1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2016 Intel Corporation 4 */ 5 6 #include <linux/string_helpers.h> 7 8 #include <drm/drm_print.h> 9 10 #include "gem/i915_gem_context.h" 11 #include "gem/i915_gem_internal.h" 12 #include "gt/intel_gt_print.h" 13 #include "gt/intel_gt_regs.h" 14 15 #include "i915_cmd_parser.h" 16 #include "i915_drv.h" 17 #include "i915_irq.h" 18 #include "i915_reg.h" 19 #include "intel_breadcrumbs.h" 20 #include "intel_context.h" 21 #include "intel_engine.h" 22 #include "intel_engine_pm.h" 23 #include "intel_engine_regs.h" 24 #include "intel_engine_user.h" 25 #include "intel_execlists_submission.h" 26 #include "intel_gt.h" 27 #include "intel_gt_mcr.h" 28 #include "intel_gt_pm.h" 29 #include "intel_gt_requests.h" 30 #include "intel_lrc.h" 31 #include "intel_lrc_reg.h" 32 #include "intel_reset.h" 33 #include "intel_ring.h" 34 #include "uc/intel_guc_submission.h" 35 36 /* Haswell does have the CXT_SIZE register however it does not appear to be 37 * valid. Now, docs explain in dwords what is in the context object. The full 38 * size is 70720 bytes, however, the power context and execlist context will 39 * never be saved (power context is stored elsewhere, and execlists don't work 40 * on HSW) - so the final size, including the extra state required for the 41 * Resource Streamer, is 66944 bytes, which rounds to 17 pages. 42 */ 43 #define HSW_CXT_TOTAL_SIZE (17 * PAGE_SIZE) 44 45 #define DEFAULT_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE) 46 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE) 47 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE) 48 #define GEN11_LR_CONTEXT_RENDER_SIZE (14 * PAGE_SIZE) 49 50 #define GEN8_LR_CONTEXT_OTHER_SIZE ( 2 * PAGE_SIZE) 51 52 #define MAX_MMIO_BASES 3 53 struct engine_info { 54 u8 class; 55 u8 instance; 56 /* mmio bases table *must* be sorted in reverse graphics_ver order */ 57 struct engine_mmio_base { 58 u32 graphics_ver : 8; 59 u32 base : 24; 60 } mmio_bases[MAX_MMIO_BASES]; 61 }; 62 63 static const struct engine_info intel_engines[] = { 64 [RCS0] = { 65 .class = RENDER_CLASS, 66 .instance = 0, 67 .mmio_bases = { 68 { .graphics_ver = 1, .base = RENDER_RING_BASE } 69 }, 70 }, 71 [BCS0] = { 72 .class = COPY_ENGINE_CLASS, 73 .instance = 0, 74 .mmio_bases = { 75 { .graphics_ver = 6, .base = BLT_RING_BASE } 76 }, 77 }, 78 [BCS1] = { 79 .class = COPY_ENGINE_CLASS, 80 .instance = 1, 81 .mmio_bases = { 82 { .graphics_ver = 12, .base = XEHPC_BCS1_RING_BASE } 83 }, 84 }, 85 [BCS2] = { 86 .class = COPY_ENGINE_CLASS, 87 .instance = 2, 88 .mmio_bases = { 89 { .graphics_ver = 12, .base = XEHPC_BCS2_RING_BASE } 90 }, 91 }, 92 [BCS3] = { 93 .class = COPY_ENGINE_CLASS, 94 .instance = 3, 95 .mmio_bases = { 96 { .graphics_ver = 12, .base = XEHPC_BCS3_RING_BASE } 97 }, 98 }, 99 [BCS4] = { 100 .class = COPY_ENGINE_CLASS, 101 .instance = 4, 102 .mmio_bases = { 103 { .graphics_ver = 12, .base = XEHPC_BCS4_RING_BASE } 104 }, 105 }, 106 [BCS5] = { 107 .class = COPY_ENGINE_CLASS, 108 .instance = 5, 109 .mmio_bases = { 110 { .graphics_ver = 12, .base = XEHPC_BCS5_RING_BASE } 111 }, 112 }, 113 [BCS6] = { 114 .class = COPY_ENGINE_CLASS, 115 .instance = 6, 116 .mmio_bases = { 117 { .graphics_ver = 12, .base = XEHPC_BCS6_RING_BASE } 118 }, 119 }, 120 [BCS7] = { 121 .class = COPY_ENGINE_CLASS, 122 .instance = 7, 123 .mmio_bases = { 124 { .graphics_ver = 12, .base = XEHPC_BCS7_RING_BASE } 125 }, 126 }, 127 [BCS8] = { 128 .class = COPY_ENGINE_CLASS, 129 .instance = 8, 130 .mmio_bases = { 131 { .graphics_ver = 12, .base = XEHPC_BCS8_RING_BASE } 132 }, 133 }, 134 [VCS0] = { 135 .class = VIDEO_DECODE_CLASS, 136 .instance = 0, 137 .mmio_bases = { 138 { .graphics_ver = 11, .base = GEN11_BSD_RING_BASE }, 139 { .graphics_ver = 6, .base = GEN6_BSD_RING_BASE }, 140 { .graphics_ver = 4, .base = BSD_RING_BASE } 141 }, 142 }, 143 [VCS1] = { 144 .class = VIDEO_DECODE_CLASS, 145 .instance = 1, 146 .mmio_bases = { 147 { .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE }, 148 { .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE } 149 }, 150 }, 151 [VCS2] = { 152 .class = VIDEO_DECODE_CLASS, 153 .instance = 2, 154 .mmio_bases = { 155 { .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE } 156 }, 157 }, 158 [VCS3] = { 159 .class = VIDEO_DECODE_CLASS, 160 .instance = 3, 161 .mmio_bases = { 162 { .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE } 163 }, 164 }, 165 [VCS4] = { 166 .class = VIDEO_DECODE_CLASS, 167 .instance = 4, 168 .mmio_bases = { 169 { .graphics_ver = 12, .base = XEHP_BSD5_RING_BASE } 170 }, 171 }, 172 [VCS5] = { 173 .class = VIDEO_DECODE_CLASS, 174 .instance = 5, 175 .mmio_bases = { 176 { .graphics_ver = 12, .base = XEHP_BSD6_RING_BASE } 177 }, 178 }, 179 [VCS6] = { 180 .class = VIDEO_DECODE_CLASS, 181 .instance = 6, 182 .mmio_bases = { 183 { .graphics_ver = 12, .base = XEHP_BSD7_RING_BASE } 184 }, 185 }, 186 [VCS7] = { 187 .class = VIDEO_DECODE_CLASS, 188 .instance = 7, 189 .mmio_bases = { 190 { .graphics_ver = 12, .base = XEHP_BSD8_RING_BASE } 191 }, 192 }, 193 [VECS0] = { 194 .class = VIDEO_ENHANCEMENT_CLASS, 195 .instance = 0, 196 .mmio_bases = { 197 { .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE }, 198 { .graphics_ver = 7, .base = VEBOX_RING_BASE } 199 }, 200 }, 201 [VECS1] = { 202 .class = VIDEO_ENHANCEMENT_CLASS, 203 .instance = 1, 204 .mmio_bases = { 205 { .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE } 206 }, 207 }, 208 [VECS2] = { 209 .class = VIDEO_ENHANCEMENT_CLASS, 210 .instance = 2, 211 .mmio_bases = { 212 { .graphics_ver = 12, .base = XEHP_VEBOX3_RING_BASE } 213 }, 214 }, 215 [VECS3] = { 216 .class = VIDEO_ENHANCEMENT_CLASS, 217 .instance = 3, 218 .mmio_bases = { 219 { .graphics_ver = 12, .base = XEHP_VEBOX4_RING_BASE } 220 }, 221 }, 222 [CCS0] = { 223 .class = COMPUTE_CLASS, 224 .instance = 0, 225 .mmio_bases = { 226 { .graphics_ver = 12, .base = GEN12_COMPUTE0_RING_BASE } 227 } 228 }, 229 [CCS1] = { 230 .class = COMPUTE_CLASS, 231 .instance = 1, 232 .mmio_bases = { 233 { .graphics_ver = 12, .base = GEN12_COMPUTE1_RING_BASE } 234 } 235 }, 236 [CCS2] = { 237 .class = COMPUTE_CLASS, 238 .instance = 2, 239 .mmio_bases = { 240 { .graphics_ver = 12, .base = GEN12_COMPUTE2_RING_BASE } 241 } 242 }, 243 [CCS3] = { 244 .class = COMPUTE_CLASS, 245 .instance = 3, 246 .mmio_bases = { 247 { .graphics_ver = 12, .base = GEN12_COMPUTE3_RING_BASE } 248 } 249 }, 250 [GSC0] = { 251 .class = OTHER_CLASS, 252 .instance = OTHER_GSC_INSTANCE, 253 .mmio_bases = { 254 { .graphics_ver = 12, .base = MTL_GSC_RING_BASE } 255 } 256 }, 257 }; 258 259 /** 260 * intel_engine_context_size() - return the size of the context for an engine 261 * @gt: the gt 262 * @class: engine class 263 * 264 * Each engine class may require a different amount of space for a context 265 * image. 266 * 267 * Return: size (in bytes) of an engine class specific context image 268 * 269 * Note: this size includes the HWSP, which is part of the context image 270 * in LRC mode, but does not include the "shared data page" used with 271 * GuC submission. The caller should account for this if using the GuC. 272 */ 273 u32 intel_engine_context_size(struct intel_gt *gt, u8 class) 274 { 275 struct intel_uncore *uncore = gt->uncore; 276 u32 cxt_size; 277 278 BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE); 279 280 switch (class) { 281 case COMPUTE_CLASS: 282 fallthrough; 283 case RENDER_CLASS: 284 switch (GRAPHICS_VER(gt->i915)) { 285 default: 286 MISSING_CASE(GRAPHICS_VER(gt->i915)); 287 return DEFAULT_LR_CONTEXT_RENDER_SIZE; 288 case 12: 289 case 11: 290 return GEN11_LR_CONTEXT_RENDER_SIZE; 291 case 9: 292 return GEN9_LR_CONTEXT_RENDER_SIZE; 293 case 8: 294 return GEN8_LR_CONTEXT_RENDER_SIZE; 295 case 7: 296 if (IS_HASWELL(gt->i915)) 297 return HSW_CXT_TOTAL_SIZE; 298 299 cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE); 300 return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64, 301 PAGE_SIZE); 302 case 6: 303 cxt_size = intel_uncore_read(uncore, CXT_SIZE); 304 return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64, 305 PAGE_SIZE); 306 case 5: 307 case 4: 308 /* 309 * There is a discrepancy here between the size reported 310 * by the register and the size of the context layout 311 * in the docs. Both are described as authorative! 312 * 313 * The discrepancy is on the order of a few cachelines, 314 * but the total is under one page (4k), which is our 315 * minimum allocation anyway so it should all come 316 * out in the wash. 317 */ 318 cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1; 319 drm_dbg(>->i915->drm, 320 "graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n", 321 GRAPHICS_VER(gt->i915), cxt_size * 64, 322 cxt_size - 1); 323 return round_up(cxt_size * 64, PAGE_SIZE); 324 case 3: 325 case 2: 326 /* For the special day when i810 gets merged. */ 327 case 1: 328 return 0; 329 } 330 break; 331 default: 332 MISSING_CASE(class); 333 fallthrough; 334 case VIDEO_DECODE_CLASS: 335 case VIDEO_ENHANCEMENT_CLASS: 336 case COPY_ENGINE_CLASS: 337 case OTHER_CLASS: 338 if (GRAPHICS_VER(gt->i915) < 8) 339 return 0; 340 return GEN8_LR_CONTEXT_OTHER_SIZE; 341 } 342 } 343 344 static u32 __engine_mmio_base(struct drm_i915_private *i915, 345 const struct engine_mmio_base *bases) 346 { 347 int i; 348 349 for (i = 0; i < MAX_MMIO_BASES; i++) 350 if (GRAPHICS_VER(i915) >= bases[i].graphics_ver) 351 break; 352 353 GEM_BUG_ON(i == MAX_MMIO_BASES); 354 GEM_BUG_ON(!bases[i].base); 355 356 return bases[i].base; 357 } 358 359 static void __sprint_engine_name(struct intel_engine_cs *engine) 360 { 361 /* 362 * Before we know what the uABI name for this engine will be, 363 * we still would like to keep track of this engine in the debug logs. 364 * We throw in a ' here as a reminder that this isn't its final name. 365 */ 366 GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u", 367 intel_engine_class_repr(engine->class), 368 engine->instance) >= sizeof(engine->name)); 369 } 370 371 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask) 372 { 373 /* 374 * Though they added more rings on g4x/ilk, they did not add 375 * per-engine HWSTAM until gen6. 376 */ 377 if (GRAPHICS_VER(engine->i915) < 6 && engine->class != RENDER_CLASS) 378 return; 379 380 if (GRAPHICS_VER(engine->i915) >= 3) 381 ENGINE_WRITE(engine, RING_HWSTAM, mask); 382 else 383 ENGINE_WRITE16(engine, RING_HWSTAM, mask); 384 } 385 386 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine) 387 { 388 /* Mask off all writes into the unknown HWSP */ 389 intel_engine_set_hwsp_writemask(engine, ~0u); 390 } 391 392 static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir) 393 { 394 GEM_DEBUG_WARN_ON(iir); 395 } 396 397 static u32 get_reset_domain(u8 ver, enum intel_engine_id id) 398 { 399 u32 reset_domain; 400 401 if (ver >= 11) { 402 static const u32 engine_reset_domains[] = { 403 [RCS0] = GEN11_GRDOM_RENDER, 404 [BCS0] = GEN11_GRDOM_BLT, 405 [BCS1] = XEHPC_GRDOM_BLT1, 406 [BCS2] = XEHPC_GRDOM_BLT2, 407 [BCS3] = XEHPC_GRDOM_BLT3, 408 [BCS4] = XEHPC_GRDOM_BLT4, 409 [BCS5] = XEHPC_GRDOM_BLT5, 410 [BCS6] = XEHPC_GRDOM_BLT6, 411 [BCS7] = XEHPC_GRDOM_BLT7, 412 [BCS8] = XEHPC_GRDOM_BLT8, 413 [VCS0] = GEN11_GRDOM_MEDIA, 414 [VCS1] = GEN11_GRDOM_MEDIA2, 415 [VCS2] = GEN11_GRDOM_MEDIA3, 416 [VCS3] = GEN11_GRDOM_MEDIA4, 417 [VCS4] = GEN11_GRDOM_MEDIA5, 418 [VCS5] = GEN11_GRDOM_MEDIA6, 419 [VCS6] = GEN11_GRDOM_MEDIA7, 420 [VCS7] = GEN11_GRDOM_MEDIA8, 421 [VECS0] = GEN11_GRDOM_VECS, 422 [VECS1] = GEN11_GRDOM_VECS2, 423 [VECS2] = GEN11_GRDOM_VECS3, 424 [VECS3] = GEN11_GRDOM_VECS4, 425 [CCS0] = GEN11_GRDOM_RENDER, 426 [CCS1] = GEN11_GRDOM_RENDER, 427 [CCS2] = GEN11_GRDOM_RENDER, 428 [CCS3] = GEN11_GRDOM_RENDER, 429 [GSC0] = GEN12_GRDOM_GSC, 430 }; 431 GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) || 432 !engine_reset_domains[id]); 433 reset_domain = engine_reset_domains[id]; 434 } else { 435 static const u32 engine_reset_domains[] = { 436 [RCS0] = GEN6_GRDOM_RENDER, 437 [BCS0] = GEN6_GRDOM_BLT, 438 [VCS0] = GEN6_GRDOM_MEDIA, 439 [VCS1] = GEN8_GRDOM_MEDIA2, 440 [VECS0] = GEN6_GRDOM_VECS, 441 }; 442 GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) || 443 !engine_reset_domains[id]); 444 reset_domain = engine_reset_domains[id]; 445 } 446 447 return reset_domain; 448 } 449 450 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id, 451 u8 logical_instance) 452 { 453 const struct engine_info *info = &intel_engines[id]; 454 struct drm_i915_private *i915 = gt->i915; 455 struct intel_engine_cs *engine; 456 u8 guc_class; 457 458 BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH)); 459 BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH)); 460 BUILD_BUG_ON(I915_MAX_VCS > (MAX_ENGINE_INSTANCE + 1)); 461 BUILD_BUG_ON(I915_MAX_VECS > (MAX_ENGINE_INSTANCE + 1)); 462 463 if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine))) 464 return -EINVAL; 465 466 if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS)) 467 return -EINVAL; 468 469 if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE)) 470 return -EINVAL; 471 472 if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance])) 473 return -EINVAL; 474 475 engine = kzalloc(sizeof(*engine), GFP_KERNEL); 476 if (!engine) 477 return -ENOMEM; 478 479 BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES); 480 481 INIT_LIST_HEAD(&engine->pinned_contexts_list); 482 engine->id = id; 483 engine->legacy_idx = INVALID_ENGINE; 484 engine->mask = BIT(id); 485 engine->reset_domain = get_reset_domain(GRAPHICS_VER(gt->i915), 486 id); 487 engine->i915 = i915; 488 engine->gt = gt; 489 engine->uncore = gt->uncore; 490 guc_class = engine_class_to_guc_class(info->class); 491 engine->guc_id = MAKE_GUC_ID(guc_class, info->instance); 492 engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases); 493 494 engine->irq_handler = nop_irq_handler; 495 496 engine->class = info->class; 497 engine->instance = info->instance; 498 engine->logical_mask = BIT(logical_instance); 499 __sprint_engine_name(engine); 500 501 if ((engine->class == COMPUTE_CLASS && !RCS_MASK(engine->gt) && 502 __ffs(CCS_MASK(engine->gt)) == engine->instance) || 503 engine->class == RENDER_CLASS) 504 engine->flags |= I915_ENGINE_FIRST_RENDER_COMPUTE; 505 506 /* features common between engines sharing EUs */ 507 if (engine->class == RENDER_CLASS || engine->class == COMPUTE_CLASS) { 508 engine->flags |= I915_ENGINE_HAS_RCS_REG_STATE; 509 engine->flags |= I915_ENGINE_HAS_EU_PRIORITY; 510 } 511 512 engine->props.heartbeat_interval_ms = 513 CONFIG_DRM_I915_HEARTBEAT_INTERVAL; 514 engine->props.max_busywait_duration_ns = 515 CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT; 516 engine->props.preempt_timeout_ms = 517 CONFIG_DRM_I915_PREEMPT_TIMEOUT; 518 engine->props.stop_timeout_ms = 519 CONFIG_DRM_I915_STOP_TIMEOUT; 520 engine->props.timeslice_duration_ms = 521 CONFIG_DRM_I915_TIMESLICE_DURATION; 522 523 /* 524 * Mid-thread pre-emption is not available in Gen12. Unfortunately, 525 * some compute workloads run quite long threads. That means they get 526 * reset due to not pre-empting in a timely manner. So, bump the 527 * pre-emption timeout value to be much higher for compute engines. 528 */ 529 if (GRAPHICS_VER(i915) == 12 && (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE)) 530 engine->props.preempt_timeout_ms = CONFIG_DRM_I915_PREEMPT_TIMEOUT_COMPUTE; 531 532 /* Cap properties according to any system limits */ 533 #define CLAMP_PROP(field) \ 534 do { \ 535 u64 clamp = intel_clamp_##field(engine, engine->props.field); \ 536 if (clamp != engine->props.field) { \ 537 drm_notice(&engine->i915->drm, \ 538 "Warning, clamping %s to %lld to prevent overflow\n", \ 539 #field, clamp); \ 540 engine->props.field = clamp; \ 541 } \ 542 } while (0) 543 544 CLAMP_PROP(heartbeat_interval_ms); 545 CLAMP_PROP(max_busywait_duration_ns); 546 CLAMP_PROP(preempt_timeout_ms); 547 CLAMP_PROP(stop_timeout_ms); 548 CLAMP_PROP(timeslice_duration_ms); 549 550 #undef CLAMP_PROP 551 552 engine->defaults = engine->props; /* never to change again */ 553 554 engine->context_size = intel_engine_context_size(gt, engine->class); 555 if (WARN_ON(engine->context_size > BIT(20))) 556 engine->context_size = 0; 557 if (engine->context_size) 558 DRIVER_CAPS(i915)->has_logical_contexts = true; 559 560 ewma__engine_latency_init(&engine->latency); 561 562 ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier); 563 564 /* Scrub mmio state on takeover */ 565 intel_engine_sanitize_mmio(engine); 566 567 gt->engine_class[info->class][info->instance] = engine; 568 gt->engine[id] = engine; 569 570 return 0; 571 } 572 573 u64 intel_clamp_heartbeat_interval_ms(struct intel_engine_cs *engine, u64 value) 574 { 575 value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT)); 576 577 return value; 578 } 579 580 u64 intel_clamp_max_busywait_duration_ns(struct intel_engine_cs *engine, u64 value) 581 { 582 value = min(value, jiffies_to_nsecs(2)); 583 584 return value; 585 } 586 587 u64 intel_clamp_preempt_timeout_ms(struct intel_engine_cs *engine, u64 value) 588 { 589 /* 590 * NB: The GuC API only supports 32bit values. However, the limit is further 591 * reduced due to internal calculations which would otherwise overflow. 592 */ 593 if (intel_guc_submission_is_wanted(&engine->gt->uc.guc)) 594 value = min_t(u64, value, guc_policy_max_preempt_timeout_ms()); 595 596 value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT)); 597 598 return value; 599 } 600 601 u64 intel_clamp_stop_timeout_ms(struct intel_engine_cs *engine, u64 value) 602 { 603 value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT)); 604 605 return value; 606 } 607 608 u64 intel_clamp_timeslice_duration_ms(struct intel_engine_cs *engine, u64 value) 609 { 610 /* 611 * NB: The GuC API only supports 32bit values. However, the limit is further 612 * reduced due to internal calculations which would otherwise overflow. 613 */ 614 if (intel_guc_submission_is_wanted(&engine->gt->uc.guc)) 615 value = min_t(u64, value, guc_policy_max_exec_quantum_ms()); 616 617 value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT)); 618 619 return value; 620 } 621 622 static void __setup_engine_capabilities(struct intel_engine_cs *engine) 623 { 624 struct drm_i915_private *i915 = engine->i915; 625 626 if (engine->class == VIDEO_DECODE_CLASS) { 627 /* 628 * HEVC support is present on first engine instance 629 * before Gen11 and on all instances afterwards. 630 */ 631 if (GRAPHICS_VER(i915) >= 11 || 632 (GRAPHICS_VER(i915) >= 9 && engine->instance == 0)) 633 engine->uabi_capabilities |= 634 I915_VIDEO_CLASS_CAPABILITY_HEVC; 635 636 /* 637 * SFC block is present only on even logical engine 638 * instances. 639 */ 640 if ((GRAPHICS_VER(i915) >= 11 && 641 (engine->gt->info.vdbox_sfc_access & 642 BIT(engine->instance))) || 643 (GRAPHICS_VER(i915) >= 9 && engine->instance == 0)) 644 engine->uabi_capabilities |= 645 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC; 646 } else if (engine->class == VIDEO_ENHANCEMENT_CLASS) { 647 if (GRAPHICS_VER(i915) >= 9 && 648 engine->gt->info.sfc_mask & BIT(engine->instance)) 649 engine->uabi_capabilities |= 650 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC; 651 } 652 } 653 654 static void intel_setup_engine_capabilities(struct intel_gt *gt) 655 { 656 struct intel_engine_cs *engine; 657 enum intel_engine_id id; 658 659 for_each_engine(engine, gt, id) 660 __setup_engine_capabilities(engine); 661 } 662 663 /** 664 * intel_engines_release() - free the resources allocated for Command Streamers 665 * @gt: pointer to struct intel_gt 666 */ 667 void intel_engines_release(struct intel_gt *gt) 668 { 669 struct intel_engine_cs *engine; 670 enum intel_engine_id id; 671 672 /* 673 * Before we release the resources held by engine, we must be certain 674 * that the HW is no longer accessing them -- having the GPU scribble 675 * to or read from a page being used for something else causes no end 676 * of fun. 677 * 678 * The GPU should be reset by this point, but assume the worst just 679 * in case we aborted before completely initialising the engines. 680 */ 681 GEM_BUG_ON(intel_gt_pm_is_awake(gt)); 682 if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) 683 __intel_gt_reset(gt, ALL_ENGINES); 684 685 /* Decouple the backend; but keep the layout for late GPU resets */ 686 for_each_engine(engine, gt, id) { 687 if (!engine->release) 688 continue; 689 690 intel_wakeref_wait_for_idle(&engine->wakeref); 691 GEM_BUG_ON(intel_engine_pm_is_awake(engine)); 692 693 engine->release(engine); 694 engine->release = NULL; 695 696 memset(&engine->reset, 0, sizeof(engine->reset)); 697 } 698 } 699 700 void intel_engine_free_request_pool(struct intel_engine_cs *engine) 701 { 702 if (!engine->request_pool) 703 return; 704 705 #ifdef __linux__ 706 kmem_cache_free(i915_request_slab_cache(), engine->request_pool); 707 #else 708 pool_put(i915_request_slab_cache(), engine->request_pool); 709 #endif 710 } 711 712 void intel_engines_free(struct intel_gt *gt) 713 { 714 struct intel_engine_cs *engine; 715 enum intel_engine_id id; 716 717 /* Free the requests! dma-resv keeps fences around for an eternity */ 718 rcu_barrier(); 719 720 for_each_engine(engine, gt, id) { 721 intel_engine_free_request_pool(engine); 722 kfree(engine); 723 gt->engine[id] = NULL; 724 } 725 } 726 727 static 728 bool gen11_vdbox_has_sfc(struct intel_gt *gt, 729 unsigned int physical_vdbox, 730 unsigned int logical_vdbox, u16 vdbox_mask) 731 { 732 struct drm_i915_private *i915 = gt->i915; 733 734 /* 735 * In Gen11, only even numbered logical VDBOXes are hooked 736 * up to an SFC (Scaler & Format Converter) unit. 737 * In Gen12, Even numbered physical instance always are connected 738 * to an SFC. Odd numbered physical instances have SFC only if 739 * previous even instance is fused off. 740 * 741 * Starting with Xe_HP, there's also a dedicated SFC_ENABLE field 742 * in the fuse register that tells us whether a specific SFC is present. 743 */ 744 if ((gt->info.sfc_mask & BIT(physical_vdbox / 2)) == 0) 745 return false; 746 else if (MEDIA_VER(i915) >= 12) 747 return (physical_vdbox % 2 == 0) || 748 !(BIT(physical_vdbox - 1) & vdbox_mask); 749 else if (MEDIA_VER(i915) == 11) 750 return logical_vdbox % 2 == 0; 751 752 return false; 753 } 754 755 static void engine_mask_apply_media_fuses(struct intel_gt *gt) 756 { 757 struct drm_i915_private *i915 = gt->i915; 758 unsigned int logical_vdbox = 0; 759 unsigned int i; 760 u32 media_fuse, fuse1; 761 u16 vdbox_mask; 762 u16 vebox_mask; 763 764 if (MEDIA_VER(gt->i915) < 11) 765 return; 766 767 /* 768 * On newer platforms the fusing register is called 'enable' and has 769 * enable semantics, while on older platforms it is called 'disable' 770 * and bits have disable semantices. 771 */ 772 media_fuse = intel_uncore_read(gt->uncore, GEN11_GT_VEBOX_VDBOX_DISABLE); 773 if (MEDIA_VER_FULL(i915) < IP_VER(12, 50)) 774 media_fuse = ~media_fuse; 775 776 vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK; 777 vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >> 778 GEN11_GT_VEBOX_DISABLE_SHIFT; 779 780 if (MEDIA_VER_FULL(i915) >= IP_VER(12, 50)) { 781 fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1); 782 gt->info.sfc_mask = REG_FIELD_GET(XEHP_SFC_ENABLE_MASK, fuse1); 783 } else { 784 gt->info.sfc_mask = ~0; 785 } 786 787 for (i = 0; i < I915_MAX_VCS; i++) { 788 if (!HAS_ENGINE(gt, _VCS(i))) { 789 vdbox_mask &= ~BIT(i); 790 continue; 791 } 792 793 if (!(BIT(i) & vdbox_mask)) { 794 gt->info.engine_mask &= ~BIT(_VCS(i)); 795 drm_dbg(&i915->drm, "vcs%u fused off\n", i); 796 continue; 797 } 798 799 if (gen11_vdbox_has_sfc(gt, i, logical_vdbox, vdbox_mask)) 800 gt->info.vdbox_sfc_access |= BIT(i); 801 logical_vdbox++; 802 } 803 drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n", 804 vdbox_mask, VDBOX_MASK(gt)); 805 GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt)); 806 807 for (i = 0; i < I915_MAX_VECS; i++) { 808 if (!HAS_ENGINE(gt, _VECS(i))) { 809 vebox_mask &= ~BIT(i); 810 continue; 811 } 812 813 if (!(BIT(i) & vebox_mask)) { 814 gt->info.engine_mask &= ~BIT(_VECS(i)); 815 drm_dbg(&i915->drm, "vecs%u fused off\n", i); 816 } 817 } 818 drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n", 819 vebox_mask, VEBOX_MASK(gt)); 820 GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt)); 821 } 822 823 static void engine_mask_apply_compute_fuses(struct intel_gt *gt) 824 { 825 struct drm_i915_private *i915 = gt->i915; 826 struct intel_gt_info *info = >->info; 827 int ss_per_ccs = info->sseu.max_subslices / I915_MAX_CCS; 828 unsigned long ccs_mask; 829 unsigned int i; 830 831 if (GRAPHICS_VER(i915) < 11) 832 return; 833 834 if (hweight32(CCS_MASK(gt)) <= 1) 835 return; 836 837 ccs_mask = intel_slicemask_from_xehp_dssmask(info->sseu.compute_subslice_mask, 838 ss_per_ccs); 839 /* 840 * If all DSS in a quadrant are fused off, the corresponding CCS 841 * engine is not available for use. 842 */ 843 for_each_clear_bit(i, &ccs_mask, I915_MAX_CCS) { 844 info->engine_mask &= ~BIT(_CCS(i)); 845 drm_dbg(&i915->drm, "ccs%u fused off\n", i); 846 } 847 } 848 849 static void engine_mask_apply_copy_fuses(struct intel_gt *gt) 850 { 851 struct drm_i915_private *i915 = gt->i915; 852 struct intel_gt_info *info = >->info; 853 unsigned long meml3_mask; 854 unsigned long quad; 855 856 if (!(GRAPHICS_VER_FULL(i915) >= IP_VER(12, 60) && 857 GRAPHICS_VER_FULL(i915) < IP_VER(12, 70))) 858 return; 859 860 meml3_mask = intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3); 861 meml3_mask = REG_FIELD_GET(GEN12_MEML3_EN_MASK, meml3_mask); 862 863 /* 864 * Link Copy engines may be fused off according to meml3_mask. Each 865 * bit is a quad that houses 2 Link Copy and two Sub Copy engines. 866 */ 867 for_each_clear_bit(quad, &meml3_mask, GEN12_MAX_MSLICES) { 868 unsigned int instance = quad * 2 + 1; 869 intel_engine_mask_t mask = GENMASK(_BCS(instance + 1), 870 _BCS(instance)); 871 872 if (mask & info->engine_mask) { 873 drm_dbg(&i915->drm, "bcs%u fused off\n", instance); 874 drm_dbg(&i915->drm, "bcs%u fused off\n", instance + 1); 875 876 info->engine_mask &= ~mask; 877 } 878 } 879 } 880 881 /* 882 * Determine which engines are fused off in our particular hardware. 883 * Note that we have a catch-22 situation where we need to be able to access 884 * the blitter forcewake domain to read the engine fuses, but at the same time 885 * we need to know which engines are available on the system to know which 886 * forcewake domains are present. We solve this by intializing the forcewake 887 * domains based on the full engine mask in the platform capabilities before 888 * calling this function and pruning the domains for fused-off engines 889 * afterwards. 890 */ 891 static intel_engine_mask_t init_engine_mask(struct intel_gt *gt) 892 { 893 struct intel_gt_info *info = >->info; 894 895 GEM_BUG_ON(!info->engine_mask); 896 897 engine_mask_apply_media_fuses(gt); 898 engine_mask_apply_compute_fuses(gt); 899 engine_mask_apply_copy_fuses(gt); 900 901 /* 902 * The only use of the GSC CS is to load and communicate with the GSC 903 * FW, so we have no use for it if we don't have the FW. 904 * 905 * IMPORTANT: in cases where we don't have the GSC FW, we have a 906 * catch-22 situation that breaks media C6 due to 2 requirements: 907 * 1) once turned on, the GSC power well will not go to sleep unless the 908 * GSC FW is loaded. 909 * 2) to enable idling (which is required for media C6) we need to 910 * initialize the IDLE_MSG register for the GSC CS and do at least 1 911 * submission, which will wake up the GSC power well. 912 */ 913 if (__HAS_ENGINE(info->engine_mask, GSC0) && !intel_uc_wants_gsc_uc(>->uc)) { 914 drm_notice(>->i915->drm, 915 "No GSC FW selected, disabling GSC CS and media C6\n"); 916 info->engine_mask &= ~BIT(GSC0); 917 } 918 919 return info->engine_mask; 920 } 921 922 static void populate_logical_ids(struct intel_gt *gt, u8 *logical_ids, 923 u8 class, const u8 *map, u8 num_instances) 924 { 925 int i, j; 926 u8 current_logical_id = 0; 927 928 for (j = 0; j < num_instances; ++j) { 929 for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) { 930 if (!HAS_ENGINE(gt, i) || 931 intel_engines[i].class != class) 932 continue; 933 934 if (intel_engines[i].instance == map[j]) { 935 logical_ids[intel_engines[i].instance] = 936 current_logical_id++; 937 break; 938 } 939 } 940 } 941 } 942 943 static void setup_logical_ids(struct intel_gt *gt, u8 *logical_ids, u8 class) 944 { 945 /* 946 * Logical to physical mapping is needed for proper support 947 * to split-frame feature. 948 */ 949 if (MEDIA_VER(gt->i915) >= 11 && class == VIDEO_DECODE_CLASS) { 950 const u8 map[] = { 0, 2, 4, 6, 1, 3, 5, 7 }; 951 952 populate_logical_ids(gt, logical_ids, class, 953 map, ARRAY_SIZE(map)); 954 } else { 955 int i; 956 u8 map[MAX_ENGINE_INSTANCE + 1]; 957 958 for (i = 0; i < MAX_ENGINE_INSTANCE + 1; ++i) 959 map[i] = i; 960 populate_logical_ids(gt, logical_ids, class, 961 map, ARRAY_SIZE(map)); 962 } 963 } 964 965 /** 966 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers 967 * @gt: pointer to struct intel_gt 968 * 969 * Return: non-zero if the initialization failed. 970 */ 971 int intel_engines_init_mmio(struct intel_gt *gt) 972 { 973 struct drm_i915_private *i915 = gt->i915; 974 const unsigned int engine_mask = init_engine_mask(gt); 975 unsigned int mask = 0; 976 unsigned int i, class; 977 u8 logical_ids[MAX_ENGINE_INSTANCE + 1]; 978 int err; 979 980 drm_WARN_ON(&i915->drm, engine_mask == 0); 981 drm_WARN_ON(&i915->drm, engine_mask & 982 GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES)); 983 984 if (i915_inject_probe_failure(i915)) 985 return -ENODEV; 986 987 for (class = 0; class < MAX_ENGINE_CLASS + 1; ++class) { 988 setup_logical_ids(gt, logical_ids, class); 989 990 for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) { 991 u8 instance = intel_engines[i].instance; 992 993 if (intel_engines[i].class != class || 994 !HAS_ENGINE(gt, i)) 995 continue; 996 997 err = intel_engine_setup(gt, i, 998 logical_ids[instance]); 999 if (err) 1000 goto cleanup; 1001 1002 mask |= BIT(i); 1003 } 1004 } 1005 1006 /* 1007 * Catch failures to update intel_engines table when the new engines 1008 * are added to the driver by a warning and disabling the forgotten 1009 * engines. 1010 */ 1011 if (drm_WARN_ON(&i915->drm, mask != engine_mask)) 1012 gt->info.engine_mask = mask; 1013 1014 gt->info.num_engines = hweight32(mask); 1015 1016 intel_gt_check_and_clear_faults(gt); 1017 1018 intel_setup_engine_capabilities(gt); 1019 1020 intel_uncore_prune_engine_fw_domains(gt->uncore, gt); 1021 1022 return 0; 1023 1024 cleanup: 1025 intel_engines_free(gt); 1026 return err; 1027 } 1028 1029 void intel_engine_init_execlists(struct intel_engine_cs *engine) 1030 { 1031 struct intel_engine_execlists * const execlists = &engine->execlists; 1032 1033 execlists->port_mask = 1; 1034 GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists))); 1035 GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS); 1036 1037 memset(execlists->pending, 0, sizeof(execlists->pending)); 1038 execlists->active = 1039 memset(execlists->inflight, 0, sizeof(execlists->inflight)); 1040 } 1041 1042 static void cleanup_status_page(struct intel_engine_cs *engine) 1043 { 1044 struct i915_vma *vma; 1045 1046 /* Prevent writes into HWSP after returning the page to the system */ 1047 intel_engine_set_hwsp_writemask(engine, ~0u); 1048 1049 vma = fetch_and_zero(&engine->status_page.vma); 1050 if (!vma) 1051 return; 1052 1053 if (!HWS_NEEDS_PHYSICAL(engine->i915)) 1054 i915_vma_unpin(vma); 1055 1056 i915_gem_object_unpin_map(vma->obj); 1057 i915_gem_object_put(vma->obj); 1058 } 1059 1060 static int pin_ggtt_status_page(struct intel_engine_cs *engine, 1061 struct i915_gem_ww_ctx *ww, 1062 struct i915_vma *vma) 1063 { 1064 unsigned int flags; 1065 1066 if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt)) 1067 /* 1068 * On g33, we cannot place HWS above 256MiB, so 1069 * restrict its pinning to the low mappable arena. 1070 * Though this restriction is not documented for 1071 * gen4, gen5, or byt, they also behave similarly 1072 * and hang if the HWS is placed at the top of the 1073 * GTT. To generalise, it appears that all !llc 1074 * platforms have issues with us placing the HWS 1075 * above the mappable region (even though we never 1076 * actually map it). 1077 */ 1078 flags = PIN_MAPPABLE; 1079 else 1080 flags = PIN_HIGH; 1081 1082 return i915_ggtt_pin(vma, ww, 0, flags); 1083 } 1084 1085 static int init_status_page(struct intel_engine_cs *engine) 1086 { 1087 struct drm_i915_gem_object *obj; 1088 struct i915_gem_ww_ctx ww; 1089 struct i915_vma *vma; 1090 void *vaddr; 1091 int ret; 1092 1093 INIT_LIST_HEAD(&engine->status_page.timelines); 1094 1095 /* 1096 * Though the HWS register does support 36bit addresses, historically 1097 * we have had hangs and corruption reported due to wild writes if 1098 * the HWS is placed above 4G. We only allow objects to be allocated 1099 * in GFP_DMA32 for i965, and no earlier physical address users had 1100 * access to more than 4G. 1101 */ 1102 obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE); 1103 if (IS_ERR(obj)) { 1104 drm_err(&engine->i915->drm, 1105 "Failed to allocate status page\n"); 1106 return PTR_ERR(obj); 1107 } 1108 1109 i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC); 1110 1111 vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL); 1112 if (IS_ERR(vma)) { 1113 ret = PTR_ERR(vma); 1114 goto err_put; 1115 } 1116 1117 i915_gem_ww_ctx_init(&ww, true); 1118 retry: 1119 ret = i915_gem_object_lock(obj, &ww); 1120 if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915)) 1121 ret = pin_ggtt_status_page(engine, &ww, vma); 1122 if (ret) 1123 goto err; 1124 1125 vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB); 1126 if (IS_ERR(vaddr)) { 1127 ret = PTR_ERR(vaddr); 1128 goto err_unpin; 1129 } 1130 1131 engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE); 1132 engine->status_page.vma = vma; 1133 1134 err_unpin: 1135 if (ret) 1136 i915_vma_unpin(vma); 1137 err: 1138 if (ret == -EDEADLK) { 1139 ret = i915_gem_ww_ctx_backoff(&ww); 1140 if (!ret) 1141 goto retry; 1142 } 1143 i915_gem_ww_ctx_fini(&ww); 1144 err_put: 1145 if (ret) 1146 i915_gem_object_put(obj); 1147 return ret; 1148 } 1149 1150 static int intel_engine_init_tlb_invalidation(struct intel_engine_cs *engine) 1151 { 1152 static const union intel_engine_tlb_inv_reg gen8_regs[] = { 1153 [RENDER_CLASS].reg = GEN8_RTCR, 1154 [VIDEO_DECODE_CLASS].reg = GEN8_M1TCR, /* , GEN8_M2TCR */ 1155 [VIDEO_ENHANCEMENT_CLASS].reg = GEN8_VTCR, 1156 [COPY_ENGINE_CLASS].reg = GEN8_BTCR, 1157 }; 1158 static const union intel_engine_tlb_inv_reg gen12_regs[] = { 1159 [RENDER_CLASS].reg = GEN12_GFX_TLB_INV_CR, 1160 [VIDEO_DECODE_CLASS].reg = GEN12_VD_TLB_INV_CR, 1161 [VIDEO_ENHANCEMENT_CLASS].reg = GEN12_VE_TLB_INV_CR, 1162 [COPY_ENGINE_CLASS].reg = GEN12_BLT_TLB_INV_CR, 1163 [COMPUTE_CLASS].reg = GEN12_COMPCTX_TLB_INV_CR, 1164 }; 1165 static const union intel_engine_tlb_inv_reg xehp_regs[] = { 1166 [RENDER_CLASS].mcr_reg = XEHP_GFX_TLB_INV_CR, 1167 [VIDEO_DECODE_CLASS].mcr_reg = XEHP_VD_TLB_INV_CR, 1168 [VIDEO_ENHANCEMENT_CLASS].mcr_reg = XEHP_VE_TLB_INV_CR, 1169 [COPY_ENGINE_CLASS].mcr_reg = XEHP_BLT_TLB_INV_CR, 1170 [COMPUTE_CLASS].mcr_reg = XEHP_COMPCTX_TLB_INV_CR, 1171 }; 1172 static const union intel_engine_tlb_inv_reg xelpmp_regs[] = { 1173 [VIDEO_DECODE_CLASS].reg = GEN12_VD_TLB_INV_CR, 1174 [VIDEO_ENHANCEMENT_CLASS].reg = GEN12_VE_TLB_INV_CR, 1175 [OTHER_CLASS].reg = XELPMP_GSC_TLB_INV_CR, 1176 }; 1177 struct drm_i915_private *i915 = engine->i915; 1178 const unsigned int instance = engine->instance; 1179 const unsigned int class = engine->class; 1180 const union intel_engine_tlb_inv_reg *regs; 1181 union intel_engine_tlb_inv_reg reg; 1182 unsigned int num = 0; 1183 u32 val; 1184 1185 /* 1186 * New platforms should not be added with catch-all-newer (>=) 1187 * condition so that any later platform added triggers the below warning 1188 * and in turn mandates a human cross-check of whether the invalidation 1189 * flows have compatible semantics. 1190 * 1191 * For instance with the 11.00 -> 12.00 transition three out of five 1192 * respective engine registers were moved to masked type. Then after the 1193 * 12.00 -> 12.50 transition multi cast handling is required too. 1194 */ 1195 1196 if (engine->gt->type == GT_MEDIA) { 1197 if (MEDIA_VER_FULL(i915) == IP_VER(13, 0)) { 1198 regs = xelpmp_regs; 1199 num = ARRAY_SIZE(xelpmp_regs); 1200 } 1201 } else { 1202 if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 71) || 1203 GRAPHICS_VER_FULL(i915) == IP_VER(12, 70) || 1204 GRAPHICS_VER_FULL(i915) == IP_VER(12, 50) || 1205 GRAPHICS_VER_FULL(i915) == IP_VER(12, 55)) { 1206 regs = xehp_regs; 1207 num = ARRAY_SIZE(xehp_regs); 1208 } else if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 0) || 1209 GRAPHICS_VER_FULL(i915) == IP_VER(12, 10)) { 1210 regs = gen12_regs; 1211 num = ARRAY_SIZE(gen12_regs); 1212 } else if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) <= 11) { 1213 regs = gen8_regs; 1214 num = ARRAY_SIZE(gen8_regs); 1215 } else if (GRAPHICS_VER(i915) < 8) { 1216 return 0; 1217 } 1218 } 1219 1220 if (gt_WARN_ONCE(engine->gt, !num, 1221 "Platform does not implement TLB invalidation!")) 1222 return -ENODEV; 1223 1224 if (gt_WARN_ON_ONCE(engine->gt, 1225 class >= num || 1226 (!regs[class].reg.reg && 1227 !regs[class].mcr_reg.reg))) 1228 return -ERANGE; 1229 1230 reg = regs[class]; 1231 1232 if (regs == xelpmp_regs && class == OTHER_CLASS) { 1233 /* 1234 * There's only a single GSC instance, but it uses register bit 1235 * 1 instead of either 0 or OTHER_GSC_INSTANCE. 1236 */ 1237 GEM_WARN_ON(instance != OTHER_GSC_INSTANCE); 1238 val = 1; 1239 } else if (regs == gen8_regs && class == VIDEO_DECODE_CLASS && instance == 1) { 1240 reg.reg = GEN8_M2TCR; 1241 val = 0; 1242 } else { 1243 val = instance; 1244 } 1245 1246 val = BIT(val); 1247 1248 engine->tlb_inv.mcr = regs == xehp_regs; 1249 engine->tlb_inv.reg = reg; 1250 engine->tlb_inv.done = val; 1251 1252 if (GRAPHICS_VER(i915) >= 12 && 1253 (engine->class == VIDEO_DECODE_CLASS || 1254 engine->class == VIDEO_ENHANCEMENT_CLASS || 1255 engine->class == COMPUTE_CLASS || 1256 engine->class == OTHER_CLASS)) 1257 engine->tlb_inv.request = _MASKED_BIT_ENABLE(val); 1258 else 1259 engine->tlb_inv.request = val; 1260 1261 return 0; 1262 } 1263 1264 static int engine_setup_common(struct intel_engine_cs *engine) 1265 { 1266 int err; 1267 1268 init_llist_head(&engine->barrier_tasks); 1269 1270 err = intel_engine_init_tlb_invalidation(engine); 1271 if (err) 1272 return err; 1273 1274 err = init_status_page(engine); 1275 if (err) 1276 return err; 1277 1278 engine->breadcrumbs = intel_breadcrumbs_create(engine); 1279 if (!engine->breadcrumbs) { 1280 err = -ENOMEM; 1281 goto err_status; 1282 } 1283 1284 engine->sched_engine = i915_sched_engine_create(ENGINE_PHYSICAL); 1285 if (!engine->sched_engine) { 1286 err = -ENOMEM; 1287 goto err_sched_engine; 1288 } 1289 engine->sched_engine->private_data = engine; 1290 1291 err = intel_engine_init_cmd_parser(engine); 1292 if (err) 1293 goto err_cmd_parser; 1294 1295 intel_engine_init_execlists(engine); 1296 intel_engine_init__pm(engine); 1297 intel_engine_init_retire(engine); 1298 1299 /* Use the whole device by default */ 1300 engine->sseu = 1301 intel_sseu_from_device_info(&engine->gt->info.sseu); 1302 1303 intel_engine_init_workarounds(engine); 1304 intel_engine_init_whitelist(engine); 1305 intel_engine_init_ctx_wa(engine); 1306 1307 if (GRAPHICS_VER(engine->i915) >= 12) 1308 engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO; 1309 1310 return 0; 1311 1312 err_cmd_parser: 1313 i915_sched_engine_put(engine->sched_engine); 1314 err_sched_engine: 1315 intel_breadcrumbs_put(engine->breadcrumbs); 1316 err_status: 1317 cleanup_status_page(engine); 1318 return err; 1319 } 1320 1321 struct measure_breadcrumb { 1322 struct i915_request rq; 1323 struct intel_ring ring; 1324 u32 cs[2048]; 1325 }; 1326 1327 static int measure_breadcrumb_dw(struct intel_context *ce) 1328 { 1329 struct intel_engine_cs *engine = ce->engine; 1330 struct measure_breadcrumb *frame; 1331 int dw; 1332 1333 GEM_BUG_ON(!engine->gt->scratch); 1334 1335 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 1336 if (!frame) 1337 return -ENOMEM; 1338 1339 frame->rq.i915 = engine->i915; 1340 frame->rq.engine = engine; 1341 frame->rq.context = ce; 1342 rcu_assign_pointer(frame->rq.timeline, ce->timeline); 1343 frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno; 1344 1345 frame->ring.vaddr = frame->cs; 1346 frame->ring.size = sizeof(frame->cs); 1347 frame->ring.wrap = 1348 BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size); 1349 frame->ring.effective_size = frame->ring.size; 1350 intel_ring_update_space(&frame->ring); 1351 frame->rq.ring = &frame->ring; 1352 1353 mutex_lock(&ce->timeline->mutex); 1354 spin_lock_irq(&engine->sched_engine->lock); 1355 1356 dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs; 1357 1358 spin_unlock_irq(&engine->sched_engine->lock); 1359 mutex_unlock(&ce->timeline->mutex); 1360 1361 GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */ 1362 1363 kfree(frame); 1364 return dw; 1365 } 1366 1367 struct intel_context * 1368 intel_engine_create_pinned_context(struct intel_engine_cs *engine, 1369 struct i915_address_space *vm, 1370 unsigned int ring_size, 1371 unsigned int hwsp, 1372 struct lock_class_key *key, 1373 const char *name) 1374 { 1375 struct intel_context *ce; 1376 int err; 1377 1378 ce = intel_context_create(engine); 1379 if (IS_ERR(ce)) 1380 return ce; 1381 1382 __set_bit(CONTEXT_BARRIER_BIT, &ce->flags); 1383 ce->timeline = page_pack_bits(NULL, hwsp); 1384 ce->ring = NULL; 1385 ce->ring_size = ring_size; 1386 1387 i915_vm_put(ce->vm); 1388 ce->vm = i915_vm_get(vm); 1389 1390 err = intel_context_pin(ce); /* perma-pin so it is always available */ 1391 if (err) { 1392 intel_context_put(ce); 1393 return ERR_PTR(err); 1394 } 1395 1396 list_add_tail(&ce->pinned_contexts_link, &engine->pinned_contexts_list); 1397 1398 /* 1399 * Give our perma-pinned kernel timelines a separate lockdep class, 1400 * so that we can use them from within the normal user timelines 1401 * should we need to inject GPU operations during their request 1402 * construction. 1403 */ 1404 lockdep_set_class_and_name(&ce->timeline->mutex, key, name); 1405 1406 return ce; 1407 } 1408 1409 void intel_engine_destroy_pinned_context(struct intel_context *ce) 1410 { 1411 struct intel_engine_cs *engine = ce->engine; 1412 struct i915_vma *hwsp = engine->status_page.vma; 1413 1414 GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp); 1415 1416 mutex_lock(&hwsp->vm->mutex); 1417 list_del(&ce->timeline->engine_link); 1418 mutex_unlock(&hwsp->vm->mutex); 1419 1420 list_del(&ce->pinned_contexts_link); 1421 intel_context_unpin(ce); 1422 intel_context_put(ce); 1423 } 1424 1425 static struct intel_context * 1426 create_kernel_context(struct intel_engine_cs *engine) 1427 { 1428 static struct lock_class_key kernel; 1429 1430 return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K, 1431 I915_GEM_HWS_SEQNO_ADDR, 1432 &kernel, "kernel_context"); 1433 } 1434 1435 /* 1436 * engine_init_common - initialize engine state which might require hw access 1437 * @engine: Engine to initialize. 1438 * 1439 * Initializes @engine@ structure members shared between legacy and execlists 1440 * submission modes which do require hardware access. 1441 * 1442 * Typcally done at later stages of submission mode specific engine setup. 1443 * 1444 * Returns zero on success or an error code on failure. 1445 */ 1446 static int engine_init_common(struct intel_engine_cs *engine) 1447 { 1448 struct intel_context *ce; 1449 int ret; 1450 1451 engine->set_default_submission(engine); 1452 1453 /* 1454 * We may need to do things with the shrinker which 1455 * require us to immediately switch back to the default 1456 * context. This can cause a problem as pinning the 1457 * default context also requires GTT space which may not 1458 * be available. To avoid this we always pin the default 1459 * context. 1460 */ 1461 ce = create_kernel_context(engine); 1462 if (IS_ERR(ce)) 1463 return PTR_ERR(ce); 1464 1465 ret = measure_breadcrumb_dw(ce); 1466 if (ret < 0) 1467 goto err_context; 1468 1469 engine->emit_fini_breadcrumb_dw = ret; 1470 engine->kernel_context = ce; 1471 1472 return 0; 1473 1474 err_context: 1475 intel_engine_destroy_pinned_context(ce); 1476 return ret; 1477 } 1478 1479 int intel_engines_init(struct intel_gt *gt) 1480 { 1481 int (*setup)(struct intel_engine_cs *engine); 1482 struct intel_engine_cs *engine; 1483 enum intel_engine_id id; 1484 int err; 1485 1486 if (intel_uc_uses_guc_submission(>->uc)) { 1487 gt->submission_method = INTEL_SUBMISSION_GUC; 1488 setup = intel_guc_submission_setup; 1489 } else if (HAS_EXECLISTS(gt->i915)) { 1490 gt->submission_method = INTEL_SUBMISSION_ELSP; 1491 setup = intel_execlists_submission_setup; 1492 } else { 1493 gt->submission_method = INTEL_SUBMISSION_RING; 1494 setup = intel_ring_submission_setup; 1495 } 1496 1497 for_each_engine(engine, gt, id) { 1498 err = engine_setup_common(engine); 1499 if (err) 1500 return err; 1501 1502 err = setup(engine); 1503 if (err) { 1504 intel_engine_cleanup_common(engine); 1505 return err; 1506 } 1507 1508 /* The backend should now be responsible for cleanup */ 1509 GEM_BUG_ON(engine->release == NULL); 1510 1511 err = engine_init_common(engine); 1512 if (err) 1513 return err; 1514 1515 intel_engine_add_user(engine); 1516 } 1517 1518 return 0; 1519 } 1520 1521 /** 1522 * intel_engine_cleanup_common - cleans up the engine state created by 1523 * the common initiailizers. 1524 * @engine: Engine to cleanup. 1525 * 1526 * This cleans up everything created by the common helpers. 1527 */ 1528 void intel_engine_cleanup_common(struct intel_engine_cs *engine) 1529 { 1530 GEM_BUG_ON(!list_empty(&engine->sched_engine->requests)); 1531 1532 i915_sched_engine_put(engine->sched_engine); 1533 intel_breadcrumbs_put(engine->breadcrumbs); 1534 1535 intel_engine_fini_retire(engine); 1536 intel_engine_cleanup_cmd_parser(engine); 1537 1538 if (engine->default_state) 1539 uao_detach(engine->default_state); 1540 1541 if (engine->kernel_context) 1542 intel_engine_destroy_pinned_context(engine->kernel_context); 1543 1544 GEM_BUG_ON(!llist_empty(&engine->barrier_tasks)); 1545 cleanup_status_page(engine); 1546 1547 intel_wa_list_free(&engine->ctx_wa_list); 1548 intel_wa_list_free(&engine->wa_list); 1549 intel_wa_list_free(&engine->whitelist); 1550 } 1551 1552 /** 1553 * intel_engine_resume - re-initializes the HW state of the engine 1554 * @engine: Engine to resume. 1555 * 1556 * Returns zero on success or an error code on failure. 1557 */ 1558 int intel_engine_resume(struct intel_engine_cs *engine) 1559 { 1560 intel_engine_apply_workarounds(engine); 1561 intel_engine_apply_whitelist(engine); 1562 1563 return engine->resume(engine); 1564 } 1565 1566 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine) 1567 { 1568 struct drm_i915_private *i915 = engine->i915; 1569 1570 u64 acthd; 1571 1572 if (GRAPHICS_VER(i915) >= 8) 1573 acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW); 1574 else if (GRAPHICS_VER(i915) >= 4) 1575 acthd = ENGINE_READ(engine, RING_ACTHD); 1576 else 1577 acthd = ENGINE_READ(engine, ACTHD); 1578 1579 return acthd; 1580 } 1581 1582 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine) 1583 { 1584 u64 bbaddr; 1585 1586 if (GRAPHICS_VER(engine->i915) >= 8) 1587 bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW); 1588 else 1589 bbaddr = ENGINE_READ(engine, RING_BBADDR); 1590 1591 return bbaddr; 1592 } 1593 1594 static unsigned long stop_timeout(const struct intel_engine_cs *engine) 1595 { 1596 if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */ 1597 return 0; 1598 1599 /* 1600 * If we are doing a normal GPU reset, we can take our time and allow 1601 * the engine to quiesce. We've stopped submission to the engine, and 1602 * if we wait long enough an innocent context should complete and 1603 * leave the engine idle. So they should not be caught unaware by 1604 * the forthcoming GPU reset (which usually follows the stop_cs)! 1605 */ 1606 return READ_ONCE(engine->props.stop_timeout_ms); 1607 } 1608 1609 static int __intel_engine_stop_cs(struct intel_engine_cs *engine, 1610 int fast_timeout_us, 1611 int slow_timeout_ms) 1612 { 1613 struct intel_uncore *uncore = engine->uncore; 1614 const i915_reg_t mode = RING_MI_MODE(engine->mmio_base); 1615 int err; 1616 1617 intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING)); 1618 1619 /* 1620 * Wa_22011802037: Prior to doing a reset, ensure CS is 1621 * stopped, set ring stop bit and prefetch disable bit to halt CS 1622 */ 1623 if (IS_MTL_GRAPHICS_STEP(engine->i915, M, STEP_A0, STEP_B0) || 1624 (GRAPHICS_VER(engine->i915) >= 11 && 1625 GRAPHICS_VER_FULL(engine->i915) < IP_VER(12, 70))) 1626 intel_uncore_write_fw(uncore, RING_MODE_GEN7(engine->mmio_base), 1627 _MASKED_BIT_ENABLE(GEN12_GFX_PREFETCH_DISABLE)); 1628 1629 err = __intel_wait_for_register_fw(engine->uncore, mode, 1630 MODE_IDLE, MODE_IDLE, 1631 fast_timeout_us, 1632 slow_timeout_ms, 1633 NULL); 1634 1635 /* A final mmio read to let GPU writes be hopefully flushed to memory */ 1636 intel_uncore_posting_read_fw(uncore, mode); 1637 return err; 1638 } 1639 1640 int intel_engine_stop_cs(struct intel_engine_cs *engine) 1641 { 1642 int err = 0; 1643 1644 if (GRAPHICS_VER(engine->i915) < 3) 1645 return -ENODEV; 1646 1647 ENGINE_TRACE(engine, "\n"); 1648 /* 1649 * TODO: Find out why occasionally stopping the CS times out. Seen 1650 * especially with gem_eio tests. 1651 * 1652 * Occasionally trying to stop the cs times out, but does not adversely 1653 * affect functionality. The timeout is set as a config parameter that 1654 * defaults to 100ms. In most cases the follow up operation is to wait 1655 * for pending MI_FORCE_WAKES. The assumption is that this timeout is 1656 * sufficient for any pending MI_FORCEWAKEs to complete. Once root 1657 * caused, the caller must check and handle the return from this 1658 * function. 1659 */ 1660 if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) { 1661 ENGINE_TRACE(engine, 1662 "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n", 1663 ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR, 1664 ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR); 1665 1666 /* 1667 * Sometimes we observe that the idle flag is not 1668 * set even though the ring is empty. So double 1669 * check before giving up. 1670 */ 1671 if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) != 1672 (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR)) 1673 err = -ETIMEDOUT; 1674 } 1675 1676 return err; 1677 } 1678 1679 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine) 1680 { 1681 ENGINE_TRACE(engine, "\n"); 1682 1683 ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING)); 1684 } 1685 1686 static u32 __cs_pending_mi_force_wakes(struct intel_engine_cs *engine) 1687 { 1688 static const i915_reg_t _reg[I915_NUM_ENGINES] = { 1689 [RCS0] = MSG_IDLE_CS, 1690 [BCS0] = MSG_IDLE_BCS, 1691 [VCS0] = MSG_IDLE_VCS0, 1692 [VCS1] = MSG_IDLE_VCS1, 1693 [VCS2] = MSG_IDLE_VCS2, 1694 [VCS3] = MSG_IDLE_VCS3, 1695 [VCS4] = MSG_IDLE_VCS4, 1696 [VCS5] = MSG_IDLE_VCS5, 1697 [VCS6] = MSG_IDLE_VCS6, 1698 [VCS7] = MSG_IDLE_VCS7, 1699 [VECS0] = MSG_IDLE_VECS0, 1700 [VECS1] = MSG_IDLE_VECS1, 1701 [VECS2] = MSG_IDLE_VECS2, 1702 [VECS3] = MSG_IDLE_VECS3, 1703 [CCS0] = MSG_IDLE_CS, 1704 [CCS1] = MSG_IDLE_CS, 1705 [CCS2] = MSG_IDLE_CS, 1706 [CCS3] = MSG_IDLE_CS, 1707 }; 1708 u32 val; 1709 1710 if (!_reg[engine->id].reg) 1711 return 0; 1712 1713 val = intel_uncore_read(engine->uncore, _reg[engine->id]); 1714 1715 /* bits[29:25] & bits[13:9] >> shift */ 1716 return (val & (val >> 16) & MSG_IDLE_FW_MASK) >> MSG_IDLE_FW_SHIFT; 1717 } 1718 1719 static void __gpm_wait_for_fw_complete(struct intel_gt *gt, u32 fw_mask) 1720 { 1721 int ret; 1722 1723 /* Ensure GPM receives fw up/down after CS is stopped */ 1724 udelay(1); 1725 1726 /* Wait for forcewake request to complete in GPM */ 1727 ret = __intel_wait_for_register_fw(gt->uncore, 1728 GEN9_PWRGT_DOMAIN_STATUS, 1729 fw_mask, fw_mask, 5000, 0, NULL); 1730 1731 /* Ensure CS receives fw ack from GPM */ 1732 udelay(1); 1733 1734 if (ret) 1735 GT_TRACE(gt, "Failed to complete pending forcewake %d\n", ret); 1736 } 1737 1738 /* 1739 * Wa_22011802037:gen12: In addition to stopping the cs, we need to wait for any 1740 * pending MI_FORCE_WAKEUP requests that the CS has initiated to complete. The 1741 * pending status is indicated by bits[13:9] (masked by bits[29:25]) in the 1742 * MSG_IDLE register. There's one MSG_IDLE register per reset domain. Since we 1743 * are concerned only with the gt reset here, we use a logical OR of pending 1744 * forcewakeups from all reset domains and then wait for them to complete by 1745 * querying PWRGT_DOMAIN_STATUS. 1746 */ 1747 void intel_engine_wait_for_pending_mi_fw(struct intel_engine_cs *engine) 1748 { 1749 u32 fw_pending = __cs_pending_mi_force_wakes(engine); 1750 1751 if (fw_pending) 1752 __gpm_wait_for_fw_complete(engine->gt, fw_pending); 1753 } 1754 1755 /* NB: please notice the memset */ 1756 void intel_engine_get_instdone(const struct intel_engine_cs *engine, 1757 struct intel_instdone *instdone) 1758 { 1759 struct drm_i915_private *i915 = engine->i915; 1760 struct intel_uncore *uncore = engine->uncore; 1761 u32 mmio_base = engine->mmio_base; 1762 int slice; 1763 int subslice; 1764 int iter; 1765 1766 memset(instdone, 0, sizeof(*instdone)); 1767 1768 if (GRAPHICS_VER(i915) >= 8) { 1769 instdone->instdone = 1770 intel_uncore_read(uncore, RING_INSTDONE(mmio_base)); 1771 1772 if (engine->id != RCS0) 1773 return; 1774 1775 instdone->slice_common = 1776 intel_uncore_read(uncore, GEN7_SC_INSTDONE); 1777 if (GRAPHICS_VER(i915) >= 12) { 1778 instdone->slice_common_extra[0] = 1779 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA); 1780 instdone->slice_common_extra[1] = 1781 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2); 1782 } 1783 1784 for_each_ss_steering(iter, engine->gt, slice, subslice) { 1785 instdone->sampler[slice][subslice] = 1786 intel_gt_mcr_read(engine->gt, 1787 GEN8_SAMPLER_INSTDONE, 1788 slice, subslice); 1789 instdone->row[slice][subslice] = 1790 intel_gt_mcr_read(engine->gt, 1791 GEN8_ROW_INSTDONE, 1792 slice, subslice); 1793 } 1794 1795 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) { 1796 for_each_ss_steering(iter, engine->gt, slice, subslice) 1797 instdone->geom_svg[slice][subslice] = 1798 intel_gt_mcr_read(engine->gt, 1799 XEHPG_INSTDONE_GEOM_SVG, 1800 slice, subslice); 1801 } 1802 } else if (GRAPHICS_VER(i915) >= 7) { 1803 instdone->instdone = 1804 intel_uncore_read(uncore, RING_INSTDONE(mmio_base)); 1805 1806 if (engine->id != RCS0) 1807 return; 1808 1809 instdone->slice_common = 1810 intel_uncore_read(uncore, GEN7_SC_INSTDONE); 1811 instdone->sampler[0][0] = 1812 intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE); 1813 instdone->row[0][0] = 1814 intel_uncore_read(uncore, GEN7_ROW_INSTDONE); 1815 } else if (GRAPHICS_VER(i915) >= 4) { 1816 instdone->instdone = 1817 intel_uncore_read(uncore, RING_INSTDONE(mmio_base)); 1818 if (engine->id == RCS0) 1819 /* HACK: Using the wrong struct member */ 1820 instdone->slice_common = 1821 intel_uncore_read(uncore, GEN4_INSTDONE1); 1822 } else { 1823 instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE); 1824 } 1825 } 1826 1827 static bool ring_is_idle(struct intel_engine_cs *engine) 1828 { 1829 bool idle = true; 1830 1831 if (I915_SELFTEST_ONLY(!engine->mmio_base)) 1832 return true; 1833 1834 if (!intel_engine_pm_get_if_awake(engine)) 1835 return true; 1836 1837 /* First check that no commands are left in the ring */ 1838 if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) != 1839 (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR)) 1840 idle = false; 1841 1842 /* No bit for gen2, so assume the CS parser is idle */ 1843 if (GRAPHICS_VER(engine->i915) > 2 && 1844 !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE)) 1845 idle = false; 1846 1847 intel_engine_pm_put(engine); 1848 1849 return idle; 1850 } 1851 1852 void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync) 1853 { 1854 struct tasklet_struct *t = &engine->sched_engine->tasklet; 1855 1856 if (!t->callback) 1857 return; 1858 1859 local_bh_disable(); 1860 if (tasklet_trylock(t)) { 1861 /* Must wait for any GPU reset in progress. */ 1862 if (__tasklet_is_enabled(t)) 1863 t->callback(t); 1864 tasklet_unlock(t); 1865 } 1866 local_bh_enable(); 1867 1868 /* Synchronise and wait for the tasklet on another CPU */ 1869 if (sync) 1870 tasklet_unlock_wait(t); 1871 } 1872 1873 /** 1874 * intel_engine_is_idle() - Report if the engine has finished process all work 1875 * @engine: the intel_engine_cs 1876 * 1877 * Return true if there are no requests pending, nothing left to be submitted 1878 * to hardware, and that the engine is idle. 1879 */ 1880 bool intel_engine_is_idle(struct intel_engine_cs *engine) 1881 { 1882 /* More white lies, if wedged, hw state is inconsistent */ 1883 if (intel_gt_is_wedged(engine->gt)) 1884 return true; 1885 1886 if (!intel_engine_pm_is_awake(engine)) 1887 return true; 1888 1889 /* Waiting to drain ELSP? */ 1890 intel_synchronize_hardirq(engine->i915); 1891 intel_engine_flush_submission(engine); 1892 1893 /* ELSP is empty, but there are ready requests? E.g. after reset */ 1894 if (!i915_sched_engine_is_empty(engine->sched_engine)) 1895 return false; 1896 1897 /* Ring stopped? */ 1898 return ring_is_idle(engine); 1899 } 1900 1901 bool intel_engines_are_idle(struct intel_gt *gt) 1902 { 1903 struct intel_engine_cs *engine; 1904 enum intel_engine_id id; 1905 1906 /* 1907 * If the driver is wedged, HW state may be very inconsistent and 1908 * report that it is still busy, even though we have stopped using it. 1909 */ 1910 if (intel_gt_is_wedged(gt)) 1911 return true; 1912 1913 /* Already parked (and passed an idleness test); must still be idle */ 1914 if (!READ_ONCE(gt->awake)) 1915 return true; 1916 1917 for_each_engine(engine, gt, id) { 1918 if (!intel_engine_is_idle(engine)) 1919 return false; 1920 } 1921 1922 return true; 1923 } 1924 1925 bool intel_engine_irq_enable(struct intel_engine_cs *engine) 1926 { 1927 if (!engine->irq_enable) 1928 return false; 1929 1930 /* Caller disables interrupts */ 1931 spin_lock(engine->gt->irq_lock); 1932 engine->irq_enable(engine); 1933 spin_unlock(engine->gt->irq_lock); 1934 1935 return true; 1936 } 1937 1938 void intel_engine_irq_disable(struct intel_engine_cs *engine) 1939 { 1940 if (!engine->irq_disable) 1941 return; 1942 1943 /* Caller disables interrupts */ 1944 spin_lock(engine->gt->irq_lock); 1945 engine->irq_disable(engine); 1946 spin_unlock(engine->gt->irq_lock); 1947 } 1948 1949 void intel_engines_reset_default_submission(struct intel_gt *gt) 1950 { 1951 struct intel_engine_cs *engine; 1952 enum intel_engine_id id; 1953 1954 for_each_engine(engine, gt, id) { 1955 if (engine->sanitize) 1956 engine->sanitize(engine); 1957 1958 engine->set_default_submission(engine); 1959 } 1960 } 1961 1962 bool intel_engine_can_store_dword(struct intel_engine_cs *engine) 1963 { 1964 switch (GRAPHICS_VER(engine->i915)) { 1965 case 2: 1966 return false; /* uses physical not virtual addresses */ 1967 case 3: 1968 /* maybe only uses physical not virtual addresses */ 1969 return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915)); 1970 case 4: 1971 return !IS_I965G(engine->i915); /* who knows! */ 1972 case 6: 1973 return engine->class != VIDEO_DECODE_CLASS; /* b0rked */ 1974 default: 1975 return true; 1976 } 1977 } 1978 1979 static struct intel_timeline *get_timeline(struct i915_request *rq) 1980 { 1981 struct intel_timeline *tl; 1982 1983 /* 1984 * Even though we are holding the engine->sched_engine->lock here, there 1985 * is no control over the submission queue per-se and we are 1986 * inspecting the active state at a random point in time, with an 1987 * unknown queue. Play safe and make sure the timeline remains valid. 1988 * (Only being used for pretty printing, one extra kref shouldn't 1989 * cause a camel stampede!) 1990 */ 1991 rcu_read_lock(); 1992 tl = rcu_dereference(rq->timeline); 1993 if (!kref_get_unless_zero(&tl->kref)) 1994 tl = NULL; 1995 rcu_read_unlock(); 1996 1997 return tl; 1998 } 1999 2000 static int print_ring(char *buf, int sz, struct i915_request *rq) 2001 { 2002 int len = 0; 2003 2004 if (!i915_request_signaled(rq)) { 2005 struct intel_timeline *tl = get_timeline(rq); 2006 2007 len = scnprintf(buf, sz, 2008 "ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ", 2009 i915_ggtt_offset(rq->ring->vma), 2010 tl ? tl->hwsp_offset : 0, 2011 hwsp_seqno(rq), 2012 DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context), 2013 1000 * 1000)); 2014 2015 if (tl) 2016 intel_timeline_put(tl); 2017 } 2018 2019 return len; 2020 } 2021 2022 static void hexdump(struct drm_printer *m, const void *buf, size_t len) 2023 { 2024 STUB(); 2025 #ifdef notyet 2026 const size_t rowsize = 8 * sizeof(u32); 2027 const void *prev = NULL; 2028 bool skip = false; 2029 size_t pos; 2030 2031 for (pos = 0; pos < len; pos += rowsize) { 2032 char line[128]; 2033 2034 if (prev && !memcmp(prev, buf + pos, rowsize)) { 2035 if (!skip) { 2036 drm_printf(m, "*\n"); 2037 skip = true; 2038 } 2039 continue; 2040 } 2041 2042 WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos, 2043 rowsize, sizeof(u32), 2044 line, sizeof(line), 2045 false) >= sizeof(line)); 2046 drm_printf(m, "[%04zx] %s\n", pos, line); 2047 2048 prev = buf + pos; 2049 skip = false; 2050 } 2051 #endif 2052 } 2053 2054 static const char *repr_timer(const struct timeout *t) 2055 { 2056 if (!READ_ONCE(t->to_time)) 2057 return "inactive"; 2058 2059 if (timer_pending(t)) 2060 return "active"; 2061 2062 return "expired"; 2063 } 2064 2065 static void intel_engine_print_registers(struct intel_engine_cs *engine, 2066 struct drm_printer *m) 2067 { 2068 struct drm_i915_private *i915 = engine->i915; 2069 struct intel_engine_execlists * const execlists = &engine->execlists; 2070 u64 addr; 2071 2072 if (engine->id == RENDER_CLASS && IS_GRAPHICS_VER(i915, 4, 7)) 2073 drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID)); 2074 if (HAS_EXECLISTS(i915)) { 2075 drm_printf(m, "\tEL_STAT_HI: 0x%08x\n", 2076 ENGINE_READ(engine, RING_EXECLIST_STATUS_HI)); 2077 drm_printf(m, "\tEL_STAT_LO: 0x%08x\n", 2078 ENGINE_READ(engine, RING_EXECLIST_STATUS_LO)); 2079 } 2080 drm_printf(m, "\tRING_START: 0x%08x\n", 2081 ENGINE_READ(engine, RING_START)); 2082 drm_printf(m, "\tRING_HEAD: 0x%08x\n", 2083 ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR); 2084 drm_printf(m, "\tRING_TAIL: 0x%08x\n", 2085 ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR); 2086 drm_printf(m, "\tRING_CTL: 0x%08x%s\n", 2087 ENGINE_READ(engine, RING_CTL), 2088 ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : ""); 2089 if (GRAPHICS_VER(engine->i915) > 2) { 2090 drm_printf(m, "\tRING_MODE: 0x%08x%s\n", 2091 ENGINE_READ(engine, RING_MI_MODE), 2092 ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : ""); 2093 } 2094 2095 if (GRAPHICS_VER(i915) >= 6) { 2096 drm_printf(m, "\tRING_IMR: 0x%08x\n", 2097 ENGINE_READ(engine, RING_IMR)); 2098 drm_printf(m, "\tRING_ESR: 0x%08x\n", 2099 ENGINE_READ(engine, RING_ESR)); 2100 drm_printf(m, "\tRING_EMR: 0x%08x\n", 2101 ENGINE_READ(engine, RING_EMR)); 2102 drm_printf(m, "\tRING_EIR: 0x%08x\n", 2103 ENGINE_READ(engine, RING_EIR)); 2104 } 2105 2106 addr = intel_engine_get_active_head(engine); 2107 drm_printf(m, "\tACTHD: 0x%08x_%08x\n", 2108 upper_32_bits(addr), lower_32_bits(addr)); 2109 addr = intel_engine_get_last_batch_head(engine); 2110 drm_printf(m, "\tBBADDR: 0x%08x_%08x\n", 2111 upper_32_bits(addr), lower_32_bits(addr)); 2112 if (GRAPHICS_VER(i915) >= 8) 2113 addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW); 2114 else if (GRAPHICS_VER(i915) >= 4) 2115 addr = ENGINE_READ(engine, RING_DMA_FADD); 2116 else 2117 addr = ENGINE_READ(engine, DMA_FADD_I8XX); 2118 drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n", 2119 upper_32_bits(addr), lower_32_bits(addr)); 2120 if (GRAPHICS_VER(i915) >= 4) { 2121 drm_printf(m, "\tIPEIR: 0x%08x\n", 2122 ENGINE_READ(engine, RING_IPEIR)); 2123 drm_printf(m, "\tIPEHR: 0x%08x\n", 2124 ENGINE_READ(engine, RING_IPEHR)); 2125 } else { 2126 drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR)); 2127 drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR)); 2128 } 2129 2130 if (HAS_EXECLISTS(i915) && !intel_engine_uses_guc(engine)) { 2131 struct i915_request * const *port, *rq; 2132 const u32 *hws = 2133 &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX]; 2134 const u8 num_entries = execlists->csb_size; 2135 unsigned int idx; 2136 u8 read, write; 2137 2138 drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n", 2139 str_yes_no(test_bit(TASKLET_STATE_SCHED, &engine->sched_engine->tasklet.state)), 2140 str_enabled_disabled(!atomic_read(&engine->sched_engine->tasklet.count)), 2141 repr_timer(&engine->execlists.preempt), 2142 repr_timer(&engine->execlists.timer)); 2143 2144 read = execlists->csb_head; 2145 write = READ_ONCE(*execlists->csb_write); 2146 2147 drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n", 2148 ENGINE_READ(engine, RING_EXECLIST_STATUS_LO), 2149 ENGINE_READ(engine, RING_EXECLIST_STATUS_HI), 2150 read, write, num_entries); 2151 2152 if (read >= num_entries) 2153 read = 0; 2154 if (write >= num_entries) 2155 write = 0; 2156 if (read > write) 2157 write += num_entries; 2158 while (read < write) { 2159 idx = ++read % num_entries; 2160 drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n", 2161 idx, hws[idx * 2], hws[idx * 2 + 1]); 2162 } 2163 2164 i915_sched_engine_active_lock_bh(engine->sched_engine); 2165 rcu_read_lock(); 2166 for (port = execlists->active; (rq = *port); port++) { 2167 char hdr[160]; 2168 int len; 2169 2170 len = scnprintf(hdr, sizeof(hdr), 2171 "\t\tActive[%d]: ccid:%08x%s%s, ", 2172 (int)(port - execlists->active), 2173 rq->context->lrc.ccid, 2174 intel_context_is_closed(rq->context) ? "!" : "", 2175 intel_context_is_banned(rq->context) ? "*" : ""); 2176 len += print_ring(hdr + len, sizeof(hdr) - len, rq); 2177 scnprintf(hdr + len, sizeof(hdr) - len, "rq: "); 2178 i915_request_show(m, rq, hdr, 0); 2179 } 2180 for (port = execlists->pending; (rq = *port); port++) { 2181 char hdr[160]; 2182 int len; 2183 2184 len = scnprintf(hdr, sizeof(hdr), 2185 "\t\tPending[%d]: ccid:%08x%s%s, ", 2186 (int)(port - execlists->pending), 2187 rq->context->lrc.ccid, 2188 intel_context_is_closed(rq->context) ? "!" : "", 2189 intel_context_is_banned(rq->context) ? "*" : ""); 2190 len += print_ring(hdr + len, sizeof(hdr) - len, rq); 2191 scnprintf(hdr + len, sizeof(hdr) - len, "rq: "); 2192 i915_request_show(m, rq, hdr, 0); 2193 } 2194 rcu_read_unlock(); 2195 i915_sched_engine_active_unlock_bh(engine->sched_engine); 2196 } else if (GRAPHICS_VER(i915) > 6) { 2197 drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n", 2198 ENGINE_READ(engine, RING_PP_DIR_BASE)); 2199 drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n", 2200 ENGINE_READ(engine, RING_PP_DIR_BASE_READ)); 2201 drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n", 2202 ENGINE_READ(engine, RING_PP_DIR_DCLV)); 2203 } 2204 } 2205 2206 static void print_request_ring(struct drm_printer *m, struct i915_request *rq) 2207 { 2208 struct i915_vma_resource *vma_res = rq->batch_res; 2209 void *ring; 2210 int size; 2211 2212 drm_printf(m, 2213 "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n", 2214 rq->head, rq->postfix, rq->tail, 2215 vma_res ? upper_32_bits(vma_res->start) : ~0u, 2216 vma_res ? lower_32_bits(vma_res->start) : ~0u); 2217 2218 size = rq->tail - rq->head; 2219 if (rq->tail < rq->head) 2220 size += rq->ring->size; 2221 2222 ring = kmalloc(size, GFP_ATOMIC); 2223 if (ring) { 2224 const void *vaddr = rq->ring->vaddr; 2225 unsigned int head = rq->head; 2226 unsigned int len = 0; 2227 2228 if (rq->tail < head) { 2229 len = rq->ring->size - head; 2230 memcpy(ring, vaddr + head, len); 2231 head = 0; 2232 } 2233 memcpy(ring + len, vaddr + head, size - len); 2234 2235 hexdump(m, ring, size); 2236 kfree(ring); 2237 } 2238 } 2239 2240 static unsigned long read_ul(void *p, size_t x) 2241 { 2242 return *(unsigned long *)(p + x); 2243 } 2244 2245 static void print_properties(struct intel_engine_cs *engine, 2246 struct drm_printer *m) 2247 { 2248 static const struct pmap { 2249 size_t offset; 2250 const char *name; 2251 } props[] = { 2252 #define P(x) { \ 2253 .offset = offsetof(typeof(engine->props), x), \ 2254 .name = #x \ 2255 } 2256 P(heartbeat_interval_ms), 2257 P(max_busywait_duration_ns), 2258 P(preempt_timeout_ms), 2259 P(stop_timeout_ms), 2260 P(timeslice_duration_ms), 2261 2262 {}, 2263 #undef P 2264 }; 2265 const struct pmap *p; 2266 2267 drm_printf(m, "\tProperties:\n"); 2268 for (p = props; p->name; p++) 2269 drm_printf(m, "\t\t%s: %lu [default %lu]\n", 2270 p->name, 2271 read_ul(&engine->props, p->offset), 2272 read_ul(&engine->defaults, p->offset)); 2273 } 2274 2275 static void engine_dump_request(struct i915_request *rq, struct drm_printer *m, const char *msg) 2276 { 2277 struct intel_timeline *tl = get_timeline(rq); 2278 2279 i915_request_show(m, rq, msg, 0); 2280 2281 drm_printf(m, "\t\tring->start: 0x%08x\n", 2282 i915_ggtt_offset(rq->ring->vma)); 2283 drm_printf(m, "\t\tring->head: 0x%08x\n", 2284 rq->ring->head); 2285 drm_printf(m, "\t\tring->tail: 0x%08x\n", 2286 rq->ring->tail); 2287 drm_printf(m, "\t\tring->emit: 0x%08x\n", 2288 rq->ring->emit); 2289 drm_printf(m, "\t\tring->space: 0x%08x\n", 2290 rq->ring->space); 2291 2292 if (tl) { 2293 drm_printf(m, "\t\tring->hwsp: 0x%08x\n", 2294 tl->hwsp_offset); 2295 intel_timeline_put(tl); 2296 } 2297 2298 print_request_ring(m, rq); 2299 2300 if (rq->context->lrc_reg_state) { 2301 drm_printf(m, "Logical Ring Context:\n"); 2302 hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE); 2303 } 2304 } 2305 2306 void intel_engine_dump_active_requests(struct list_head *requests, 2307 struct i915_request *hung_rq, 2308 struct drm_printer *m) 2309 { 2310 struct i915_request *rq; 2311 const char *msg; 2312 enum i915_request_state state; 2313 2314 list_for_each_entry(rq, requests, sched.link) { 2315 if (rq == hung_rq) 2316 continue; 2317 2318 state = i915_test_request_state(rq); 2319 if (state < I915_REQUEST_QUEUED) 2320 continue; 2321 2322 if (state == I915_REQUEST_ACTIVE) 2323 msg = "\t\tactive on engine"; 2324 else 2325 msg = "\t\tactive in queue"; 2326 2327 engine_dump_request(rq, m, msg); 2328 } 2329 } 2330 2331 static void engine_dump_active_requests(struct intel_engine_cs *engine, 2332 struct drm_printer *m) 2333 { 2334 struct intel_context *hung_ce = NULL; 2335 struct i915_request *hung_rq = NULL; 2336 2337 /* 2338 * No need for an engine->irq_seqno_barrier() before the seqno reads. 2339 * The GPU is still running so requests are still executing and any 2340 * hardware reads will be out of date by the time they are reported. 2341 * But the intention here is just to report an instantaneous snapshot 2342 * so that's fine. 2343 */ 2344 intel_engine_get_hung_entity(engine, &hung_ce, &hung_rq); 2345 2346 drm_printf(m, "\tRequests:\n"); 2347 2348 if (hung_rq) 2349 engine_dump_request(hung_rq, m, "\t\thung"); 2350 else if (hung_ce) 2351 drm_printf(m, "\t\tGot hung ce but no hung rq!\n"); 2352 2353 if (intel_uc_uses_guc_submission(&engine->gt->uc)) 2354 intel_guc_dump_active_requests(engine, hung_rq, m); 2355 else 2356 intel_execlists_dump_active_requests(engine, hung_rq, m); 2357 2358 if (hung_rq) 2359 i915_request_put(hung_rq); 2360 } 2361 2362 void intel_engine_dump(struct intel_engine_cs *engine, 2363 struct drm_printer *m, 2364 const char *header, ...) 2365 { 2366 struct i915_gpu_error * const error = &engine->i915->gpu_error; 2367 struct i915_request *rq; 2368 intel_wakeref_t wakeref; 2369 ktime_t dummy; 2370 2371 if (header) { 2372 va_list ap; 2373 2374 va_start(ap, header); 2375 drm_vprintf(m, header, &ap); 2376 va_end(ap); 2377 } 2378 2379 if (intel_gt_is_wedged(engine->gt)) 2380 drm_printf(m, "*** WEDGED ***\n"); 2381 2382 drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count)); 2383 drm_printf(m, "\tBarriers?: %s\n", 2384 str_yes_no(!llist_empty(&engine->barrier_tasks))); 2385 drm_printf(m, "\tLatency: %luus\n", 2386 ewma__engine_latency_read(&engine->latency)); 2387 if (intel_engine_supports_stats(engine)) 2388 drm_printf(m, "\tRuntime: %llums\n", 2389 ktime_to_ms(intel_engine_get_busy_time(engine, 2390 &dummy))); 2391 drm_printf(m, "\tForcewake: %x domains, %d active\n", 2392 engine->fw_domain, READ_ONCE(engine->fw_active)); 2393 2394 rcu_read_lock(); 2395 rq = READ_ONCE(engine->heartbeat.systole); 2396 if (rq) 2397 drm_printf(m, "\tHeartbeat: %d ms ago\n", 2398 jiffies_to_msecs(jiffies - rq->emitted_jiffies)); 2399 rcu_read_unlock(); 2400 drm_printf(m, "\tReset count: %d (global %d)\n", 2401 i915_reset_engine_count(error, engine), 2402 i915_reset_count(error)); 2403 print_properties(engine, m); 2404 2405 engine_dump_active_requests(engine, m); 2406 2407 drm_printf(m, "\tMMIO base: 0x%08x\n", engine->mmio_base); 2408 wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm); 2409 if (wakeref) { 2410 intel_engine_print_registers(engine, m); 2411 intel_runtime_pm_put(engine->uncore->rpm, wakeref); 2412 } else { 2413 drm_printf(m, "\tDevice is asleep; skipping register dump\n"); 2414 } 2415 2416 intel_execlists_show_requests(engine, m, i915_request_show, 8); 2417 2418 drm_printf(m, "HWSP:\n"); 2419 hexdump(m, engine->status_page.addr, PAGE_SIZE); 2420 2421 drm_printf(m, "Idle? %s\n", str_yes_no(intel_engine_is_idle(engine))); 2422 2423 intel_engine_print_breadcrumbs(engine, m); 2424 } 2425 2426 /** 2427 * intel_engine_get_busy_time() - Return current accumulated engine busyness 2428 * @engine: engine to report on 2429 * @now: monotonic timestamp of sampling 2430 * 2431 * Returns accumulated time @engine was busy since engine stats were enabled. 2432 */ 2433 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now) 2434 { 2435 return engine->busyness(engine, now); 2436 } 2437 2438 struct intel_context * 2439 intel_engine_create_virtual(struct intel_engine_cs **siblings, 2440 unsigned int count, unsigned long flags) 2441 { 2442 if (count == 0) 2443 return ERR_PTR(-EINVAL); 2444 2445 if (count == 1 && !(flags & FORCE_VIRTUAL)) 2446 return intel_context_create(siblings[0]); 2447 2448 GEM_BUG_ON(!siblings[0]->cops->create_virtual); 2449 return siblings[0]->cops->create_virtual(siblings, count, flags); 2450 } 2451 2452 static struct i915_request *engine_execlist_find_hung_request(struct intel_engine_cs *engine) 2453 { 2454 struct i915_request *request, *active = NULL; 2455 2456 /* 2457 * This search does not work in GuC submission mode. However, the GuC 2458 * will report the hanging context directly to the driver itself. So 2459 * the driver should never get here when in GuC mode. 2460 */ 2461 GEM_BUG_ON(intel_uc_uses_guc_submission(&engine->gt->uc)); 2462 2463 /* 2464 * We are called by the error capture, reset and to dump engine 2465 * state at random points in time. In particular, note that neither is 2466 * crucially ordered with an interrupt. After a hang, the GPU is dead 2467 * and we assume that no more writes can happen (we waited long enough 2468 * for all writes that were in transaction to be flushed) - adding an 2469 * extra delay for a recent interrupt is pointless. Hence, we do 2470 * not need an engine->irq_seqno_barrier() before the seqno reads. 2471 * At all other times, we must assume the GPU is still running, but 2472 * we only care about the snapshot of this moment. 2473 */ 2474 lockdep_assert_held(&engine->sched_engine->lock); 2475 2476 rcu_read_lock(); 2477 request = execlists_active(&engine->execlists); 2478 if (request) { 2479 struct intel_timeline *tl = request->context->timeline; 2480 2481 list_for_each_entry_from_reverse(request, &tl->requests, link) { 2482 if (__i915_request_is_complete(request)) 2483 break; 2484 2485 active = request; 2486 } 2487 } 2488 rcu_read_unlock(); 2489 if (active) 2490 return active; 2491 2492 list_for_each_entry(request, &engine->sched_engine->requests, 2493 sched.link) { 2494 if (i915_test_request_state(request) != I915_REQUEST_ACTIVE) 2495 continue; 2496 2497 active = request; 2498 break; 2499 } 2500 2501 return active; 2502 } 2503 2504 void intel_engine_get_hung_entity(struct intel_engine_cs *engine, 2505 struct intel_context **ce, struct i915_request **rq) 2506 { 2507 unsigned long flags; 2508 2509 *ce = intel_engine_get_hung_context(engine); 2510 if (*ce) { 2511 intel_engine_clear_hung_context(engine); 2512 2513 *rq = intel_context_get_active_request(*ce); 2514 return; 2515 } 2516 2517 /* 2518 * Getting here with GuC enabled means it is a forced error capture 2519 * with no actual hang. So, no need to attempt the execlist search. 2520 */ 2521 if (intel_uc_uses_guc_submission(&engine->gt->uc)) 2522 return; 2523 2524 spin_lock_irqsave(&engine->sched_engine->lock, flags); 2525 *rq = engine_execlist_find_hung_request(engine); 2526 if (*rq) 2527 *rq = i915_request_get_rcu(*rq); 2528 spin_unlock_irqrestore(&engine->sched_engine->lock, flags); 2529 } 2530 2531 void xehp_enable_ccs_engines(struct intel_engine_cs *engine) 2532 { 2533 /* 2534 * If there are any non-fused-off CCS engines, we need to enable CCS 2535 * support in the RCU_MODE register. This only needs to be done once, 2536 * so for simplicity we'll take care of this in the RCS engine's 2537 * resume handler; since the RCS and all CCS engines belong to the 2538 * same reset domain and are reset together, this will also take care 2539 * of re-applying the setting after i915-triggered resets. 2540 */ 2541 if (!CCS_MASK(engine->gt)) 2542 return; 2543 2544 intel_uncore_write(engine->uncore, GEN12_RCU_MODE, 2545 _MASKED_BIT_ENABLE(GEN12_RCU_MODE_CCS_ENABLE)); 2546 } 2547 2548 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 2549 #include "mock_engine.c" 2550 #include "selftest_engine.c" 2551 #include "selftest_engine_cs.c" 2552 #endif 2553