 }
358 
359 static void __sprint_engine_name(struct intel_engine_cs *engine)
360 {
361 	/*
362 	 * Before we know what the uABI name for this engine will be,
363 	 * we still would like to keep track of this engine in the debug logs.
364 	 * We throw in a ' here as a reminder that this isn't its final name.
365 	 */
366 	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
367 			     intel_engine_class_repr(engine->class),
368 			     engine->instance) >= sizeof(engine->name));
369 }
370 
371 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
372 {
373 	/*
374 	 * Though they added more rings on g4x/ilk, they did not add
375 	 * per-engine HWSTAM until gen6.
376 	 */
377 	if (GRAPHICS_VER(engine->i915) < 6 && engine->class != RENDER_CLASS)
378 		return;
379 
380 	if (GRAPHICS_VER(engine->i915) >= 3)
381 		ENGINE_WRITE(engine, RING_HWSTAM, mask);
382 	else
383 		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
384 }
385 
386 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
387 {
388 	/* Mask off all writes into the unknown HWSP */
389 	intel_engine_set_hwsp_writemask(engine, ~0u);
390 }
391 
392 static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir)
393 {
394 	GEM_DEBUG_WARN_ON(iir);
395 }
396 
397 static u32 get_reset_domain(u8 ver, enum intel_engine_id id)
398 {
399 	u32 reset_domain;
400 
401 	if (ver >= 11) {
402 		static const u32 engine_reset_domains[] = {
403 			[RCS0]  = GEN11_GRDOM_RENDER,
404 			[BCS0]  = GEN11_GRDOM_BLT,
405 			[BCS1]  = XEHPC_GRDOM_BLT1,
406 			[BCS2]  = XEHPC_GRDOM_BLT2,
407 			[BCS3]  = XEHPC_GRDOM_BLT3,
408 			[BCS4]  = XEHPC_GRDOM_BLT4,
409 			[BCS5]  = XEHPC_GRDOM_BLT5,
410 			[BCS6]  = XEHPC_GRDOM_BLT6,
411 			[BCS7]  = XEHPC_GRDOM_BLT7,
412 			[BCS8]  = XEHPC_GRDOM_BLT8,
413 			[VCS0]  = GEN11_GRDOM_MEDIA,
414 			[VCS1]  = GEN11_GRDOM_MEDIA2,
415 			[VCS2]  = GEN11_GRDOM_MEDIA3,
416 			[VCS3]  = GEN11_GRDOM_MEDIA4,
417 			[VCS4]  = GEN11_GRDOM_MEDIA5,
418 			[VCS5]  = GEN11_GRDOM_MEDIA6,
419 			[VCS6]  = GEN11_GRDOM_MEDIA7,
420 			[VCS7]  = GEN11_GRDOM_MEDIA8,
421 			[VECS0] = GEN11_GRDOM_VECS,
422 			[VECS1] = GEN11_GRDOM_VECS2,
423 			[VECS2] = GEN11_GRDOM_VECS3,
424 			[VECS3] = GEN11_GRDOM_VECS4,
425 			[CCS0]  = GEN11_GRDOM_RENDER,
426 			[CCS1]  = GEN11_GRDOM_RENDER,
427 			[CCS2]  = GEN11_GRDOM_RENDER,
428 			[CCS3]  = GEN11_GRDOM_RENDER,
429 			[GSC0]  = GEN12_GRDOM_GSC,
430 		};
431 		GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
432 			   !engine_reset_domains[id]);
433 		reset_domain = engine_reset_domains[id];
434 	} else {
435 		static const u32 engine_reset_domains[] = {
436 			[RCS0]  = GEN6_GRDOM_RENDER,
437 			[BCS0]  = GEN6_GRDOM_BLT,
438 			[VCS0]  = GEN6_GRDOM_MEDIA,
439 			[VCS1]  = GEN8_GRDOM_MEDIA2,
440 			[VECS0] = GEN6_GRDOM_VECS,
441 		};
442 		GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
443 			   !engine_reset_domains[id]);
444 		reset_domain = engine_reset_domains[id];
445 	}
446 
447 	return reset_domain;
448 }
449 
450 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id,
451 			      u8 logical_instance)
452 {
453 	const struct engine_info *info = &intel_engines[id];
454 	struct drm_i915_private *i915 = gt->i915;
455 	struct intel_engine_cs *engine;
456 	u8 guc_class;
457 
458 	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
459 	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
460 	BUILD_BUG_ON(I915_MAX_VCS > (MAX_ENGINE_INSTANCE + 1));
461 	BUILD_BUG_ON(I915_MAX_VECS > (MAX_ENGINE_INSTANCE + 1));
462 
463 	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
464 		return -EINVAL;
465 
466 	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
467 		return -EINVAL;
468 
469 	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
470 		return -EINVAL;
471 
472 	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
473 		return -EINVAL;
474 
475 	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
476 	if (!engine)
477 		return -ENOMEM;
478 
479 	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);
480 
481 	INIT_LIST_HEAD(&engine->pinned_contexts_list);
482 	engine->id = id;
483 	engine->legacy_idx = INVALID_ENGINE;
484 	engine->mask = BIT(id);
485 	engine->reset_domain = get_reset_domain(GRAPHICS_VER(gt->i915),
486 						id);
487 	engine->i915 = i915;
488 	engine->gt = gt;
489 	engine->uncore = gt->uncore;
490 	guc_class = engine_class_to_guc_class(info->class);
491 	engine->guc_id = MAKE_GUC_ID(guc_class, info->instance);
492 	engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
493 
494 	engine->irq_handler = nop_irq_handler;
495 
496 	engine->class = info->class;
497 	engine->instance = info->instance;
498 	engine->logical_mask = BIT(logical_instance);
499 	__sprint_engine_name(engine);
500 
501 	if ((engine->class == COMPUTE_CLASS && !RCS_MASK(engine->gt) &&
502 	     __ffs(CCS_MASK(engine->gt)) == engine->instance) ||
503 	     engine->class == RENDER_CLASS)
504 		engine->flags |= I915_ENGINE_FIRST_RENDER_COMPUTE;
505 
506 	/* features common between engines sharing EUs */
507 	if (engine->class == RENDER_CLASS || engine->class == COMPUTE_CLASS) {
508 		engine->flags |= I915_ENGINE_HAS_RCS_REG_STATE;
509 		engine->flags |= I915_ENGINE_HAS_EU_PRIORITY;
510 	}
511 
512 	engine->props.heartbeat_interval_ms =
513 		CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
514 	engine->props.max_busywait_duration_ns =
515 		CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
516 	engine->props.preempt_timeout_ms =
517 		CONFIG_DRM_I915_PREEMPT_TIMEOUT;
518 	engine->props.stop_timeout_ms =
519 		CONFIG_DRM_I915_STOP_TIMEOUT;
520 	engine->props.timeslice_duration_ms =
521 		CONFIG_DRM_I915_TIMESLICE_DURATION;
522 
523 	/*
524 	 * Mid-thread pre-emption is not available in Gen12. Unfortunately,
525 	 * some compute workloads run quite long threads. That means they get
526 	 * reset due to not pre-empting in a timely manner. So, bump the
527 	 * pre-emption timeout value to be much higher for compute engines.
528 	 */
529 	if (GRAPHICS_VER(i915) == 12 && (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE))
530 		engine->props.preempt_timeout_ms = CONFIG_DRM_I915_PREEMPT_TIMEOUT_COMPUTE;
531 
532 	/* Cap properties according to any system limits */
533 #define CLAMP_PROP(field) \
534 	do { \
535 		u64 clamp = intel_clamp_##field(engine, engine->props.field); \
536 		if (clamp != engine->props.field) { \
537 			drm_notice(&engine->i915->drm, \
538 				   "Warning, clamping %s to %lld to prevent overflow\n", \
539 				   #field, clamp); \
540 			engine->props.field = clamp; \
541 		} \
542 	} while (0)
543 
544 	CLAMP_PROP(heartbeat_interval_ms);
545 	CLAMP_PROP(max_busywait_duration_ns);
546 	CLAMP_PROP(preempt_timeout_ms);
547 	CLAMP_PROP(stop_timeout_ms);
548 	CLAMP_PROP(timeslice_duration_ms);
549 
550 #undef CLAMP_PROP
551 
552 	engine->defaults = engine->props; /* never to change again */
553 
554 	engine->context_size = intel_engine_context_size(gt, engine->class);
555 	if (WARN_ON(engine->context_size > BIT(20)))
556 		engine->context_size = 0;
557 	if (engine->context_size)
558 		DRIVER_CAPS(i915)->has_logical_contexts = true;
559 
560 	ewma__engine_latency_init(&engine->latency);
561 
562 	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
563 
564 	/* Scrub mmio state on takeover */
565 	intel_engine_sanitize_mmio(engine);
566 
567 	gt->engine_class[info->class][info->instance] = engine;
568 	gt->engine[id] = engine;
569 
570 	return 0;
571 }
572 
573 u64 intel_clamp_heartbeat_interval_ms(struct intel_engine_cs *engine, u64 value)
574 {
575 	value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
576 
577 	return value;
578 }
579 
580 u64 intel_clamp_max_busywait_duration_ns(struct intel_engine_cs *engine, u64 value)
581 {
582 	value = min(value, jiffies_to_nsecs(2));
583 
584 	return value;
585 }
586 
587 u64 intel_clamp_preempt_timeout_ms(struct intel_engine_cs *engine, u64 value)
588 {
589 	/*
590 	 * NB: The GuC API only supports 32bit values. However, the limit is further
591 	 * reduced due to internal calculations which would otherwise overflow.
592 	 */
593 	if (intel_guc_submission_is_wanted(&engine->gt->uc.guc))
594 		value = min_t(u64, value, guc_policy_max_preempt_timeout_ms());
595 
596 	value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
597 
598 	return value;
599 }
600 
601 u64 intel_clamp_stop_timeout_ms(struct intel_engine_cs *engine, u64 value)
602 {
603 	value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
604 
605 	return value;
606 }
607 
608 u64 intel_clamp_timeslice_duration_ms(struct intel_engine_cs *engine, u64 value)
609 {
610 	/*
611 	 * NB: The GuC API only supports 32bit values. However, the limit is further
612 	 * reduced due to internal calculations which would otherwise overflow.
613 	 */
614 	if (intel_guc_submission_is_wanted(&engine->gt->uc.guc))
615 		value = min_t(u64, value, guc_policy_max_exec_quantum_ms());
616 
617 	value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
618 
619 	return value;
620 }
621 
622 static void __setup_engine_capabilities(struct intel_engine_cs *engine)
623 {
624 	struct drm_i915_private *i915 = engine->i915;
625 
626 	if (engine->class == VIDEO_DECODE_CLASS) {
627 		/*
628 		 * HEVC support is present on first engine instance
629 		 * before Gen11 and on all instances afterwards.
630 		 */
631 		if (GRAPHICS_VER(i915) >= 11 ||
632 		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
633 			engine->uabi_capabilities |=
634 				I915_VIDEO_CLASS_CAPABILITY_HEVC;
635 
636 		/*
637 		 * SFC block is present only on even logical engine
638 		 * instances.
639 		 */
640 		if ((GRAPHICS_VER(i915) >= 11 &&
641 		     (engine->gt->info.vdbox_sfc_access &
642 		      BIT(engine->instance))) ||
643 		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
644 			engine->uabi_capabilities |=
645 				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
646 	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
647 		if (GRAPHICS_VER(i915) >= 9 &&
648 		    engine->gt->info.sfc_mask & BIT(engine->instance))
649 			engine->uabi_capabilities |=
650 				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
651 	}
652 }
653 
654 static void intel_setup_engine_capabilities(struct intel_gt *gt)
655 {
656 	struct intel_engine_cs *engine;
657 	enum intel_engine_id id;
658 
659 	for_each_engine(engine, gt, id)
660 		__setup_engine_capabilities(engine);
661 }
662 
663 /**
664  * intel_engines_release() - free the resources allocated for Command Streamers
665  * @gt: pointer to struct intel_gt
666  */
667 void intel_engines_release(struct intel_gt *gt)
668 {
669 	struct intel_engine_cs *engine;
670 	enum intel_engine_id id;
671 
672 	/*
673 	 * Before we release the resources held by engine, we must be certain
674 	 * that the HW is no longer accessing them -- having the GPU scribble
675 	 * to or read from a page being used for something else causes no end
676 	 * of fun.
677 	 *
678 	 * The GPU should be reset by this point, but assume the worst just
679 	 * in case we aborted before completely initialising the engines.
680 	 */
681 	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
682 	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
683 		__intel_gt_reset(gt, ALL_ENGINES);
684 
685 	/* Decouple the backend; but keep the layout for late GPU resets */
686 	for_each_engine(engine, gt, id) {
687 		if (!engine->release)
688 			continue;
689 
690 		intel_wakeref_wait_for_idle(&engine->wakeref);
691 		GEM_BUG_ON(intel_engine_pm_is_awake(engine));
692 
693 		engine->release(engine);
694 		engine->release = NULL;
695 
696 		memset(&engine->reset, 0, sizeof(engine->reset));
697 	}
698 }
699 
700 void intel_engine_free_request_pool(struct intel_engine_cs *engine)
701 {
702 	if (!engine->request_pool)
703 		return;
704 
705 #ifdef __linux__
706 	kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
707 #else
708 	pool_put(i915_request_slab_cache(), engine->request_pool);
709 #endif
710 }
711 
712 void intel_engines_free(struct intel_gt *gt)
713 {
714 	struct intel_engine_cs *engine;
715 	enum intel_engine_id id;
716 
717 	/* Free the requests! dma-resv keeps fences around for an eternity */
718 	rcu_barrier();
719 
720 	for_each_engine(engine, gt, id) {
721 		intel_engine_free_request_pool(engine);
722 		kfree(engine);
723 		gt->engine[id] = NULL;
724 	}
725 }
726 
727 static
728 bool gen11_vdbox_has_sfc(struct intel_gt *gt,
729 			 unsigned int physical_vdbox,
730 			 unsigned int logical_vdbox, u16 vdbox_mask)
731 {
732 	struct drm_i915_private *i915 = gt->i915;
733 
734 	/*
735 	 * In Gen11, only even numbered logical VDBOXes are hooked
736 	 * up to an SFC (Scaler & Format Converter) unit.
737 	 * In Gen12, Even numbered physical instance always are connected
738 	 * to an SFC. Odd numbered physical instances have SFC only if
739 	 * previous even instance is fused off.
740 	 *
741 	 * Starting with Xe_HP, there's also a dedicated SFC_ENABLE field
742 	 * in the fuse register that tells us whether a specific SFC is present.
743 	 */
744 	if ((gt->info.sfc_mask & BIT(physical_vdbox / 2)) == 0)
745 		return false;
746 	else if (MEDIA_VER(i915) >= 12)
747 		return (physical_vdbox % 2 == 0) ||
748 			!(BIT(physical_vdbox - 1) & vdbox_mask);
749 	else if (MEDIA_VER(i915) == 11)
750 		return logical_vdbox % 2 == 0;
751 
752 	return false;
753 }
754 
755 static void engine_mask_apply_media_fuses(struct intel_gt *gt)
756 {
757 	struct drm_i915_private *i915 = gt->i915;
758 	unsigned int logical_vdbox = 0;
759 	unsigned int i;
760 	u32 media_fuse, fuse1;
761 	u16 vdbox_mask;
762 	u16 vebox_mask;
763 
764 	if (MEDIA_VER(gt->i915) < 11)
765 		return;
766 
767 	/*
768 	 * On newer platforms the fusing register is called 'enable' and has
769 	 * enable semantics, while on older platforms it is called 'disable'
770 	 * and bits have disable semantices.
771 	 */
772 	media_fuse = intel_uncore_read(gt->uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);
773 	if (MEDIA_VER_FULL(i915) < IP_VER(12, 50))
774 		media_fuse = ~media_fuse;
775 
776 	vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
777 	vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
778 		      GEN11_GT_VEBOX_DISABLE_SHIFT;
779 
780 	if (MEDIA_VER_FULL(i915) >= IP_VER(12, 50)) {
781 		fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1);
782 		gt->info.sfc_mask = REG_FIELD_GET(XEHP_SFC_ENABLE_MASK, fuse1);
783 	} else {
784 		gt->info.sfc_mask = ~0;
785 	}
786 
787 	for (i = 0; i < I915_MAX_VCS; i++) {
788 		if (!HAS_ENGINE(gt, _VCS(i))) {
789 			vdbox_mask &= ~BIT(i);
790 			continue;
791 		}
792 
793 		if (!(BIT(i) & vdbox_mask)) {
794 			gt->info.engine_mask &= ~BIT(_VCS(i));
795 			drm_dbg(&i915->drm, "vcs%u fused off\n", i);
796 			continue;
797 		}
798 
799 		if (gen11_vdbox_has_sfc(gt, i, logical_vdbox, vdbox_mask))
800 			gt->info.vdbox_sfc_access |= BIT(i);
801 		logical_vdbox++;
802 	}
803 	drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n",
804 		vdbox_mask, VDBOX_MASK(gt));
805 	GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));
806 
807 	for (i = 0; i < I915_MAX_VECS; i++) {
808 		if (!HAS_ENGINE(gt, _VECS(i))) {
809 			vebox_mask &= ~BIT(i);
810 			continue;
811 		}
812 
813 		if (!(BIT(i) & vebox_mask)) {
814 			gt->info.engine_mask &= ~BIT(_VECS(i));
815 			drm_dbg(&i915->drm, "vecs%u fused off\n", i);
816 		}
817 	}
818 	drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n",
819 		vebox_mask, VEBOX_MASK(gt));
820 	GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));
821 }
822 
823 static void engine_mask_apply_compute_fuses(struct intel_gt *gt)
824 {
825 	struct drm_i915_private *i915 = gt->i915;
826 	struct intel_gt_info *info = &gt->info;
827 	int ss_per_ccs = info->sseu.max_subslices / I915_MAX_CCS;
828 	unsigned long ccs_mask;
829 	unsigned int i;
830 
831 	if (GRAPHICS_VER(i915) < 11)
832 		return;
833 
834 	if (hweight32(CCS_MASK(gt)) <= 1)
835 		return;
836 
837 	ccs_mask = intel_slicemask_from_xehp_dssmask(info->sseu.compute_subslice_mask,
838 						     ss_per_ccs);
839 	/*
840 	 * If all DSS in a quadrant are fused off, the corresponding CCS
841 	 * engine is not available for use.
842 	 */
843 	for_each_clear_bit(i, &ccs_mask, I915_MAX_CCS) {
844 		info->engine_mask &= ~BIT(_CCS(i));
845 		drm_dbg(&i915->drm, "ccs%u fused off\n", i);
846 	}
847 }
848 
849 static void engine_mask_apply_copy_fuses(struct intel_gt *gt)
850 {
851 	struct drm_i915_private *i915 = gt->i915;
852 	struct intel_gt_info *info = &gt->info;
853 	unsigned long meml3_mask;
854 	unsigned long quad;
855 
856 	if (!(GRAPHICS_VER_FULL(i915) >= IP_VER(12, 60) &&
857 	      GRAPHICS_VER_FULL(i915) < IP_VER(12, 70)))
858 		return;
859 
860 	meml3_mask = intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3);
861 	meml3_mask = REG_FIELD_GET(GEN12_MEML3_EN_MASK, meml3_mask);
862 
863 	/*
864 	 * Link Copy engines may be fused off according to meml3_mask. Each
865 	 * bit is a quad that houses 2 Link Copy and two Sub Copy engines.
866 	 */
867 	for_each_clear_bit(quad, &meml3_mask, GEN12_MAX_MSLICES) {
868 		unsigned int instance = quad * 2 + 1;
869 		intel_engine_mask_t mask = GENMASK(_BCS(instance + 1),
870 						   _BCS(instance));
871 
872 		if (mask & info->engine_mask) {
873 			drm_dbg(&i915->drm, "bcs%u fused off\n", instance);
874 			drm_dbg(&i915->drm, "bcs%u fused off\n", instance + 1);
875 
876 			info->engine_mask &= ~mask;
877 		}
878 	}
879 }
880 
881 /*
882  * Determine which engines are fused off in our particular hardware.
883  * Note that we have a catch-22 situation where we need to be able to access
884  * the blitter forcewake domain to read the engine fuses, but at the same time
885  * we need to know which engines are available on the system to know which
886  * forcewake domains are present. We solve this by intializing the forcewake
887  * domains based on the full engine mask in the platform capabilities before
888  * calling this function and pruning the domains for fused-off engines
889  * afterwards.
890  */
891 static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
892 {
893 	struct intel_gt_info *info = &gt->info;
894 
895 	GEM_BUG_ON(!info->engine_mask);
896 
897 	engine_mask_apply_media_fuses(gt);
898 	engine_mask_apply_compute_fuses(gt);
899 	engine_mask_apply_copy_fuses(gt);
900 
901 	/*
902 	 * The only use of the GSC CS is to load and communicate with the GSC
903 	 * FW, so we have no use for it if we don't have the FW.
904 	 *
905 	 * IMPORTANT: in cases where we don't have the GSC FW, we have a
906 	 * catch-22 situation that breaks media C6 due to 2 requirements:
907 	 * 1) once turned on, the GSC power well will not go to sleep unless the
908 	 *    GSC FW is loaded.
909 	 * 2) to enable idling (which is required for media C6) we need to
910 	 *    initialize the IDLE_MSG register for the GSC CS and do at least 1
911 	 *    submission, which will wake up the GSC power well.
912 	 */
913 	if (__HAS_ENGINE(info->engine_mask, GSC0) && !intel_uc_wants_gsc_uc(&gt->uc)) {
914 		drm_notice(&gt->i915->drm,
915 			   "No GSC FW selected, disabling GSC CS and media C6\n");
916 		info->engine_mask &= ~BIT(GSC0);
917 	}
918 
919 	return info->engine_mask;
920 }
921 
922 static void populate_logical_ids(struct intel_gt *gt, u8 *logical_ids,
923 				 u8 class, const u8 *map, u8 num_instances)
924 {
925 	int i, j;
926 	u8 current_logical_id = 0;
927 
928 	for (j = 0; j < num_instances; ++j) {
929 		for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
930 			if (!HAS_ENGINE(gt, i) ||
931 			    intel_engines[i].class != class)
932 				continue;
933 
934 			if (intel_engines[i].instance == map[j]) {
935 				logical_ids[intel_engines[i].instance] =
936 					current_logical_id++;
937 				break;
938 			}
939 		}
940 	}
941 }
942 
943 static void setup_logical_ids(struct intel_gt *gt, u8 *logical_ids, u8 class)
944 {
945 	/*
946 	 * Logical to physical mapping is needed for proper support
947 	 * to split-frame feature.
948 	 */
949 	if (MEDIA_VER(gt->i915) >= 11 && class == VIDEO_DECODE_CLASS) {
950 		const u8 map[] = { 0, 2, 4, 6, 1, 3, 5, 7 };
951 
952 		populate_logical_ids(gt, logical_ids, class,
953 				     map, ARRAY_SIZE(map));
954 	} else {
955 		int i;
956 		u8 map[MAX_ENGINE_INSTANCE + 1];
957 
958 		for (i = 0; i < MAX_ENGINE_INSTANCE + 1; ++i)
959 			map[i] = i;
960 		populate_logical_ids(gt, logical_ids, class,
961 				     map, ARRAY_SIZE(map));
962 	}
963 }
964 
965 /**
966  * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
967  * @gt: pointer to struct intel_gt
968  *
969  * Return: non-zero if the initialization failed.
970  */
971 int intel_engines_init_mmio(struct intel_gt *gt)
972 {
973 	struct drm_i915_private *i915 = gt->i915;
974 	const unsigned int engine_mask = init_engine_mask(gt);
975 	unsigned int mask = 0;
976 	unsigned int i, class;
977 	u8 logical_ids[MAX_ENGINE_INSTANCE + 1];
978 	int err;
979 
980 	drm_WARN_ON(&i915->drm, engine_mask == 0);
981 	drm_WARN_ON(&i915->drm, engine_mask &
982 		    GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
983 
984 	if (i915_inject_probe_failure(i915))
985 		return -ENODEV;
986 
987 	for (class = 0; class < MAX_ENGINE_CLASS + 1; ++class) {
988 		setup_logical_ids(gt, logical_ids, class);
989 
990 		for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
991 			u8 instance = intel_engines[i].instance;
992 
993 			if (intel_engines[i].class != class ||
994 			    !HAS_ENGINE(gt, i))
995 				continue;
996 
997 			err = intel_engine_setup(gt, i,
998 						 logical_ids[instance]);
999 			if (err)
1000 				goto cleanup;
1001 
1002 			mask |= BIT(i);
1003 		}
1004 	}
1005 
1006 	/*
1007 	 * Catch failures to update intel_engines table when the new engines
1008 	 * are added to the driver by a warning and disabling the forgotten
1009 	 * engines.
1010 	 */
1011 	if (drm_WARN_ON(&i915->drm, mask != engine_mask))
1012 		gt->info.engine_mask = mask;
1013 
1014 	gt->info.num_engines = hweight32(mask);
1015 
1016 	intel_gt_check_and_clear_faults(gt);
1017 
1018 	intel_setup_engine_capabilities(gt);
1019 
1020 	intel_uncore_prune_engine_fw_domains(gt->uncore, gt);
1021 
1022 	return 0;
1023 
1024 cleanup:
1025 	intel_engines_free(gt);
1026 	return err;
1027 }
1028 
1029 void intel_engine_init_execlists(struct intel_engine_cs *engine)
1030 {
1031 	struct intel_engine_execlists * const execlists = &engine->execlists;
1032 
1033 	execlists->port_mask = 1;
1034 	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
1035 	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
1036 
1037 	memset(execlists->pending, 0, sizeof(execlists->pending));
1038 	execlists->active =
1039 		memset(execlists->inflight, 0, sizeof(execlists->inflight));
1040 }
1041 
1042 static void cleanup_status_page(struct intel_engine_cs *engine)
1043 {
1044 	struct i915_vma *vma;
1045 
1046 	/* Prevent writes into HWSP after returning the page to the system */
1047 	intel_engine_set_hwsp_writemask(engine, ~0u);
1048 
1049 	vma = fetch_and_zero(&engine->status_page.vma);
1050 	if (!vma)
1051 		return;
1052 
1053 	if (!HWS_NEEDS_PHYSICAL(engine->i915))
1054 		i915_vma_unpin(vma);
1055 
1056 	i915_gem_object_unpin_map(vma->obj);
1057 	i915_gem_object_put(vma->obj);
1058 }
1059 
1060 static int pin_ggtt_status_page(struct intel_engine_cs *engine,
1061 				struct i915_gem_ww_ctx *ww,
1062 				struct i915_vma *vma)
1063 {
1064 	unsigned int flags;
1065 
1066 	if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
1067 		/*
1068 		 * On g33, we cannot place HWS above 256MiB, so
1069 		 * restrict its pinning to the low mappable arena.
1070 		 * Though this restriction is not documented for
1071 		 * gen4, gen5, or byt, they also behave similarly
1072 		 * and hang if the HWS is placed at the top of the
1073 		 * GTT. To generalise, it appears that all !llc
1074 		 * platforms have issues with us placing the HWS
1075 		 * above the mappable region (even though we never
1076 		 * actually map it).
1077 		 */
1078 		flags = PIN_MAPPABLE;
1079 	else
1080 		flags = PIN_HIGH;
1081 
1082 	return i915_ggtt_pin(vma, ww, 0, flags);
1083 }
1084 
1085 static int init_status_page(struct intel_engine_cs *engine)
1086 {
1087 	struct drm_i915_gem_object *obj;
1088 	struct i915_gem_ww_ctx ww;
1089 	struct i915_vma *vma;
1090 	void *vaddr;
1091 	int ret;
1092 
1093 	INIT_LIST_HEAD(&engine->status_page.timelines);
1094 
1095 	/*
1096 	 * Though the HWS register does support 36bit addresses, historically
1097 	 * we have had hangs and corruption reported due to wild writes if
1098 	 * the HWS is placed above 4G. We only allow objects to be allocated
1099 	 * in GFP_DMA32 for i965, and no earlier physical address users had
1100 	 * access to more than 4G.
1101 	 */
1102 	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
1103 	if (IS_ERR(obj)) {
1104 		drm_err(&engine->i915->drm,
1105 			"Failed to allocate status page\n");
1106 		return PTR_ERR(obj);
1107 	}
1108 
1109 	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
1110 
1111 	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
1112 	if (IS_ERR(vma)) {
1113 		ret = PTR_ERR(vma);
1114 		goto err_put;
1115 	}
1116 
1117 	i915_gem_ww_ctx_init(&ww, true);
1118 retry:
1119 	ret = i915_gem_object_lock(obj, &ww);
1120 	if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915))
1121 		ret = pin_ggtt_status_page(engine, &ww, vma);
1122 	if (ret)
1123 		goto err;
1124 
1125 	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1126 	if (IS_ERR(vaddr)) {
1127 		ret = PTR_ERR(vaddr);
1128 		goto err_unpin;
1129 	}
1130 
1131 	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
1132 	engine->status_page.vma = vma;
1133 
1134 err_unpin:
1135 	if (ret)
1136 		i915_vma_unpin(vma);
1137 err:
1138 	if (ret == -EDEADLK) {
1139 		ret = i915_gem_ww_ctx_backoff(&ww);
1140 		if (!ret)
1141 			goto retry;
1142 	}
1143 	i915_gem_ww_ctx_fini(&ww);
1144 err_put:
1145 	if (ret)
1146 		i915_gem_object_put(obj);
1147 	return ret;
1148 }
1149 
1150 static int intel_engine_init_tlb_invalidation(struct intel_engine_cs *engine)
1151 {
1152 	static const union intel_engine_tlb_inv_reg gen8_regs[] = {
1153 		[RENDER_CLASS].reg		= GEN8_RTCR,
1154 		[VIDEO_DECODE_CLASS].reg	= GEN8_M1TCR, /* , GEN8_M2TCR */
1155 		[VIDEO_ENHANCEMENT_CLASS].reg	= GEN8_VTCR,
1156 		[COPY_ENGINE_CLASS].reg		= GEN8_BTCR,
1157 	};
1158 	static const union intel_engine_tlb_inv_reg gen12_regs[] = {
1159 		[RENDER_CLASS].reg		= GEN12_GFX_TLB_INV_CR,
1160 		[VIDEO_DECODE_CLASS].reg	= GEN12_VD_TLB_INV_CR,
1161 		[VIDEO_ENHANCEMENT_CLASS].reg	= GEN12_VE_TLB_INV_CR,
1162 		[COPY_ENGINE_CLASS].reg		= GEN12_BLT_TLB_INV_CR,
1163 		[COMPUTE_CLASS].reg		= GEN12_COMPCTX_TLB_INV_CR,
1164 	};
1165 	static const union intel_engine_tlb_inv_reg xehp_regs[] = {
1166 		[RENDER_CLASS].mcr_reg		  = XEHP_GFX_TLB_INV_CR,
1167 		[VIDEO_DECODE_CLASS].mcr_reg	  = XEHP_VD_TLB_INV_CR,
1168 		[VIDEO_ENHANCEMENT_CLASS].mcr_reg = XEHP_VE_TLB_INV_CR,
1169 		[COPY_ENGINE_CLASS].mcr_reg	  = XEHP_BLT_TLB_INV_CR,
1170 		[COMPUTE_CLASS].mcr_reg		  = XEHP_COMPCTX_TLB_INV_CR,
1171 	};
1172 	static const union intel_engine_tlb_inv_reg xelpmp_regs[] = {
1173 		[VIDEO_DECODE_CLASS].reg	  = GEN12_VD_TLB_INV_CR,
1174 		[VIDEO_ENHANCEMENT_CLASS].reg     = GEN12_VE_TLB_INV_CR,
1175 		[OTHER_CLASS].reg		  = XELPMP_GSC_TLB_INV_CR,
1176 	};
1177 	struct drm_i915_private *i915 = engine->i915;
1178 	const unsigned int instance = engine->instance;
1179 	const unsigned int class = engine->class;
1180 	const union intel_engine_tlb_inv_reg *regs;
1181 	union intel_engine_tlb_inv_reg reg;
1182 	unsigned int num = 0;
1183 	u32 val;
1184 
1185 	/*
1186 	 * New platforms should not be added with catch-all-newer (>=)
1187 	 * condition so that any later platform added triggers the below warning
1188 	 * and in turn mandates a human cross-check of whether the invalidation
1189 	 * flows have compatible semantics.
1190 	 *
1191 	 * For instance with the 11.00 -> 12.00 transition three out of five
1192 	 * respective engine registers were moved to masked type. Then after the
1193 	 * 12.00 -> 12.50 transition multi cast handling is required too.
1194 	 */
1195 
1196 	if (engine->gt->type == GT_MEDIA) {
1197 		if (MEDIA_VER_FULL(i915) == IP_VER(13, 0)) {
1198 			regs = xelpmp_regs;
1199 			num = ARRAY_SIZE(xelpmp_regs);
1200 		}
1201 	} else {
1202 		if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 71) ||
1203 		    GRAPHICS_VER_FULL(i915) == IP_VER(12, 70) ||
1204 		    GRAPHICS_VER_FULL(i915) == IP_VER(12, 50) ||
1205 		    GRAPHICS_VER_FULL(i915) == IP_VER(12, 55)) {
1206 			regs = xehp_regs;
1207 			num = ARRAY_SIZE(xehp_regs);
1208 		} else if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 0) ||
1209 			   GRAPHICS_VER_FULL(i915) == IP_VER(12, 10)) {
1210 			regs = gen12_regs;
1211 			num = ARRAY_SIZE(gen12_regs);
1212 		} else if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) <= 11) {
1213 			regs = gen8_regs;
1214 			num = ARRAY_SIZE(gen8_regs);
1215 		} else if (GRAPHICS_VER(i915) < 8) {
1216 			return 0;
1217 		}
1218 	}
1219 
1220 	if (gt_WARN_ONCE(engine->gt, !num,
1221 			 "Platform does not implement TLB invalidation!"))
1222 		return -ENODEV;
1223 
1224 	if (gt_WARN_ON_ONCE(engine->gt,
1225 			    class >= num ||
1226 			    (!regs[class].reg.reg &&
1227 			     !regs[class].mcr_reg.reg)))
1228 		return -ERANGE;
1229 
1230 	reg = regs[class];
1231 
1232 	if (regs == xelpmp_regs && class == OTHER_CLASS) {
1233 		/*
1234 		 * There's only a single GSC instance, but it uses register bit
1235 		 * 1 instead of either 0 or OTHER_GSC_INSTANCE.
1236 		 */
1237 		GEM_WARN_ON(instance != OTHER_GSC_INSTANCE);
1238 		val = 1;
1239 	} else if (regs == gen8_regs && class == VIDEO_DECODE_CLASS && instance == 1) {
1240 		reg.reg = GEN8_M2TCR;
1241 		val = 0;
1242 	} else {
1243 		val = instance;
1244 	}
1245 
1246 	val = BIT(val);
1247 
1248 	engine->tlb_inv.mcr = regs == xehp_regs;
1249 	engine->tlb_inv.reg = reg;
1250 	engine->tlb_inv.done = val;
1251 
1252 	if (GRAPHICS_VER(i915) >= 12 &&
1253 	    (engine->class == VIDEO_DECODE_CLASS ||
1254 	     engine->class == VIDEO_ENHANCEMENT_CLASS ||
1255 	     engine->class == COMPUTE_CLASS ||
1256 	     engine->class == OTHER_CLASS))
1257 		engine->tlb_inv.request = _MASKED_BIT_ENABLE(val);
1258 	else
1259 		engine->tlb_inv.request = val;
1260 
1261 	return 0;
1262 }
1263 
1264 static int engine_setup_common(struct intel_engine_cs *engine)
1265 {
1266 	int err;
1267 
1268 	init_llist_head(&engine->barrier_tasks);
1269 
1270 	err = intel_engine_init_tlb_invalidation(engine);
1271 	if (err)
1272 		return err;
1273 
1274 	err = init_status_page(engine);
1275 	if (err)
1276 		return err;
1277 
1278 	engine->breadcrumbs = intel_breadcrumbs_create(engine);
1279 	if (!engine->breadcrumbs) {
1280 		err = -ENOMEM;
1281 		goto err_status;
1282 	}
1283 
1284 	engine->sched_engine = i915_sched_engine_create(ENGINE_PHYSICAL);
1285 	if (!engine->sched_engine) {
1286 		err = -ENOMEM;
1287 		goto err_sched_engine;
1288 	}
1289 	engine->sched_engine->private_data = engine;
1290 
1291 	err = intel_engine_init_cmd_parser(engine);
1292 	if (err)
1293 		goto err_cmd_parser;
1294 
1295 	intel_engine_init_execlists(engine);
1296 	intel_engine_init__pm(engine);
1297 	intel_engine_init_retire(engine);
1298 
1299 	/* Use the whole device by default */
1300 	engine->sseu =
1301 		intel_sseu_from_device_info(&engine->gt->info.sseu);
1302 
1303 	intel_engine_init_workarounds(engine);
1304 	intel_engine_init_whitelist(engine);
1305 	intel_engine_init_ctx_wa(engine);
1306 
1307 	if (GRAPHICS_VER(engine->i915) >= 12)
1308 		engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;
1309 
1310 	return 0;
1311 
1312 err_cmd_parser:
1313 	i915_sched_engine_put(engine->sched_engine);
1314 err_sched_engine:
1315 	intel_breadcrumbs_put(engine->breadcrumbs);
1316 err_status:
1317 	cleanup_status_page(engine);
1318 	return err;
1319 }
1320 
1321 struct measure_breadcrumb {
1322 	struct i915_request rq;
1323 	struct intel_ring ring;
1324 	u32 cs[2048];
1325 };
1326 
1327 static int measure_breadcrumb_dw(struct intel_context *ce)
1328 {
1329 	struct intel_engine_cs *engine = ce->engine;
1330 	struct measure_breadcrumb *frame;
1331 	int dw;
1332 
1333 	GEM_BUG_ON(!engine->gt->scratch);
1334 
1335 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1336 	if (!frame)
1337 		return -ENOMEM;
1338 
1339 	frame->rq.i915 = engine->i915;
1340 	frame->rq.engine = engine;
1341 	frame->rq.context = ce;
1342 	rcu_assign_pointer(frame->rq.timeline, ce->timeline);
1343 	frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno;
1344 
1345 	frame->ring.vaddr = frame->cs;
1346 	frame->ring.size = sizeof(frame->cs);
1347 	frame->ring.wrap =
1348 		BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
1349 	frame->ring.effective_size = frame->ring.size;
1350 	intel_ring_update_space(&frame->ring);
1351 	frame->rq.ring = &frame->ring;
1352 
1353 	mutex_lock(&ce->timeline->mutex);
1354 	spin_lock_irq(&engine->sched_engine->lock);
1355 
1356 	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
1357 
1358 	spin_unlock_irq(&engine->sched_engine->lock);
1359 	mutex_unlock(&ce->timeline->mutex);
1360 
1361 	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
1362 
1363 	kfree(frame);
1364 	return dw;
1365 }
1366 
1367 struct intel_context *
1368 intel_engine_create_pinned_context(struct intel_engine_cs *engine,
1369 				   struct i915_address_space *vm,
1370 				   unsigned int ring_size,
1371 				   unsigned int hwsp,
1372 				   struct lock_class_key *key,
1373 				   const char *name)
1374 {
1375 	struct intel_context *ce;
1376 	int err;
1377 
1378 	ce = intel_context_create(engine);
1379 	if (IS_ERR(ce))
1380 		return ce;
1381 
1382 	__set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
1383 	ce->timeline = page_pack_bits(NULL, hwsp);
1384 	ce->ring = NULL;
1385 	ce->ring_size = ring_size;
1386 
1387 	i915_vm_put(ce->vm);
1388 	ce->vm = i915_vm_get(vm);
1389 
1390 	err = intel_context_pin(ce); /* perma-pin so it is always available */
1391 	if (err) {
1392 		intel_context_put(ce);
1393 		return ERR_PTR(err);
1394 	}
1395 
1396 	list_add_tail(&ce->pinned_contexts_link, &engine->pinned_contexts_list);
1397 
1398 	/*
1399 	 * Give our perma-pinned kernel timelines a separate lockdep class,
1400 	 * so that we can use them from within the normal user timelines
1401 	 * should we need to inject GPU operations during their request
1402 	 * construction.
1403 	 */
1404 	lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
1405 
1406 	return ce;
1407 }
1408 
1409 void intel_engine_destroy_pinned_context(struct intel_context *ce)
1410 {
1411 	struct intel_engine_cs *engine = ce->engine;
1412 	struct i915_vma *hwsp = engine->status_page.vma;
1413 
1414 	GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp);
1415 
1416 	mutex_lock(&hwsp->vm->mutex);
1417 	list_del(&ce->timeline->engine_link);
1418 	mutex_unlock(&hwsp->vm->mutex);
1419 
1420 	list_del(&ce->pinned_contexts_link);
1421 	intel_context_unpin(ce);
1422 	intel_context_put(ce);
1423 }
1424 
1425 static struct intel_context *
1426 create_kernel_context(struct intel_engine_cs *engine)
1427 {
1428 	static struct lock_class_key kernel;
1429 
1430 	return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K,
1431 						  I915_GEM_HWS_SEQNO_ADDR,
1432 						  &kernel, "kernel_context");
1433 }
1434 
1435 /*
1436  * engine_init_common - initialize engine state which might require hw access
1437  * @engine: Engine to initialize.
1438  *
1439  * Initializes @engine@ structure members shared between legacy and execlists
1440  * submission modes which do require hardware access.
1441  *
1442  * Typcally done at later stages of submission mode specific engine setup.
1443  *
1444  * Returns zero on success or an error code on failure.
1445  */
1446 static int engine_init_common(struct intel_engine_cs *engine)
1447 {
1448 	struct intel_context *ce;
1449 	int ret;
1450 
1451 	engine->set_default_submission(engine);
1452 
1453 	/*
1454 	 * We may need to do things with the shrinker which
1455 	 * require us to immediately switch back to the default
1456 	 * context. This can cause a problem as pinning the
1457 	 * default context also requires GTT space which may not
1458 	 * be available. To avoid this we always pin the default
1459 	 * context.
1460 	 */
1461 	ce = create_kernel_context(engine);
1462 	if (IS_ERR(ce))
1463 		return PTR_ERR(ce);
1464 
1465 	ret = measure_breadcrumb_dw(ce);
1466 	if (ret < 0)
1467 		goto err_context;
1468 
1469 	engine->emit_fini_breadcrumb_dw = ret;
1470 	engine->kernel_context = ce;
1471 
1472 	return 0;
1473 
1474 err_context:
1475 	intel_engine_destroy_pinned_context(ce);
1476 	return ret;
1477 }
1478 
1479 int intel_engines_init(struct intel_gt *gt)
1480 {
1481 	int (*setup)(struct intel_engine_cs *engine);
1482 	struct intel_engine_cs *engine;
1483 	enum intel_engine_id id;
1484 	int err;
1485 
1486 	if (intel_uc_uses_guc_submission(&gt->uc)) {
1487 		gt->submission_method = INTEL_SUBMISSION_GUC;
1488 		setup = intel_guc_submission_setup;
1489 	} else if (HAS_EXECLISTS(gt->i915)) {
1490 		gt->submission_method = INTEL_SUBMISSION_ELSP;
1491 		setup = intel_execlists_submission_setup;
1492 	} else {
1493 		gt->submission_method = INTEL_SUBMISSION_RING;
1494 		setup = intel_ring_submission_setup;
1495 	}
1496 
1497 	for_each_engine(engine, gt, id) {
1498 		err = engine_setup_common(engine);
1499 		if (err)
1500 			return err;
1501 
1502 		err = setup(engine);
1503 		if (err) {
1504 			intel_engine_cleanup_common(engine);
1505 			return err;
1506 		}
1507 
1508 		/* The backend should now be responsible for cleanup */
1509 		GEM_BUG_ON(engine->release == NULL);
1510 
1511 		err = engine_init_common(engine);
1512 		if (err)
1513 			return err;
1514 
1515 		intel_engine_add_user(engine);
1516 	}
1517 
1518 	return 0;
1519 }
1520 
1521 /**
1522  * intel_engine_cleanup_common - cleans up the engine state created by
1523  *                                the common initiailizers.
1524  * @engine: Engine to cleanup.
1525  *
1526  * This cleans up everything created by the common helpers.
1527  */
1528 void intel_engine_cleanup_common(struct intel_engine_cs *engine)
1529 {
1530 	GEM_BUG_ON(!list_empty(&engine->sched_engine->requests));
1531 
1532 	i915_sched_engine_put(engine->sched_engine);
1533 	intel_breadcrumbs_put(engine->breadcrumbs);
1534 
1535 	intel_engine_fini_retire(engine);
1536 	intel_engine_cleanup_cmd_parser(engine);
1537 
1538 	if (engine->default_state)
1539 		uao_detach(engine->default_state);
1540 
1541 	if (engine->kernel_context)
1542 		intel_engine_destroy_pinned_context(engine->kernel_context);
1543 
1544 	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
1545 	cleanup_status_page(engine);
1546 
1547 	intel_wa_list_free(&engine->ctx_wa_list);
1548 	intel_wa_list_free(&engine->wa_list);
1549 	intel_wa_list_free(&engine->whitelist);
1550 }
1551 
1552 /**
1553  * intel_engine_resume - re-initializes the HW state of the engine
1554  * @engine: Engine to resume.
1555  *
1556  * Returns zero on success or an error code on failure.
1557  */
1558 int intel_engine_resume(struct intel_engine_cs *engine)
1559 {
1560 	intel_engine_apply_workarounds(engine);
1561 	intel_engine_apply_whitelist(engine);
1562 
1563 	return engine->resume(engine);
1564 }
1565 
1566 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
1567 {
1568 	struct drm_i915_private *i915 = engine->i915;
1569 
1570 	u64 acthd;
1571 
1572 	if (GRAPHICS_VER(i915) >= 8)
1573 		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
1574 	else if (GRAPHICS_VER(i915) >= 4)
1575 		acthd = ENGINE_READ(engine, RING_ACTHD);
1576 	else
1577 		acthd = ENGINE_READ(engine, ACTHD);
1578 
1579 	return acthd;
1580 }
1581 
1582 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
1583 {
1584 	u64 bbaddr;
1585 
1586 	if (GRAPHICS_VER(engine->i915) >= 8)
1587 		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
1588 	else
1589 		bbaddr = ENGINE_READ(engine, RING_BBADDR);
1590 
1591 	return bbaddr;
1592 }
1593 
1594 static unsigned long stop_timeout(const struct intel_engine_cs *engine)
1595 {
1596 	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
1597 		return 0;
1598 
1599 	/*
1600 	 * If we are doing a normal GPU reset, we can take our time and allow
1601 	 * the engine to quiesce. We've stopped submission to the engine, and
1602 	 * if we wait long enough an innocent context should complete and
1603 	 * leave the engine idle. So they should not be caught unaware by
1604 	 * the forthcoming GPU reset (which usually follows the stop_cs)!
1605 	 */
1606 	return READ_ONCE(engine->props.stop_timeout_ms);
1607 }
1608 
1609 static int __intel_engine_stop_cs(struct intel_engine_cs *engine,
1610 				  int fast_timeout_us,
1611 				  int slow_timeout_ms)
1612 {
1613 	struct intel_uncore *uncore = engine->uncore;
1614 	const i915_reg_t mode = RING_MI_MODE(engine->mmio_base);
1615 	int err;
1616 
1617 	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
1618 
1619 	/*
1620 	 * Wa_22011802037: Prior to doing a reset, ensure CS is
1621 	 * stopped, set ring stop bit and prefetch disable bit to halt CS
1622 	 */
1623 	if (IS_MTL_GRAPHICS_STEP(engine->i915, M, STEP_A0, STEP_B0) ||
1624 	    (GRAPHICS_VER(engine->i915) >= 11 &&
1625 	    GRAPHICS_VER_FULL(engine->i915) < IP_VER(12, 70)))
1626 		intel_uncore_write_fw(uncore, RING_MODE_GEN7(engine->mmio_base),
1627 				      _MASKED_BIT_ENABLE(GEN12_GFX_PREFETCH_DISABLE));
1628 
1629 	err = __intel_wait_for_register_fw(engine->uncore, mode,
1630 					   MODE_IDLE, MODE_IDLE,
1631 					   fast_timeout_us,
1632 					   slow_timeout_ms,
1633 					   NULL);
1634 
1635 	/* A final mmio read to let GPU writes be hopefully flushed to memory */
1636 	intel_uncore_posting_read_fw(uncore, mode);
1637 	return err;
1638 }
1639 
1640 int intel_engine_stop_cs(struct intel_engine_cs *engine)
1641 {
1642 	int err = 0;
1643 
1644 	if (GRAPHICS_VER(engine->i915) < 3)
1645 		return -ENODEV;
1646 
1647 	ENGINE_TRACE(engine, "\n");
1648 	/*
1649 	 * TODO: Find out why occasionally stopping the CS times out. Seen
1650 	 * especially with gem_eio tests.
1651 	 *
1652 	 * Occasionally trying to stop the cs times out, but does not adversely
1653 	 * affect functionality. The timeout is set as a config parameter that
1654 	 * defaults to 100ms. In most cases the follow up operation is to wait
1655 	 * for pending MI_FORCE_WAKES. The assumption is that this timeout is
1656 	 * sufficient for any pending MI_FORCEWAKEs to complete. Once root
1657 	 * caused, the caller must check and handle the return from this
1658 	 * function.
1659 	 */
1660 	if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) {
1661 		ENGINE_TRACE(engine,
1662 			     "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n",
1663 			     ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR,
1664 			     ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR);
1665 
1666 		/*
1667 		 * Sometimes we observe that the idle flag is not
1668 		 * set even though the ring is empty. So double
1669 		 * check before giving up.
1670 		 */
1671 		if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) !=
1672 		    (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR))
1673 			err = -ETIMEDOUT;
1674 	}
1675 
1676 	return err;
1677 }
1678 
1679 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
1680 {
1681 	ENGINE_TRACE(engine, "\n");
1682 
1683 	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1684 }
1685 
1686 static u32 __cs_pending_mi_force_wakes(struct intel_engine_cs *engine)
1687 {
1688 	static const i915_reg_t _reg[I915_NUM_ENGINES] = {
1689 		[RCS0] = MSG_IDLE_CS,
1690 		[BCS0] = MSG_IDLE_BCS,
1691 		[VCS0] = MSG_IDLE_VCS0,
1692 		[VCS1] = MSG_IDLE_VCS1,
1693 		[VCS2] = MSG_IDLE_VCS2,
1694 		[VCS3] = MSG_IDLE_VCS3,
1695 		[VCS4] = MSG_IDLE_VCS4,
1696 		[VCS5] = MSG_IDLE_VCS5,
1697 		[VCS6] = MSG_IDLE_VCS6,
1698 		[VCS7] = MSG_IDLE_VCS7,
1699 		[VECS0] = MSG_IDLE_VECS0,
1700 		[VECS1] = MSG_IDLE_VECS1,
1701 		[VECS2] = MSG_IDLE_VECS2,
1702 		[VECS3] = MSG_IDLE_VECS3,
1703 		[CCS0] = MSG_IDLE_CS,
1704 		[CCS1] = MSG_IDLE_CS,
1705 		[CCS2] = MSG_IDLE_CS,
1706 		[CCS3] = MSG_IDLE_CS,
1707 	};
1708 	u32 val;
1709 
1710 	if (!_reg[engine->id].reg)
1711 		return 0;
1712 
1713 	val = intel_uncore_read(engine->uncore, _reg[engine->id]);
1714 
1715 	/* bits[29:25] & bits[13:9] >> shift */
1716 	return (val & (val >> 16) & MSG_IDLE_FW_MASK) >> MSG_IDLE_FW_SHIFT;
1717 }
1718 
1719 static void __gpm_wait_for_fw_complete(struct intel_gt *gt, u32 fw_mask)
1720 {
1721 	int ret;
1722 
1723 	/* Ensure GPM receives fw up/down after CS is stopped */
1724 	udelay(1);
1725 
1726 	/* Wait for forcewake request to complete in GPM */
1727 	ret =  __intel_wait_for_register_fw(gt->uncore,
1728 					    GEN9_PWRGT_DOMAIN_STATUS,
1729 					    fw_mask, fw_mask, 5000, 0, NULL);
1730 
1731 	/* Ensure CS receives fw ack from GPM */
1732 	udelay(1);
1733 
1734 	if (ret)
1735 		GT_TRACE(gt, "Failed to complete pending forcewake %d\n", ret);
1736 }
1737 
1738 /*
1739  * Wa_22011802037:gen12: In addition to stopping the cs, we need to wait for any
1740  * pending MI_FORCE_WAKEUP requests that the CS has initiated to complete. The
1741  * pending status is indicated by bits[13:9] (masked by bits[29:25]) in the
1742  * MSG_IDLE register. There's one MSG_IDLE register per reset domain. Since we
1743  * are concerned only with the gt reset here, we use a logical OR of pending
1744  * forcewakeups from all reset domains and then wait for them to complete by
1745  * querying PWRGT_DOMAIN_STATUS.
1746  */
1747 void intel_engine_wait_for_pending_mi_fw(struct intel_engine_cs *engine)
1748 {
1749 	u32 fw_pending = __cs_pending_mi_force_wakes(engine);
1750 
1751 	if (fw_pending)
1752 		__gpm_wait_for_fw_complete(engine->gt, fw_pending);
1753 }
1754 
1755 /* NB: please notice the memset */
1756 void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1757 			       struct intel_instdone *instdone)
1758 {
1759 	struct drm_i915_private *i915 = engine->i915;
1760 	struct intel_uncore *uncore = engine->uncore;
1761 	u32 mmio_base = engine->mmio_base;
1762 	int slice;
1763 	int subslice;
1764 	int iter;
1765 
1766 	memset(instdone, 0, sizeof(*instdone));
1767 
1768 	if (GRAPHICS_VER(i915) >= 8) {
1769 		instdone->instdone =
1770 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1771 
1772 		if (engine->id != RCS0)
1773 			return;
1774 
1775 		instdone->slice_common =
1776 			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1777 		if (GRAPHICS_VER(i915) >= 12) {
1778 			instdone->slice_common_extra[0] =
1779 				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
1780 			instdone->slice_common_extra[1] =
1781 				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
1782 		}
1783 
1784 		for_each_ss_steering(iter, engine->gt, slice, subslice) {
1785 			instdone->sampler[slice][subslice] =
1786 				intel_gt_mcr_read(engine->gt,
1787 						  GEN8_SAMPLER_INSTDONE,
1788 						  slice, subslice);
1789 			instdone->row[slice][subslice] =
1790 				intel_gt_mcr_read(engine->gt,
1791 						  GEN8_ROW_INSTDONE,
1792 						  slice, subslice);
1793 		}
1794 
1795 		if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) {
1796 			for_each_ss_steering(iter, engine->gt, slice, subslice)
1797 				instdone->geom_svg[slice][subslice] =
1798 					intel_gt_mcr_read(engine->gt,
1799 							  XEHPG_INSTDONE_GEOM_SVG,
1800 							  slice, subslice);
1801 		}
1802 	} else if (GRAPHICS_VER(i915) >= 7) {
1803 		instdone->instdone =
1804 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1805 
1806 		if (engine->id != RCS0)
1807 			return;
1808 
1809 		instdone->slice_common =
1810 			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1811 		instdone->sampler[0][0] =
1812 			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
1813 		instdone->row[0][0] =
1814 			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1815 	} else if (GRAPHICS_VER(i915) >= 4) {
1816 		instdone->instdone =
1817 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1818 		if (engine->id == RCS0)
1819 			/* HACK: Using the wrong struct member */
1820 			instdone->slice_common =
1821 				intel_uncore_read(uncore, GEN4_INSTDONE1);
1822 	} else {
1823 		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1824 	}
1825 }
1826 
1827 static bool ring_is_idle(struct intel_engine_cs *engine)
1828 {
1829 	bool idle = true;
1830 
1831 	if (I915_SELFTEST_ONLY(!engine->mmio_base))
1832 		return true;
1833 
1834 	if (!intel_engine_pm_get_if_awake(engine))
1835 		return true;
1836 
1837 	/* First check that no commands are left in the ring */
1838 	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
1839 	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1840 		idle = false;
1841 
1842 	/* No bit for gen2, so assume the CS parser is idle */
1843 	if (GRAPHICS_VER(engine->i915) > 2 &&
1844 	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1845 		idle = false;
1846 
1847 	intel_engine_pm_put(engine);
1848 
1849 	return idle;
1850 }
1851 
1852 void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync)
1853 {
1854 	struct tasklet_struct *t = &engine->sched_engine->tasklet;
1855 
1856 	if (!t->callback)
1857 		return;
1858 
1859 	local_bh_disable();
1860 	if (tasklet_trylock(t)) {
1861 		/* Must wait for any GPU reset in progress. */
1862 		if (__tasklet_is_enabled(t))
1863 			t->callback(t);
1864 		tasklet_unlock(t);
1865 	}
1866 	local_bh_enable();
1867 
1868 	/* Synchronise and wait for the tasklet on another CPU */
1869 	if (sync)
1870 		tasklet_unlock_wait(t);
1871 }
1872 
1873 /**
1874  * intel_engine_is_idle() - Report if the engine has finished process all work
1875  * @engine: the intel_engine_cs
1876  *
1877  * Return true if there are no requests pending, nothing left to be submitted
1878  * to hardware, and that the engine is idle.
1879  */
1880 bool intel_engine_is_idle(struct intel_engine_cs *engine)
1881 {
1882 	/* More white lies, if wedged, hw state is inconsistent */
1883 	if (intel_gt_is_wedged(engine->gt))
1884 		return true;
1885 
1886 	if (!intel_engine_pm_is_awake(engine))
1887 		return true;
1888 
1889 	/* Waiting to drain ELSP? */
1890 	intel_synchronize_hardirq(engine->i915);
1891 	intel_engine_flush_submission(engine);
1892 
1893 	/* ELSP is empty, but there are ready requests? E.g. after reset */
1894 	if (!i915_sched_engine_is_empty(engine->sched_engine))
1895 		return false;
1896 
1897 	/* Ring stopped? */
1898 	return ring_is_idle(engine);
1899 }
1900 
1901 bool intel_engines_are_idle(struct intel_gt *gt)
1902 {
1903 	struct intel_engine_cs *engine;
1904 	enum intel_engine_id id;
1905 
1906 	/*
1907 	 * If the driver is wedged, HW state may be very inconsistent and
1908 	 * report that it is still busy, even though we have stopped using it.
1909 	 */
1910 	if (intel_gt_is_wedged(gt))
1911 		return true;
1912 
1913 	/* Already parked (and passed an idleness test); must still be idle */
1914 	if (!READ_ONCE(gt->awake))
1915 		return true;
1916 
1917 	for_each_engine(engine, gt, id) {
1918 		if (!intel_engine_is_idle(engine))
1919 			return false;
1920 	}
1921 
1922 	return true;
1923 }
1924 
1925 bool intel_engine_irq_enable(struct intel_engine_cs *engine)
1926 {
1927 	if (!engine->irq_enable)
1928 		return false;
1929 
1930 	/* Caller disables interrupts */
1931 	spin_lock(engine->gt->irq_lock);
1932 	engine->irq_enable(engine);
1933 	spin_unlock(engine->gt->irq_lock);
1934 
1935 	return true;
1936 }
1937 
1938 void intel_engine_irq_disable(struct intel_engine_cs *engine)
1939 {
1940 	if (!engine->irq_disable)
1941 		return;
1942 
1943 	/* Caller disables interrupts */
1944 	spin_lock(engine->gt->irq_lock);
1945 	engine->irq_disable(engine);
1946 	spin_unlock(engine->gt->irq_lock);
1947 }
1948 
1949 void intel_engines_reset_default_submission(struct intel_gt *gt)
1950 {
1951 	struct intel_engine_cs *engine;
1952 	enum intel_engine_id id;
1953 
1954 	for_each_engine(engine, gt, id) {
1955 		if (engine->sanitize)
1956 			engine->sanitize(engine);
1957 
1958 		engine->set_default_submission(engine);
1959 	}
1960 }
1961 
1962 bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
1963 {
1964 	switch (GRAPHICS_VER(engine->i915)) {
1965 	case 2:
1966 		return false; /* uses physical not virtual addresses */
1967 	case 3:
1968 		/* maybe only uses physical not virtual addresses */
1969 		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1970 	case 4:
1971 		return !IS_I965G(engine->i915); /* who knows! */
1972 	case 6:
1973 		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
1974 	default:
1975 		return true;
1976 	}
1977 }
1978 
1979 static struct intel_timeline *get_timeline(struct i915_request *rq)
1980 {
1981 	struct intel_timeline *tl;
1982 
1983 	/*
1984 	 * Even though we are holding the engine->sched_engine->lock here, there
1985 	 * is no control over the submission queue per-se and we are
1986 	 * inspecting the active state at a random point in time, with an
1987 	 * unknown queue. Play safe and make sure the timeline remains valid.
1988 	 * (Only being used for pretty printing, one extra kref shouldn't
1989 	 * cause a camel stampede!)
1990 	 */
1991 	rcu_read_lock();
1992 	tl = rcu_dereference(rq->timeline);
1993 	if (!kref_get_unless_zero(&tl->kref))
1994 		tl = NULL;
1995 	rcu_read_unlock();
1996 
1997 	return tl;
1998 }
1999 
2000 static int print_ring(char *buf, int sz, struct i915_request *rq)
2001 {
2002 	int len = 0;
2003 
2004 	if (!i915_request_signaled(rq)) {
2005 		struct intel_timeline *tl = get_timeline(rq);
2006 
2007 		len = scnprintf(buf, sz,
2008 				"ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
2009 				i915_ggtt_offset(rq->ring->vma),
2010 				tl ? tl->hwsp_offset : 0,
2011 				hwsp_seqno(rq),
2012 				DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
2013 						      1000 * 1000));
2014 
2015 		if (tl)
2016 			intel_timeline_put(tl);
2017 	}
2018 
2019 	return len;
2020 }
2021 
2022 static void hexdump(struct drm_printer *m, const void *buf, size_t len)
2023 {
2024 	STUB();
2025 #ifdef notyet
2026 	const size_t rowsize = 8 * sizeof(u32);
2027 	const void *prev = NULL;
2028 	bool skip = false;
2029 	size_t pos;
2030 
2031 	for (pos = 0; pos < len; pos += rowsize) {
2032 		char line[128];
2033 
2034 		if (prev && !memcmp(prev, buf + pos, rowsize)) {
2035 			if (!skip) {
2036 				drm_printf(m, "*\n");
2037 				skip = true;
2038 			}
2039 			continue;
2040 		}
2041 
2042 		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
2043 						rowsize, sizeof(u32),
2044 						line, sizeof(line),
2045 						false) >= sizeof(line));
2046 		drm_printf(m, "[%04zx] %s\n", pos, line);
2047 
2048 		prev = buf + pos;
2049 		skip = false;
2050 	}
2051 #endif
2052 }
2053 
2054 static const char *repr_timer(const struct timeout *t)
2055 {
2056 	if (!READ_ONCE(t->to_time))
2057 		return "inactive";
2058 
2059 	if (timer_pending(t))
2060 		return "active";
2061 
2062 	return "expired";
2063 }
2064 
2065 static void intel_engine_print_registers(struct intel_engine_cs *engine,
2066 					 struct drm_printer *m)
2067 {
2068 	struct drm_i915_private *i915 = engine->i915;
2069 	struct intel_engine_execlists * const execlists = &engine->execlists;
2070 	u64 addr;
2071 
2072 	if (engine->id == RENDER_CLASS && IS_GRAPHICS_VER(i915, 4, 7))
2073 		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
2074 	if (HAS_EXECLISTS(i915)) {
2075 		drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
2076 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
2077 		drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
2078 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
2079 	}
2080 	drm_printf(m, "\tRING_START: 0x%08x\n",
2081 		   ENGINE_READ(engine, RING_START));
2082 	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
2083 		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
2084 	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
2085 		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
2086 	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
2087 		   ENGINE_READ(engine, RING_CTL),
2088 		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
2089 	if (GRAPHICS_VER(engine->i915) > 2) {
2090 		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
2091 			   ENGINE_READ(engine, RING_MI_MODE),
2092 			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
2093 	}
2094 
2095 	if (GRAPHICS_VER(i915) >= 6) {
2096 		drm_printf(m, "\tRING_IMR:   0x%08x\n",
2097 			   ENGINE_READ(engine, RING_IMR));
2098 		drm_printf(m, "\tRING_ESR:   0x%08x\n",
2099 			   ENGINE_READ(engine, RING_ESR));
2100 		drm_printf(m, "\tRING_EMR:   0x%08x\n",
2101 			   ENGINE_READ(engine, RING_EMR));
2102 		drm_printf(m, "\tRING_EIR:   0x%08x\n",
2103 			   ENGINE_READ(engine, RING_EIR));
2104 	}
2105 
2106 	addr = intel_engine_get_active_head(engine);
2107 	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
2108 		   upper_32_bits(addr), lower_32_bits(addr));
2109 	addr = intel_engine_get_last_batch_head(engine);
2110 	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
2111 		   upper_32_bits(addr), lower_32_bits(addr));
2112 	if (GRAPHICS_VER(i915) >= 8)
2113 		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
2114 	else if (GRAPHICS_VER(i915) >= 4)
2115 		addr = ENGINE_READ(engine, RING_DMA_FADD);
2116 	else
2117 		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
2118 	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
2119 		   upper_32_bits(addr), lower_32_bits(addr));
2120 	if (GRAPHICS_VER(i915) >= 4) {
2121 		drm_printf(m, "\tIPEIR: 0x%08x\n",
2122 			   ENGINE_READ(engine, RING_IPEIR));
2123 		drm_printf(m, "\tIPEHR: 0x%08x\n",
2124 			   ENGINE_READ(engine, RING_IPEHR));
2125 	} else {
2126 		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
2127 		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
2128 	}
2129 
2130 	if (HAS_EXECLISTS(i915) && !intel_engine_uses_guc(engine)) {
2131 		struct i915_request * const *port, *rq;
2132 		const u32 *hws =
2133 			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
2134 		const u8 num_entries = execlists->csb_size;
2135 		unsigned int idx;
2136 		u8 read, write;
2137 
2138 		drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
2139 			   str_yes_no(test_bit(TASKLET_STATE_SCHED, &engine->sched_engine->tasklet.state)),
2140 			   str_enabled_disabled(!atomic_read(&engine->sched_engine->tasklet.count)),
2141 			   repr_timer(&engine->execlists.preempt),
2142 			   repr_timer(&engine->execlists.timer));
2143 
2144 		read = execlists->csb_head;
2145 		write = READ_ONCE(*execlists->csb_write);
2146 
2147 		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
2148 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
2149 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
2150 			   read, write, num_entries);
2151 
2152 		if (read >= num_entries)
2153 			read = 0;
2154 		if (write >= num_entries)
2155 			write = 0;
2156 		if (read > write)
2157 			write += num_entries;
2158 		while (read < write) {
2159 			idx = ++read % num_entries;
2160 			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
2161 				   idx, hws[idx * 2], hws[idx * 2 + 1]);
2162 		}
2163 
2164 		i915_sched_engine_active_lock_bh(engine->sched_engine);
2165 		rcu_read_lock();
2166 		for (port = execlists->active; (rq = *port); port++) {
2167 			char hdr[160];
2168 			int len;
2169 
2170 			len = scnprintf(hdr, sizeof(hdr),
2171 					"\t\tActive[%d]:  ccid:%08x%s%s, ",
2172 					(int)(port - execlists->active),
2173 					rq->context->lrc.ccid,
2174 					intel_context_is_closed(rq->context) ? "!" : "",
2175 					intel_context_is_banned(rq->context) ? "*" : "");
2176 			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
2177 			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
2178 			i915_request_show(m, rq, hdr, 0);
2179 		}
2180 		for (port = execlists->pending; (rq = *port); port++) {
2181 			char hdr[160];
2182 			int len;
2183 
2184 			len = scnprintf(hdr, sizeof(hdr),
2185 					"\t\tPending[%d]: ccid:%08x%s%s, ",
2186 					(int)(port - execlists->pending),
2187 					rq->context->lrc.ccid,
2188 					intel_context_is_closed(rq->context) ? "!" : "",
2189 					intel_context_is_banned(rq->context) ? "*" : "");
2190 			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
2191 			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
2192 			i915_request_show(m, rq, hdr, 0);
2193 		}
2194 		rcu_read_unlock();
2195 		i915_sched_engine_active_unlock_bh(engine->sched_engine);
2196 	} else if (GRAPHICS_VER(i915) > 6) {
2197 		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
2198 			   ENGINE_READ(engine, RING_PP_DIR_BASE));
2199 		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
2200 			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
2201 		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
2202 			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
2203 	}
2204 }
2205 
2206 static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
2207 {
2208 	struct i915_vma_resource *vma_res = rq->batch_res;
2209 	void *ring;
2210 	int size;
2211 
2212 	drm_printf(m,
2213 		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
2214 		   rq->head, rq->postfix, rq->tail,
2215 		   vma_res ? upper_32_bits(vma_res->start) : ~0u,
2216 		   vma_res ? lower_32_bits(vma_res->start) : ~0u);
2217 
2218 	size = rq->tail - rq->head;
2219 	if (rq->tail < rq->head)
2220 		size += rq->ring->size;
2221 
2222 	ring = kmalloc(size, GFP_ATOMIC);
2223 	if (ring) {
2224 		const void *vaddr = rq->ring->vaddr;
2225 		unsigned int head = rq->head;
2226 		unsigned int len = 0;
2227 
2228 		if (rq->tail < head) {
2229 			len = rq->ring->size - head;
2230 			memcpy(ring, vaddr + head, len);
2231 			head = 0;
2232 		}
2233 		memcpy(ring + len, vaddr + head, size - len);
2234 
2235 		hexdump(m, ring, size);
2236 		kfree(ring);
2237 	}
2238 }
2239 
2240 static unsigned long read_ul(void *p, size_t x)
2241 {
2242 	return *(unsigned long *)(p + x);
2243 }
2244 
2245 static void print_properties(struct intel_engine_cs *engine,
2246 			     struct drm_printer *m)
2247 {
2248 	static const struct pmap {
2249 		size_t offset;
2250 		const char *name;
2251 	} props[] = {
2252 #define P(x) { \
2253 	.offset = offsetof(typeof(engine->props), x), \
2254 	.name = #x \
2255 }
2256 		P(heartbeat_interval_ms),
2257 		P(max_busywait_duration_ns),
2258 		P(preempt_timeout_ms),
2259 		P(stop_timeout_ms),
2260 		P(timeslice_duration_ms),
2261 
2262 		{},
2263 #undef P
2264 	};
2265 	const struct pmap *p;
2266 
2267 	drm_printf(m, "\tProperties:\n");
2268 	for (p = props; p->name; p++)
2269 		drm_printf(m, "\t\t%s: %lu [default %lu]\n",
2270 			   p->name,
2271 			   read_ul(&engine->props, p->offset),
2272 			   read_ul(&engine->defaults, p->offset));
2273 }
2274 
2275 static void engine_dump_request(struct i915_request *rq, struct drm_printer *m, const char *msg)
2276 {
2277 	struct intel_timeline *tl = get_timeline(rq);
2278 
2279 	i915_request_show(m, rq, msg, 0);
2280 
2281 	drm_printf(m, "\t\tring->start:  0x%08x\n",
2282 		   i915_ggtt_offset(rq->ring->vma));
2283 	drm_printf(m, "\t\tring->head:   0x%08x\n",
2284 		   rq->ring->head);
2285 	drm_printf(m, "\t\tring->tail:   0x%08x\n",
2286 		   rq->ring->tail);
2287 	drm_printf(m, "\t\tring->emit:   0x%08x\n",
2288 		   rq->ring->emit);
2289 	drm_printf(m, "\t\tring->space:  0x%08x\n",
2290 		   rq->ring->space);
2291 
2292 	if (tl) {
2293 		drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
2294 			   tl->hwsp_offset);
2295 		intel_timeline_put(tl);
2296 	}
2297 
2298 	print_request_ring(m, rq);
2299 
2300 	if (rq->context->lrc_reg_state) {
2301 		drm_printf(m, "Logical Ring Context:\n");
2302 		hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
2303 	}
2304 }
2305 
2306 void intel_engine_dump_active_requests(struct list_head *requests,
2307 				       struct i915_request *hung_rq,
2308 				       struct drm_printer *m)
2309 {
2310 	struct i915_request *rq;
2311 	const char *msg;
2312 	enum i915_request_state state;
2313 
2314 	list_for_each_entry(rq, requests, sched.link) {
2315 		if (rq == hung_rq)
2316 			continue;
2317 
2318 		state = i915_test_request_state(rq);
2319 		if (state < I915_REQUEST_QUEUED)
2320 			continue;
2321 
2322 		if (state == I915_REQUEST_ACTIVE)
2323 			msg = "\t\tactive on engine";
2324 		else
2325 			msg = "\t\tactive in queue";
2326 
2327 		engine_dump_request(rq, m, msg);
2328 	}
2329 }
2330 
2331 static void engine_dump_active_requests(struct intel_engine_cs *engine,
2332 					struct drm_printer *m)
2333 {
2334 	struct intel_context *hung_ce = NULL;
2335 	struct i915_request *hung_rq = NULL;
2336 
2337 	/*
2338 	 * No need for an engine->irq_seqno_barrier() before the seqno reads.
2339 	 * The GPU is still running so requests are still executing and any
2340 	 * hardware reads will be out of date by the time they are reported.
2341 	 * But the intention here is just to report an instantaneous snapshot
2342 	 * so that's fine.
2343 	 */
2344 	intel_engine_get_hung_entity(engine, &hung_ce, &hung_rq);
2345 
2346 	drm_printf(m, "\tRequests:\n");
2347 
2348 	if (hung_rq)
2349 		engine_dump_request(hung_rq, m, "\t\thung");
2350 	else if (hung_ce)
2351 		drm_printf(m, "\t\tGot hung ce but no hung rq!\n");
2352 
2353 	if (intel_uc_uses_guc_submission(&engine->gt->uc))
2354 		intel_guc_dump_active_requests(engine, hung_rq, m);
2355 	else
2356 		intel_execlists_dump_active_requests(engine, hung_rq, m);
2357 
2358 	if (hung_rq)
2359 		i915_request_put(hung_rq);
2360 }
2361 
2362 void intel_engine_dump(struct intel_engine_cs *engine,
2363 		       struct drm_printer *m,
2364 		       const char *header, ...)
2365 {
2366 	struct i915_gpu_error * const error = &engine->i915->gpu_error;
2367 	struct i915_request *rq;
2368 	intel_wakeref_t wakeref;
2369 	ktime_t dummy;
2370 
2371 	if (header) {
2372 		va_list ap;
2373 
2374 		va_start(ap, header);
2375 		drm_vprintf(m, header, &ap);
2376 		va_end(ap);
2377 	}
2378 
2379 	if (intel_gt_is_wedged(engine->gt))
2380 		drm_printf(m, "*** WEDGED ***\n");
2381 
2382 	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
2383 	drm_printf(m, "\tBarriers?: %s\n",
2384 		   str_yes_no(!llist_empty(&engine->barrier_tasks)));
2385 	drm_printf(m, "\tLatency: %luus\n",
2386 		   ewma__engine_latency_read(&engine->latency));
2387 	if (intel_engine_supports_stats(engine))
2388 		drm_printf(m, "\tRuntime: %llums\n",
2389 			   ktime_to_ms(intel_engine_get_busy_time(engine,
2390 								  &dummy)));
2391 	drm_printf(m, "\tForcewake: %x domains, %d active\n",
2392 		   engine->fw_domain, READ_ONCE(engine->fw_active));
2393 
2394 	rcu_read_lock();
2395 	rq = READ_ONCE(engine->heartbeat.systole);
2396 	if (rq)
2397 		drm_printf(m, "\tHeartbeat: %d ms ago\n",
2398 			   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
2399 	rcu_read_unlock();
2400 	drm_printf(m, "\tReset count: %d (global %d)\n",
2401 		   i915_reset_engine_count(error, engine),
2402 		   i915_reset_count(error));
2403 	print_properties(engine, m);
2404 
2405 	engine_dump_active_requests(engine, m);
2406 
2407 	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
2408 	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
2409 	if (wakeref) {
2410 		intel_engine_print_registers(engine, m);
2411 		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
2412 	} else {
2413 		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
2414 	}
2415 
2416 	intel_execlists_show_requests(engine, m, i915_request_show, 8);
2417 
2418 	drm_printf(m, "HWSP:\n");
2419 	hexdump(m, engine->status_page.addr, PAGE_SIZE);
2420 
2421 	drm_printf(m, "Idle? %s\n", str_yes_no(intel_engine_is_idle(engine)));
2422 
2423 	intel_engine_print_breadcrumbs(engine, m);
2424 }
2425 
2426 /**
2427  * intel_engine_get_busy_time() - Return current accumulated engine busyness
2428  * @engine: engine to report on
2429  * @now: monotonic timestamp of sampling
2430  *
2431  * Returns accumulated time @engine was busy since engine stats were enabled.
2432  */
2433 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
2434 {
2435 	return engine->busyness(engine, now);
2436 }
2437 
2438 struct intel_context *
2439 intel_engine_create_virtual(struct intel_engine_cs **siblings,
2440 			    unsigned int count, unsigned long flags)
2441 {
2442 	if (count == 0)
2443 		return ERR_PTR(-EINVAL);
2444 
2445 	if (count == 1 && !(flags & FORCE_VIRTUAL))
2446 		return intel_context_create(siblings[0]);
2447 
2448 	GEM_BUG_ON(!siblings[0]->cops->create_virtual);
2449 	return siblings[0]->cops->create_virtual(siblings, count, flags);
2450 }
2451 
2452 static struct i915_request *engine_execlist_find_hung_request(struct intel_engine_cs *engine)
2453 {
2454 	struct i915_request *request, *active = NULL;
2455 
2456 	/*
2457 	 * This search does not work in GuC submission mode. However, the GuC
2458 	 * will report the hanging context directly to the driver itself. So
2459 	 * the driver should never get here when in GuC mode.
2460 	 */
2461 	GEM_BUG_ON(intel_uc_uses_guc_submission(&engine->gt->uc));
2462 
2463 	/*
2464 	 * We are called by the error capture, reset and to dump engine
2465 	 * state at random points in time. In particular, note that neither is
2466 	 * crucially ordered with an interrupt. After a hang, the GPU is dead
2467 	 * and we assume that no more writes can happen (we waited long enough
2468 	 * for all writes that were in transaction to be flushed) - adding an
2469 	 * extra delay for a recent interrupt is pointless. Hence, we do
2470 	 * not need an engine->irq_seqno_barrier() before the seqno reads.
2471 	 * At all other times, we must assume the GPU is still running, but
2472 	 * we only care about the snapshot of this moment.
2473 	 */
2474 	lockdep_assert_held(&engine->sched_engine->lock);
2475 
2476 	rcu_read_lock();
2477 	request = execlists_active(&engine->execlists);
2478 	if (request) {
2479 		struct intel_timeline *tl = request->context->timeline;
2480 
2481 		list_for_each_entry_from_reverse(request, &tl->requests, link) {
2482 			if (__i915_request_is_complete(request))
2483 				break;
2484 
2485 			active = request;
2486 		}
2487 	}
2488 	rcu_read_unlock();
2489 	if (active)
2490 		return active;
2491 
2492 	list_for_each_entry(request, &engine->sched_engine->requests,
2493 			    sched.link) {
2494 		if (i915_test_request_state(request) != I915_REQUEST_ACTIVE)
2495 			continue;
2496 
2497 		active = request;
2498 		break;
2499 	}
2500 
2501 	return active;
2502 }
2503 
2504 void intel_engine_get_hung_entity(struct intel_engine_cs *engine,
2505 				  struct intel_context **ce, struct i915_request **rq)
2506 {
2507 	unsigned long flags;
2508 
2509 	*ce = intel_engine_get_hung_context(engine);
2510 	if (*ce) {
2511 		intel_engine_clear_hung_context(engine);
2512 
2513 		*rq = intel_context_get_active_request(*ce);
2514 		return;
2515 	}
2516 
2517 	/*
2518 	 * Getting here with GuC enabled means it is a forced error capture
2519 	 * with no actual hang. So, no need to attempt the execlist search.
2520 	 */
2521 	if (intel_uc_uses_guc_submission(&engine->gt->uc))
2522 		return;
2523 
2524 	spin_lock_irqsave(&engine->sched_engine->lock, flags);
2525 	*rq = engine_execlist_find_hung_request(engine);
2526 	if (*rq)
2527 		*rq = i915_request_get_rcu(*rq);
2528 	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
2529 }
2530 
2531 void xehp_enable_ccs_engines(struct intel_engine_cs *engine)
2532 {
2533 	/*
2534 	 * If there are any non-fused-off CCS engines, we need to enable CCS
2535 	 * support in the RCU_MODE register.  This only needs to be done once,
2536 	 * so for simplicity we'll take care of this in the RCS engine's
2537 	 * resume handler; since the RCS and all CCS engines belong to the
2538 	 * same reset domain and are reset together, this will also take care
2539 	 * of re-applying the setting after i915-triggered resets.
2540 	 */
2541 	if (!CCS_MASK(engine->gt))
2542 		return;
2543 
2544 	intel_uncore_write(engine->uncore, GEN12_RCU_MODE,
2545 			   _MASKED_BIT_ENABLE(GEN12_RCU_MODE_CCS_ENABLE));
2546 }
2547 
2548 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2549 #include "mock_engine.c"
2550 #include "selftest_engine.c"
2551 #include "selftest_engine_cs.c"
2552 #endif
2553