1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2008-2018 Intel Corporation 5 */ 6 7 #include <linux/sched/mm.h> 8 #include <linux/stop_machine.h> 9 10 #include "display/intel_display_types.h" 11 #include "display/intel_overlay.h" 12 13 #include "gem/i915_gem_context.h" 14 15 #include "i915_drv.h" 16 #include "i915_gpu_error.h" 17 #include "i915_irq.h" 18 #include "intel_engine_pm.h" 19 #include "intel_gt.h" 20 #include "intel_gt_pm.h" 21 #include "intel_reset.h" 22 23 #include "uc/intel_guc.h" 24 #include "uc/intel_guc_submission.h" 25 26 #define RESET_MAX_RETRIES 3 27 28 /* XXX How to handle concurrent GGTT updates using tiling registers? */ 29 #define RESET_UNDER_STOP_MACHINE 0 30 31 static void rmw_set_fw(struct intel_uncore *uncore, i915_reg_t reg, u32 set) 32 { 33 intel_uncore_rmw_fw(uncore, reg, 0, set); 34 } 35 36 static void rmw_clear_fw(struct intel_uncore *uncore, i915_reg_t reg, u32 clr) 37 { 38 intel_uncore_rmw_fw(uncore, reg, clr, 0); 39 } 40 41 static void engine_skip_context(struct i915_request *rq) 42 { 43 struct intel_engine_cs *engine = rq->engine; 44 struct intel_context *hung_ctx = rq->context; 45 46 if (!i915_request_is_active(rq)) 47 return; 48 49 lockdep_assert_held(&engine->active.lock); 50 list_for_each_entry_continue(rq, &engine->active.requests, sched.link) 51 if (rq->context == hung_ctx) { 52 i915_request_set_error_once(rq, -EIO); 53 __i915_request_skip(rq); 54 } 55 } 56 57 static void client_mark_guilty(struct i915_gem_context *ctx, bool banned) 58 { 59 struct drm_i915_file_private *file_priv = ctx->file_priv; 60 unsigned long prev_hang; 61 unsigned int score; 62 63 if (IS_ERR_OR_NULL(file_priv)) 64 return; 65 66 score = 0; 67 if (banned) 68 score = I915_CLIENT_SCORE_CONTEXT_BAN; 69 70 prev_hang = xchg(&file_priv->hang_timestamp, jiffies); 71 if (time_before(jiffies, prev_hang + I915_CLIENT_FAST_HANG_JIFFIES)) 72 score += I915_CLIENT_SCORE_HANG_FAST; 73 74 if (score) { 75 atomic_add(score, &file_priv->ban_score); 76 77 drm_dbg(&ctx->i915->drm, 78 "client %s: gained %u ban score, now %u\n", 79 ctx->name, score, 80 atomic_read(&file_priv->ban_score)); 81 } 82 } 83 84 static bool mark_guilty(struct i915_request *rq) 85 { 86 struct i915_gem_context *ctx; 87 unsigned long prev_hang; 88 bool banned; 89 int i; 90 91 if (intel_context_is_closed(rq->context)) { 92 intel_context_set_banned(rq->context); 93 return true; 94 } 95 96 rcu_read_lock(); 97 ctx = rcu_dereference(rq->context->gem_context); 98 if (ctx && !kref_get_unless_zero(&ctx->ref)) 99 ctx = NULL; 100 rcu_read_unlock(); 101 if (!ctx) 102 return intel_context_is_banned(rq->context); 103 104 atomic_inc(&ctx->guilty_count); 105 106 /* Cool contexts are too cool to be banned! (Used for reset testing.) */ 107 if (!i915_gem_context_is_bannable(ctx)) { 108 banned = false; 109 goto out; 110 } 111 112 dev_notice(ctx->i915->drm.dev, 113 "%s context reset due to GPU hang\n", 114 ctx->name); 115 116 /* Record the timestamp for the last N hangs */ 117 prev_hang = ctx->hang_timestamp[0]; 118 for (i = 0; i < ARRAY_SIZE(ctx->hang_timestamp) - 1; i++) 119 ctx->hang_timestamp[i] = ctx->hang_timestamp[i + 1]; 120 ctx->hang_timestamp[i] = jiffies; 121 122 /* If we have hung N+1 times in rapid succession, we ban the context! */ 123 banned = !i915_gem_context_is_recoverable(ctx); 124 if (time_before(jiffies, prev_hang + CONTEXT_FAST_HANG_JIFFIES)) 125 banned = true; 126 if (banned) { 127 drm_dbg(&ctx->i915->drm, "context %s: guilty %d, banned\n", 128 ctx->name, atomic_read(&ctx->guilty_count)); 129 intel_context_set_banned(rq->context); 130 } 131 132 client_mark_guilty(ctx, banned); 133 134 out: 135 i915_gem_context_put(ctx); 136 return banned; 137 } 138 139 static void mark_innocent(struct i915_request *rq) 140 { 141 struct i915_gem_context *ctx; 142 143 rcu_read_lock(); 144 ctx = rcu_dereference(rq->context->gem_context); 145 if (ctx) 146 atomic_inc(&ctx->active_count); 147 rcu_read_unlock(); 148 } 149 150 void __i915_request_reset(struct i915_request *rq, bool guilty) 151 { 152 RQ_TRACE(rq, "guilty? %s\n", yesno(guilty)); 153 154 GEM_BUG_ON(i915_request_completed(rq)); 155 156 rcu_read_lock(); /* protect the GEM context */ 157 if (guilty) { 158 i915_request_set_error_once(rq, -EIO); 159 __i915_request_skip(rq); 160 if (mark_guilty(rq)) 161 engine_skip_context(rq); 162 } else { 163 i915_request_set_error_once(rq, -EAGAIN); 164 mark_innocent(rq); 165 } 166 rcu_read_unlock(); 167 } 168 169 static bool i915_in_reset(struct pci_dev *pdev) 170 { 171 u8 gdrst; 172 173 pci_read_config_byte(pdev, I915_GDRST, &gdrst); 174 return gdrst & GRDOM_RESET_STATUS; 175 } 176 177 static int i915_do_reset(struct intel_gt *gt, 178 intel_engine_mask_t engine_mask, 179 unsigned int retry) 180 { 181 struct pci_dev *pdev = gt->i915->drm.pdev; 182 int err; 183 184 /* Assert reset for at least 20 usec, and wait for acknowledgement. */ 185 pci_write_config_byte(pdev, I915_GDRST, GRDOM_RESET_ENABLE); 186 udelay(50); 187 err = wait_for_atomic(i915_in_reset(pdev), 50); 188 189 /* Clear the reset request. */ 190 pci_write_config_byte(pdev, I915_GDRST, 0); 191 udelay(50); 192 if (!err) 193 err = wait_for_atomic(!i915_in_reset(pdev), 50); 194 195 return err; 196 } 197 198 static bool g4x_reset_complete(struct pci_dev *pdev) 199 { 200 u8 gdrst; 201 202 pci_read_config_byte(pdev, I915_GDRST, &gdrst); 203 return (gdrst & GRDOM_RESET_ENABLE) == 0; 204 } 205 206 static int g33_do_reset(struct intel_gt *gt, 207 intel_engine_mask_t engine_mask, 208 unsigned int retry) 209 { 210 struct pci_dev *pdev = gt->i915->drm.pdev; 211 212 pci_write_config_byte(pdev, I915_GDRST, GRDOM_RESET_ENABLE); 213 return wait_for_atomic(g4x_reset_complete(pdev), 50); 214 } 215 216 static int g4x_do_reset(struct intel_gt *gt, 217 intel_engine_mask_t engine_mask, 218 unsigned int retry) 219 { 220 struct pci_dev *pdev = gt->i915->drm.pdev; 221 struct intel_uncore *uncore = gt->uncore; 222 int ret; 223 224 /* WaVcpClkGateDisableForMediaReset:ctg,elk */ 225 rmw_set_fw(uncore, VDECCLK_GATE_D, VCP_UNIT_CLOCK_GATE_DISABLE); 226 intel_uncore_posting_read_fw(uncore, VDECCLK_GATE_D); 227 228 pci_write_config_byte(pdev, I915_GDRST, 229 GRDOM_MEDIA | GRDOM_RESET_ENABLE); 230 ret = wait_for_atomic(g4x_reset_complete(pdev), 50); 231 if (ret) { 232 drm_dbg(>->i915->drm, "Wait for media reset failed\n"); 233 goto out; 234 } 235 236 pci_write_config_byte(pdev, I915_GDRST, 237 GRDOM_RENDER | GRDOM_RESET_ENABLE); 238 ret = wait_for_atomic(g4x_reset_complete(pdev), 50); 239 if (ret) { 240 drm_dbg(>->i915->drm, "Wait for render reset failed\n"); 241 goto out; 242 } 243 244 out: 245 pci_write_config_byte(pdev, I915_GDRST, 0); 246 247 rmw_clear_fw(uncore, VDECCLK_GATE_D, VCP_UNIT_CLOCK_GATE_DISABLE); 248 intel_uncore_posting_read_fw(uncore, VDECCLK_GATE_D); 249 250 return ret; 251 } 252 253 static int ilk_do_reset(struct intel_gt *gt, intel_engine_mask_t engine_mask, 254 unsigned int retry) 255 { 256 struct intel_uncore *uncore = gt->uncore; 257 int ret; 258 259 intel_uncore_write_fw(uncore, ILK_GDSR, 260 ILK_GRDOM_RENDER | ILK_GRDOM_RESET_ENABLE); 261 ret = __intel_wait_for_register_fw(uncore, ILK_GDSR, 262 ILK_GRDOM_RESET_ENABLE, 0, 263 5000, 0, 264 NULL); 265 if (ret) { 266 drm_dbg(>->i915->drm, "Wait for render reset failed\n"); 267 goto out; 268 } 269 270 intel_uncore_write_fw(uncore, ILK_GDSR, 271 ILK_GRDOM_MEDIA | ILK_GRDOM_RESET_ENABLE); 272 ret = __intel_wait_for_register_fw(uncore, ILK_GDSR, 273 ILK_GRDOM_RESET_ENABLE, 0, 274 5000, 0, 275 NULL); 276 if (ret) { 277 drm_dbg(>->i915->drm, "Wait for media reset failed\n"); 278 goto out; 279 } 280 281 out: 282 intel_uncore_write_fw(uncore, ILK_GDSR, 0); 283 intel_uncore_posting_read_fw(uncore, ILK_GDSR); 284 return ret; 285 } 286 287 /* Reset the hardware domains (GENX_GRDOM_*) specified by mask */ 288 static int gen6_hw_domain_reset(struct intel_gt *gt, u32 hw_domain_mask) 289 { 290 struct intel_uncore *uncore = gt->uncore; 291 int err; 292 293 /* 294 * GEN6_GDRST is not in the gt power well, no need to check 295 * for fifo space for the write or forcewake the chip for 296 * the read 297 */ 298 intel_uncore_write_fw(uncore, GEN6_GDRST, hw_domain_mask); 299 300 /* Wait for the device to ack the reset requests */ 301 err = __intel_wait_for_register_fw(uncore, 302 GEN6_GDRST, hw_domain_mask, 0, 303 500, 0, 304 NULL); 305 if (err) 306 drm_dbg(>->i915->drm, 307 "Wait for 0x%08x engines reset failed\n", 308 hw_domain_mask); 309 310 return err; 311 } 312 313 static int gen6_reset_engines(struct intel_gt *gt, 314 intel_engine_mask_t engine_mask, 315 unsigned int retry) 316 { 317 static const u32 hw_engine_mask[] = { 318 [RCS0] = GEN6_GRDOM_RENDER, 319 [BCS0] = GEN6_GRDOM_BLT, 320 [VCS0] = GEN6_GRDOM_MEDIA, 321 [VCS1] = GEN8_GRDOM_MEDIA2, 322 [VECS0] = GEN6_GRDOM_VECS, 323 }; 324 struct intel_engine_cs *engine; 325 u32 hw_mask; 326 327 if (engine_mask == ALL_ENGINES) { 328 hw_mask = GEN6_GRDOM_FULL; 329 } else { 330 intel_engine_mask_t tmp; 331 332 hw_mask = 0; 333 for_each_engine_masked(engine, gt, engine_mask, tmp) { 334 GEM_BUG_ON(engine->id >= ARRAY_SIZE(hw_engine_mask)); 335 hw_mask |= hw_engine_mask[engine->id]; 336 } 337 } 338 339 return gen6_hw_domain_reset(gt, hw_mask); 340 } 341 342 static int gen11_lock_sfc(struct intel_engine_cs *engine, u32 *hw_mask) 343 { 344 struct intel_uncore *uncore = engine->uncore; 345 u8 vdbox_sfc_access = RUNTIME_INFO(engine->i915)->vdbox_sfc_access; 346 i915_reg_t sfc_forced_lock, sfc_forced_lock_ack; 347 u32 sfc_forced_lock_bit, sfc_forced_lock_ack_bit; 348 i915_reg_t sfc_usage; 349 u32 sfc_usage_bit; 350 u32 sfc_reset_bit; 351 int ret; 352 353 switch (engine->class) { 354 case VIDEO_DECODE_CLASS: 355 if ((BIT(engine->instance) & vdbox_sfc_access) == 0) 356 return 0; 357 358 sfc_forced_lock = GEN11_VCS_SFC_FORCED_LOCK(engine); 359 sfc_forced_lock_bit = GEN11_VCS_SFC_FORCED_LOCK_BIT; 360 361 sfc_forced_lock_ack = GEN11_VCS_SFC_LOCK_STATUS(engine); 362 sfc_forced_lock_ack_bit = GEN11_VCS_SFC_LOCK_ACK_BIT; 363 364 sfc_usage = GEN11_VCS_SFC_LOCK_STATUS(engine); 365 sfc_usage_bit = GEN11_VCS_SFC_USAGE_BIT; 366 sfc_reset_bit = GEN11_VCS_SFC_RESET_BIT(engine->instance); 367 break; 368 369 case VIDEO_ENHANCEMENT_CLASS: 370 sfc_forced_lock = GEN11_VECS_SFC_FORCED_LOCK(engine); 371 sfc_forced_lock_bit = GEN11_VECS_SFC_FORCED_LOCK_BIT; 372 373 sfc_forced_lock_ack = GEN11_VECS_SFC_LOCK_ACK(engine); 374 sfc_forced_lock_ack_bit = GEN11_VECS_SFC_LOCK_ACK_BIT; 375 376 sfc_usage = GEN11_VECS_SFC_USAGE(engine); 377 sfc_usage_bit = GEN11_VECS_SFC_USAGE_BIT; 378 sfc_reset_bit = GEN11_VECS_SFC_RESET_BIT(engine->instance); 379 break; 380 381 default: 382 return 0; 383 } 384 385 /* 386 * If the engine is using a SFC, tell the engine that a software reset 387 * is going to happen. The engine will then try to force lock the SFC. 388 * If SFC ends up being locked to the engine we want to reset, we have 389 * to reset it as well (we will unlock it once the reset sequence is 390 * completed). 391 */ 392 if (!(intel_uncore_read_fw(uncore, sfc_usage) & sfc_usage_bit)) 393 return 0; 394 395 rmw_set_fw(uncore, sfc_forced_lock, sfc_forced_lock_bit); 396 397 ret = __intel_wait_for_register_fw(uncore, 398 sfc_forced_lock_ack, 399 sfc_forced_lock_ack_bit, 400 sfc_forced_lock_ack_bit, 401 1000, 0, NULL); 402 403 /* Was the SFC released while we were trying to lock it? */ 404 if (!(intel_uncore_read_fw(uncore, sfc_usage) & sfc_usage_bit)) 405 return 0; 406 407 if (ret) { 408 drm_dbg(&engine->i915->drm, 409 "Wait for SFC forced lock ack failed\n"); 410 return ret; 411 } 412 413 *hw_mask |= sfc_reset_bit; 414 return 0; 415 } 416 417 static void gen11_unlock_sfc(struct intel_engine_cs *engine) 418 { 419 struct intel_uncore *uncore = engine->uncore; 420 u8 vdbox_sfc_access = RUNTIME_INFO(engine->i915)->vdbox_sfc_access; 421 i915_reg_t sfc_forced_lock; 422 u32 sfc_forced_lock_bit; 423 424 switch (engine->class) { 425 case VIDEO_DECODE_CLASS: 426 if ((BIT(engine->instance) & vdbox_sfc_access) == 0) 427 return; 428 429 sfc_forced_lock = GEN11_VCS_SFC_FORCED_LOCK(engine); 430 sfc_forced_lock_bit = GEN11_VCS_SFC_FORCED_LOCK_BIT; 431 break; 432 433 case VIDEO_ENHANCEMENT_CLASS: 434 sfc_forced_lock = GEN11_VECS_SFC_FORCED_LOCK(engine); 435 sfc_forced_lock_bit = GEN11_VECS_SFC_FORCED_LOCK_BIT; 436 break; 437 438 default: 439 return; 440 } 441 442 rmw_clear_fw(uncore, sfc_forced_lock, sfc_forced_lock_bit); 443 } 444 445 static int gen11_reset_engines(struct intel_gt *gt, 446 intel_engine_mask_t engine_mask, 447 unsigned int retry) 448 { 449 static const u32 hw_engine_mask[] = { 450 [RCS0] = GEN11_GRDOM_RENDER, 451 [BCS0] = GEN11_GRDOM_BLT, 452 [VCS0] = GEN11_GRDOM_MEDIA, 453 [VCS1] = GEN11_GRDOM_MEDIA2, 454 [VCS2] = GEN11_GRDOM_MEDIA3, 455 [VCS3] = GEN11_GRDOM_MEDIA4, 456 [VECS0] = GEN11_GRDOM_VECS, 457 [VECS1] = GEN11_GRDOM_VECS2, 458 }; 459 struct intel_engine_cs *engine; 460 intel_engine_mask_t tmp; 461 u32 hw_mask; 462 int ret; 463 464 if (engine_mask == ALL_ENGINES) { 465 hw_mask = GEN11_GRDOM_FULL; 466 } else { 467 hw_mask = 0; 468 for_each_engine_masked(engine, gt, engine_mask, tmp) { 469 GEM_BUG_ON(engine->id >= ARRAY_SIZE(hw_engine_mask)); 470 hw_mask |= hw_engine_mask[engine->id]; 471 ret = gen11_lock_sfc(engine, &hw_mask); 472 if (ret) 473 goto sfc_unlock; 474 } 475 } 476 477 ret = gen6_hw_domain_reset(gt, hw_mask); 478 479 sfc_unlock: 480 /* 481 * We unlock the SFC based on the lock status and not the result of 482 * gen11_lock_sfc to make sure that we clean properly if something 483 * wrong happened during the lock (e.g. lock acquired after timeout 484 * expiration). 485 */ 486 if (engine_mask != ALL_ENGINES) 487 for_each_engine_masked(engine, gt, engine_mask, tmp) 488 gen11_unlock_sfc(engine); 489 490 return ret; 491 } 492 493 static int gen8_engine_reset_prepare(struct intel_engine_cs *engine) 494 { 495 struct intel_uncore *uncore = engine->uncore; 496 const i915_reg_t reg = RING_RESET_CTL(engine->mmio_base); 497 u32 request, mask, ack; 498 int ret; 499 500 ack = intel_uncore_read_fw(uncore, reg); 501 if (ack & RESET_CTL_CAT_ERROR) { 502 /* 503 * For catastrophic errors, ready-for-reset sequence 504 * needs to be bypassed: HAS#396813 505 */ 506 request = RESET_CTL_CAT_ERROR; 507 mask = RESET_CTL_CAT_ERROR; 508 509 /* Catastrophic errors need to be cleared by HW */ 510 ack = 0; 511 } else if (!(ack & RESET_CTL_READY_TO_RESET)) { 512 request = RESET_CTL_REQUEST_RESET; 513 mask = RESET_CTL_READY_TO_RESET; 514 ack = RESET_CTL_READY_TO_RESET; 515 } else { 516 return 0; 517 } 518 519 intel_uncore_write_fw(uncore, reg, _MASKED_BIT_ENABLE(request)); 520 ret = __intel_wait_for_register_fw(uncore, reg, mask, ack, 521 700, 0, NULL); 522 if (ret) 523 drm_err(&engine->i915->drm, 524 "%s reset request timed out: {request: %08x, RESET_CTL: %08x}\n", 525 engine->name, request, 526 intel_uncore_read_fw(uncore, reg)); 527 528 return ret; 529 } 530 531 static void gen8_engine_reset_cancel(struct intel_engine_cs *engine) 532 { 533 intel_uncore_write_fw(engine->uncore, 534 RING_RESET_CTL(engine->mmio_base), 535 _MASKED_BIT_DISABLE(RESET_CTL_REQUEST_RESET)); 536 } 537 538 static int gen8_reset_engines(struct intel_gt *gt, 539 intel_engine_mask_t engine_mask, 540 unsigned int retry) 541 { 542 struct intel_engine_cs *engine; 543 const bool reset_non_ready = retry >= 1; 544 intel_engine_mask_t tmp; 545 int ret; 546 547 for_each_engine_masked(engine, gt, engine_mask, tmp) { 548 ret = gen8_engine_reset_prepare(engine); 549 if (ret && !reset_non_ready) 550 goto skip_reset; 551 552 /* 553 * If this is not the first failed attempt to prepare, 554 * we decide to proceed anyway. 555 * 556 * By doing so we risk context corruption and with 557 * some gens (kbl), possible system hang if reset 558 * happens during active bb execution. 559 * 560 * We rather take context corruption instead of 561 * failed reset with a wedged driver/gpu. And 562 * active bb execution case should be covered by 563 * stop_engines() we have before the reset. 564 */ 565 } 566 567 if (INTEL_GEN(gt->i915) >= 11) 568 ret = gen11_reset_engines(gt, engine_mask, retry); 569 else 570 ret = gen6_reset_engines(gt, engine_mask, retry); 571 572 skip_reset: 573 for_each_engine_masked(engine, gt, engine_mask, tmp) 574 gen8_engine_reset_cancel(engine); 575 576 return ret; 577 } 578 579 static int mock_reset(struct intel_gt *gt, 580 intel_engine_mask_t mask, 581 unsigned int retry) 582 { 583 return 0; 584 } 585 586 typedef int (*reset_func)(struct intel_gt *, 587 intel_engine_mask_t engine_mask, 588 unsigned int retry); 589 590 static reset_func intel_get_gpu_reset(const struct intel_gt *gt) 591 { 592 struct drm_i915_private *i915 = gt->i915; 593 594 if (is_mock_gt(gt)) 595 return mock_reset; 596 else if (INTEL_GEN(i915) >= 8) 597 return gen8_reset_engines; 598 else if (INTEL_GEN(i915) >= 6) 599 return gen6_reset_engines; 600 else if (INTEL_GEN(i915) >= 5) 601 return ilk_do_reset; 602 else if (IS_G4X(i915)) 603 return g4x_do_reset; 604 else if (IS_G33(i915) || IS_PINEVIEW(i915)) 605 return g33_do_reset; 606 else if (INTEL_GEN(i915) >= 3) 607 return i915_do_reset; 608 else 609 return NULL; 610 } 611 612 int __intel_gt_reset(struct intel_gt *gt, intel_engine_mask_t engine_mask) 613 { 614 const int retries = engine_mask == ALL_ENGINES ? RESET_MAX_RETRIES : 1; 615 reset_func reset; 616 int ret = -ETIMEDOUT; 617 int retry; 618 619 reset = intel_get_gpu_reset(gt); 620 if (!reset) 621 return -ENODEV; 622 623 /* 624 * If the power well sleeps during the reset, the reset 625 * request may be dropped and never completes (causing -EIO). 626 */ 627 intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL); 628 for (retry = 0; ret == -ETIMEDOUT && retry < retries; retry++) { 629 GT_TRACE(gt, "engine_mask=%x\n", engine_mask); 630 preempt_disable(); 631 ret = reset(gt, engine_mask, retry); 632 preempt_enable(); 633 } 634 intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL); 635 636 return ret; 637 } 638 639 bool intel_has_gpu_reset(const struct intel_gt *gt) 640 { 641 if (!i915_modparams.reset) 642 return NULL; 643 644 return intel_get_gpu_reset(gt); 645 } 646 647 bool intel_has_reset_engine(const struct intel_gt *gt) 648 { 649 if (i915_modparams.reset < 2) 650 return false; 651 652 return INTEL_INFO(gt->i915)->has_reset_engine; 653 } 654 655 int intel_reset_guc(struct intel_gt *gt) 656 { 657 u32 guc_domain = 658 INTEL_GEN(gt->i915) >= 11 ? GEN11_GRDOM_GUC : GEN9_GRDOM_GUC; 659 int ret; 660 661 GEM_BUG_ON(!HAS_GT_UC(gt->i915)); 662 663 intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL); 664 ret = gen6_hw_domain_reset(gt, guc_domain); 665 intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL); 666 667 return ret; 668 } 669 670 /* 671 * Ensure irq handler finishes, and not run again. 672 * Also return the active request so that we only search for it once. 673 */ 674 static void reset_prepare_engine(struct intel_engine_cs *engine) 675 { 676 /* 677 * During the reset sequence, we must prevent the engine from 678 * entering RC6. As the context state is undefined until we restart 679 * the engine, if it does enter RC6 during the reset, the state 680 * written to the powercontext is undefined and so we may lose 681 * GPU state upon resume, i.e. fail to restart after a reset. 682 */ 683 intel_uncore_forcewake_get(engine->uncore, FORCEWAKE_ALL); 684 if (engine->reset.prepare) 685 engine->reset.prepare(engine); 686 } 687 688 static void revoke_mmaps(struct intel_gt *gt) 689 { 690 int i; 691 692 for (i = 0; i < gt->ggtt->num_fences; i++) { 693 struct drm_vma_offset_node *node; 694 struct i915_vma *vma; 695 u64 vma_offset; 696 697 vma = READ_ONCE(gt->ggtt->fence_regs[i].vma); 698 if (!vma) 699 continue; 700 701 if (!i915_vma_has_userfault(vma)) 702 continue; 703 704 GEM_BUG_ON(vma->fence != >->ggtt->fence_regs[i]); 705 706 if (!vma->mmo) 707 continue; 708 709 node = &vma->mmo->vma_node; 710 vma_offset = vma->ggtt_view.partial.offset << PAGE_SHIFT; 711 712 #ifdef __linux__ 713 unmap_mapping_range(gt->i915->drm.anon_inode->i_mapping, 714 drm_vma_node_offset_addr(node) + vma_offset, 715 vma->size, 716 1); 717 #else 718 { 719 struct drm_i915_private *dev_priv = vma->obj->base.dev->dev_private; 720 struct vm_page *pg; 721 722 for (pg = &dev_priv->pgs[atop(vma->node.start)]; 723 pg != &dev_priv->pgs[atop(vma->node.start + vma->size)]; 724 pg++) 725 pmap_page_protect(pg, PROT_NONE); 726 } 727 #endif 728 } 729 } 730 731 static intel_engine_mask_t reset_prepare(struct intel_gt *gt) 732 { 733 struct intel_engine_cs *engine; 734 intel_engine_mask_t awake = 0; 735 enum intel_engine_id id; 736 737 for_each_engine(engine, gt, id) { 738 if (intel_engine_pm_get_if_awake(engine)) 739 awake |= engine->mask; 740 reset_prepare_engine(engine); 741 } 742 743 intel_uc_reset_prepare(>->uc); 744 745 return awake; 746 } 747 748 static void gt_revoke(struct intel_gt *gt) 749 { 750 revoke_mmaps(gt); 751 } 752 753 static int gt_reset(struct intel_gt *gt, intel_engine_mask_t stalled_mask) 754 { 755 struct intel_engine_cs *engine; 756 enum intel_engine_id id; 757 int err; 758 759 /* 760 * Everything depends on having the GTT running, so we need to start 761 * there. 762 */ 763 err = i915_ggtt_enable_hw(gt->i915); 764 if (err) 765 return err; 766 767 for_each_engine(engine, gt, id) 768 __intel_engine_reset(engine, stalled_mask & engine->mask); 769 770 i915_gem_restore_fences(gt->ggtt); 771 772 return err; 773 } 774 775 static void reset_finish_engine(struct intel_engine_cs *engine) 776 { 777 if (engine->reset.finish) 778 engine->reset.finish(engine); 779 intel_uncore_forcewake_put(engine->uncore, FORCEWAKE_ALL); 780 781 intel_engine_signal_breadcrumbs(engine); 782 } 783 784 static void reset_finish(struct intel_gt *gt, intel_engine_mask_t awake) 785 { 786 struct intel_engine_cs *engine; 787 enum intel_engine_id id; 788 789 for_each_engine(engine, gt, id) { 790 reset_finish_engine(engine); 791 if (awake & engine->mask) 792 intel_engine_pm_put(engine); 793 } 794 } 795 796 static void nop_submit_request(struct i915_request *request) 797 { 798 struct intel_engine_cs *engine = request->engine; 799 unsigned long flags; 800 801 RQ_TRACE(request, "-EIO\n"); 802 i915_request_set_error_once(request, -EIO); 803 804 spin_lock_irqsave(&engine->active.lock, flags); 805 __i915_request_submit(request); 806 i915_request_mark_complete(request); 807 spin_unlock_irqrestore(&engine->active.lock, flags); 808 809 intel_engine_signal_breadcrumbs(engine); 810 } 811 812 static void __intel_gt_set_wedged(struct intel_gt *gt) 813 { 814 struct intel_engine_cs *engine; 815 intel_engine_mask_t awake; 816 enum intel_engine_id id; 817 818 if (test_bit(I915_WEDGED, >->reset.flags)) 819 return; 820 821 GT_TRACE(gt, "start\n"); 822 823 /* 824 * First, stop submission to hw, but do not yet complete requests by 825 * rolling the global seqno forward (since this would complete requests 826 * for which we haven't set the fence error to EIO yet). 827 */ 828 awake = reset_prepare(gt); 829 830 /* Even if the GPU reset fails, it should still stop the engines */ 831 if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) 832 __intel_gt_reset(gt, ALL_ENGINES); 833 834 for_each_engine(engine, gt, id) 835 engine->submit_request = nop_submit_request; 836 837 /* 838 * Make sure no request can slip through without getting completed by 839 * either this call here to intel_engine_write_global_seqno, or the one 840 * in nop_submit_request. 841 */ 842 synchronize_rcu_expedited(); 843 set_bit(I915_WEDGED, >->reset.flags); 844 845 /* Mark all executing requests as skipped */ 846 for_each_engine(engine, gt, id) 847 if (engine->reset.cancel) 848 engine->reset.cancel(engine); 849 850 reset_finish(gt, awake); 851 852 GT_TRACE(gt, "end\n"); 853 } 854 855 void intel_gt_set_wedged(struct intel_gt *gt) 856 { 857 intel_wakeref_t wakeref; 858 859 if (test_bit(I915_WEDGED, >->reset.flags)) 860 return; 861 862 wakeref = intel_runtime_pm_get(gt->uncore->rpm); 863 mutex_lock(>->reset.mutex); 864 865 if (GEM_SHOW_DEBUG()) { 866 struct drm_printer p = drm_debug_printer(__func__); 867 struct intel_engine_cs *engine; 868 enum intel_engine_id id; 869 870 drm_printf(&p, "called from %pS\n", (void *)_RET_IP_); 871 for_each_engine(engine, gt, id) { 872 if (intel_engine_is_idle(engine)) 873 continue; 874 875 intel_engine_dump(engine, &p, "%s\n", engine->name); 876 } 877 } 878 879 __intel_gt_set_wedged(gt); 880 881 mutex_unlock(>->reset.mutex); 882 intel_runtime_pm_put(gt->uncore->rpm, wakeref); 883 } 884 885 static bool __intel_gt_unset_wedged(struct intel_gt *gt) 886 { 887 struct intel_gt_timelines *timelines = >->timelines; 888 struct intel_timeline *tl; 889 bool ok; 890 891 if (!test_bit(I915_WEDGED, >->reset.flags)) 892 return true; 893 894 /* Never fully initialised, recovery impossible */ 895 if (test_bit(I915_WEDGED_ON_INIT, >->reset.flags)) 896 return false; 897 898 GT_TRACE(gt, "start\n"); 899 900 /* 901 * Before unwedging, make sure that all pending operations 902 * are flushed and errored out - we may have requests waiting upon 903 * third party fences. We marked all inflight requests as EIO, and 904 * every execbuf since returned EIO, for consistency we want all 905 * the currently pending requests to also be marked as EIO, which 906 * is done inside our nop_submit_request - and so we must wait. 907 * 908 * No more can be submitted until we reset the wedged bit. 909 */ 910 spin_lock(&timelines->lock); 911 list_for_each_entry(tl, &timelines->active_list, link) { 912 struct dma_fence *fence; 913 914 fence = i915_active_fence_get(&tl->last_request); 915 if (!fence) 916 continue; 917 918 spin_unlock(&timelines->lock); 919 920 /* 921 * All internal dependencies (i915_requests) will have 922 * been flushed by the set-wedge, but we may be stuck waiting 923 * for external fences. These should all be capped to 10s 924 * (I915_FENCE_TIMEOUT) so this wait should not be unbounded 925 * in the worst case. 926 */ 927 dma_fence_default_wait(fence, false, MAX_SCHEDULE_TIMEOUT); 928 dma_fence_put(fence); 929 930 /* Restart iteration after droping lock */ 931 spin_lock(&timelines->lock); 932 tl = list_entry(&timelines->active_list, typeof(*tl), link); 933 } 934 spin_unlock(&timelines->lock); 935 936 /* We must reset pending GPU events before restoring our submission */ 937 ok = !HAS_EXECLISTS(gt->i915); /* XXX better agnosticism desired */ 938 if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) 939 ok = __intel_gt_reset(gt, ALL_ENGINES) == 0; 940 if (!ok) { 941 /* 942 * Warn CI about the unrecoverable wedged condition. 943 * Time for a reboot. 944 */ 945 add_taint_for_CI(TAINT_WARN); 946 return false; 947 } 948 949 /* 950 * Undo nop_submit_request. We prevent all new i915 requests from 951 * being queued (by disallowing execbuf whilst wedged) so having 952 * waited for all active requests above, we know the system is idle 953 * and do not have to worry about a thread being inside 954 * engine->submit_request() as we swap over. So unlike installing 955 * the nop_submit_request on reset, we can do this from normal 956 * context and do not require stop_machine(). 957 */ 958 intel_engines_reset_default_submission(gt); 959 960 GT_TRACE(gt, "end\n"); 961 962 smp_mb__before_atomic(); /* complete takeover before enabling execbuf */ 963 clear_bit(I915_WEDGED, >->reset.flags); 964 965 return true; 966 } 967 968 bool intel_gt_unset_wedged(struct intel_gt *gt) 969 { 970 bool result; 971 972 mutex_lock(>->reset.mutex); 973 result = __intel_gt_unset_wedged(gt); 974 mutex_unlock(>->reset.mutex); 975 976 return result; 977 } 978 979 static int do_reset(struct intel_gt *gt, intel_engine_mask_t stalled_mask) 980 { 981 int err, i; 982 983 gt_revoke(gt); 984 985 err = __intel_gt_reset(gt, ALL_ENGINES); 986 for (i = 0; err && i < RESET_MAX_RETRIES; i++) { 987 drm_msleep(10 * (i + 1)); 988 err = __intel_gt_reset(gt, ALL_ENGINES); 989 } 990 if (err) 991 return err; 992 993 return gt_reset(gt, stalled_mask); 994 } 995 996 static int resume(struct intel_gt *gt) 997 { 998 struct intel_engine_cs *engine; 999 enum intel_engine_id id; 1000 int ret; 1001 1002 for_each_engine(engine, gt, id) { 1003 ret = intel_engine_resume(engine); 1004 if (ret) 1005 return ret; 1006 } 1007 1008 return 0; 1009 } 1010 1011 /** 1012 * intel_gt_reset - reset chip after a hang 1013 * @gt: #intel_gt to reset 1014 * @stalled_mask: mask of the stalled engines with the guilty requests 1015 * @reason: user error message for why we are resetting 1016 * 1017 * Reset the chip. Useful if a hang is detected. Marks the device as wedged 1018 * on failure. 1019 * 1020 * Procedure is fairly simple: 1021 * - reset the chip using the reset reg 1022 * - re-init context state 1023 * - re-init hardware status page 1024 * - re-init ring buffer 1025 * - re-init interrupt state 1026 * - re-init display 1027 */ 1028 void intel_gt_reset(struct intel_gt *gt, 1029 intel_engine_mask_t stalled_mask, 1030 const char *reason) 1031 { 1032 intel_engine_mask_t awake; 1033 int ret; 1034 1035 GT_TRACE(gt, "flags=%lx\n", gt->reset.flags); 1036 1037 might_sleep(); 1038 GEM_BUG_ON(!test_bit(I915_RESET_BACKOFF, >->reset.flags)); 1039 mutex_lock(>->reset.mutex); 1040 1041 /* Clear any previous failed attempts at recovery. Time to try again. */ 1042 if (!__intel_gt_unset_wedged(gt)) 1043 goto unlock; 1044 1045 if (reason) 1046 dev_notice(gt->i915->drm.dev, 1047 "Resetting chip for %s\n", reason); 1048 atomic_inc(>->i915->gpu_error.reset_count); 1049 1050 awake = reset_prepare(gt); 1051 1052 if (!intel_has_gpu_reset(gt)) { 1053 if (i915_modparams.reset) 1054 dev_err(gt->i915->drm.dev, "GPU reset not supported\n"); 1055 else 1056 drm_dbg(>->i915->drm, "GPU reset disabled\n"); 1057 goto error; 1058 } 1059 1060 if (INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) 1061 intel_runtime_pm_disable_interrupts(gt->i915); 1062 1063 if (do_reset(gt, stalled_mask)) { 1064 dev_err(gt->i915->drm.dev, "Failed to reset chip\n"); 1065 goto taint; 1066 } 1067 1068 if (INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) 1069 intel_runtime_pm_enable_interrupts(gt->i915); 1070 1071 intel_overlay_reset(gt->i915); 1072 1073 /* 1074 * Next we need to restore the context, but we don't use those 1075 * yet either... 1076 * 1077 * Ring buffer needs to be re-initialized in the KMS case, or if X 1078 * was running at the time of the reset (i.e. we weren't VT 1079 * switched away). 1080 */ 1081 ret = intel_gt_init_hw(gt); 1082 if (ret) { 1083 drm_err(>->i915->drm, 1084 "Failed to initialise HW following reset (%d)\n", 1085 ret); 1086 goto taint; 1087 } 1088 1089 ret = resume(gt); 1090 if (ret) 1091 goto taint; 1092 1093 finish: 1094 reset_finish(gt, awake); 1095 unlock: 1096 mutex_unlock(>->reset.mutex); 1097 return; 1098 1099 taint: 1100 /* 1101 * History tells us that if we cannot reset the GPU now, we 1102 * never will. This then impacts everything that is run 1103 * subsequently. On failing the reset, we mark the driver 1104 * as wedged, preventing further execution on the GPU. 1105 * We also want to go one step further and add a taint to the 1106 * kernel so that any subsequent faults can be traced back to 1107 * this failure. This is important for CI, where if the 1108 * GPU/driver fails we would like to reboot and restart testing 1109 * rather than continue on into oblivion. For everyone else, 1110 * the system should still plod along, but they have been warned! 1111 */ 1112 add_taint_for_CI(TAINT_WARN); 1113 error: 1114 __intel_gt_set_wedged(gt); 1115 goto finish; 1116 } 1117 1118 static inline int intel_gt_reset_engine(struct intel_engine_cs *engine) 1119 { 1120 return __intel_gt_reset(engine->gt, engine->mask); 1121 } 1122 1123 /** 1124 * intel_engine_reset - reset GPU engine to recover from a hang 1125 * @engine: engine to reset 1126 * @msg: reason for GPU reset; or NULL for no dev_notice() 1127 * 1128 * Reset a specific GPU engine. Useful if a hang is detected. 1129 * Returns zero on successful reset or otherwise an error code. 1130 * 1131 * Procedure is: 1132 * - identifies the request that caused the hang and it is dropped 1133 * - reset engine (which will force the engine to idle) 1134 * - re-init/configure engine 1135 */ 1136 int intel_engine_reset(struct intel_engine_cs *engine, const char *msg) 1137 { 1138 struct intel_gt *gt = engine->gt; 1139 bool uses_guc = intel_engine_in_guc_submission_mode(engine); 1140 int ret; 1141 1142 ENGINE_TRACE(engine, "flags=%lx\n", gt->reset.flags); 1143 GEM_BUG_ON(!test_bit(I915_RESET_ENGINE + engine->id, >->reset.flags)); 1144 1145 if (!intel_engine_pm_get_if_awake(engine)) 1146 return 0; 1147 1148 reset_prepare_engine(engine); 1149 1150 if (msg) 1151 dev_notice(engine->i915->drm.dev, 1152 "Resetting %s for %s\n", engine->name, msg); 1153 atomic_inc(&engine->i915->gpu_error.reset_engine_count[engine->uabi_class]); 1154 1155 if (!uses_guc) 1156 ret = intel_gt_reset_engine(engine); 1157 else 1158 ret = intel_guc_reset_engine(&engine->gt->uc.guc, engine); 1159 if (ret) { 1160 /* If we fail here, we expect to fallback to a global reset */ 1161 drm_dbg(>->i915->drm, "%sFailed to reset %s, ret=%d\n", 1162 uses_guc ? "GuC " : "", engine->name, ret); 1163 goto out; 1164 } 1165 1166 /* 1167 * The request that caused the hang is stuck on elsp, we know the 1168 * active request and can drop it, adjust head to skip the offending 1169 * request to resume executing remaining requests in the queue. 1170 */ 1171 __intel_engine_reset(engine, true); 1172 1173 /* 1174 * The engine and its registers (and workarounds in case of render) 1175 * have been reset to their default values. Follow the init_ring 1176 * process to program RING_MODE, HWSP and re-enable submission. 1177 */ 1178 ret = intel_engine_resume(engine); 1179 1180 out: 1181 intel_engine_cancel_stop_cs(engine); 1182 reset_finish_engine(engine); 1183 intel_engine_pm_put_async(engine); 1184 return ret; 1185 } 1186 1187 static void intel_gt_reset_global(struct intel_gt *gt, 1188 u32 engine_mask, 1189 const char *reason) 1190 { 1191 #ifdef notyet 1192 struct kobject *kobj = >->i915->drm.primary->kdev->kobj; 1193 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL }; 1194 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL }; 1195 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL }; 1196 #endif 1197 struct intel_wedge_me w; 1198 1199 kobject_uevent_env(kobj, KOBJ_CHANGE, error_event); 1200 1201 drm_dbg(>->i915->drm, "resetting chip, engines=%x\n", engine_mask); 1202 kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event); 1203 1204 /* Use a watchdog to ensure that our reset completes */ 1205 intel_wedge_on_timeout(&w, gt, 5 * HZ) { 1206 intel_prepare_reset(gt->i915); 1207 1208 /* Flush everyone using a resource about to be clobbered */ 1209 synchronize_srcu_expedited(>->reset.backoff_srcu); 1210 1211 intel_gt_reset(gt, engine_mask, reason); 1212 1213 intel_finish_reset(gt->i915); 1214 } 1215 1216 if (!test_bit(I915_WEDGED, >->reset.flags)) 1217 kobject_uevent_env(kobj, KOBJ_CHANGE, reset_done_event); 1218 } 1219 1220 /** 1221 * intel_gt_handle_error - handle a gpu error 1222 * @gt: the intel_gt 1223 * @engine_mask: mask representing engines that are hung 1224 * @flags: control flags 1225 * @fmt: Error message format string 1226 * 1227 * Do some basic checking of register state at error time and 1228 * dump it to the syslog. Also call i915_capture_error_state() to make 1229 * sure we get a record and make it available in debugfs. Fire a uevent 1230 * so userspace knows something bad happened (should trigger collection 1231 * of a ring dump etc.). 1232 */ 1233 void intel_gt_handle_error(struct intel_gt *gt, 1234 intel_engine_mask_t engine_mask, 1235 unsigned long flags, 1236 const char *fmt, ...) 1237 { 1238 struct intel_engine_cs *engine; 1239 intel_wakeref_t wakeref; 1240 intel_engine_mask_t tmp; 1241 char error_msg[80]; 1242 char *msg = NULL; 1243 1244 if (fmt) { 1245 va_list args; 1246 1247 va_start(args, fmt); 1248 vscnprintf(error_msg, sizeof(error_msg), fmt, args); 1249 va_end(args); 1250 1251 msg = error_msg; 1252 } 1253 1254 /* 1255 * In most cases it's guaranteed that we get here with an RPM 1256 * reference held, for example because there is a pending GPU 1257 * request that won't finish until the reset is done. This 1258 * isn't the case at least when we get here by doing a 1259 * simulated reset via debugfs, so get an RPM reference. 1260 */ 1261 wakeref = intel_runtime_pm_get(gt->uncore->rpm); 1262 1263 engine_mask &= INTEL_INFO(gt->i915)->engine_mask; 1264 1265 if (flags & I915_ERROR_CAPTURE) { 1266 i915_capture_error_state(gt->i915); 1267 intel_gt_clear_error_registers(gt, engine_mask); 1268 } 1269 1270 /* 1271 * Try engine reset when available. We fall back to full reset if 1272 * single reset fails. 1273 */ 1274 if (intel_has_reset_engine(gt) && !intel_gt_is_wedged(gt)) { 1275 for_each_engine_masked(engine, gt, engine_mask, tmp) { 1276 BUILD_BUG_ON(I915_RESET_MODESET >= I915_RESET_ENGINE); 1277 if (test_and_set_bit(I915_RESET_ENGINE + engine->id, 1278 >->reset.flags)) 1279 continue; 1280 1281 if (intel_engine_reset(engine, msg) == 0) 1282 engine_mask &= ~engine->mask; 1283 1284 clear_and_wake_up_bit(I915_RESET_ENGINE + engine->id, 1285 >->reset.flags); 1286 } 1287 } 1288 1289 if (!engine_mask) 1290 goto out; 1291 1292 /* Full reset needs the mutex, stop any other user trying to do so. */ 1293 if (test_and_set_bit(I915_RESET_BACKOFF, >->reset.flags)) { 1294 wait_event(gt->reset.queue, 1295 !test_bit(I915_RESET_BACKOFF, >->reset.flags)); 1296 goto out; /* piggy-back on the other reset */ 1297 } 1298 1299 /* Make sure i915_reset_trylock() sees the I915_RESET_BACKOFF */ 1300 synchronize_rcu_expedited(); 1301 1302 /* Prevent any other reset-engine attempt. */ 1303 for_each_engine(engine, gt, tmp) { 1304 while (test_and_set_bit(I915_RESET_ENGINE + engine->id, 1305 >->reset.flags)) 1306 wait_on_bit(>->reset.flags, 1307 I915_RESET_ENGINE + engine->id, 1308 TASK_UNINTERRUPTIBLE); 1309 } 1310 1311 intel_gt_reset_global(gt, engine_mask, msg); 1312 1313 for_each_engine(engine, gt, tmp) 1314 clear_bit_unlock(I915_RESET_ENGINE + engine->id, 1315 >->reset.flags); 1316 clear_bit_unlock(I915_RESET_BACKOFF, >->reset.flags); 1317 smp_mb__after_atomic(); 1318 wake_up_all(>->reset.queue); 1319 1320 out: 1321 intel_runtime_pm_put(gt->uncore->rpm, wakeref); 1322 } 1323 1324 int intel_gt_reset_trylock(struct intel_gt *gt, int *srcu) 1325 { 1326 might_lock(>->reset.backoff_srcu); 1327 might_sleep(); 1328 1329 rcu_read_lock(); 1330 while (test_bit(I915_RESET_BACKOFF, >->reset.flags)) { 1331 rcu_read_unlock(); 1332 1333 if (wait_event_interruptible(gt->reset.queue, 1334 !test_bit(I915_RESET_BACKOFF, 1335 >->reset.flags))) 1336 return -EINTR; 1337 1338 rcu_read_lock(); 1339 } 1340 *srcu = srcu_read_lock(>->reset.backoff_srcu); 1341 rcu_read_unlock(); 1342 1343 return 0; 1344 } 1345 1346 void intel_gt_reset_unlock(struct intel_gt *gt, int tag) 1347 __releases(>->reset.backoff_srcu) 1348 { 1349 srcu_read_unlock(>->reset.backoff_srcu, tag); 1350 } 1351 1352 int intel_gt_terminally_wedged(struct intel_gt *gt) 1353 { 1354 might_sleep(); 1355 1356 if (!intel_gt_is_wedged(gt)) 1357 return 0; 1358 1359 if (intel_gt_has_init_error(gt)) 1360 return -EIO; 1361 1362 /* Reset still in progress? Maybe we will recover? */ 1363 if (wait_event_interruptible(gt->reset.queue, 1364 !test_bit(I915_RESET_BACKOFF, 1365 >->reset.flags))) 1366 return -EINTR; 1367 1368 return intel_gt_is_wedged(gt) ? -EIO : 0; 1369 } 1370 1371 void intel_gt_set_wedged_on_init(struct intel_gt *gt) 1372 { 1373 BUILD_BUG_ON(I915_RESET_ENGINE + I915_NUM_ENGINES > 1374 I915_WEDGED_ON_INIT); 1375 intel_gt_set_wedged(gt); 1376 set_bit(I915_WEDGED_ON_INIT, >->reset.flags); 1377 } 1378 1379 void intel_gt_init_reset(struct intel_gt *gt) 1380 { 1381 init_waitqueue_head(>->reset.queue); 1382 rw_init(>->reset.mutex, "gtres"); 1383 init_srcu_struct(>->reset.backoff_srcu); 1384 1385 /* no GPU until we are ready! */ 1386 __set_bit(I915_WEDGED, >->reset.flags); 1387 } 1388 1389 void intel_gt_fini_reset(struct intel_gt *gt) 1390 { 1391 cleanup_srcu_struct(>->reset.backoff_srcu); 1392 } 1393 1394 static void intel_wedge_me(struct work_struct *work) 1395 { 1396 struct intel_wedge_me *w = container_of(work, typeof(*w), work.work); 1397 1398 dev_err(w->gt->i915->drm.dev, 1399 "%s timed out, cancelling all in-flight rendering.\n", 1400 w->name); 1401 intel_gt_set_wedged(w->gt); 1402 } 1403 1404 void __intel_init_wedge(struct intel_wedge_me *w, 1405 struct intel_gt *gt, 1406 long timeout, 1407 const char *name) 1408 { 1409 w->gt = gt; 1410 w->name = name; 1411 1412 INIT_DELAYED_WORK_ONSTACK(&w->work, intel_wedge_me); 1413 schedule_delayed_work(&w->work, timeout); 1414 } 1415 1416 void __intel_fini_wedge(struct intel_wedge_me *w) 1417 { 1418 cancel_delayed_work_sync(&w->work); 1419 destroy_delayed_work_on_stack(&w->work); 1420 w->gt = NULL; 1421 } 1422 1423 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1424 #include "selftest_reset.c" 1425 #include "selftest_hangcheck.c" 1426 #endif 1427