1 /* 2 * GTT virtualization 3 * 4 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice (including the next 14 * paragraph) shall be included in all copies or substantial portions of the 15 * Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 23 * SOFTWARE. 24 * 25 * Authors: 26 * Zhi Wang <zhi.a.wang@intel.com> 27 * Zhenyu Wang <zhenyuw@linux.intel.com> 28 * Xiao Zheng <xiao.zheng@intel.com> 29 * 30 * Contributors: 31 * Min He <min.he@intel.com> 32 * Bing Niu <bing.niu@intel.com> 33 * 34 */ 35 36 #include "i915_drv.h" 37 #include "gvt.h" 38 #include "i915_pvinfo.h" 39 #include "trace.h" 40 41 #if defined(VERBOSE_DEBUG) 42 #define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args) 43 #else 44 #define gvt_vdbg_mm(fmt, args...) 45 #endif 46 47 static bool enable_out_of_sync = false; 48 static int preallocated_oos_pages = 8192; 49 50 /* 51 * validate a gm address and related range size, 52 * translate it to host gm address 53 */ 54 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size) 55 { 56 if (size == 0) 57 return vgpu_gmadr_is_valid(vgpu, addr); 58 59 if (vgpu_gmadr_is_aperture(vgpu, addr) && 60 vgpu_gmadr_is_aperture(vgpu, addr + size - 1)) 61 return true; 62 else if (vgpu_gmadr_is_hidden(vgpu, addr) && 63 vgpu_gmadr_is_hidden(vgpu, addr + size - 1)) 64 return true; 65 66 gvt_dbg_mm("Invalid ggtt range at 0x%llx, size: 0x%x\n", 67 addr, size); 68 return false; 69 } 70 71 /* translate a guest gmadr to host gmadr */ 72 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr) 73 { 74 struct drm_i915_private *i915 = vgpu->gvt->gt->i915; 75 76 if (drm_WARN(&i915->drm, !vgpu_gmadr_is_valid(vgpu, g_addr), 77 "invalid guest gmadr %llx\n", g_addr)) 78 return -EACCES; 79 80 if (vgpu_gmadr_is_aperture(vgpu, g_addr)) 81 *h_addr = vgpu_aperture_gmadr_base(vgpu) 82 + (g_addr - vgpu_aperture_offset(vgpu)); 83 else 84 *h_addr = vgpu_hidden_gmadr_base(vgpu) 85 + (g_addr - vgpu_hidden_offset(vgpu)); 86 return 0; 87 } 88 89 /* translate a host gmadr to guest gmadr */ 90 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr) 91 { 92 struct drm_i915_private *i915 = vgpu->gvt->gt->i915; 93 94 if (drm_WARN(&i915->drm, !gvt_gmadr_is_valid(vgpu->gvt, h_addr), 95 "invalid host gmadr %llx\n", h_addr)) 96 return -EACCES; 97 98 if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr)) 99 *g_addr = vgpu_aperture_gmadr_base(vgpu) 100 + (h_addr - gvt_aperture_gmadr_base(vgpu->gvt)); 101 else 102 *g_addr = vgpu_hidden_gmadr_base(vgpu) 103 + (h_addr - gvt_hidden_gmadr_base(vgpu->gvt)); 104 return 0; 105 } 106 107 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index, 108 unsigned long *h_index) 109 { 110 u64 h_addr; 111 int ret; 112 113 ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT, 114 &h_addr); 115 if (ret) 116 return ret; 117 118 *h_index = h_addr >> I915_GTT_PAGE_SHIFT; 119 return 0; 120 } 121 122 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index, 123 unsigned long *g_index) 124 { 125 u64 g_addr; 126 int ret; 127 128 ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT, 129 &g_addr); 130 if (ret) 131 return ret; 132 133 *g_index = g_addr >> I915_GTT_PAGE_SHIFT; 134 return 0; 135 } 136 137 #define gtt_type_is_entry(type) \ 138 (type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \ 139 && type != GTT_TYPE_PPGTT_PTE_ENTRY \ 140 && type != GTT_TYPE_PPGTT_ROOT_ENTRY) 141 142 #define gtt_type_is_pt(type) \ 143 (type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX) 144 145 #define gtt_type_is_pte_pt(type) \ 146 (type == GTT_TYPE_PPGTT_PTE_PT) 147 148 #define gtt_type_is_root_pointer(type) \ 149 (gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY) 150 151 #define gtt_init_entry(e, t, p, v) do { \ 152 (e)->type = t; \ 153 (e)->pdev = p; \ 154 memcpy(&(e)->val64, &v, sizeof(v)); \ 155 } while (0) 156 157 /* 158 * Mappings between GTT_TYPE* enumerations. 159 * Following information can be found according to the given type: 160 * - type of next level page table 161 * - type of entry inside this level page table 162 * - type of entry with PSE set 163 * 164 * If the given type doesn't have such a kind of information, 165 * e.g. give a l4 root entry type, then request to get its PSE type, 166 * give a PTE page table type, then request to get its next level page 167 * table type, as we know l4 root entry doesn't have a PSE bit, 168 * and a PTE page table doesn't have a next level page table type, 169 * GTT_TYPE_INVALID will be returned. This is useful when traversing a 170 * page table. 171 */ 172 173 struct gtt_type_table_entry { 174 int entry_type; 175 int pt_type; 176 int next_pt_type; 177 int pse_entry_type; 178 }; 179 180 #define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \ 181 [type] = { \ 182 .entry_type = e_type, \ 183 .pt_type = cpt_type, \ 184 .next_pt_type = npt_type, \ 185 .pse_entry_type = pse_type, \ 186 } 187 188 static struct gtt_type_table_entry gtt_type_table[] = { 189 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY, 190 GTT_TYPE_PPGTT_ROOT_L4_ENTRY, 191 GTT_TYPE_INVALID, 192 GTT_TYPE_PPGTT_PML4_PT, 193 GTT_TYPE_INVALID), 194 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT, 195 GTT_TYPE_PPGTT_PML4_ENTRY, 196 GTT_TYPE_PPGTT_PML4_PT, 197 GTT_TYPE_PPGTT_PDP_PT, 198 GTT_TYPE_INVALID), 199 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY, 200 GTT_TYPE_PPGTT_PML4_ENTRY, 201 GTT_TYPE_PPGTT_PML4_PT, 202 GTT_TYPE_PPGTT_PDP_PT, 203 GTT_TYPE_INVALID), 204 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT, 205 GTT_TYPE_PPGTT_PDP_ENTRY, 206 GTT_TYPE_PPGTT_PDP_PT, 207 GTT_TYPE_PPGTT_PDE_PT, 208 GTT_TYPE_PPGTT_PTE_1G_ENTRY), 209 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY, 210 GTT_TYPE_PPGTT_ROOT_L3_ENTRY, 211 GTT_TYPE_INVALID, 212 GTT_TYPE_PPGTT_PDE_PT, 213 GTT_TYPE_PPGTT_PTE_1G_ENTRY), 214 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY, 215 GTT_TYPE_PPGTT_PDP_ENTRY, 216 GTT_TYPE_PPGTT_PDP_PT, 217 GTT_TYPE_PPGTT_PDE_PT, 218 GTT_TYPE_PPGTT_PTE_1G_ENTRY), 219 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT, 220 GTT_TYPE_PPGTT_PDE_ENTRY, 221 GTT_TYPE_PPGTT_PDE_PT, 222 GTT_TYPE_PPGTT_PTE_PT, 223 GTT_TYPE_PPGTT_PTE_2M_ENTRY), 224 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY, 225 GTT_TYPE_PPGTT_PDE_ENTRY, 226 GTT_TYPE_PPGTT_PDE_PT, 227 GTT_TYPE_PPGTT_PTE_PT, 228 GTT_TYPE_PPGTT_PTE_2M_ENTRY), 229 /* We take IPS bit as 'PSE' for PTE level. */ 230 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT, 231 GTT_TYPE_PPGTT_PTE_4K_ENTRY, 232 GTT_TYPE_PPGTT_PTE_PT, 233 GTT_TYPE_INVALID, 234 GTT_TYPE_PPGTT_PTE_64K_ENTRY), 235 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY, 236 GTT_TYPE_PPGTT_PTE_4K_ENTRY, 237 GTT_TYPE_PPGTT_PTE_PT, 238 GTT_TYPE_INVALID, 239 GTT_TYPE_PPGTT_PTE_64K_ENTRY), 240 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_64K_ENTRY, 241 GTT_TYPE_PPGTT_PTE_4K_ENTRY, 242 GTT_TYPE_PPGTT_PTE_PT, 243 GTT_TYPE_INVALID, 244 GTT_TYPE_PPGTT_PTE_64K_ENTRY), 245 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY, 246 GTT_TYPE_PPGTT_PDE_ENTRY, 247 GTT_TYPE_PPGTT_PDE_PT, 248 GTT_TYPE_INVALID, 249 GTT_TYPE_PPGTT_PTE_2M_ENTRY), 250 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY, 251 GTT_TYPE_PPGTT_PDP_ENTRY, 252 GTT_TYPE_PPGTT_PDP_PT, 253 GTT_TYPE_INVALID, 254 GTT_TYPE_PPGTT_PTE_1G_ENTRY), 255 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE, 256 GTT_TYPE_GGTT_PTE, 257 GTT_TYPE_INVALID, 258 GTT_TYPE_INVALID, 259 GTT_TYPE_INVALID), 260 }; 261 262 static inline int get_next_pt_type(int type) 263 { 264 return gtt_type_table[type].next_pt_type; 265 } 266 267 static inline int get_pt_type(int type) 268 { 269 return gtt_type_table[type].pt_type; 270 } 271 272 static inline int get_entry_type(int type) 273 { 274 return gtt_type_table[type].entry_type; 275 } 276 277 static inline int get_pse_type(int type) 278 { 279 return gtt_type_table[type].pse_entry_type; 280 } 281 282 static u64 read_pte64(struct i915_ggtt *ggtt, unsigned long index) 283 { 284 void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index; 285 286 return readq(addr); 287 } 288 289 static void ggtt_invalidate(struct intel_gt *gt) 290 { 291 mmio_hw_access_pre(gt); 292 intel_uncore_write(gt->uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); 293 mmio_hw_access_post(gt); 294 } 295 296 static void write_pte64(struct i915_ggtt *ggtt, unsigned long index, u64 pte) 297 { 298 void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index; 299 300 writeq(pte, addr); 301 } 302 303 static inline int gtt_get_entry64(void *pt, 304 struct intel_gvt_gtt_entry *e, 305 unsigned long index, bool hypervisor_access, unsigned long gpa, 306 struct intel_vgpu *vgpu) 307 { 308 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 309 int ret; 310 311 if (WARN_ON(info->gtt_entry_size != 8)) 312 return -EINVAL; 313 314 if (hypervisor_access) { 315 ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa + 316 (index << info->gtt_entry_size_shift), 317 &e->val64, 8); 318 if (WARN_ON(ret)) 319 return ret; 320 } else if (!pt) { 321 e->val64 = read_pte64(vgpu->gvt->gt->ggtt, index); 322 } else { 323 e->val64 = *((u64 *)pt + index); 324 } 325 return 0; 326 } 327 328 static inline int gtt_set_entry64(void *pt, 329 struct intel_gvt_gtt_entry *e, 330 unsigned long index, bool hypervisor_access, unsigned long gpa, 331 struct intel_vgpu *vgpu) 332 { 333 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 334 int ret; 335 336 if (WARN_ON(info->gtt_entry_size != 8)) 337 return -EINVAL; 338 339 if (hypervisor_access) { 340 ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa + 341 (index << info->gtt_entry_size_shift), 342 &e->val64, 8); 343 if (WARN_ON(ret)) 344 return ret; 345 } else if (!pt) { 346 write_pte64(vgpu->gvt->gt->ggtt, index, e->val64); 347 } else { 348 *((u64 *)pt + index) = e->val64; 349 } 350 return 0; 351 } 352 353 #define GTT_HAW 46 354 355 #define ADDR_1G_MASK GENMASK_ULL(GTT_HAW - 1, 30) 356 #define ADDR_2M_MASK GENMASK_ULL(GTT_HAW - 1, 21) 357 #define ADDR_64K_MASK GENMASK_ULL(GTT_HAW - 1, 16) 358 #define ADDR_4K_MASK GENMASK_ULL(GTT_HAW - 1, 12) 359 360 #define GTT_SPTE_FLAG_MASK GENMASK_ULL(62, 52) 361 #define GTT_SPTE_FLAG_64K_SPLITED BIT(52) /* splited 64K gtt entry */ 362 363 #define GTT_64K_PTE_STRIDE 16 364 365 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e) 366 { 367 unsigned long pfn; 368 369 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) 370 pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT; 371 else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) 372 pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT; 373 else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) 374 pfn = (e->val64 & ADDR_64K_MASK) >> PAGE_SHIFT; 375 else 376 pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT; 377 return pfn; 378 } 379 380 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn) 381 { 382 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) { 383 e->val64 &= ~ADDR_1G_MASK; 384 pfn &= (ADDR_1G_MASK >> PAGE_SHIFT); 385 } else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) { 386 e->val64 &= ~ADDR_2M_MASK; 387 pfn &= (ADDR_2M_MASK >> PAGE_SHIFT); 388 } else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) { 389 e->val64 &= ~ADDR_64K_MASK; 390 pfn &= (ADDR_64K_MASK >> PAGE_SHIFT); 391 } else { 392 e->val64 &= ~ADDR_4K_MASK; 393 pfn &= (ADDR_4K_MASK >> PAGE_SHIFT); 394 } 395 396 e->val64 |= (pfn << PAGE_SHIFT); 397 } 398 399 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e) 400 { 401 return !!(e->val64 & _PAGE_PSE); 402 } 403 404 static void gen8_gtt_clear_pse(struct intel_gvt_gtt_entry *e) 405 { 406 if (gen8_gtt_test_pse(e)) { 407 switch (e->type) { 408 case GTT_TYPE_PPGTT_PTE_2M_ENTRY: 409 e->val64 &= ~_PAGE_PSE; 410 e->type = GTT_TYPE_PPGTT_PDE_ENTRY; 411 break; 412 case GTT_TYPE_PPGTT_PTE_1G_ENTRY: 413 e->type = GTT_TYPE_PPGTT_PDP_ENTRY; 414 e->val64 &= ~_PAGE_PSE; 415 break; 416 default: 417 WARN_ON(1); 418 } 419 } 420 } 421 422 static bool gen8_gtt_test_ips(struct intel_gvt_gtt_entry *e) 423 { 424 if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY)) 425 return false; 426 427 return !!(e->val64 & GEN8_PDE_IPS_64K); 428 } 429 430 static void gen8_gtt_clear_ips(struct intel_gvt_gtt_entry *e) 431 { 432 if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY)) 433 return; 434 435 e->val64 &= ~GEN8_PDE_IPS_64K; 436 } 437 438 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e) 439 { 440 /* 441 * i915 writes PDP root pointer registers without present bit, 442 * it also works, so we need to treat root pointer entry 443 * specifically. 444 */ 445 if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY 446 || e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) 447 return (e->val64 != 0); 448 else 449 return (e->val64 & _PAGE_PRESENT); 450 } 451 452 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e) 453 { 454 e->val64 &= ~_PAGE_PRESENT; 455 } 456 457 static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e) 458 { 459 e->val64 |= _PAGE_PRESENT; 460 } 461 462 static bool gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry *e) 463 { 464 return !!(e->val64 & GTT_SPTE_FLAG_64K_SPLITED); 465 } 466 467 static void gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry *e) 468 { 469 e->val64 |= GTT_SPTE_FLAG_64K_SPLITED; 470 } 471 472 static void gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry *e) 473 { 474 e->val64 &= ~GTT_SPTE_FLAG_64K_SPLITED; 475 } 476 477 /* 478 * Per-platform GMA routines. 479 */ 480 static unsigned long gma_to_ggtt_pte_index(unsigned long gma) 481 { 482 unsigned long x = (gma >> I915_GTT_PAGE_SHIFT); 483 484 trace_gma_index(__func__, gma, x); 485 return x; 486 } 487 488 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \ 489 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \ 490 { \ 491 unsigned long x = (exp); \ 492 trace_gma_index(__func__, gma, x); \ 493 return x; \ 494 } 495 496 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff)); 497 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff)); 498 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3)); 499 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff)); 500 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff)); 501 502 static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = { 503 .get_entry = gtt_get_entry64, 504 .set_entry = gtt_set_entry64, 505 .clear_present = gtt_entry_clear_present, 506 .set_present = gtt_entry_set_present, 507 .test_present = gen8_gtt_test_present, 508 .test_pse = gen8_gtt_test_pse, 509 .clear_pse = gen8_gtt_clear_pse, 510 .clear_ips = gen8_gtt_clear_ips, 511 .test_ips = gen8_gtt_test_ips, 512 .clear_64k_splited = gen8_gtt_clear_64k_splited, 513 .set_64k_splited = gen8_gtt_set_64k_splited, 514 .test_64k_splited = gen8_gtt_test_64k_splited, 515 .get_pfn = gen8_gtt_get_pfn, 516 .set_pfn = gen8_gtt_set_pfn, 517 }; 518 519 static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = { 520 .gma_to_ggtt_pte_index = gma_to_ggtt_pte_index, 521 .gma_to_pte_index = gen8_gma_to_pte_index, 522 .gma_to_pde_index = gen8_gma_to_pde_index, 523 .gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index, 524 .gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index, 525 .gma_to_pml4_index = gen8_gma_to_pml4_index, 526 }; 527 528 /* Update entry type per pse and ips bit. */ 529 static void update_entry_type_for_real(struct intel_gvt_gtt_pte_ops *pte_ops, 530 struct intel_gvt_gtt_entry *entry, bool ips) 531 { 532 switch (entry->type) { 533 case GTT_TYPE_PPGTT_PDE_ENTRY: 534 case GTT_TYPE_PPGTT_PDP_ENTRY: 535 if (pte_ops->test_pse(entry)) 536 entry->type = get_pse_type(entry->type); 537 break; 538 case GTT_TYPE_PPGTT_PTE_4K_ENTRY: 539 if (ips) 540 entry->type = get_pse_type(entry->type); 541 break; 542 default: 543 GEM_BUG_ON(!gtt_type_is_entry(entry->type)); 544 } 545 546 GEM_BUG_ON(entry->type == GTT_TYPE_INVALID); 547 } 548 549 /* 550 * MM helpers. 551 */ 552 static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm, 553 struct intel_gvt_gtt_entry *entry, unsigned long index, 554 bool guest) 555 { 556 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 557 558 GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT); 559 560 entry->type = mm->ppgtt_mm.root_entry_type; 561 pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps : 562 mm->ppgtt_mm.shadow_pdps, 563 entry, index, false, 0, mm->vgpu); 564 update_entry_type_for_real(pte_ops, entry, false); 565 } 566 567 static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm, 568 struct intel_gvt_gtt_entry *entry, unsigned long index) 569 { 570 _ppgtt_get_root_entry(mm, entry, index, true); 571 } 572 573 static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm, 574 struct intel_gvt_gtt_entry *entry, unsigned long index) 575 { 576 _ppgtt_get_root_entry(mm, entry, index, false); 577 } 578 579 static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm, 580 struct intel_gvt_gtt_entry *entry, unsigned long index, 581 bool guest) 582 { 583 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 584 585 pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps : 586 mm->ppgtt_mm.shadow_pdps, 587 entry, index, false, 0, mm->vgpu); 588 } 589 590 static inline void ppgtt_set_guest_root_entry(struct intel_vgpu_mm *mm, 591 struct intel_gvt_gtt_entry *entry, unsigned long index) 592 { 593 _ppgtt_set_root_entry(mm, entry, index, true); 594 } 595 596 static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm, 597 struct intel_gvt_gtt_entry *entry, unsigned long index) 598 { 599 _ppgtt_set_root_entry(mm, entry, index, false); 600 } 601 602 static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm, 603 struct intel_gvt_gtt_entry *entry, unsigned long index) 604 { 605 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 606 607 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT); 608 609 entry->type = GTT_TYPE_GGTT_PTE; 610 pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index, 611 false, 0, mm->vgpu); 612 } 613 614 static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm, 615 struct intel_gvt_gtt_entry *entry, unsigned long index) 616 { 617 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 618 619 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT); 620 621 pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index, 622 false, 0, mm->vgpu); 623 } 624 625 static void ggtt_get_host_entry(struct intel_vgpu_mm *mm, 626 struct intel_gvt_gtt_entry *entry, unsigned long index) 627 { 628 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 629 630 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT); 631 632 pte_ops->get_entry(NULL, entry, index, false, 0, mm->vgpu); 633 } 634 635 static void ggtt_set_host_entry(struct intel_vgpu_mm *mm, 636 struct intel_gvt_gtt_entry *entry, unsigned long index) 637 { 638 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 639 640 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT); 641 642 pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu); 643 } 644 645 /* 646 * PPGTT shadow page table helpers. 647 */ 648 static inline int ppgtt_spt_get_entry( 649 struct intel_vgpu_ppgtt_spt *spt, 650 void *page_table, int type, 651 struct intel_gvt_gtt_entry *e, unsigned long index, 652 bool guest) 653 { 654 struct intel_gvt *gvt = spt->vgpu->gvt; 655 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 656 int ret; 657 658 e->type = get_entry_type(type); 659 660 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n")) 661 return -EINVAL; 662 663 ret = ops->get_entry(page_table, e, index, guest, 664 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT, 665 spt->vgpu); 666 if (ret) 667 return ret; 668 669 update_entry_type_for_real(ops, e, guest ? 670 spt->guest_page.pde_ips : false); 671 672 gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n", 673 type, e->type, index, e->val64); 674 return 0; 675 } 676 677 static inline int ppgtt_spt_set_entry( 678 struct intel_vgpu_ppgtt_spt *spt, 679 void *page_table, int type, 680 struct intel_gvt_gtt_entry *e, unsigned long index, 681 bool guest) 682 { 683 struct intel_gvt *gvt = spt->vgpu->gvt; 684 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 685 686 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n")) 687 return -EINVAL; 688 689 gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n", 690 type, e->type, index, e->val64); 691 692 return ops->set_entry(page_table, e, index, guest, 693 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT, 694 spt->vgpu); 695 } 696 697 #define ppgtt_get_guest_entry(spt, e, index) \ 698 ppgtt_spt_get_entry(spt, NULL, \ 699 spt->guest_page.type, e, index, true) 700 701 #define ppgtt_set_guest_entry(spt, e, index) \ 702 ppgtt_spt_set_entry(spt, NULL, \ 703 spt->guest_page.type, e, index, true) 704 705 #define ppgtt_get_shadow_entry(spt, e, index) \ 706 ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \ 707 spt->shadow_page.type, e, index, false) 708 709 #define ppgtt_set_shadow_entry(spt, e, index) \ 710 ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \ 711 spt->shadow_page.type, e, index, false) 712 713 static void *alloc_spt(gfp_t gfp_mask) 714 { 715 struct intel_vgpu_ppgtt_spt *spt; 716 717 spt = kzalloc(sizeof(*spt), gfp_mask); 718 if (!spt) 719 return NULL; 720 721 spt->shadow_page.page = alloc_page(gfp_mask); 722 if (!spt->shadow_page.page) { 723 kfree(spt); 724 return NULL; 725 } 726 return spt; 727 } 728 729 static void free_spt(struct intel_vgpu_ppgtt_spt *spt) 730 { 731 __free_page(spt->shadow_page.page); 732 kfree(spt); 733 } 734 735 static int detach_oos_page(struct intel_vgpu *vgpu, 736 struct intel_vgpu_oos_page *oos_page); 737 738 static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt) 739 { 740 struct device *kdev = &spt->vgpu->gvt->gt->i915->drm.pdev->dev; 741 742 trace_spt_free(spt->vgpu->id, spt, spt->guest_page.type); 743 744 dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096, 745 PCI_DMA_BIDIRECTIONAL); 746 747 radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn); 748 749 if (spt->guest_page.gfn) { 750 if (spt->guest_page.oos_page) 751 detach_oos_page(spt->vgpu, spt->guest_page.oos_page); 752 753 intel_vgpu_unregister_page_track(spt->vgpu, spt->guest_page.gfn); 754 } 755 756 list_del_init(&spt->post_shadow_list); 757 free_spt(spt); 758 } 759 760 static void ppgtt_free_all_spt(struct intel_vgpu *vgpu) 761 { 762 struct intel_vgpu_ppgtt_spt *spt, *spn; 763 struct radix_tree_iter iter; 764 DRM_LIST_HEAD(all_spt); 765 void __rcu **slot; 766 767 rcu_read_lock(); 768 radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) { 769 spt = radix_tree_deref_slot(slot); 770 list_move(&spt->post_shadow_list, &all_spt); 771 } 772 rcu_read_unlock(); 773 774 list_for_each_entry_safe(spt, spn, &all_spt, post_shadow_list) 775 ppgtt_free_spt(spt); 776 } 777 778 static int ppgtt_handle_guest_write_page_table_bytes( 779 struct intel_vgpu_ppgtt_spt *spt, 780 u64 pa, void *p_data, int bytes); 781 782 static int ppgtt_write_protection_handler( 783 struct intel_vgpu_page_track *page_track, 784 u64 gpa, void *data, int bytes) 785 { 786 struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data; 787 788 int ret; 789 790 if (bytes != 4 && bytes != 8) 791 return -EINVAL; 792 793 ret = ppgtt_handle_guest_write_page_table_bytes(spt, gpa, data, bytes); 794 if (ret) 795 return ret; 796 return ret; 797 } 798 799 /* Find a spt by guest gfn. */ 800 static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn( 801 struct intel_vgpu *vgpu, unsigned long gfn) 802 { 803 struct intel_vgpu_page_track *track; 804 805 track = intel_vgpu_find_page_track(vgpu, gfn); 806 if (track && track->handler == ppgtt_write_protection_handler) 807 return track->priv_data; 808 809 return NULL; 810 } 811 812 /* Find the spt by shadow page mfn. */ 813 static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn( 814 struct intel_vgpu *vgpu, unsigned long mfn) 815 { 816 return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn); 817 } 818 819 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt); 820 821 /* Allocate shadow page table without guest page. */ 822 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt( 823 struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type) 824 { 825 struct device *kdev = &vgpu->gvt->gt->i915->drm.pdev->dev; 826 struct intel_vgpu_ppgtt_spt *spt = NULL; 827 dma_addr_t daddr; 828 int ret; 829 830 retry: 831 spt = alloc_spt(GFP_KERNEL | __GFP_ZERO); 832 if (!spt) { 833 if (reclaim_one_ppgtt_mm(vgpu->gvt)) 834 goto retry; 835 836 gvt_vgpu_err("fail to allocate ppgtt shadow page\n"); 837 return ERR_PTR(-ENOMEM); 838 } 839 840 spt->vgpu = vgpu; 841 atomic_set(&spt->refcount, 1); 842 INIT_LIST_HEAD(&spt->post_shadow_list); 843 844 /* 845 * Init shadow_page. 846 */ 847 spt->shadow_page.type = type; 848 daddr = dma_map_page(kdev, spt->shadow_page.page, 849 0, 4096, PCI_DMA_BIDIRECTIONAL); 850 if (dma_mapping_error(kdev, daddr)) { 851 gvt_vgpu_err("fail to map dma addr\n"); 852 ret = -EINVAL; 853 goto err_free_spt; 854 } 855 spt->shadow_page.vaddr = page_address(spt->shadow_page.page); 856 spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT; 857 858 ret = radix_tree_insert(&vgpu->gtt.spt_tree, spt->shadow_page.mfn, spt); 859 if (ret) 860 goto err_unmap_dma; 861 862 return spt; 863 864 err_unmap_dma: 865 dma_unmap_page(kdev, daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); 866 err_free_spt: 867 free_spt(spt); 868 return ERR_PTR(ret); 869 } 870 871 /* Allocate shadow page table associated with specific gfn. */ 872 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt_gfn( 873 struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type, 874 unsigned long gfn, bool guest_pde_ips) 875 { 876 struct intel_vgpu_ppgtt_spt *spt; 877 int ret; 878 879 spt = ppgtt_alloc_spt(vgpu, type); 880 if (IS_ERR(spt)) 881 return spt; 882 883 /* 884 * Init guest_page. 885 */ 886 ret = intel_vgpu_register_page_track(vgpu, gfn, 887 ppgtt_write_protection_handler, spt); 888 if (ret) { 889 ppgtt_free_spt(spt); 890 return ERR_PTR(ret); 891 } 892 893 spt->guest_page.type = type; 894 spt->guest_page.gfn = gfn; 895 spt->guest_page.pde_ips = guest_pde_ips; 896 897 trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn); 898 899 return spt; 900 } 901 902 #define pt_entry_size_shift(spt) \ 903 ((spt)->vgpu->gvt->device_info.gtt_entry_size_shift) 904 905 #define pt_entries(spt) \ 906 (I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt)) 907 908 #define for_each_present_guest_entry(spt, e, i) \ 909 for (i = 0; i < pt_entries(spt); \ 910 i += spt->guest_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \ 911 if (!ppgtt_get_guest_entry(spt, e, i) && \ 912 spt->vgpu->gvt->gtt.pte_ops->test_present(e)) 913 914 #define for_each_present_shadow_entry(spt, e, i) \ 915 for (i = 0; i < pt_entries(spt); \ 916 i += spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \ 917 if (!ppgtt_get_shadow_entry(spt, e, i) && \ 918 spt->vgpu->gvt->gtt.pte_ops->test_present(e)) 919 920 #define for_each_shadow_entry(spt, e, i) \ 921 for (i = 0; i < pt_entries(spt); \ 922 i += (spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1)) \ 923 if (!ppgtt_get_shadow_entry(spt, e, i)) 924 925 static inline void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt) 926 { 927 int v = atomic_read(&spt->refcount); 928 929 trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1)); 930 atomic_inc(&spt->refcount); 931 } 932 933 static inline int ppgtt_put_spt(struct intel_vgpu_ppgtt_spt *spt) 934 { 935 int v = atomic_read(&spt->refcount); 936 937 trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1)); 938 return atomic_dec_return(&spt->refcount); 939 } 940 941 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt); 942 943 static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu, 944 struct intel_gvt_gtt_entry *e) 945 { 946 struct drm_i915_private *i915 = vgpu->gvt->gt->i915; 947 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 948 struct intel_vgpu_ppgtt_spt *s; 949 enum intel_gvt_gtt_type cur_pt_type; 950 951 GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type))); 952 953 if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY 954 && e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) { 955 cur_pt_type = get_next_pt_type(e->type); 956 957 if (!gtt_type_is_pt(cur_pt_type) || 958 !gtt_type_is_pt(cur_pt_type + 1)) { 959 drm_WARN(&i915->drm, 1, 960 "Invalid page table type, cur_pt_type is: %d\n", 961 cur_pt_type); 962 return -EINVAL; 963 } 964 965 cur_pt_type += 1; 966 967 if (ops->get_pfn(e) == 968 vgpu->gtt.scratch_pt[cur_pt_type].page_mfn) 969 return 0; 970 } 971 s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e)); 972 if (!s) { 973 gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n", 974 ops->get_pfn(e)); 975 return -ENXIO; 976 } 977 return ppgtt_invalidate_spt(s); 978 } 979 980 static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt, 981 struct intel_gvt_gtt_entry *entry) 982 { 983 struct intel_vgpu *vgpu = spt->vgpu; 984 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 985 unsigned long pfn; 986 int type; 987 988 pfn = ops->get_pfn(entry); 989 type = spt->shadow_page.type; 990 991 /* Uninitialized spte or unshadowed spte. */ 992 if (!pfn || pfn == vgpu->gtt.scratch_pt[type].page_mfn) 993 return; 994 995 intel_gvt_hypervisor_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT); 996 } 997 998 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt) 999 { 1000 struct intel_vgpu *vgpu = spt->vgpu; 1001 struct intel_gvt_gtt_entry e; 1002 unsigned long index; 1003 int ret; 1004 1005 trace_spt_change(spt->vgpu->id, "die", spt, 1006 spt->guest_page.gfn, spt->shadow_page.type); 1007 1008 if (ppgtt_put_spt(spt) > 0) 1009 return 0; 1010 1011 for_each_present_shadow_entry(spt, &e, index) { 1012 switch (e.type) { 1013 case GTT_TYPE_PPGTT_PTE_4K_ENTRY: 1014 gvt_vdbg_mm("invalidate 4K entry\n"); 1015 ppgtt_invalidate_pte(spt, &e); 1016 break; 1017 case GTT_TYPE_PPGTT_PTE_64K_ENTRY: 1018 /* We don't setup 64K shadow entry so far. */ 1019 WARN(1, "suspicious 64K gtt entry\n"); 1020 continue; 1021 case GTT_TYPE_PPGTT_PTE_2M_ENTRY: 1022 gvt_vdbg_mm("invalidate 2M entry\n"); 1023 continue; 1024 case GTT_TYPE_PPGTT_PTE_1G_ENTRY: 1025 WARN(1, "GVT doesn't support 1GB page\n"); 1026 continue; 1027 case GTT_TYPE_PPGTT_PML4_ENTRY: 1028 case GTT_TYPE_PPGTT_PDP_ENTRY: 1029 case GTT_TYPE_PPGTT_PDE_ENTRY: 1030 gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n"); 1031 ret = ppgtt_invalidate_spt_by_shadow_entry( 1032 spt->vgpu, &e); 1033 if (ret) 1034 goto fail; 1035 break; 1036 default: 1037 GEM_BUG_ON(1); 1038 } 1039 } 1040 1041 trace_spt_change(spt->vgpu->id, "release", spt, 1042 spt->guest_page.gfn, spt->shadow_page.type); 1043 ppgtt_free_spt(spt); 1044 return 0; 1045 fail: 1046 gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n", 1047 spt, e.val64, e.type); 1048 return ret; 1049 } 1050 1051 static bool vgpu_ips_enabled(struct intel_vgpu *vgpu) 1052 { 1053 struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915; 1054 1055 if (INTEL_GEN(dev_priv) == 9 || INTEL_GEN(dev_priv) == 10) { 1056 u32 ips = vgpu_vreg_t(vgpu, GEN8_GAMW_ECO_DEV_RW_IA) & 1057 GAMW_ECO_ENABLE_64K_IPS_FIELD; 1058 1059 return ips == GAMW_ECO_ENABLE_64K_IPS_FIELD; 1060 } else if (INTEL_GEN(dev_priv) >= 11) { 1061 /* 64K paging only controlled by IPS bit in PTE now. */ 1062 return true; 1063 } else 1064 return false; 1065 } 1066 1067 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt); 1068 1069 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry( 1070 struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we) 1071 { 1072 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1073 struct intel_vgpu_ppgtt_spt *spt = NULL; 1074 bool ips = false; 1075 int ret; 1076 1077 GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type))); 1078 1079 if (we->type == GTT_TYPE_PPGTT_PDE_ENTRY) 1080 ips = vgpu_ips_enabled(vgpu) && ops->test_ips(we); 1081 1082 spt = intel_vgpu_find_spt_by_gfn(vgpu, ops->get_pfn(we)); 1083 if (spt) { 1084 ppgtt_get_spt(spt); 1085 1086 if (ips != spt->guest_page.pde_ips) { 1087 spt->guest_page.pde_ips = ips; 1088 1089 gvt_dbg_mm("reshadow PDE since ips changed\n"); 1090 clear_page(spt->shadow_page.vaddr); 1091 ret = ppgtt_populate_spt(spt); 1092 if (ret) { 1093 ppgtt_put_spt(spt); 1094 goto err; 1095 } 1096 } 1097 } else { 1098 int type = get_next_pt_type(we->type); 1099 1100 if (!gtt_type_is_pt(type)) { 1101 ret = -EINVAL; 1102 goto err; 1103 } 1104 1105 spt = ppgtt_alloc_spt_gfn(vgpu, type, ops->get_pfn(we), ips); 1106 if (IS_ERR(spt)) { 1107 ret = PTR_ERR(spt); 1108 goto err; 1109 } 1110 1111 ret = intel_vgpu_enable_page_track(vgpu, spt->guest_page.gfn); 1112 if (ret) 1113 goto err_free_spt; 1114 1115 ret = ppgtt_populate_spt(spt); 1116 if (ret) 1117 goto err_free_spt; 1118 1119 trace_spt_change(vgpu->id, "new", spt, spt->guest_page.gfn, 1120 spt->shadow_page.type); 1121 } 1122 return spt; 1123 1124 err_free_spt: 1125 ppgtt_free_spt(spt); 1126 spt = NULL; 1127 err: 1128 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n", 1129 spt, we->val64, we->type); 1130 return ERR_PTR(ret); 1131 } 1132 1133 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se, 1134 struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge) 1135 { 1136 struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops; 1137 1138 se->type = ge->type; 1139 se->val64 = ge->val64; 1140 1141 /* Because we always split 64KB pages, so clear IPS in shadow PDE. */ 1142 if (se->type == GTT_TYPE_PPGTT_PDE_ENTRY) 1143 ops->clear_ips(se); 1144 1145 ops->set_pfn(se, s->shadow_page.mfn); 1146 } 1147 1148 /** 1149 * Check if can do 2M page 1150 * @vgpu: target vgpu 1151 * @entry: target pfn's gtt entry 1152 * 1153 * Return 1 if 2MB huge gtt shadowing is possilbe, 0 if miscondition, 1154 * negtive if found err. 1155 */ 1156 static int is_2MB_gtt_possible(struct intel_vgpu *vgpu, 1157 struct intel_gvt_gtt_entry *entry) 1158 { 1159 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1160 unsigned long pfn; 1161 1162 if (!HAS_PAGE_SIZES(vgpu->gvt->gt->i915, I915_GTT_PAGE_SIZE_2M)) 1163 return 0; 1164 1165 pfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, ops->get_pfn(entry)); 1166 if (pfn == INTEL_GVT_INVALID_ADDR) 1167 return -EINVAL; 1168 1169 return PageTransHuge(pfn_to_page(pfn)); 1170 } 1171 1172 static int split_2MB_gtt_entry(struct intel_vgpu *vgpu, 1173 struct intel_vgpu_ppgtt_spt *spt, unsigned long index, 1174 struct intel_gvt_gtt_entry *se) 1175 { 1176 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1177 struct intel_vgpu_ppgtt_spt *sub_spt; 1178 struct intel_gvt_gtt_entry sub_se; 1179 unsigned long start_gfn; 1180 dma_addr_t dma_addr; 1181 unsigned long sub_index; 1182 int ret; 1183 1184 gvt_dbg_mm("Split 2M gtt entry, index %lu\n", index); 1185 1186 start_gfn = ops->get_pfn(se); 1187 1188 sub_spt = ppgtt_alloc_spt(vgpu, GTT_TYPE_PPGTT_PTE_PT); 1189 if (IS_ERR(sub_spt)) 1190 return PTR_ERR(sub_spt); 1191 1192 for_each_shadow_entry(sub_spt, &sub_se, sub_index) { 1193 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, 1194 start_gfn + sub_index, PAGE_SIZE, &dma_addr); 1195 if (ret) { 1196 ppgtt_invalidate_spt(spt); 1197 return ret; 1198 } 1199 sub_se.val64 = se->val64; 1200 1201 /* Copy the PAT field from PDE. */ 1202 sub_se.val64 &= ~_PAGE_PAT; 1203 sub_se.val64 |= (se->val64 & _PAGE_PAT_LARGE) >> 5; 1204 1205 ops->set_pfn(&sub_se, dma_addr >> PAGE_SHIFT); 1206 ppgtt_set_shadow_entry(sub_spt, &sub_se, sub_index); 1207 } 1208 1209 /* Clear dirty field. */ 1210 se->val64 &= ~_PAGE_DIRTY; 1211 1212 ops->clear_pse(se); 1213 ops->clear_ips(se); 1214 ops->set_pfn(se, sub_spt->shadow_page.mfn); 1215 ppgtt_set_shadow_entry(spt, se, index); 1216 return 0; 1217 } 1218 1219 static int split_64KB_gtt_entry(struct intel_vgpu *vgpu, 1220 struct intel_vgpu_ppgtt_spt *spt, unsigned long index, 1221 struct intel_gvt_gtt_entry *se) 1222 { 1223 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1224 struct intel_gvt_gtt_entry entry = *se; 1225 unsigned long start_gfn; 1226 dma_addr_t dma_addr; 1227 int i, ret; 1228 1229 gvt_vdbg_mm("Split 64K gtt entry, index %lu\n", index); 1230 1231 GEM_BUG_ON(index % GTT_64K_PTE_STRIDE); 1232 1233 start_gfn = ops->get_pfn(se); 1234 1235 entry.type = GTT_TYPE_PPGTT_PTE_4K_ENTRY; 1236 ops->set_64k_splited(&entry); 1237 1238 for (i = 0; i < GTT_64K_PTE_STRIDE; i++) { 1239 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, 1240 start_gfn + i, PAGE_SIZE, &dma_addr); 1241 if (ret) 1242 return ret; 1243 1244 ops->set_pfn(&entry, dma_addr >> PAGE_SHIFT); 1245 ppgtt_set_shadow_entry(spt, &entry, index + i); 1246 } 1247 return 0; 1248 } 1249 1250 static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu, 1251 struct intel_vgpu_ppgtt_spt *spt, unsigned long index, 1252 struct intel_gvt_gtt_entry *ge) 1253 { 1254 struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops; 1255 struct intel_gvt_gtt_entry se = *ge; 1256 unsigned long gfn, page_size = PAGE_SIZE; 1257 dma_addr_t dma_addr; 1258 int ret; 1259 1260 if (!pte_ops->test_present(ge)) 1261 return 0; 1262 1263 gfn = pte_ops->get_pfn(ge); 1264 1265 switch (ge->type) { 1266 case GTT_TYPE_PPGTT_PTE_4K_ENTRY: 1267 gvt_vdbg_mm("shadow 4K gtt entry\n"); 1268 break; 1269 case GTT_TYPE_PPGTT_PTE_64K_ENTRY: 1270 gvt_vdbg_mm("shadow 64K gtt entry\n"); 1271 /* 1272 * The layout of 64K page is special, the page size is 1273 * controlled by uper PDE. To be simple, we always split 1274 * 64K page to smaller 4K pages in shadow PT. 1275 */ 1276 return split_64KB_gtt_entry(vgpu, spt, index, &se); 1277 case GTT_TYPE_PPGTT_PTE_2M_ENTRY: 1278 gvt_vdbg_mm("shadow 2M gtt entry\n"); 1279 ret = is_2MB_gtt_possible(vgpu, ge); 1280 if (ret == 0) 1281 return split_2MB_gtt_entry(vgpu, spt, index, &se); 1282 else if (ret < 0) 1283 return ret; 1284 page_size = I915_GTT_PAGE_SIZE_2M; 1285 break; 1286 case GTT_TYPE_PPGTT_PTE_1G_ENTRY: 1287 gvt_vgpu_err("GVT doesn't support 1GB entry\n"); 1288 return -EINVAL; 1289 default: 1290 GEM_BUG_ON(1); 1291 } 1292 1293 /* direct shadow */ 1294 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn, page_size, 1295 &dma_addr); 1296 if (ret) 1297 return -ENXIO; 1298 1299 pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT); 1300 ppgtt_set_shadow_entry(spt, &se, index); 1301 return 0; 1302 } 1303 1304 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt) 1305 { 1306 struct intel_vgpu *vgpu = spt->vgpu; 1307 struct intel_gvt *gvt = vgpu->gvt; 1308 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 1309 struct intel_vgpu_ppgtt_spt *s; 1310 struct intel_gvt_gtt_entry se, ge; 1311 unsigned long gfn, i; 1312 int ret; 1313 1314 trace_spt_change(spt->vgpu->id, "born", spt, 1315 spt->guest_page.gfn, spt->shadow_page.type); 1316 1317 for_each_present_guest_entry(spt, &ge, i) { 1318 if (gtt_type_is_pt(get_next_pt_type(ge.type))) { 1319 s = ppgtt_populate_spt_by_guest_entry(vgpu, &ge); 1320 if (IS_ERR(s)) { 1321 ret = PTR_ERR(s); 1322 goto fail; 1323 } 1324 ppgtt_get_shadow_entry(spt, &se, i); 1325 ppgtt_generate_shadow_entry(&se, s, &ge); 1326 ppgtt_set_shadow_entry(spt, &se, i); 1327 } else { 1328 gfn = ops->get_pfn(&ge); 1329 if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) { 1330 ops->set_pfn(&se, gvt->gtt.scratch_mfn); 1331 ppgtt_set_shadow_entry(spt, &se, i); 1332 continue; 1333 } 1334 1335 ret = ppgtt_populate_shadow_entry(vgpu, spt, i, &ge); 1336 if (ret) 1337 goto fail; 1338 } 1339 } 1340 return 0; 1341 fail: 1342 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n", 1343 spt, ge.val64, ge.type); 1344 return ret; 1345 } 1346 1347 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt, 1348 struct intel_gvt_gtt_entry *se, unsigned long index) 1349 { 1350 struct intel_vgpu *vgpu = spt->vgpu; 1351 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1352 int ret; 1353 1354 trace_spt_guest_change(spt->vgpu->id, "remove", spt, 1355 spt->shadow_page.type, se->val64, index); 1356 1357 gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n", 1358 se->type, index, se->val64); 1359 1360 if (!ops->test_present(se)) 1361 return 0; 1362 1363 if (ops->get_pfn(se) == 1364 vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn) 1365 return 0; 1366 1367 if (gtt_type_is_pt(get_next_pt_type(se->type))) { 1368 struct intel_vgpu_ppgtt_spt *s = 1369 intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(se)); 1370 if (!s) { 1371 gvt_vgpu_err("fail to find guest page\n"); 1372 ret = -ENXIO; 1373 goto fail; 1374 } 1375 ret = ppgtt_invalidate_spt(s); 1376 if (ret) 1377 goto fail; 1378 } else { 1379 /* We don't setup 64K shadow entry so far. */ 1380 WARN(se->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY, 1381 "suspicious 64K entry\n"); 1382 ppgtt_invalidate_pte(spt, se); 1383 } 1384 1385 return 0; 1386 fail: 1387 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n", 1388 spt, se->val64, se->type); 1389 return ret; 1390 } 1391 1392 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt, 1393 struct intel_gvt_gtt_entry *we, unsigned long index) 1394 { 1395 struct intel_vgpu *vgpu = spt->vgpu; 1396 struct intel_gvt_gtt_entry m; 1397 struct intel_vgpu_ppgtt_spt *s; 1398 int ret; 1399 1400 trace_spt_guest_change(spt->vgpu->id, "add", spt, spt->shadow_page.type, 1401 we->val64, index); 1402 1403 gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n", 1404 we->type, index, we->val64); 1405 1406 if (gtt_type_is_pt(get_next_pt_type(we->type))) { 1407 s = ppgtt_populate_spt_by_guest_entry(vgpu, we); 1408 if (IS_ERR(s)) { 1409 ret = PTR_ERR(s); 1410 goto fail; 1411 } 1412 ppgtt_get_shadow_entry(spt, &m, index); 1413 ppgtt_generate_shadow_entry(&m, s, we); 1414 ppgtt_set_shadow_entry(spt, &m, index); 1415 } else { 1416 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, we); 1417 if (ret) 1418 goto fail; 1419 } 1420 return 0; 1421 fail: 1422 gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n", 1423 spt, we->val64, we->type); 1424 return ret; 1425 } 1426 1427 static int sync_oos_page(struct intel_vgpu *vgpu, 1428 struct intel_vgpu_oos_page *oos_page) 1429 { 1430 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 1431 struct intel_gvt *gvt = vgpu->gvt; 1432 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 1433 struct intel_vgpu_ppgtt_spt *spt = oos_page->spt; 1434 struct intel_gvt_gtt_entry old, new; 1435 int index; 1436 int ret; 1437 1438 trace_oos_change(vgpu->id, "sync", oos_page->id, 1439 spt, spt->guest_page.type); 1440 1441 old.type = new.type = get_entry_type(spt->guest_page.type); 1442 old.val64 = new.val64 = 0; 1443 1444 for (index = 0; index < (I915_GTT_PAGE_SIZE >> 1445 info->gtt_entry_size_shift); index++) { 1446 ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu); 1447 ops->get_entry(NULL, &new, index, true, 1448 spt->guest_page.gfn << PAGE_SHIFT, vgpu); 1449 1450 if (old.val64 == new.val64 1451 && !test_and_clear_bit(index, spt->post_shadow_bitmap)) 1452 continue; 1453 1454 trace_oos_sync(vgpu->id, oos_page->id, 1455 spt, spt->guest_page.type, 1456 new.val64, index); 1457 1458 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, &new); 1459 if (ret) 1460 return ret; 1461 1462 ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu); 1463 } 1464 1465 spt->guest_page.write_cnt = 0; 1466 list_del_init(&spt->post_shadow_list); 1467 return 0; 1468 } 1469 1470 static int detach_oos_page(struct intel_vgpu *vgpu, 1471 struct intel_vgpu_oos_page *oos_page) 1472 { 1473 struct intel_gvt *gvt = vgpu->gvt; 1474 struct intel_vgpu_ppgtt_spt *spt = oos_page->spt; 1475 1476 trace_oos_change(vgpu->id, "detach", oos_page->id, 1477 spt, spt->guest_page.type); 1478 1479 spt->guest_page.write_cnt = 0; 1480 spt->guest_page.oos_page = NULL; 1481 oos_page->spt = NULL; 1482 1483 list_del_init(&oos_page->vm_list); 1484 list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head); 1485 1486 return 0; 1487 } 1488 1489 static int attach_oos_page(struct intel_vgpu_oos_page *oos_page, 1490 struct intel_vgpu_ppgtt_spt *spt) 1491 { 1492 struct intel_gvt *gvt = spt->vgpu->gvt; 1493 int ret; 1494 1495 ret = intel_gvt_hypervisor_read_gpa(spt->vgpu, 1496 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT, 1497 oos_page->mem, I915_GTT_PAGE_SIZE); 1498 if (ret) 1499 return ret; 1500 1501 oos_page->spt = spt; 1502 spt->guest_page.oos_page = oos_page; 1503 1504 list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head); 1505 1506 trace_oos_change(spt->vgpu->id, "attach", oos_page->id, 1507 spt, spt->guest_page.type); 1508 return 0; 1509 } 1510 1511 static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt) 1512 { 1513 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page; 1514 int ret; 1515 1516 ret = intel_vgpu_enable_page_track(spt->vgpu, spt->guest_page.gfn); 1517 if (ret) 1518 return ret; 1519 1520 trace_oos_change(spt->vgpu->id, "set page sync", oos_page->id, 1521 spt, spt->guest_page.type); 1522 1523 list_del_init(&oos_page->vm_list); 1524 return sync_oos_page(spt->vgpu, oos_page); 1525 } 1526 1527 static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt) 1528 { 1529 struct intel_gvt *gvt = spt->vgpu->gvt; 1530 struct intel_gvt_gtt *gtt = &gvt->gtt; 1531 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page; 1532 int ret; 1533 1534 WARN(oos_page, "shadow PPGTT page has already has a oos page\n"); 1535 1536 if (list_empty(>t->oos_page_free_list_head)) { 1537 oos_page = container_of(gtt->oos_page_use_list_head.next, 1538 struct intel_vgpu_oos_page, list); 1539 ret = ppgtt_set_guest_page_sync(oos_page->spt); 1540 if (ret) 1541 return ret; 1542 ret = detach_oos_page(spt->vgpu, oos_page); 1543 if (ret) 1544 return ret; 1545 } else 1546 oos_page = container_of(gtt->oos_page_free_list_head.next, 1547 struct intel_vgpu_oos_page, list); 1548 return attach_oos_page(oos_page, spt); 1549 } 1550 1551 static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt) 1552 { 1553 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page; 1554 1555 if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n")) 1556 return -EINVAL; 1557 1558 trace_oos_change(spt->vgpu->id, "set page out of sync", oos_page->id, 1559 spt, spt->guest_page.type); 1560 1561 list_add_tail(&oos_page->vm_list, &spt->vgpu->gtt.oos_page_list_head); 1562 return intel_vgpu_disable_page_track(spt->vgpu, spt->guest_page.gfn); 1563 } 1564 1565 /** 1566 * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU 1567 * @vgpu: a vGPU 1568 * 1569 * This function is called before submitting a guest workload to host, 1570 * to sync all the out-of-synced shadow for vGPU 1571 * 1572 * Returns: 1573 * Zero on success, negative error code if failed. 1574 */ 1575 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu) 1576 { 1577 struct list_head *pos, *n; 1578 struct intel_vgpu_oos_page *oos_page; 1579 int ret; 1580 1581 if (!enable_out_of_sync) 1582 return 0; 1583 1584 list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) { 1585 oos_page = container_of(pos, 1586 struct intel_vgpu_oos_page, vm_list); 1587 ret = ppgtt_set_guest_page_sync(oos_page->spt); 1588 if (ret) 1589 return ret; 1590 } 1591 return 0; 1592 } 1593 1594 /* 1595 * The heart of PPGTT shadow page table. 1596 */ 1597 static int ppgtt_handle_guest_write_page_table( 1598 struct intel_vgpu_ppgtt_spt *spt, 1599 struct intel_gvt_gtt_entry *we, unsigned long index) 1600 { 1601 struct intel_vgpu *vgpu = spt->vgpu; 1602 int type = spt->shadow_page.type; 1603 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1604 struct intel_gvt_gtt_entry old_se; 1605 int new_present; 1606 int i, ret; 1607 1608 new_present = ops->test_present(we); 1609 1610 /* 1611 * Adding the new entry first and then removing the old one, that can 1612 * guarantee the ppgtt table is validated during the window between 1613 * adding and removal. 1614 */ 1615 ppgtt_get_shadow_entry(spt, &old_se, index); 1616 1617 if (new_present) { 1618 ret = ppgtt_handle_guest_entry_add(spt, we, index); 1619 if (ret) 1620 goto fail; 1621 } 1622 1623 ret = ppgtt_handle_guest_entry_removal(spt, &old_se, index); 1624 if (ret) 1625 goto fail; 1626 1627 if (!new_present) { 1628 /* For 64KB splited entries, we need clear them all. */ 1629 if (ops->test_64k_splited(&old_se) && 1630 !(index % GTT_64K_PTE_STRIDE)) { 1631 gvt_vdbg_mm("remove splited 64K shadow entries\n"); 1632 for (i = 0; i < GTT_64K_PTE_STRIDE; i++) { 1633 ops->clear_64k_splited(&old_se); 1634 ops->set_pfn(&old_se, 1635 vgpu->gtt.scratch_pt[type].page_mfn); 1636 ppgtt_set_shadow_entry(spt, &old_se, index + i); 1637 } 1638 } else if (old_se.type == GTT_TYPE_PPGTT_PTE_2M_ENTRY || 1639 old_se.type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) { 1640 ops->clear_pse(&old_se); 1641 ops->set_pfn(&old_se, 1642 vgpu->gtt.scratch_pt[type].page_mfn); 1643 ppgtt_set_shadow_entry(spt, &old_se, index); 1644 } else { 1645 ops->set_pfn(&old_se, 1646 vgpu->gtt.scratch_pt[type].page_mfn); 1647 ppgtt_set_shadow_entry(spt, &old_se, index); 1648 } 1649 } 1650 1651 return 0; 1652 fail: 1653 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n", 1654 spt, we->val64, we->type); 1655 return ret; 1656 } 1657 1658 1659 1660 static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt) 1661 { 1662 return enable_out_of_sync 1663 && gtt_type_is_pte_pt(spt->guest_page.type) 1664 && spt->guest_page.write_cnt >= 2; 1665 } 1666 1667 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt, 1668 unsigned long index) 1669 { 1670 set_bit(index, spt->post_shadow_bitmap); 1671 if (!list_empty(&spt->post_shadow_list)) 1672 return; 1673 1674 list_add_tail(&spt->post_shadow_list, 1675 &spt->vgpu->gtt.post_shadow_list_head); 1676 } 1677 1678 /** 1679 * intel_vgpu_flush_post_shadow - flush the post shadow transactions 1680 * @vgpu: a vGPU 1681 * 1682 * This function is called before submitting a guest workload to host, 1683 * to flush all the post shadows for a vGPU. 1684 * 1685 * Returns: 1686 * Zero on success, negative error code if failed. 1687 */ 1688 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu) 1689 { 1690 struct list_head *pos, *n; 1691 struct intel_vgpu_ppgtt_spt *spt; 1692 struct intel_gvt_gtt_entry ge; 1693 unsigned long index; 1694 int ret; 1695 1696 list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) { 1697 spt = container_of(pos, struct intel_vgpu_ppgtt_spt, 1698 post_shadow_list); 1699 1700 for_each_set_bit(index, spt->post_shadow_bitmap, 1701 GTT_ENTRY_NUM_IN_ONE_PAGE) { 1702 ppgtt_get_guest_entry(spt, &ge, index); 1703 1704 ret = ppgtt_handle_guest_write_page_table(spt, 1705 &ge, index); 1706 if (ret) 1707 return ret; 1708 clear_bit(index, spt->post_shadow_bitmap); 1709 } 1710 list_del_init(&spt->post_shadow_list); 1711 } 1712 return 0; 1713 } 1714 1715 static int ppgtt_handle_guest_write_page_table_bytes( 1716 struct intel_vgpu_ppgtt_spt *spt, 1717 u64 pa, void *p_data, int bytes) 1718 { 1719 struct intel_vgpu *vgpu = spt->vgpu; 1720 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1721 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 1722 struct intel_gvt_gtt_entry we, se; 1723 unsigned long index; 1724 int ret; 1725 1726 index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift; 1727 1728 ppgtt_get_guest_entry(spt, &we, index); 1729 1730 /* 1731 * For page table which has 64K gtt entry, only PTE#0, PTE#16, 1732 * PTE#32, ... PTE#496 are used. Unused PTEs update should be 1733 * ignored. 1734 */ 1735 if (we.type == GTT_TYPE_PPGTT_PTE_64K_ENTRY && 1736 (index % GTT_64K_PTE_STRIDE)) { 1737 gvt_vdbg_mm("Ignore write to unused PTE entry, index %lu\n", 1738 index); 1739 return 0; 1740 } 1741 1742 if (bytes == info->gtt_entry_size) { 1743 ret = ppgtt_handle_guest_write_page_table(spt, &we, index); 1744 if (ret) 1745 return ret; 1746 } else { 1747 if (!test_bit(index, spt->post_shadow_bitmap)) { 1748 int type = spt->shadow_page.type; 1749 1750 ppgtt_get_shadow_entry(spt, &se, index); 1751 ret = ppgtt_handle_guest_entry_removal(spt, &se, index); 1752 if (ret) 1753 return ret; 1754 ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn); 1755 ppgtt_set_shadow_entry(spt, &se, index); 1756 } 1757 ppgtt_set_post_shadow(spt, index); 1758 } 1759 1760 if (!enable_out_of_sync) 1761 return 0; 1762 1763 spt->guest_page.write_cnt++; 1764 1765 if (spt->guest_page.oos_page) 1766 ops->set_entry(spt->guest_page.oos_page->mem, &we, index, 1767 false, 0, vgpu); 1768 1769 if (can_do_out_of_sync(spt)) { 1770 if (!spt->guest_page.oos_page) 1771 ppgtt_allocate_oos_page(spt); 1772 1773 ret = ppgtt_set_guest_page_oos(spt); 1774 if (ret < 0) 1775 return ret; 1776 } 1777 return 0; 1778 } 1779 1780 static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm) 1781 { 1782 struct intel_vgpu *vgpu = mm->vgpu; 1783 struct intel_gvt *gvt = vgpu->gvt; 1784 struct intel_gvt_gtt *gtt = &gvt->gtt; 1785 struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops; 1786 struct intel_gvt_gtt_entry se; 1787 int index; 1788 1789 if (!mm->ppgtt_mm.shadowed) 1790 return; 1791 1792 for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) { 1793 ppgtt_get_shadow_root_entry(mm, &se, index); 1794 1795 if (!ops->test_present(&se)) 1796 continue; 1797 1798 ppgtt_invalidate_spt_by_shadow_entry(vgpu, &se); 1799 se.val64 = 0; 1800 ppgtt_set_shadow_root_entry(mm, &se, index); 1801 1802 trace_spt_guest_change(vgpu->id, "destroy root pointer", 1803 NULL, se.type, se.val64, index); 1804 } 1805 1806 mm->ppgtt_mm.shadowed = false; 1807 } 1808 1809 1810 static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm) 1811 { 1812 struct intel_vgpu *vgpu = mm->vgpu; 1813 struct intel_gvt *gvt = vgpu->gvt; 1814 struct intel_gvt_gtt *gtt = &gvt->gtt; 1815 struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops; 1816 struct intel_vgpu_ppgtt_spt *spt; 1817 struct intel_gvt_gtt_entry ge, se; 1818 int index, ret; 1819 1820 if (mm->ppgtt_mm.shadowed) 1821 return 0; 1822 1823 mm->ppgtt_mm.shadowed = true; 1824 1825 for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) { 1826 ppgtt_get_guest_root_entry(mm, &ge, index); 1827 1828 if (!ops->test_present(&ge)) 1829 continue; 1830 1831 trace_spt_guest_change(vgpu->id, __func__, NULL, 1832 ge.type, ge.val64, index); 1833 1834 spt = ppgtt_populate_spt_by_guest_entry(vgpu, &ge); 1835 if (IS_ERR(spt)) { 1836 gvt_vgpu_err("fail to populate guest root pointer\n"); 1837 ret = PTR_ERR(spt); 1838 goto fail; 1839 } 1840 ppgtt_generate_shadow_entry(&se, spt, &ge); 1841 ppgtt_set_shadow_root_entry(mm, &se, index); 1842 1843 trace_spt_guest_change(vgpu->id, "populate root pointer", 1844 NULL, se.type, se.val64, index); 1845 } 1846 1847 return 0; 1848 fail: 1849 invalidate_ppgtt_mm(mm); 1850 return ret; 1851 } 1852 1853 static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu) 1854 { 1855 struct intel_vgpu_mm *mm; 1856 1857 mm = kzalloc(sizeof(*mm), GFP_KERNEL); 1858 if (!mm) 1859 return NULL; 1860 1861 mm->vgpu = vgpu; 1862 kref_init(&mm->ref); 1863 atomic_set(&mm->pincount, 0); 1864 1865 return mm; 1866 } 1867 1868 static void vgpu_free_mm(struct intel_vgpu_mm *mm) 1869 { 1870 kfree(mm); 1871 } 1872 1873 /** 1874 * intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU 1875 * @vgpu: a vGPU 1876 * @root_entry_type: ppgtt root entry type 1877 * @pdps: guest pdps. 1878 * 1879 * This function is used to create a ppgtt mm object for a vGPU. 1880 * 1881 * Returns: 1882 * Zero on success, negative error code in pointer if failed. 1883 */ 1884 struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu, 1885 enum intel_gvt_gtt_type root_entry_type, u64 pdps[]) 1886 { 1887 struct intel_gvt *gvt = vgpu->gvt; 1888 struct intel_vgpu_mm *mm; 1889 int ret; 1890 1891 mm = vgpu_alloc_mm(vgpu); 1892 if (!mm) 1893 return ERR_PTR(-ENOMEM); 1894 1895 mm->type = INTEL_GVT_MM_PPGTT; 1896 1897 GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY && 1898 root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY); 1899 mm->ppgtt_mm.root_entry_type = root_entry_type; 1900 1901 INIT_LIST_HEAD(&mm->ppgtt_mm.list); 1902 INIT_LIST_HEAD(&mm->ppgtt_mm.lru_list); 1903 1904 if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) 1905 mm->ppgtt_mm.guest_pdps[0] = pdps[0]; 1906 else 1907 memcpy(mm->ppgtt_mm.guest_pdps, pdps, 1908 sizeof(mm->ppgtt_mm.guest_pdps)); 1909 1910 ret = shadow_ppgtt_mm(mm); 1911 if (ret) { 1912 gvt_vgpu_err("failed to shadow ppgtt mm\n"); 1913 vgpu_free_mm(mm); 1914 return ERR_PTR(ret); 1915 } 1916 1917 list_add_tail(&mm->ppgtt_mm.list, &vgpu->gtt.ppgtt_mm_list_head); 1918 1919 mutex_lock(&gvt->gtt.ppgtt_mm_lock); 1920 list_add_tail(&mm->ppgtt_mm.lru_list, &gvt->gtt.ppgtt_mm_lru_list_head); 1921 mutex_unlock(&gvt->gtt.ppgtt_mm_lock); 1922 1923 return mm; 1924 } 1925 1926 static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu) 1927 { 1928 struct intel_vgpu_mm *mm; 1929 unsigned long nr_entries; 1930 1931 mm = vgpu_alloc_mm(vgpu); 1932 if (!mm) 1933 return ERR_PTR(-ENOMEM); 1934 1935 mm->type = INTEL_GVT_MM_GGTT; 1936 1937 nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT; 1938 mm->ggtt_mm.virtual_ggtt = 1939 vzalloc(array_size(nr_entries, 1940 vgpu->gvt->device_info.gtt_entry_size)); 1941 if (!mm->ggtt_mm.virtual_ggtt) { 1942 vgpu_free_mm(mm); 1943 return ERR_PTR(-ENOMEM); 1944 } 1945 1946 return mm; 1947 } 1948 1949 /** 1950 * _intel_vgpu_mm_release - destroy a mm object 1951 * @mm_ref: a kref object 1952 * 1953 * This function is used to destroy a mm object for vGPU 1954 * 1955 */ 1956 void _intel_vgpu_mm_release(struct kref *mm_ref) 1957 { 1958 struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref); 1959 1960 if (GEM_WARN_ON(atomic_read(&mm->pincount))) 1961 gvt_err("vgpu mm pin count bug detected\n"); 1962 1963 if (mm->type == INTEL_GVT_MM_PPGTT) { 1964 list_del(&mm->ppgtt_mm.list); 1965 1966 mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock); 1967 list_del(&mm->ppgtt_mm.lru_list); 1968 mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock); 1969 1970 invalidate_ppgtt_mm(mm); 1971 } else { 1972 vfree(mm->ggtt_mm.virtual_ggtt); 1973 } 1974 1975 vgpu_free_mm(mm); 1976 } 1977 1978 /** 1979 * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object 1980 * @mm: a vGPU mm object 1981 * 1982 * This function is called when user doesn't want to use a vGPU mm object 1983 */ 1984 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm) 1985 { 1986 atomic_dec_if_positive(&mm->pincount); 1987 } 1988 1989 /** 1990 * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object 1991 * @mm: target vgpu mm 1992 * 1993 * This function is called when user wants to use a vGPU mm object. If this 1994 * mm object hasn't been shadowed yet, the shadow will be populated at this 1995 * time. 1996 * 1997 * Returns: 1998 * Zero on success, negative error code if failed. 1999 */ 2000 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm) 2001 { 2002 int ret; 2003 2004 atomic_inc(&mm->pincount); 2005 2006 if (mm->type == INTEL_GVT_MM_PPGTT) { 2007 ret = shadow_ppgtt_mm(mm); 2008 if (ret) 2009 return ret; 2010 2011 mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock); 2012 list_move_tail(&mm->ppgtt_mm.lru_list, 2013 &mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head); 2014 mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock); 2015 } 2016 2017 return 0; 2018 } 2019 2020 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt) 2021 { 2022 struct intel_vgpu_mm *mm; 2023 struct list_head *pos, *n; 2024 2025 mutex_lock(&gvt->gtt.ppgtt_mm_lock); 2026 2027 list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) { 2028 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list); 2029 2030 if (atomic_read(&mm->pincount)) 2031 continue; 2032 2033 list_del_init(&mm->ppgtt_mm.lru_list); 2034 mutex_unlock(&gvt->gtt.ppgtt_mm_lock); 2035 invalidate_ppgtt_mm(mm); 2036 return 1; 2037 } 2038 mutex_unlock(&gvt->gtt.ppgtt_mm_lock); 2039 return 0; 2040 } 2041 2042 /* 2043 * GMA translation APIs. 2044 */ 2045 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm, 2046 struct intel_gvt_gtt_entry *e, unsigned long index, bool guest) 2047 { 2048 struct intel_vgpu *vgpu = mm->vgpu; 2049 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 2050 struct intel_vgpu_ppgtt_spt *s; 2051 2052 s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e)); 2053 if (!s) 2054 return -ENXIO; 2055 2056 if (!guest) 2057 ppgtt_get_shadow_entry(s, e, index); 2058 else 2059 ppgtt_get_guest_entry(s, e, index); 2060 return 0; 2061 } 2062 2063 /** 2064 * intel_vgpu_gma_to_gpa - translate a gma to GPA 2065 * @mm: mm object. could be a PPGTT or GGTT mm object 2066 * @gma: graphics memory address in this mm object 2067 * 2068 * This function is used to translate a graphics memory address in specific 2069 * graphics memory space to guest physical address. 2070 * 2071 * Returns: 2072 * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed. 2073 */ 2074 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma) 2075 { 2076 struct intel_vgpu *vgpu = mm->vgpu; 2077 struct intel_gvt *gvt = vgpu->gvt; 2078 struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops; 2079 struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops; 2080 unsigned long gpa = INTEL_GVT_INVALID_ADDR; 2081 unsigned long gma_index[4]; 2082 struct intel_gvt_gtt_entry e; 2083 int i, levels = 0; 2084 int ret; 2085 2086 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT && 2087 mm->type != INTEL_GVT_MM_PPGTT); 2088 2089 if (mm->type == INTEL_GVT_MM_GGTT) { 2090 if (!vgpu_gmadr_is_valid(vgpu, gma)) 2091 goto err; 2092 2093 ggtt_get_guest_entry(mm, &e, 2094 gma_ops->gma_to_ggtt_pte_index(gma)); 2095 2096 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) 2097 + (gma & ~I915_GTT_PAGE_MASK); 2098 2099 trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa); 2100 } else { 2101 switch (mm->ppgtt_mm.root_entry_type) { 2102 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY: 2103 ppgtt_get_shadow_root_entry(mm, &e, 0); 2104 2105 gma_index[0] = gma_ops->gma_to_pml4_index(gma); 2106 gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma); 2107 gma_index[2] = gma_ops->gma_to_pde_index(gma); 2108 gma_index[3] = gma_ops->gma_to_pte_index(gma); 2109 levels = 4; 2110 break; 2111 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY: 2112 ppgtt_get_shadow_root_entry(mm, &e, 2113 gma_ops->gma_to_l3_pdp_index(gma)); 2114 2115 gma_index[0] = gma_ops->gma_to_pde_index(gma); 2116 gma_index[1] = gma_ops->gma_to_pte_index(gma); 2117 levels = 2; 2118 break; 2119 default: 2120 GEM_BUG_ON(1); 2121 } 2122 2123 /* walk the shadow page table and get gpa from guest entry */ 2124 for (i = 0; i < levels; i++) { 2125 ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i], 2126 (i == levels - 1)); 2127 if (ret) 2128 goto err; 2129 2130 if (!pte_ops->test_present(&e)) { 2131 gvt_dbg_core("GMA 0x%lx is not present\n", gma); 2132 goto err; 2133 } 2134 } 2135 2136 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) + 2137 (gma & ~I915_GTT_PAGE_MASK); 2138 trace_gma_translate(vgpu->id, "ppgtt", 0, 2139 mm->ppgtt_mm.root_entry_type, gma, gpa); 2140 } 2141 2142 return gpa; 2143 err: 2144 gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma); 2145 return INTEL_GVT_INVALID_ADDR; 2146 } 2147 2148 static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, 2149 unsigned int off, void *p_data, unsigned int bytes) 2150 { 2151 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm; 2152 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 2153 unsigned long index = off >> info->gtt_entry_size_shift; 2154 unsigned long gma; 2155 struct intel_gvt_gtt_entry e; 2156 2157 if (bytes != 4 && bytes != 8) 2158 return -EINVAL; 2159 2160 gma = index << I915_GTT_PAGE_SHIFT; 2161 if (!intel_gvt_ggtt_validate_range(vgpu, 2162 gma, 1 << I915_GTT_PAGE_SHIFT)) { 2163 gvt_dbg_mm("read invalid ggtt at 0x%lx\n", gma); 2164 memset(p_data, 0, bytes); 2165 return 0; 2166 } 2167 2168 ggtt_get_guest_entry(ggtt_mm, &e, index); 2169 memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)), 2170 bytes); 2171 return 0; 2172 } 2173 2174 /** 2175 * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read 2176 * @vgpu: a vGPU 2177 * @off: register offset 2178 * @p_data: data will be returned to guest 2179 * @bytes: data length 2180 * 2181 * This function is used to emulate the GTT MMIO register read 2182 * 2183 * Returns: 2184 * Zero on success, error code if failed. 2185 */ 2186 int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off, 2187 void *p_data, unsigned int bytes) 2188 { 2189 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 2190 int ret; 2191 2192 if (bytes != 4 && bytes != 8) 2193 return -EINVAL; 2194 2195 off -= info->gtt_start_offset; 2196 ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes); 2197 return ret; 2198 } 2199 2200 static void ggtt_invalidate_pte(struct intel_vgpu *vgpu, 2201 struct intel_gvt_gtt_entry *entry) 2202 { 2203 struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops; 2204 unsigned long pfn; 2205 2206 pfn = pte_ops->get_pfn(entry); 2207 if (pfn != vgpu->gvt->gtt.scratch_mfn) 2208 intel_gvt_hypervisor_dma_unmap_guest_page(vgpu, 2209 pfn << PAGE_SHIFT); 2210 } 2211 2212 static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off, 2213 void *p_data, unsigned int bytes) 2214 { 2215 struct intel_gvt *gvt = vgpu->gvt; 2216 const struct intel_gvt_device_info *info = &gvt->device_info; 2217 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm; 2218 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 2219 unsigned long g_gtt_index = off >> info->gtt_entry_size_shift; 2220 unsigned long gma, gfn; 2221 struct intel_gvt_gtt_entry e = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE}; 2222 struct intel_gvt_gtt_entry m = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE}; 2223 dma_addr_t dma_addr; 2224 int ret; 2225 struct intel_gvt_partial_pte *partial_pte, *pos, *n; 2226 bool partial_update = false; 2227 2228 if (bytes != 4 && bytes != 8) 2229 return -EINVAL; 2230 2231 gma = g_gtt_index << I915_GTT_PAGE_SHIFT; 2232 2233 /* the VM may configure the whole GM space when ballooning is used */ 2234 if (!vgpu_gmadr_is_valid(vgpu, gma)) 2235 return 0; 2236 2237 e.type = GTT_TYPE_GGTT_PTE; 2238 memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data, 2239 bytes); 2240 2241 /* If ggtt entry size is 8 bytes, and it's split into two 4 bytes 2242 * write, save the first 4 bytes in a list and update virtual 2243 * PTE. Only update shadow PTE when the second 4 bytes comes. 2244 */ 2245 if (bytes < info->gtt_entry_size) { 2246 bool found = false; 2247 2248 list_for_each_entry_safe(pos, n, 2249 &ggtt_mm->ggtt_mm.partial_pte_list, list) { 2250 if (g_gtt_index == pos->offset >> 2251 info->gtt_entry_size_shift) { 2252 if (off != pos->offset) { 2253 /* the second partial part*/ 2254 int last_off = pos->offset & 2255 (info->gtt_entry_size - 1); 2256 2257 memcpy((void *)&e.val64 + last_off, 2258 (void *)&pos->data + last_off, 2259 bytes); 2260 2261 list_del(&pos->list); 2262 kfree(pos); 2263 found = true; 2264 break; 2265 } 2266 2267 /* update of the first partial part */ 2268 pos->data = e.val64; 2269 ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index); 2270 return 0; 2271 } 2272 } 2273 2274 if (!found) { 2275 /* the first partial part */ 2276 partial_pte = kzalloc(sizeof(*partial_pte), GFP_KERNEL); 2277 if (!partial_pte) 2278 return -ENOMEM; 2279 partial_pte->offset = off; 2280 partial_pte->data = e.val64; 2281 list_add_tail(&partial_pte->list, 2282 &ggtt_mm->ggtt_mm.partial_pte_list); 2283 partial_update = true; 2284 } 2285 } 2286 2287 if (!partial_update && (ops->test_present(&e))) { 2288 gfn = ops->get_pfn(&e); 2289 m.val64 = e.val64; 2290 m.type = e.type; 2291 2292 /* one PTE update may be issued in multiple writes and the 2293 * first write may not construct a valid gfn 2294 */ 2295 if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) { 2296 ops->set_pfn(&m, gvt->gtt.scratch_mfn); 2297 goto out; 2298 } 2299 2300 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn, 2301 PAGE_SIZE, &dma_addr); 2302 if (ret) { 2303 gvt_vgpu_err("fail to populate guest ggtt entry\n"); 2304 /* guest driver may read/write the entry when partial 2305 * update the entry in this situation p2m will fail 2306 * settting the shadow entry to point to a scratch page 2307 */ 2308 ops->set_pfn(&m, gvt->gtt.scratch_mfn); 2309 } else 2310 ops->set_pfn(&m, dma_addr >> PAGE_SHIFT); 2311 } else { 2312 ops->set_pfn(&m, gvt->gtt.scratch_mfn); 2313 ops->clear_present(&m); 2314 } 2315 2316 out: 2317 ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index); 2318 2319 ggtt_get_host_entry(ggtt_mm, &e, g_gtt_index); 2320 ggtt_invalidate_pte(vgpu, &e); 2321 2322 ggtt_set_host_entry(ggtt_mm, &m, g_gtt_index); 2323 ggtt_invalidate(gvt->gt); 2324 return 0; 2325 } 2326 2327 /* 2328 * intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write 2329 * @vgpu: a vGPU 2330 * @off: register offset 2331 * @p_data: data from guest write 2332 * @bytes: data length 2333 * 2334 * This function is used to emulate the GTT MMIO register write 2335 * 2336 * Returns: 2337 * Zero on success, error code if failed. 2338 */ 2339 int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, 2340 unsigned int off, void *p_data, unsigned int bytes) 2341 { 2342 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 2343 int ret; 2344 2345 if (bytes != 4 && bytes != 8) 2346 return -EINVAL; 2347 2348 off -= info->gtt_start_offset; 2349 ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes); 2350 return ret; 2351 } 2352 2353 static int alloc_scratch_pages(struct intel_vgpu *vgpu, 2354 enum intel_gvt_gtt_type type) 2355 { 2356 struct drm_i915_private *i915 = vgpu->gvt->gt->i915; 2357 struct intel_vgpu_gtt *gtt = &vgpu->gtt; 2358 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 2359 int page_entry_num = I915_GTT_PAGE_SIZE >> 2360 vgpu->gvt->device_info.gtt_entry_size_shift; 2361 void *scratch_pt; 2362 int i; 2363 struct device *dev = &vgpu->gvt->gt->i915->drm.pdev->dev; 2364 dma_addr_t daddr; 2365 2366 if (drm_WARN_ON(&i915->drm, 2367 type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX)) 2368 return -EINVAL; 2369 2370 scratch_pt = (void *)get_zeroed_page(GFP_KERNEL); 2371 if (!scratch_pt) { 2372 gvt_vgpu_err("fail to allocate scratch page\n"); 2373 return -ENOMEM; 2374 } 2375 2376 daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0, 2377 4096, PCI_DMA_BIDIRECTIONAL); 2378 if (dma_mapping_error(dev, daddr)) { 2379 gvt_vgpu_err("fail to dmamap scratch_pt\n"); 2380 __free_page(virt_to_page(scratch_pt)); 2381 return -ENOMEM; 2382 } 2383 gtt->scratch_pt[type].page_mfn = 2384 (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT); 2385 gtt->scratch_pt[type].page = virt_to_page(scratch_pt); 2386 gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n", 2387 vgpu->id, type, gtt->scratch_pt[type].page_mfn); 2388 2389 /* Build the tree by full filled the scratch pt with the entries which 2390 * point to the next level scratch pt or scratch page. The 2391 * scratch_pt[type] indicate the scratch pt/scratch page used by the 2392 * 'type' pt. 2393 * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by 2394 * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self 2395 * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn. 2396 */ 2397 if (type > GTT_TYPE_PPGTT_PTE_PT) { 2398 struct intel_gvt_gtt_entry se; 2399 2400 memset(&se, 0, sizeof(struct intel_gvt_gtt_entry)); 2401 se.type = get_entry_type(type - 1); 2402 ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn); 2403 2404 /* The entry parameters like present/writeable/cache type 2405 * set to the same as i915's scratch page tree. 2406 */ 2407 se.val64 |= _PAGE_PRESENT | _PAGE_RW; 2408 if (type == GTT_TYPE_PPGTT_PDE_PT) 2409 se.val64 |= PPAT_CACHED; 2410 2411 for (i = 0; i < page_entry_num; i++) 2412 ops->set_entry(scratch_pt, &se, i, false, 0, vgpu); 2413 } 2414 2415 return 0; 2416 } 2417 2418 static int release_scratch_page_tree(struct intel_vgpu *vgpu) 2419 { 2420 int i; 2421 struct device *dev = &vgpu->gvt->gt->i915->drm.pdev->dev; 2422 dma_addr_t daddr; 2423 2424 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) { 2425 if (vgpu->gtt.scratch_pt[i].page != NULL) { 2426 daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn << 2427 I915_GTT_PAGE_SHIFT); 2428 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL); 2429 __free_page(vgpu->gtt.scratch_pt[i].page); 2430 vgpu->gtt.scratch_pt[i].page = NULL; 2431 vgpu->gtt.scratch_pt[i].page_mfn = 0; 2432 } 2433 } 2434 2435 return 0; 2436 } 2437 2438 static int create_scratch_page_tree(struct intel_vgpu *vgpu) 2439 { 2440 int i, ret; 2441 2442 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) { 2443 ret = alloc_scratch_pages(vgpu, i); 2444 if (ret) 2445 goto err; 2446 } 2447 2448 return 0; 2449 2450 err: 2451 release_scratch_page_tree(vgpu); 2452 return ret; 2453 } 2454 2455 /** 2456 * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization 2457 * @vgpu: a vGPU 2458 * 2459 * This function is used to initialize per-vGPU graphics memory virtualization 2460 * components. 2461 * 2462 * Returns: 2463 * Zero on success, error code if failed. 2464 */ 2465 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu) 2466 { 2467 struct intel_vgpu_gtt *gtt = &vgpu->gtt; 2468 2469 INIT_RADIX_TREE(>t->spt_tree, GFP_KERNEL); 2470 2471 INIT_LIST_HEAD(>t->ppgtt_mm_list_head); 2472 INIT_LIST_HEAD(>t->oos_page_list_head); 2473 INIT_LIST_HEAD(>t->post_shadow_list_head); 2474 2475 gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu); 2476 if (IS_ERR(gtt->ggtt_mm)) { 2477 gvt_vgpu_err("fail to create mm for ggtt.\n"); 2478 return PTR_ERR(gtt->ggtt_mm); 2479 } 2480 2481 intel_vgpu_reset_ggtt(vgpu, false); 2482 2483 INIT_LIST_HEAD(>t->ggtt_mm->ggtt_mm.partial_pte_list); 2484 2485 return create_scratch_page_tree(vgpu); 2486 } 2487 2488 static void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu) 2489 { 2490 struct list_head *pos, *n; 2491 struct intel_vgpu_mm *mm; 2492 2493 list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) { 2494 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list); 2495 intel_vgpu_destroy_mm(mm); 2496 } 2497 2498 if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head))) 2499 gvt_err("vgpu ppgtt mm is not fully destroyed\n"); 2500 2501 if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) { 2502 gvt_err("Why we still has spt not freed?\n"); 2503 ppgtt_free_all_spt(vgpu); 2504 } 2505 } 2506 2507 static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu) 2508 { 2509 struct intel_gvt_partial_pte *pos, *next; 2510 2511 list_for_each_entry_safe(pos, next, 2512 &vgpu->gtt.ggtt_mm->ggtt_mm.partial_pte_list, 2513 list) { 2514 gvt_dbg_mm("partial PTE update on hold 0x%lx : 0x%llx\n", 2515 pos->offset, pos->data); 2516 kfree(pos); 2517 } 2518 intel_vgpu_destroy_mm(vgpu->gtt.ggtt_mm); 2519 vgpu->gtt.ggtt_mm = NULL; 2520 } 2521 2522 /** 2523 * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization 2524 * @vgpu: a vGPU 2525 * 2526 * This function is used to clean up per-vGPU graphics memory virtualization 2527 * components. 2528 * 2529 * Returns: 2530 * Zero on success, error code if failed. 2531 */ 2532 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu) 2533 { 2534 intel_vgpu_destroy_all_ppgtt_mm(vgpu); 2535 intel_vgpu_destroy_ggtt_mm(vgpu); 2536 release_scratch_page_tree(vgpu); 2537 } 2538 2539 static void clean_spt_oos(struct intel_gvt *gvt) 2540 { 2541 struct intel_gvt_gtt *gtt = &gvt->gtt; 2542 struct list_head *pos, *n; 2543 struct intel_vgpu_oos_page *oos_page; 2544 2545 WARN(!list_empty(>t->oos_page_use_list_head), 2546 "someone is still using oos page\n"); 2547 2548 list_for_each_safe(pos, n, >t->oos_page_free_list_head) { 2549 oos_page = container_of(pos, struct intel_vgpu_oos_page, list); 2550 list_del(&oos_page->list); 2551 free_page((unsigned long)oos_page->mem); 2552 kfree(oos_page); 2553 } 2554 } 2555 2556 static int setup_spt_oos(struct intel_gvt *gvt) 2557 { 2558 struct intel_gvt_gtt *gtt = &gvt->gtt; 2559 struct intel_vgpu_oos_page *oos_page; 2560 int i; 2561 int ret; 2562 2563 INIT_LIST_HEAD(>t->oos_page_free_list_head); 2564 INIT_LIST_HEAD(>t->oos_page_use_list_head); 2565 2566 for (i = 0; i < preallocated_oos_pages; i++) { 2567 oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL); 2568 if (!oos_page) { 2569 ret = -ENOMEM; 2570 goto fail; 2571 } 2572 oos_page->mem = (void *)__get_free_pages(GFP_KERNEL, 0); 2573 if (!oos_page->mem) { 2574 ret = -ENOMEM; 2575 kfree(oos_page); 2576 goto fail; 2577 } 2578 2579 INIT_LIST_HEAD(&oos_page->list); 2580 INIT_LIST_HEAD(&oos_page->vm_list); 2581 oos_page->id = i; 2582 list_add_tail(&oos_page->list, >t->oos_page_free_list_head); 2583 } 2584 2585 gvt_dbg_mm("%d oos pages preallocated\n", i); 2586 2587 return 0; 2588 fail: 2589 clean_spt_oos(gvt); 2590 return ret; 2591 } 2592 2593 /** 2594 * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object 2595 * @vgpu: a vGPU 2596 * @pdps: pdp root array 2597 * 2598 * This function is used to find a PPGTT mm object from mm object pool 2599 * 2600 * Returns: 2601 * pointer to mm object on success, NULL if failed. 2602 */ 2603 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu, 2604 u64 pdps[]) 2605 { 2606 struct intel_vgpu_mm *mm; 2607 struct list_head *pos; 2608 2609 list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) { 2610 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list); 2611 2612 switch (mm->ppgtt_mm.root_entry_type) { 2613 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY: 2614 if (pdps[0] == mm->ppgtt_mm.guest_pdps[0]) 2615 return mm; 2616 break; 2617 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY: 2618 if (!memcmp(pdps, mm->ppgtt_mm.guest_pdps, 2619 sizeof(mm->ppgtt_mm.guest_pdps))) 2620 return mm; 2621 break; 2622 default: 2623 GEM_BUG_ON(1); 2624 } 2625 } 2626 return NULL; 2627 } 2628 2629 /** 2630 * intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object. 2631 * @vgpu: a vGPU 2632 * @root_entry_type: ppgtt root entry type 2633 * @pdps: guest pdps 2634 * 2635 * This function is used to find or create a PPGTT mm object from a guest. 2636 * 2637 * Returns: 2638 * Zero on success, negative error code if failed. 2639 */ 2640 struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu, 2641 enum intel_gvt_gtt_type root_entry_type, u64 pdps[]) 2642 { 2643 struct intel_vgpu_mm *mm; 2644 2645 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps); 2646 if (mm) { 2647 intel_vgpu_mm_get(mm); 2648 } else { 2649 mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps); 2650 if (IS_ERR(mm)) 2651 gvt_vgpu_err("fail to create mm\n"); 2652 } 2653 return mm; 2654 } 2655 2656 /** 2657 * intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object. 2658 * @vgpu: a vGPU 2659 * @pdps: guest pdps 2660 * 2661 * This function is used to find a PPGTT mm object from a guest and destroy it. 2662 * 2663 * Returns: 2664 * Zero on success, negative error code if failed. 2665 */ 2666 int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[]) 2667 { 2668 struct intel_vgpu_mm *mm; 2669 2670 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps); 2671 if (!mm) { 2672 gvt_vgpu_err("fail to find ppgtt instance.\n"); 2673 return -EINVAL; 2674 } 2675 intel_vgpu_mm_put(mm); 2676 return 0; 2677 } 2678 2679 /** 2680 * intel_gvt_init_gtt - initialize mm components of a GVT device 2681 * @gvt: GVT device 2682 * 2683 * This function is called at the initialization stage, to initialize 2684 * the mm components of a GVT device. 2685 * 2686 * Returns: 2687 * zero on success, negative error code if failed. 2688 */ 2689 int intel_gvt_init_gtt(struct intel_gvt *gvt) 2690 { 2691 int ret; 2692 void *page; 2693 struct device *dev = &gvt->gt->i915->drm.pdev->dev; 2694 dma_addr_t daddr; 2695 2696 gvt_dbg_core("init gtt\n"); 2697 2698 gvt->gtt.pte_ops = &gen8_gtt_pte_ops; 2699 gvt->gtt.gma_ops = &gen8_gtt_gma_ops; 2700 2701 page = (void *)get_zeroed_page(GFP_KERNEL); 2702 if (!page) { 2703 gvt_err("fail to allocate scratch ggtt page\n"); 2704 return -ENOMEM; 2705 } 2706 2707 daddr = dma_map_page(dev, virt_to_page(page), 0, 2708 4096, PCI_DMA_BIDIRECTIONAL); 2709 if (dma_mapping_error(dev, daddr)) { 2710 gvt_err("fail to dmamap scratch ggtt page\n"); 2711 __free_page(virt_to_page(page)); 2712 return -ENOMEM; 2713 } 2714 2715 gvt->gtt.scratch_page = virt_to_page(page); 2716 gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT); 2717 2718 if (enable_out_of_sync) { 2719 ret = setup_spt_oos(gvt); 2720 if (ret) { 2721 gvt_err("fail to initialize SPT oos\n"); 2722 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL); 2723 __free_page(gvt->gtt.scratch_page); 2724 return ret; 2725 } 2726 } 2727 INIT_LIST_HEAD(&gvt->gtt.ppgtt_mm_lru_list_head); 2728 rw_init(&gvt->gtt.ppgtt_mm_lock, "gvtmm"); 2729 return 0; 2730 } 2731 2732 /** 2733 * intel_gvt_clean_gtt - clean up mm components of a GVT device 2734 * @gvt: GVT device 2735 * 2736 * This function is called at the driver unloading stage, to clean up the 2737 * the mm components of a GVT device. 2738 * 2739 */ 2740 void intel_gvt_clean_gtt(struct intel_gvt *gvt) 2741 { 2742 struct device *dev = &gvt->gt->i915->drm.pdev->dev; 2743 dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn << 2744 I915_GTT_PAGE_SHIFT); 2745 2746 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL); 2747 2748 __free_page(gvt->gtt.scratch_page); 2749 2750 if (enable_out_of_sync) 2751 clean_spt_oos(gvt); 2752 } 2753 2754 /** 2755 * intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances 2756 * @vgpu: a vGPU 2757 * 2758 * This function is called when invalidate all PPGTT instances of a vGPU. 2759 * 2760 */ 2761 void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu) 2762 { 2763 struct list_head *pos, *n; 2764 struct intel_vgpu_mm *mm; 2765 2766 list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) { 2767 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list); 2768 if (mm->type == INTEL_GVT_MM_PPGTT) { 2769 mutex_lock(&vgpu->gvt->gtt.ppgtt_mm_lock); 2770 list_del_init(&mm->ppgtt_mm.lru_list); 2771 mutex_unlock(&vgpu->gvt->gtt.ppgtt_mm_lock); 2772 if (mm->ppgtt_mm.shadowed) 2773 invalidate_ppgtt_mm(mm); 2774 } 2775 } 2776 } 2777 2778 /** 2779 * intel_vgpu_reset_ggtt - reset the GGTT entry 2780 * @vgpu: a vGPU 2781 * @invalidate_old: invalidate old entries 2782 * 2783 * This function is called at the vGPU create stage 2784 * to reset all the GGTT entries. 2785 * 2786 */ 2787 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu, bool invalidate_old) 2788 { 2789 struct intel_gvt *gvt = vgpu->gvt; 2790 struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops; 2791 struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE}; 2792 struct intel_gvt_gtt_entry old_entry; 2793 u32 index; 2794 u32 num_entries; 2795 2796 pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn); 2797 pte_ops->set_present(&entry); 2798 2799 index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT; 2800 num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT; 2801 while (num_entries--) { 2802 if (invalidate_old) { 2803 ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index); 2804 ggtt_invalidate_pte(vgpu, &old_entry); 2805 } 2806 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++); 2807 } 2808 2809 index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT; 2810 num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT; 2811 while (num_entries--) { 2812 if (invalidate_old) { 2813 ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index); 2814 ggtt_invalidate_pte(vgpu, &old_entry); 2815 } 2816 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++); 2817 } 2818 2819 ggtt_invalidate(gvt->gt); 2820 } 2821 2822 /** 2823 * intel_vgpu_reset_gtt - reset the all GTT related status 2824 * @vgpu: a vGPU 2825 * 2826 * This function is called from vfio core to reset reset all 2827 * GTT related status, including GGTT, PPGTT, scratch page. 2828 * 2829 */ 2830 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu) 2831 { 2832 /* Shadow pages are only created when there is no page 2833 * table tracking data, so remove page tracking data after 2834 * removing the shadow pages. 2835 */ 2836 intel_vgpu_destroy_all_ppgtt_mm(vgpu); 2837 intel_vgpu_reset_ggtt(vgpu, true); 2838 } 2839