1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2019 Intel Corporation 5 */ 6 7 #include <linux/debugobjects.h> 8 9 #include "gt/intel_context.h" 10 #include "gt/intel_engine_heartbeat.h" 11 #include "gt/intel_engine_pm.h" 12 #include "gt/intel_ring.h" 13 14 #include "i915_drv.h" 15 #include "i915_active.h" 16 #include "i915_globals.h" 17 18 /* 19 * Active refs memory management 20 * 21 * To be more economical with memory, we reap all the i915_active trees as 22 * they idle (when we know the active requests are inactive) and allocate the 23 * nodes from a local slab cache to hopefully reduce the fragmentation. 24 */ 25 static struct i915_global_active { 26 struct i915_global base; 27 #ifdef __linux__ 28 struct kmem_cache *slab_cache; 29 #else 30 struct pool slab_cache; 31 #endif 32 } global; 33 34 struct active_node { 35 struct rb_node node; 36 struct i915_active_fence base; 37 struct i915_active *ref; 38 u64 timeline; 39 }; 40 41 #define fetch_node(x) rb_entry(READ_ONCE(x), typeof(struct active_node), node) 42 43 static inline struct active_node * 44 node_from_active(struct i915_active_fence *active) 45 { 46 return container_of(active, struct active_node, base); 47 } 48 49 #define take_preallocated_barriers(x) llist_del_all(&(x)->preallocated_barriers) 50 51 static inline bool is_barrier(const struct i915_active_fence *active) 52 { 53 return IS_ERR(rcu_access_pointer(active->fence)); 54 } 55 56 static inline struct llist_node *barrier_to_ll(struct active_node *node) 57 { 58 GEM_BUG_ON(!is_barrier(&node->base)); 59 return (struct llist_node *)&node->base.cb.node; 60 } 61 62 static inline struct intel_engine_cs * 63 __barrier_to_engine(struct active_node *node) 64 { 65 return (struct intel_engine_cs *)READ_ONCE(node->base.cb.node.prev); 66 } 67 68 static inline struct intel_engine_cs * 69 barrier_to_engine(struct active_node *node) 70 { 71 GEM_BUG_ON(!is_barrier(&node->base)); 72 return __barrier_to_engine(node); 73 } 74 75 static inline struct active_node *barrier_from_ll(struct llist_node *x) 76 { 77 return container_of((struct list_head *)x, 78 struct active_node, base.cb.node); 79 } 80 81 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) && IS_ENABLED(CONFIG_DEBUG_OBJECTS) 82 83 static void *active_debug_hint(void *addr) 84 { 85 struct i915_active *ref = addr; 86 87 return (void *)ref->active ?: (void *)ref->retire ?: (void *)ref; 88 } 89 90 static const struct debug_obj_descr active_debug_desc = { 91 .name = "i915_active", 92 .debug_hint = active_debug_hint, 93 }; 94 95 static void debug_active_init(struct i915_active *ref) 96 { 97 debug_object_init(ref, &active_debug_desc); 98 } 99 100 static void debug_active_activate(struct i915_active *ref) 101 { 102 lockdep_assert_held(&ref->tree_lock); 103 if (!atomic_read(&ref->count)) /* before the first inc */ 104 debug_object_activate(ref, &active_debug_desc); 105 } 106 107 static void debug_active_deactivate(struct i915_active *ref) 108 { 109 lockdep_assert_held(&ref->tree_lock); 110 if (!atomic_read(&ref->count)) /* after the last dec */ 111 debug_object_deactivate(ref, &active_debug_desc); 112 } 113 114 static void debug_active_fini(struct i915_active *ref) 115 { 116 debug_object_free(ref, &active_debug_desc); 117 } 118 119 static void debug_active_assert(struct i915_active *ref) 120 { 121 debug_object_assert_init(ref, &active_debug_desc); 122 } 123 124 #else 125 126 static inline void debug_active_init(struct i915_active *ref) { } 127 static inline void debug_active_activate(struct i915_active *ref) { } 128 static inline void debug_active_deactivate(struct i915_active *ref) { } 129 static inline void debug_active_fini(struct i915_active *ref) { } 130 static inline void debug_active_assert(struct i915_active *ref) { } 131 132 #endif 133 134 static void 135 __active_retire(struct i915_active *ref) 136 { 137 struct rb_root root = RB_ROOT; 138 struct active_node *it, *n; 139 unsigned long flags; 140 141 GEM_BUG_ON(i915_active_is_idle(ref)); 142 143 /* return the unused nodes to our slabcache -- flushing the allocator */ 144 if (!atomic_dec_and_lock_irqsave(&ref->count, &ref->tree_lock, flags)) 145 return; 146 147 GEM_BUG_ON(rcu_access_pointer(ref->excl.fence)); 148 debug_active_deactivate(ref); 149 150 /* Even if we have not used the cache, we may still have a barrier */ 151 if (!ref->cache) 152 ref->cache = fetch_node(ref->tree.rb_node); 153 154 /* Keep the MRU cached node for reuse */ 155 if (ref->cache) { 156 /* Discard all other nodes in the tree */ 157 rb_erase(&ref->cache->node, &ref->tree); 158 root = ref->tree; 159 160 /* Rebuild the tree with only the cached node */ 161 rb_link_node(&ref->cache->node, NULL, &ref->tree.rb_node); 162 rb_insert_color(&ref->cache->node, &ref->tree); 163 GEM_BUG_ON(ref->tree.rb_node != &ref->cache->node); 164 165 /* Make the cached node available for reuse with any timeline */ 166 if (IS_ENABLED(CONFIG_64BIT)) 167 ref->cache->timeline = 0; /* needs cmpxchg(u64) */ 168 } 169 170 spin_unlock_irqrestore(&ref->tree_lock, flags); 171 172 /* After the final retire, the entire struct may be freed */ 173 if (ref->retire) 174 ref->retire(ref); 175 176 /* ... except if you wait on it, you must manage your own references! */ 177 wake_up_var(ref); 178 179 /* Finally free the discarded timeline tree */ 180 rbtree_postorder_for_each_entry_safe(it, n, &root, node) { 181 GEM_BUG_ON(i915_active_fence_isset(&it->base)); 182 #ifdef __linux__ 183 kmem_cache_free(global.slab_cache, it); 184 #else 185 pool_put(&global.slab_cache, it); 186 #endif 187 } 188 } 189 190 static void 191 active_work(struct work_struct *wrk) 192 { 193 struct i915_active *ref = container_of(wrk, typeof(*ref), work); 194 195 GEM_BUG_ON(!atomic_read(&ref->count)); 196 if (atomic_add_unless(&ref->count, -1, 1)) 197 return; 198 199 __active_retire(ref); 200 } 201 202 static void 203 active_retire(struct i915_active *ref) 204 { 205 GEM_BUG_ON(!atomic_read(&ref->count)); 206 if (atomic_add_unless(&ref->count, -1, 1)) 207 return; 208 209 if (ref->flags & I915_ACTIVE_RETIRE_SLEEPS) { 210 queue_work(system_unbound_wq, &ref->work); 211 return; 212 } 213 214 __active_retire(ref); 215 } 216 217 static inline struct dma_fence ** 218 __active_fence_slot(struct i915_active_fence *active) 219 { 220 return (struct dma_fence ** __force)&active->fence; 221 } 222 223 static inline bool 224 active_fence_cb(struct dma_fence *fence, struct dma_fence_cb *cb) 225 { 226 struct i915_active_fence *active = 227 container_of(cb, typeof(*active), cb); 228 229 return cmpxchg(__active_fence_slot(active), fence, NULL) == fence; 230 } 231 232 static void 233 node_retire(struct dma_fence *fence, struct dma_fence_cb *cb) 234 { 235 if (active_fence_cb(fence, cb)) 236 active_retire(container_of(cb, struct active_node, base.cb)->ref); 237 } 238 239 static void 240 excl_retire(struct dma_fence *fence, struct dma_fence_cb *cb) 241 { 242 if (active_fence_cb(fence, cb)) 243 active_retire(container_of(cb, struct i915_active, excl.cb)); 244 } 245 246 static struct active_node *__active_lookup(struct i915_active *ref, u64 idx) 247 { 248 struct active_node *it; 249 250 GEM_BUG_ON(idx == 0); /* 0 is the unordered timeline, rsvd for cache */ 251 252 /* 253 * We track the most recently used timeline to skip a rbtree search 254 * for the common case, under typical loads we never need the rbtree 255 * at all. We can reuse the last slot if it is empty, that is 256 * after the previous activity has been retired, or if it matches the 257 * current timeline. 258 */ 259 it = READ_ONCE(ref->cache); 260 if (it) { 261 u64 cached = READ_ONCE(it->timeline); 262 263 /* Once claimed, this slot will only belong to this idx */ 264 if (cached == idx) 265 return it; 266 267 #ifdef CONFIG_64BIT /* for cmpxchg(u64) */ 268 /* 269 * An unclaimed cache [.timeline=0] can only be claimed once. 270 * 271 * If the value is already non-zero, some other thread has 272 * claimed the cache and we know that is does not match our 273 * idx. If, and only if, the timeline is currently zero is it 274 * worth competing to claim it atomically for ourselves (for 275 * only the winner of that race will cmpxchg return the old 276 * value of 0). 277 */ 278 if (!cached && !cmpxchg(&it->timeline, 0, idx)) 279 return it; 280 #endif 281 } 282 283 BUILD_BUG_ON(offsetof(typeof(*it), node)); 284 285 /* While active, the tree can only be built; not destroyed */ 286 GEM_BUG_ON(i915_active_is_idle(ref)); 287 288 it = fetch_node(ref->tree.rb_node); 289 while (it) { 290 if (it->timeline < idx) { 291 it = fetch_node(it->node.rb_right); 292 } else if (it->timeline > idx) { 293 it = fetch_node(it->node.rb_left); 294 } else { 295 WRITE_ONCE(ref->cache, it); 296 break; 297 } 298 } 299 300 /* NB: If the tree rotated beneath us, we may miss our target. */ 301 return it; 302 } 303 304 static struct i915_active_fence * 305 active_instance(struct i915_active *ref, u64 idx) 306 { 307 struct active_node *node, *prealloc; 308 struct rb_node **p, *parent; 309 310 node = __active_lookup(ref, idx); 311 if (likely(node)) 312 return &node->base; 313 314 /* Preallocate a replacement, just in case */ 315 #ifdef __linux__ 316 prealloc = kmem_cache_alloc(global.slab_cache, GFP_KERNEL); 317 #else 318 prealloc = pool_get(&global.slab_cache, PR_WAITOK); 319 #endif 320 if (!prealloc) 321 return NULL; 322 323 spin_lock_irq(&ref->tree_lock); 324 GEM_BUG_ON(i915_active_is_idle(ref)); 325 326 parent = NULL; 327 p = &ref->tree.rb_node; 328 while (*p) { 329 parent = *p; 330 331 node = rb_entry(parent, struct active_node, node); 332 if (node->timeline == idx) { 333 #ifdef __linux__ 334 kmem_cache_free(global.slab_cache, prealloc); 335 #else 336 pool_put(&global.slab_cache, prealloc); 337 #endif 338 goto out; 339 } 340 341 if (node->timeline < idx) 342 p = &parent->rb_right; 343 else 344 p = &parent->rb_left; 345 } 346 347 node = prealloc; 348 __i915_active_fence_init(&node->base, NULL, node_retire); 349 node->ref = ref; 350 node->timeline = idx; 351 352 rb_link_node(&node->node, parent, p); 353 rb_insert_color(&node->node, &ref->tree); 354 355 out: 356 WRITE_ONCE(ref->cache, node); 357 spin_unlock_irq(&ref->tree_lock); 358 359 return &node->base; 360 } 361 362 void __i915_active_init(struct i915_active *ref, 363 int (*active)(struct i915_active *ref), 364 void (*retire)(struct i915_active *ref), 365 struct lock_class_key *mkey, 366 struct lock_class_key *wkey) 367 { 368 unsigned long bits; 369 370 debug_active_init(ref); 371 372 ref->flags = 0; 373 ref->active = active; 374 ref->retire = ptr_unpack_bits(retire, &bits, 2); 375 if (bits & I915_ACTIVE_MAY_SLEEP) 376 ref->flags |= I915_ACTIVE_RETIRE_SLEEPS; 377 378 mtx_init(&ref->tree_lock, IPL_TTY); 379 ref->tree = RB_ROOT; 380 ref->cache = NULL; 381 382 init_llist_head(&ref->preallocated_barriers); 383 atomic_set(&ref->count, 0); 384 #ifdef __linux__ 385 __mutex_init(&ref->mutex, "i915_active", mkey); 386 #else 387 rw_init(&ref->mutex, "i915_active"); 388 #endif 389 __i915_active_fence_init(&ref->excl, NULL, excl_retire); 390 INIT_WORK(&ref->work, active_work); 391 #if IS_ENABLED(CONFIG_LOCKDEP) 392 lockdep_init_map(&ref->work.lockdep_map, "i915_active.work", wkey, 0); 393 #endif 394 } 395 396 static bool ____active_del_barrier(struct i915_active *ref, 397 struct active_node *node, 398 struct intel_engine_cs *engine) 399 400 { 401 struct llist_node *head = NULL, *tail = NULL; 402 struct llist_node *pos, *next; 403 404 GEM_BUG_ON(node->timeline != engine->kernel_context->timeline->fence_context); 405 406 /* 407 * Rebuild the llist excluding our node. We may perform this 408 * outside of the kernel_context timeline mutex and so someone 409 * else may be manipulating the engine->barrier_tasks, in 410 * which case either we or they will be upset :) 411 * 412 * A second __active_del_barrier() will report failure to claim 413 * the active_node and the caller will just shrug and know not to 414 * claim ownership of its node. 415 * 416 * A concurrent i915_request_add_active_barriers() will miss adding 417 * any of the tasks, but we will try again on the next -- and since 418 * we are actively using the barrier, we know that there will be 419 * at least another opportunity when we idle. 420 */ 421 llist_for_each_safe(pos, next, llist_del_all(&engine->barrier_tasks)) { 422 if (node == barrier_from_ll(pos)) { 423 node = NULL; 424 continue; 425 } 426 427 pos->next = head; 428 head = pos; 429 if (!tail) 430 tail = pos; 431 } 432 if (head) 433 llist_add_batch(head, tail, &engine->barrier_tasks); 434 435 return !node; 436 } 437 438 static bool 439 __active_del_barrier(struct i915_active *ref, struct active_node *node) 440 { 441 return ____active_del_barrier(ref, node, barrier_to_engine(node)); 442 } 443 444 static bool 445 replace_barrier(struct i915_active *ref, struct i915_active_fence *active) 446 { 447 if (!is_barrier(active)) /* proto-node used by our idle barrier? */ 448 return false; 449 450 /* 451 * This request is on the kernel_context timeline, and so 452 * we can use it to substitute for the pending idle-barrer 453 * request that we want to emit on the kernel_context. 454 */ 455 __active_del_barrier(ref, node_from_active(active)); 456 return true; 457 } 458 459 int i915_active_ref(struct i915_active *ref, u64 idx, struct dma_fence *fence) 460 { 461 struct i915_active_fence *active; 462 int err; 463 464 /* Prevent reaping in case we malloc/wait while building the tree */ 465 err = i915_active_acquire(ref); 466 if (err) 467 return err; 468 469 active = active_instance(ref, idx); 470 if (!active) { 471 err = -ENOMEM; 472 goto out; 473 } 474 475 if (replace_barrier(ref, active)) { 476 RCU_INIT_POINTER(active->fence, NULL); 477 atomic_dec(&ref->count); 478 } 479 if (!__i915_active_fence_set(active, fence)) 480 __i915_active_acquire(ref); 481 482 out: 483 i915_active_release(ref); 484 return err; 485 } 486 487 static struct dma_fence * 488 __i915_active_set_fence(struct i915_active *ref, 489 struct i915_active_fence *active, 490 struct dma_fence *fence) 491 { 492 struct dma_fence *prev; 493 494 if (replace_barrier(ref, active)) { 495 RCU_INIT_POINTER(active->fence, fence); 496 return NULL; 497 } 498 499 rcu_read_lock(); 500 prev = __i915_active_fence_set(active, fence); 501 if (prev) 502 prev = dma_fence_get_rcu(prev); 503 else 504 __i915_active_acquire(ref); 505 rcu_read_unlock(); 506 507 return prev; 508 } 509 510 static struct i915_active_fence * 511 __active_fence(struct i915_active *ref, u64 idx) 512 { 513 struct active_node *it; 514 515 it = __active_lookup(ref, idx); 516 if (unlikely(!it)) { /* Contention with parallel tree builders! */ 517 spin_lock_irq(&ref->tree_lock); 518 it = __active_lookup(ref, idx); 519 spin_unlock_irq(&ref->tree_lock); 520 } 521 GEM_BUG_ON(!it); /* slot must be preallocated */ 522 523 return &it->base; 524 } 525 526 struct dma_fence * 527 __i915_active_ref(struct i915_active *ref, u64 idx, struct dma_fence *fence) 528 { 529 /* Only valid while active, see i915_active_acquire_for_context() */ 530 return __i915_active_set_fence(ref, __active_fence(ref, idx), fence); 531 } 532 533 struct dma_fence * 534 i915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f) 535 { 536 /* We expect the caller to manage the exclusive timeline ordering */ 537 return __i915_active_set_fence(ref, &ref->excl, f); 538 } 539 540 bool i915_active_acquire_if_busy(struct i915_active *ref) 541 { 542 debug_active_assert(ref); 543 return atomic_add_unless(&ref->count, 1, 0); 544 } 545 546 static void __i915_active_activate(struct i915_active *ref) 547 { 548 spin_lock_irq(&ref->tree_lock); /* __active_retire() */ 549 if (!atomic_fetch_inc(&ref->count)) 550 debug_active_activate(ref); 551 spin_unlock_irq(&ref->tree_lock); 552 } 553 554 int i915_active_acquire(struct i915_active *ref) 555 { 556 int err; 557 558 if (i915_active_acquire_if_busy(ref)) 559 return 0; 560 561 if (!ref->active) { 562 __i915_active_activate(ref); 563 return 0; 564 } 565 566 err = mutex_lock_interruptible(&ref->mutex); 567 if (err) 568 return err; 569 570 if (likely(!i915_active_acquire_if_busy(ref))) { 571 err = ref->active(ref); 572 if (!err) 573 __i915_active_activate(ref); 574 } 575 576 mutex_unlock(&ref->mutex); 577 578 return err; 579 } 580 581 int i915_active_acquire_for_context(struct i915_active *ref, u64 idx) 582 { 583 struct i915_active_fence *active; 584 int err; 585 586 err = i915_active_acquire(ref); 587 if (err) 588 return err; 589 590 active = active_instance(ref, idx); 591 if (!active) { 592 i915_active_release(ref); 593 return -ENOMEM; 594 } 595 596 return 0; /* return with active ref */ 597 } 598 599 void i915_active_release(struct i915_active *ref) 600 { 601 debug_active_assert(ref); 602 active_retire(ref); 603 } 604 605 static void enable_signaling(struct i915_active_fence *active) 606 { 607 struct dma_fence *fence; 608 609 if (unlikely(is_barrier(active))) 610 return; 611 612 fence = i915_active_fence_get(active); 613 if (!fence) 614 return; 615 616 dma_fence_enable_sw_signaling(fence); 617 dma_fence_put(fence); 618 } 619 620 static int flush_barrier(struct active_node *it) 621 { 622 struct intel_engine_cs *engine; 623 624 if (likely(!is_barrier(&it->base))) 625 return 0; 626 627 engine = __barrier_to_engine(it); 628 smp_rmb(); /* serialise with add_active_barriers */ 629 if (!is_barrier(&it->base)) 630 return 0; 631 632 return intel_engine_flush_barriers(engine); 633 } 634 635 static int flush_lazy_signals(struct i915_active *ref) 636 { 637 struct active_node *it, *n; 638 int err = 0; 639 640 enable_signaling(&ref->excl); 641 rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) { 642 err = flush_barrier(it); /* unconnected idle barrier? */ 643 if (err) 644 break; 645 646 enable_signaling(&it->base); 647 } 648 649 return err; 650 } 651 652 int __i915_active_wait(struct i915_active *ref, int state) 653 { 654 might_sleep(); 655 656 /* Any fence added after the wait begins will not be auto-signaled */ 657 if (i915_active_acquire_if_busy(ref)) { 658 int err; 659 660 err = flush_lazy_signals(ref); 661 i915_active_release(ref); 662 if (err) 663 return err; 664 665 if (___wait_var_event(ref, i915_active_is_idle(ref), 666 state, 0, 0, schedule())) 667 return -EINTR; 668 } 669 670 /* 671 * After the wait is complete, the caller may free the active. 672 * We have to flush any concurrent retirement before returning. 673 */ 674 flush_work(&ref->work); 675 return 0; 676 } 677 678 static int __await_active(struct i915_active_fence *active, 679 int (*fn)(void *arg, struct dma_fence *fence), 680 void *arg) 681 { 682 struct dma_fence *fence; 683 684 if (is_barrier(active)) /* XXX flush the barrier? */ 685 return 0; 686 687 fence = i915_active_fence_get(active); 688 if (fence) { 689 int err; 690 691 err = fn(arg, fence); 692 dma_fence_put(fence); 693 if (err < 0) 694 return err; 695 } 696 697 return 0; 698 } 699 700 struct wait_barrier { 701 struct wait_queue_entry base; 702 struct i915_active *ref; 703 }; 704 705 static int 706 barrier_wake(wait_queue_entry_t *wq, unsigned int mode, int flags, void *key) 707 { 708 struct wait_barrier *wb = container_of(wq, typeof(*wb), base); 709 710 if (i915_active_is_idle(wb->ref)) { 711 list_del(&wq->entry); 712 i915_sw_fence_complete(wq->private); 713 kfree(wq); 714 } 715 716 return 0; 717 } 718 719 static int __await_barrier(struct i915_active *ref, struct i915_sw_fence *fence) 720 { 721 struct wait_barrier *wb; 722 723 wb = kmalloc(sizeof(*wb), GFP_KERNEL); 724 if (unlikely(!wb)) 725 return -ENOMEM; 726 727 GEM_BUG_ON(i915_active_is_idle(ref)); 728 if (!i915_sw_fence_await(fence)) { 729 kfree(wb); 730 return -EINVAL; 731 } 732 733 wb->base.flags = 0; 734 wb->base.func = barrier_wake; 735 wb->base.private = fence; 736 wb->ref = ref; 737 738 add_wait_queue(__var_waitqueue(ref), &wb->base); 739 return 0; 740 } 741 742 static int await_active(struct i915_active *ref, 743 unsigned int flags, 744 int (*fn)(void *arg, struct dma_fence *fence), 745 void *arg, struct i915_sw_fence *barrier) 746 { 747 int err = 0; 748 749 if (!i915_active_acquire_if_busy(ref)) 750 return 0; 751 752 if (flags & I915_ACTIVE_AWAIT_EXCL && 753 rcu_access_pointer(ref->excl.fence)) { 754 err = __await_active(&ref->excl, fn, arg); 755 if (err) 756 goto out; 757 } 758 759 if (flags & I915_ACTIVE_AWAIT_ACTIVE) { 760 struct active_node *it, *n; 761 762 rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) { 763 err = __await_active(&it->base, fn, arg); 764 if (err) 765 goto out; 766 } 767 } 768 769 if (flags & I915_ACTIVE_AWAIT_BARRIER) { 770 err = flush_lazy_signals(ref); 771 if (err) 772 goto out; 773 774 err = __await_barrier(ref, barrier); 775 if (err) 776 goto out; 777 } 778 779 out: 780 i915_active_release(ref); 781 return err; 782 } 783 784 static int rq_await_fence(void *arg, struct dma_fence *fence) 785 { 786 return i915_request_await_dma_fence(arg, fence); 787 } 788 789 int i915_request_await_active(struct i915_request *rq, 790 struct i915_active *ref, 791 unsigned int flags) 792 { 793 return await_active(ref, flags, rq_await_fence, rq, &rq->submit); 794 } 795 796 static int sw_await_fence(void *arg, struct dma_fence *fence) 797 { 798 return i915_sw_fence_await_dma_fence(arg, fence, 0, 799 GFP_NOWAIT | __GFP_NOWARN); 800 } 801 802 int i915_sw_fence_await_active(struct i915_sw_fence *fence, 803 struct i915_active *ref, 804 unsigned int flags) 805 { 806 return await_active(ref, flags, sw_await_fence, fence, fence); 807 } 808 809 void i915_active_fini(struct i915_active *ref) 810 { 811 debug_active_fini(ref); 812 GEM_BUG_ON(atomic_read(&ref->count)); 813 GEM_BUG_ON(work_pending(&ref->work)); 814 mutex_destroy(&ref->mutex); 815 816 if (ref->cache) 817 #ifdef __linux__ 818 kmem_cache_free(global.slab_cache, ref->cache); 819 #else 820 pool_put(&global.slab_cache, ref->cache); 821 #endif 822 } 823 824 static inline bool is_idle_barrier(struct active_node *node, u64 idx) 825 { 826 return node->timeline == idx && !i915_active_fence_isset(&node->base); 827 } 828 829 static struct active_node *reuse_idle_barrier(struct i915_active *ref, u64 idx) 830 { 831 struct rb_node *prev, *p; 832 833 if (RB_EMPTY_ROOT(&ref->tree)) 834 return NULL; 835 836 GEM_BUG_ON(i915_active_is_idle(ref)); 837 838 /* 839 * Try to reuse any existing barrier nodes already allocated for this 840 * i915_active, due to overlapping active phases there is likely a 841 * node kept alive (as we reuse before parking). We prefer to reuse 842 * completely idle barriers (less hassle in manipulating the llists), 843 * but otherwise any will do. 844 */ 845 if (ref->cache && is_idle_barrier(ref->cache, idx)) { 846 p = &ref->cache->node; 847 goto match; 848 } 849 850 prev = NULL; 851 p = ref->tree.rb_node; 852 while (p) { 853 struct active_node *node = 854 rb_entry(p, struct active_node, node); 855 856 if (is_idle_barrier(node, idx)) 857 goto match; 858 859 prev = p; 860 if (node->timeline < idx) 861 p = READ_ONCE(p->rb_right); 862 else 863 p = READ_ONCE(p->rb_left); 864 } 865 866 /* 867 * No quick match, but we did find the leftmost rb_node for the 868 * kernel_context. Walk the rb_tree in-order to see if there were 869 * any idle-barriers on this timeline that we missed, or just use 870 * the first pending barrier. 871 */ 872 for (p = prev; p; p = rb_next(p)) { 873 struct active_node *node = 874 rb_entry(p, struct active_node, node); 875 struct intel_engine_cs *engine; 876 877 if (node->timeline > idx) 878 break; 879 880 if (node->timeline < idx) 881 continue; 882 883 if (is_idle_barrier(node, idx)) 884 goto match; 885 886 /* 887 * The list of pending barriers is protected by the 888 * kernel_context timeline, which notably we do not hold 889 * here. i915_request_add_active_barriers() may consume 890 * the barrier before we claim it, so we have to check 891 * for success. 892 */ 893 engine = __barrier_to_engine(node); 894 smp_rmb(); /* serialise with add_active_barriers */ 895 if (is_barrier(&node->base) && 896 ____active_del_barrier(ref, node, engine)) 897 goto match; 898 } 899 900 return NULL; 901 902 match: 903 spin_lock_irq(&ref->tree_lock); 904 rb_erase(p, &ref->tree); /* Hide from waits and sibling allocations */ 905 if (p == &ref->cache->node) 906 WRITE_ONCE(ref->cache, NULL); 907 spin_unlock_irq(&ref->tree_lock); 908 909 return rb_entry(p, struct active_node, node); 910 } 911 912 int i915_active_acquire_preallocate_barrier(struct i915_active *ref, 913 struct intel_engine_cs *engine) 914 { 915 intel_engine_mask_t tmp, mask = engine->mask; 916 struct llist_node *first = NULL, *last = NULL; 917 struct intel_gt *gt = engine->gt; 918 919 GEM_BUG_ON(i915_active_is_idle(ref)); 920 921 /* Wait until the previous preallocation is completed */ 922 while (!llist_empty(&ref->preallocated_barriers)) 923 cond_resched(); 924 925 /* 926 * Preallocate a node for each physical engine supporting the target 927 * engine (remember virtual engines have more than one sibling). 928 * We can then use the preallocated nodes in 929 * i915_active_acquire_barrier() 930 */ 931 GEM_BUG_ON(!mask); 932 for_each_engine_masked(engine, gt, mask, tmp) { 933 u64 idx = engine->kernel_context->timeline->fence_context; 934 struct llist_node *prev = first; 935 struct active_node *node; 936 937 rcu_read_lock(); 938 node = reuse_idle_barrier(ref, idx); 939 rcu_read_unlock(); 940 if (!node) { 941 #ifdef __linux__ 942 node = kmem_cache_alloc(global.slab_cache, GFP_KERNEL); 943 #else 944 node = pool_get(&global.slab_cache, PR_WAITOK); 945 #endif 946 if (!node) 947 goto unwind; 948 949 RCU_INIT_POINTER(node->base.fence, NULL); 950 node->base.cb.func = node_retire; 951 node->timeline = idx; 952 node->ref = ref; 953 } 954 955 if (!i915_active_fence_isset(&node->base)) { 956 /* 957 * Mark this as being *our* unconnected proto-node. 958 * 959 * Since this node is not in any list, and we have 960 * decoupled it from the rbtree, we can reuse the 961 * request to indicate this is an idle-barrier node 962 * and then we can use the rb_node and list pointers 963 * for our tracking of the pending barrier. 964 */ 965 RCU_INIT_POINTER(node->base.fence, ERR_PTR(-EAGAIN)); 966 node->base.cb.node.prev = (void *)engine; 967 __i915_active_acquire(ref); 968 } 969 GEM_BUG_ON(rcu_access_pointer(node->base.fence) != ERR_PTR(-EAGAIN)); 970 971 GEM_BUG_ON(barrier_to_engine(node) != engine); 972 first = barrier_to_ll(node); 973 first->next = prev; 974 if (!last) 975 last = first; 976 intel_engine_pm_get(engine); 977 } 978 979 GEM_BUG_ON(!llist_empty(&ref->preallocated_barriers)); 980 llist_add_batch(first, last, &ref->preallocated_barriers); 981 982 return 0; 983 984 unwind: 985 while (first) { 986 struct active_node *node = barrier_from_ll(first); 987 988 first = first->next; 989 990 atomic_dec(&ref->count); 991 intel_engine_pm_put(barrier_to_engine(node)); 992 993 #ifdef __linux__ 994 kmem_cache_free(global.slab_cache, node); 995 #else 996 pool_put(&global.slab_cache, node); 997 #endif 998 } 999 return -ENOMEM; 1000 } 1001 1002 void i915_active_acquire_barrier(struct i915_active *ref) 1003 { 1004 struct llist_node *pos, *next; 1005 unsigned long flags; 1006 1007 GEM_BUG_ON(i915_active_is_idle(ref)); 1008 1009 /* 1010 * Transfer the list of preallocated barriers into the 1011 * i915_active rbtree, but only as proto-nodes. They will be 1012 * populated by i915_request_add_active_barriers() to point to the 1013 * request that will eventually release them. 1014 */ 1015 llist_for_each_safe(pos, next, take_preallocated_barriers(ref)) { 1016 struct active_node *node = barrier_from_ll(pos); 1017 struct intel_engine_cs *engine = barrier_to_engine(node); 1018 struct rb_node **p, *parent; 1019 1020 spin_lock_irqsave_nested(&ref->tree_lock, flags, 1021 SINGLE_DEPTH_NESTING); 1022 parent = NULL; 1023 p = &ref->tree.rb_node; 1024 while (*p) { 1025 struct active_node *it; 1026 1027 parent = *p; 1028 1029 it = rb_entry(parent, struct active_node, node); 1030 if (it->timeline < node->timeline) 1031 p = &parent->rb_right; 1032 else 1033 p = &parent->rb_left; 1034 } 1035 rb_link_node(&node->node, parent, p); 1036 rb_insert_color(&node->node, &ref->tree); 1037 spin_unlock_irqrestore(&ref->tree_lock, flags); 1038 1039 GEM_BUG_ON(!intel_engine_pm_is_awake(engine)); 1040 llist_add(barrier_to_ll(node), &engine->barrier_tasks); 1041 intel_engine_pm_put_delay(engine, 1); 1042 } 1043 } 1044 1045 static struct dma_fence **ll_to_fence_slot(struct llist_node *node) 1046 { 1047 return __active_fence_slot(&barrier_from_ll(node)->base); 1048 } 1049 1050 void i915_request_add_active_barriers(struct i915_request *rq) 1051 { 1052 struct intel_engine_cs *engine = rq->engine; 1053 struct llist_node *node, *next; 1054 unsigned long flags; 1055 1056 GEM_BUG_ON(!intel_context_is_barrier(rq->context)); 1057 GEM_BUG_ON(intel_engine_is_virtual(engine)); 1058 GEM_BUG_ON(i915_request_timeline(rq) != engine->kernel_context->timeline); 1059 1060 node = llist_del_all(&engine->barrier_tasks); 1061 if (!node) 1062 return; 1063 /* 1064 * Attach the list of proto-fences to the in-flight request such 1065 * that the parent i915_active will be released when this request 1066 * is retired. 1067 */ 1068 spin_lock_irqsave(&rq->lock, flags); 1069 llist_for_each_safe(node, next, node) { 1070 /* serialise with reuse_idle_barrier */ 1071 smp_store_mb(*ll_to_fence_slot(node), &rq->fence); 1072 list_add_tail((struct list_head *)node, &rq->fence.cb_list); 1073 } 1074 spin_unlock_irqrestore(&rq->lock, flags); 1075 } 1076 1077 /* 1078 * __i915_active_fence_set: Update the last active fence along its timeline 1079 * @active: the active tracker 1080 * @fence: the new fence (under construction) 1081 * 1082 * Records the new @fence as the last active fence along its timeline in 1083 * this active tracker, moving the tracking callbacks from the previous 1084 * fence onto this one. Returns the previous fence (if not already completed), 1085 * which the caller must ensure is executed before the new fence. To ensure 1086 * that the order of fences within the timeline of the i915_active_fence is 1087 * understood, it should be locked by the caller. 1088 */ 1089 struct dma_fence * 1090 __i915_active_fence_set(struct i915_active_fence *active, 1091 struct dma_fence *fence) 1092 { 1093 struct dma_fence *prev; 1094 unsigned long flags; 1095 1096 if (fence == rcu_access_pointer(active->fence)) 1097 return fence; 1098 1099 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)); 1100 1101 /* 1102 * Consider that we have two threads arriving (A and B), with 1103 * C already resident as the active->fence. 1104 * 1105 * A does the xchg first, and so it sees C or NULL depending 1106 * on the timing of the interrupt handler. If it is NULL, the 1107 * previous fence must have been signaled and we know that 1108 * we are first on the timeline. If it is still present, 1109 * we acquire the lock on that fence and serialise with the interrupt 1110 * handler, in the process removing it from any future interrupt 1111 * callback. A will then wait on C before executing (if present). 1112 * 1113 * As B is second, it sees A as the previous fence and so waits for 1114 * it to complete its transition and takes over the occupancy for 1115 * itself -- remembering that it needs to wait on A before executing. 1116 * 1117 * Note the strong ordering of the timeline also provides consistent 1118 * nesting rules for the fence->lock; the inner lock is always the 1119 * older lock. 1120 */ 1121 spin_lock_irqsave(fence->lock, flags); 1122 prev = xchg(__active_fence_slot(active), fence); 1123 if (prev) { 1124 GEM_BUG_ON(prev == fence); 1125 spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING); 1126 __list_del_entry(&active->cb.node); 1127 spin_unlock(prev->lock); /* serialise with prev->cb_list */ 1128 } 1129 list_add_tail(&active->cb.node, &fence->cb_list); 1130 spin_unlock_irqrestore(fence->lock, flags); 1131 1132 return prev; 1133 } 1134 1135 int i915_active_fence_set(struct i915_active_fence *active, 1136 struct i915_request *rq) 1137 { 1138 struct dma_fence *fence; 1139 int err = 0; 1140 1141 /* Must maintain timeline ordering wrt previous active requests */ 1142 rcu_read_lock(); 1143 fence = __i915_active_fence_set(active, &rq->fence); 1144 if (fence) /* but the previous fence may not belong to that timeline! */ 1145 fence = dma_fence_get_rcu(fence); 1146 rcu_read_unlock(); 1147 if (fence) { 1148 err = i915_request_await_dma_fence(rq, fence); 1149 dma_fence_put(fence); 1150 } 1151 1152 return err; 1153 } 1154 1155 void i915_active_noop(struct dma_fence *fence, struct dma_fence_cb *cb) 1156 { 1157 active_fence_cb(fence, cb); 1158 } 1159 1160 struct auto_active { 1161 struct i915_active base; 1162 struct kref ref; 1163 }; 1164 1165 struct i915_active *i915_active_get(struct i915_active *ref) 1166 { 1167 struct auto_active *aa = container_of(ref, typeof(*aa), base); 1168 1169 kref_get(&aa->ref); 1170 return &aa->base; 1171 } 1172 1173 static void auto_release(struct kref *ref) 1174 { 1175 struct auto_active *aa = container_of(ref, typeof(*aa), ref); 1176 1177 i915_active_fini(&aa->base); 1178 kfree(aa); 1179 } 1180 1181 void i915_active_put(struct i915_active *ref) 1182 { 1183 struct auto_active *aa = container_of(ref, typeof(*aa), base); 1184 1185 kref_put(&aa->ref, auto_release); 1186 } 1187 1188 static int auto_active(struct i915_active *ref) 1189 { 1190 i915_active_get(ref); 1191 return 0; 1192 } 1193 1194 __i915_active_call static void 1195 auto_retire(struct i915_active *ref) 1196 { 1197 i915_active_put(ref); 1198 } 1199 1200 struct i915_active *i915_active_create(void) 1201 { 1202 struct auto_active *aa; 1203 1204 aa = kmalloc(sizeof(*aa), GFP_KERNEL); 1205 if (!aa) 1206 return NULL; 1207 1208 kref_init(&aa->ref); 1209 i915_active_init(&aa->base, auto_active, auto_retire); 1210 1211 return &aa->base; 1212 } 1213 1214 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1215 #include "selftests/i915_active.c" 1216 #endif 1217 1218 static void i915_global_active_shrink(void) 1219 { 1220 #ifdef notyet 1221 kmem_cache_shrink(global.slab_cache); 1222 #endif 1223 } 1224 1225 static void i915_global_active_exit(void) 1226 { 1227 #ifdef __linux__ 1228 kmem_cache_destroy(global.slab_cache); 1229 #else 1230 pool_destroy(&global.slab_cache); 1231 #endif 1232 } 1233 1234 static struct i915_global_active global = { { 1235 .shrink = i915_global_active_shrink, 1236 .exit = i915_global_active_exit, 1237 } }; 1238 1239 int __init i915_global_active_init(void) 1240 { 1241 #ifdef __linux__ 1242 global.slab_cache = KMEM_CACHE(active_node, SLAB_HWCACHE_ALIGN); 1243 if (!global.slab_cache) 1244 return -ENOMEM; 1245 #else 1246 pool_init(&global.slab_cache, sizeof(struct active_node), 1247 CACHELINESIZE, IPL_TTY, 0, "drmsc", NULL); 1248 #endif 1249 1250 i915_global_register(&global.base); 1251 return 0; 1252 } 1253