xref: /openbsd/sys/dev/pci/drm/i915/i915_gem.c (revision 91f110e0)
1 /*	$OpenBSD: i915_gem.c,v 1.70 2014/02/13 23:11:05 kettenis Exp $	*/
2 /*
3  * Copyright (c) 2008-2009 Owain G. Ainsworth <oga@openbsd.org>
4  *
5  * Permission to use, copy, modify, and distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 /*
18  * Copyright © 2008 Intel Corporation
19  *
20  * Permission is hereby granted, free of charge, to any person obtaining a
21  * copy of this software and associated documentation files (the "Software"),
22  * to deal in the Software without restriction, including without limitation
23  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
24  * and/or sell copies of the Software, and to permit persons to whom the
25  * Software is furnished to do so, subject to the following conditions:
26  *
27  * The above copyright notice and this permission notice (including the next
28  * paragraph) shall be included in all copies or substantial portions of the
29  * Software.
30  *
31  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
32  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
33  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
34  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
35  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
36  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
37  * IN THE SOFTWARE.
38  *
39  * Authors:
40  *    Eric Anholt <eric@anholt.net>
41  *
42  */
43 
44 #include <dev/pci/drm/drmP.h>
45 #include <dev/pci/drm/drm.h>
46 #include <dev/pci/drm/i915_drm.h>
47 #include "i915_drv.h"
48 #include "i915_trace.h"
49 #include "intel_drv.h"
50 
51 #include <machine/pmap.h>
52 
53 #include <sys/queue.h>
54 #include <sys/task.h>
55 #include <sys/time.h>
56 
57 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
58 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
59 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
60 						    unsigned alignment,
61 						    bool map_and_fenceable,
62 						    bool nonblocking);
63 static int i915_gem_phys_pwrite(struct drm_device *dev,
64 				struct drm_i915_gem_object *obj,
65 				struct drm_i915_gem_pwrite *args,
66 				struct drm_file *file);
67 
68 static void i915_gem_write_fence(struct drm_device *dev, int reg,
69 				 struct drm_i915_gem_object *obj);
70 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
71 					 struct drm_i915_fence_reg *fence,
72 					 bool enable);
73 
74 #ifdef notyet
75 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
76 				    struct shrink_control *sc);
77 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
78 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
79 #endif
80 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
81 
82 static inline int timespec_to_jiffies(const struct timespec *);
83 static inline int timespec_valid(const struct timespec *);
84 static struct timespec ns_to_timespec(const int64_t);
85 static inline int64_t timespec_to_ns(const struct timespec *);
86 
87 extern int ticks;
88 
89 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
90 {
91 	if (obj->tiling_mode)
92 		i915_gem_release_mmap(obj);
93 
94 	/* As we do not have an associated fence register, we will force
95 	 * a tiling change if we ever need to acquire one.
96 	 */
97 	obj->fence_dirty = false;
98 	obj->fence_reg = I915_FENCE_REG_NONE;
99 }
100 
101 /* some bookkeeping */
102 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
103 				  size_t size)
104 {
105 	dev_priv->mm.object_count++;
106 	dev_priv->mm.object_memory += size;
107 }
108 
109 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
110 				     size_t size)
111 {
112 	dev_priv->mm.object_count--;
113 	dev_priv->mm.object_memory -= size;
114 }
115 
116 static int
117 i915_gem_wait_for_error(struct drm_device *dev)
118 {
119 	struct drm_i915_private *dev_priv = dev->dev_private;
120 	int ret;
121 
122 	if (!atomic_read(&dev_priv->mm.wedged))
123 		return 0;
124 
125 	/*
126 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
127 	 * userspace. If it takes that long something really bad is going on and
128 	 * we should simply try to bail out and fail as gracefully as possible.
129 	 */
130 	mtx_enter(&dev_priv->error_completion_lock);
131 	while (dev_priv->error_completion == 0) {
132 		ret = -msleep(&dev_priv->error_completion,
133 		    &dev_priv->error_completion_lock, PCATCH, "915wco", 10*hz);
134 		if (ret) {
135 			mtx_leave(&dev_priv->error_completion_lock);
136 			return ret;
137 		}
138 	}
139 	mtx_leave(&dev_priv->error_completion_lock);
140 
141 	if (atomic_read(&dev_priv->mm.wedged)) {
142 		/* GPU is hung, bump the completion count to account for
143 		 * the token we just consumed so that we never hit zero and
144 		 * end up waiting upon a subsequent completion event that
145 		 * will never happen.
146 		 */
147 		mtx_enter(&dev_priv->error_completion_lock);
148 		dev_priv->error_completion++;
149 		mtx_leave(&dev_priv->error_completion_lock);
150 	}
151 	return 0;
152 }
153 
154 int i915_mutex_lock_interruptible(struct drm_device *dev)
155 {
156 	int ret;
157 
158 	ret = i915_gem_wait_for_error(dev);
159 	if (ret)
160 		return ret;
161 
162 	ret = -rw_enter(&dev->dev_lock, RW_WRITE | RW_INTR);
163 	if (ret)
164 		return ret;
165 
166 	WARN_ON(i915_verify_lists(dev));
167 	return 0;
168 }
169 
170 static inline bool
171 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
172 {
173 	return obj->gtt_space && !obj->active;
174 }
175 
176 int
177 i915_gem_init_ioctl(struct drm_device *dev, void *data,
178 		    struct drm_file *file)
179 {
180 	struct drm_i915_gem_init *args = data;
181 
182 	if (drm_core_check_feature(dev, DRIVER_MODESET))
183 		return -ENODEV;
184 
185 	if (args->gtt_start >= args->gtt_end ||
186 	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
187 		return -EINVAL;
188 
189 	/* GEM with user mode setting was never supported on ilk and later. */
190 	if (INTEL_INFO(dev)->gen >= 5)
191 		return -ENODEV;
192 
193 	DRM_LOCK();
194 	i915_gem_init_global_gtt(dev, args->gtt_start,
195 				 args->gtt_end, args->gtt_end);
196 	DRM_UNLOCK();
197 
198 	return 0;
199 }
200 
201 int
202 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
203 			    struct drm_file *file)
204 {
205 	struct drm_i915_private *dev_priv = dev->dev_private;
206 	struct drm_i915_gem_get_aperture *args = data;
207 	struct drm_i915_gem_object *obj;
208 	size_t pinned;
209 
210 	pinned = 0;
211 	DRM_LOCK();
212 	list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
213 		if (obj->pin_count)
214 			pinned += obj->gtt_space->size;
215 	DRM_UNLOCK();
216 
217 	args->aper_size = dev_priv->mm.gtt_total;
218 	args->aper_available_size = args->aper_size - pinned;
219 
220 	return 0;
221 }
222 
223 static int
224 i915_gem_create(struct drm_file *file,
225 		struct drm_device *dev,
226 		uint64_t size,
227 		uint32_t *handle_p)
228 {
229 	struct drm_i915_gem_object *obj;
230 	int ret;
231 	u32 handle;
232 
233 	size = round_page(size);
234 	if (size == 0)
235 		return -EINVAL;
236 
237 	/* Allocate the new object */
238 	obj = i915_gem_alloc_object(dev, size);
239 	if (obj == NULL)
240 		return -ENOMEM;
241 
242 	ret = drm_gem_handle_create(file, &obj->base, &handle);
243 	if (ret) {
244 		drm_gem_object_release(&obj->base);
245 		i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
246 		pool_put(&dev->objpl, obj);
247 		return ret;
248 	}
249 
250 	/* drop reference from allocate - handle holds it now */
251 	drm_gem_object_unreference(&obj->base);
252 	trace_i915_gem_object_create(obj);
253 
254 	*handle_p = handle;
255 	return 0;
256 }
257 
258 int
259 i915_gem_dumb_create(struct drm_file *file,
260 		     struct drm_device *dev,
261 		     struct drm_mode_create_dumb *args)
262 {
263 	/* have to work out size/pitch and return them */
264 	args->pitch = roundup2(args->width * ((args->bpp + 7) / 8), 64);
265 	args->size = args->pitch * args->height;
266 	return i915_gem_create(file, dev,
267 			       args->size, &args->handle);
268 }
269 
270 int i915_gem_dumb_destroy(struct drm_file *file,
271 			  struct drm_device *dev,
272 			  uint32_t handle)
273 {
274 	return drm_gem_handle_delete(file, handle);
275 }
276 
277 /**
278  * Creates a new mm object and returns a handle to it.
279  */
280 int
281 i915_gem_create_ioctl(struct drm_device *dev, void *data,
282 		      struct drm_file *file)
283 {
284 	struct drm_i915_gem_create *args = data;
285 
286 	return i915_gem_create(file, dev,
287 			       args->size, &args->handle);
288 }
289 
290 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
291 {
292 	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
293 
294 	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
295 		obj->tiling_mode != I915_TILING_NONE;
296 }
297 
298 #define offset_in_page(off) ((off) & PAGE_MASK)
299 
300 static void *
301 kmap(struct vm_page *pg)
302 {
303 	vaddr_t va;
304 
305 #if defined (__HAVE_PMAP_DIRECT)
306 	va = pmap_map_direct(pg);
307 #else
308 	va = uvm_km_valloc_wait(phys_map, PAGE_SIZE);
309 	pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pg), VM_PROT_READ|VM_PROT_WRITE);
310 	pmap_update(pmap_kernel());
311 #endif
312 	return (void *)va;
313 }
314 
315 static void
316 kunmap(void *addr)
317 {
318 	vaddr_t va = (vaddr_t)addr;
319 
320 #if defined (__HAVE_PMAP_DIRECT)
321 	pmap_unmap_direct(va);
322 #else
323 	pmap_kremove(va, PAGE_SIZE);
324 	pmap_update(pmap_kernel());
325 	uvm_km_free_wakeup(phys_map, va, PAGE_SIZE);
326 #endif
327 }
328 
329 static inline void *
330 kmap_atomic(struct vm_page *pg)
331 {
332 	vaddr_t va;
333 
334 #if defined (__HAVE_PMAP_DIRECT)
335 	va = pmap_map_direct(pg);
336 #else
337 	extern vaddr_t pmap_tmpmap_pa(paddr_t);
338 	va = pmap_tmpmap_pa(VM_PAGE_TO_PHYS(pg));
339 #endif
340 	return (void *)va;
341 }
342 
343 static inline void
344 kunmap_atomic(void *addr)
345 {
346 #if defined (__HAVE_PMAP_DIRECT)
347 	pmap_unmap_direct((vaddr_t)addr);
348 #else
349 	extern void pmap_tmpunmap_pa(void);
350 	pmap_tmpunmap_pa();
351 #endif
352 }
353 
354 static inline void
355 drm_clflush_virt_range(void *addr, size_t len)
356 {
357 	pmap_flush_cache((vaddr_t)addr, len);
358 }
359 
360 static inline unsigned long
361 __copy_to_user(void *to, const void *from, unsigned len)
362 {
363 	if (copyout(from, to, len))
364 		return len;
365 	return 0;
366 }
367 
368 static inline unsigned long
369 __copy_to_user_inatomic(void *to, const void *from, unsigned len)
370 {
371 	struct cpu_info *ci = curcpu();
372 	int error;
373 
374 	ci->ci_inatomic = 1;
375 	error = copyout(from, to, len);
376 	ci->ci_inatomic = 0;
377 
378 	return (error ? len : 0);
379 }
380 
381 static inline int
382 __copy_to_user_swizzled(char __user *cpu_vaddr,
383 			const char *gpu_vaddr, int gpu_offset,
384 			int length)
385 {
386 	int ret, cpu_offset = 0;
387 
388 	while (length > 0) {
389 		int cacheline_end = roundup2(gpu_offset + 1, 64);
390 		int this_length = min(cacheline_end - gpu_offset, length);
391 		int swizzled_gpu_offset = gpu_offset ^ 64;
392 
393 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
394 				     gpu_vaddr + swizzled_gpu_offset,
395 				     this_length);
396 		if (ret)
397 			return ret + length;
398 
399 		cpu_offset += this_length;
400 		gpu_offset += this_length;
401 		length -= this_length;
402 	}
403 
404 	return 0;
405 }
406 
407 static inline unsigned long
408 __copy_from_user(void *to, const void *from, unsigned len)
409 {
410 	if (copyin(from, to, len))
411 		return len;
412 	return 0;
413 }
414 
415 static inline unsigned long
416 __copy_from_user_inatomic_nocache(void *to, const void *from, unsigned len)
417 {
418 	struct cpu_info *ci = curcpu();
419 	int error;
420 
421 	ci->ci_inatomic = 1;
422 	error = copyin(from, to, len);
423 	ci->ci_inatomic = 0;
424 
425 	return (error ? len : 0);
426 }
427 
428 static inline int
429 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
430 			  const char __user *cpu_vaddr,
431 			  int length)
432 {
433 	int ret, cpu_offset = 0;
434 
435 	while (length > 0) {
436 		int cacheline_end = roundup2(gpu_offset + 1, 64);
437 		int this_length = min(cacheline_end - gpu_offset, length);
438 		int swizzled_gpu_offset = gpu_offset ^ 64;
439 
440 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
441 				       cpu_vaddr + cpu_offset,
442 				       this_length);
443 		if (ret)
444 			return ret + length;
445 
446 		cpu_offset += this_length;
447 		gpu_offset += this_length;
448 		length -= this_length;
449 	}
450 
451 	return 0;
452 }
453 
454 /* Per-page copy function for the shmem pread fastpath.
455  * Flushes invalid cachelines before reading the target if
456  * needs_clflush is set. */
457 static int
458 shmem_pread_fast(struct vm_page *page, int shmem_page_offset, int page_length,
459 		 char __user *user_data,
460 		 bool page_do_bit17_swizzling, bool needs_clflush)
461 {
462 	char *vaddr;
463 	int ret;
464 
465 	if (unlikely(page_do_bit17_swizzling))
466 		return -EINVAL;
467 
468 	vaddr = kmap_atomic(page);
469 	if (needs_clflush)
470 		drm_clflush_virt_range(vaddr + shmem_page_offset,
471 				       page_length);
472 	ret = __copy_to_user_inatomic(user_data,
473 				      vaddr + shmem_page_offset,
474 				      page_length);
475 	kunmap_atomic(vaddr);
476 
477 	return ret ? -EFAULT : 0;
478 }
479 
480 #define round_up(x, y) ((((x) + ((y) - 1)) / (y)) * (y))
481 #define round_down(x, y) (((x) / (y)) * (y))
482 
483 static void
484 shmem_clflush_swizzled_range(char *addr, unsigned long length,
485 			     bool swizzled)
486 {
487 	if (unlikely(swizzled)) {
488 		unsigned long start = (unsigned long) addr;
489 		unsigned long end = (unsigned long) addr + length;
490 
491 		/* For swizzling simply ensure that we always flush both
492 		 * channels. Lame, but simple and it works. Swizzled
493 		 * pwrite/pread is far from a hotpath - current userspace
494 		 * doesn't use it at all. */
495 		start = round_down(start, 128);
496 		end = round_up(end, 128);
497 
498 		drm_clflush_virt_range((void *)start, end - start);
499 	} else {
500 		drm_clflush_virt_range(addr, length);
501 	}
502 
503 }
504 
505 /* Only difference to the fast-path function is that this can handle bit17
506  * and uses non-atomic copy and kmap functions. */
507 static int
508 shmem_pread_slow(struct vm_page *page, int shmem_page_offset, int page_length,
509 		 char __user *user_data,
510 		 bool page_do_bit17_swizzling, bool needs_clflush)
511 {
512 	char *vaddr;
513 	int ret;
514 
515 	vaddr = kmap(page);
516 	if (needs_clflush)
517 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
518 					     page_length,
519 					     page_do_bit17_swizzling);
520 
521 	if (page_do_bit17_swizzling)
522 		ret = __copy_to_user_swizzled(user_data,
523 					      vaddr, shmem_page_offset,
524 					      page_length);
525 	else
526 		ret = __copy_to_user(user_data,
527 				     vaddr + shmem_page_offset,
528 				     page_length);
529 	kunmap(vaddr);
530 
531 	return ret ? - EFAULT : 0;
532 }
533 
534 static int
535 i915_gem_shmem_pread(struct drm_device *dev,
536 		     struct drm_i915_gem_object *obj,
537 		     struct drm_i915_gem_pread *args,
538 		     struct drm_file *file)
539 {
540 	char __user *user_data;
541 	ssize_t remain;
542 	off_t offset;
543 	int shmem_page_offset, page_length, ret = 0;
544 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
545 	int hit_slowpath = 0;
546 	int needs_clflush = 0;
547 	int i;
548 
549 	user_data = (char __user *) (uintptr_t) args->data_ptr;
550 	remain = args->size;
551 
552 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
553 
554 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
555 		/* If we're not in the cpu read domain, set ourself into the gtt
556 		 * read domain and manually flush cachelines (if required). This
557 		 * optimizes for the case when the gpu will dirty the data
558 		 * anyway again before the next pread happens. */
559 		if (obj->cache_level == I915_CACHE_NONE)
560 			needs_clflush = 1;
561 		if (obj->gtt_space) {
562 			ret = i915_gem_object_set_to_gtt_domain(obj, false);
563 			if (ret)
564 				return ret;
565 		}
566 	}
567 
568 	ret = i915_gem_object_get_pages(obj);
569 	if (ret)
570 		return ret;
571 
572 	i915_gem_object_pin_pages(obj);
573 
574 	offset = args->offset;
575 
576 	for (i = 0; i < (obj->base.size >> PAGE_SHIFT); i++) {
577 		struct vm_page *page;
578 
579 		if (i < offset >> PAGE_SHIFT)
580 			continue;
581 
582 		if (remain <= 0)
583 			break;
584 
585 		/* Operation in this page
586 		 *
587 		 * shmem_page_offset = offset within page in shmem file
588 		 * page_length = bytes to copy for this page
589 		 */
590 		shmem_page_offset = offset_in_page(offset);
591 		page_length = remain;
592 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
593 			page_length = PAGE_SIZE - shmem_page_offset;
594 
595 #ifdef __linux__
596 		page = sg_page(sg);
597 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
598 			(page_to_phys(page) & (1 << 17)) != 0;
599 #else
600 		page = obj->pages[i];
601 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
602 			(VM_PAGE_TO_PHYS(page) & (1 << 17)) != 0;
603 #endif
604 
605 		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
606 				       user_data, page_do_bit17_swizzling,
607 				       needs_clflush);
608 		if (ret == 0)
609 			goto next_page;
610 
611 		hit_slowpath = 1;
612 		DRM_UNLOCK();
613 
614 #ifdef __linux__
615 		if (!prefaulted) {
616 			ret = fault_in_multipages_writeable(user_data, remain);
617 			/* Userspace is tricking us, but we've already clobbered
618 			 * its pages with the prefault and promised to write the
619 			 * data up to the first fault. Hence ignore any errors
620 			 * and just continue. */
621 			(void)ret;
622 			prefaulted = 1;
623 		}
624 #endif
625 
626 		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
627 				       user_data, page_do_bit17_swizzling,
628 				       needs_clflush);
629 
630 		DRM_LOCK();
631 
632 next_page:
633 #ifdef __linux__
634 		mark_page_accessed(page);
635 #endif
636 
637 		if (ret)
638 			goto out;
639 
640 		remain -= page_length;
641 		user_data += page_length;
642 		offset += page_length;
643 	}
644 
645 out:
646 	i915_gem_object_unpin_pages(obj);
647 
648 	if (hit_slowpath) {
649 		/* Fixup: Kill any reinstated backing storage pages */
650 		if (obj->madv == __I915_MADV_PURGED)
651 			i915_gem_object_truncate(obj);
652 	}
653 
654 	return ret;
655 }
656 
657 /**
658  * Reads data from the object referenced by handle.
659  *
660  * On error, the contents of *data are undefined.
661  */
662 int
663 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
664 		     struct drm_file *file)
665 {
666 	struct drm_i915_gem_pread *args = data;
667 	struct drm_i915_gem_object *obj;
668 	int ret = 0;
669 
670 	if (args->size == 0)
671 		return 0;
672 
673 	ret = i915_mutex_lock_interruptible(dev);
674 	if (ret)
675 		return ret;
676 
677 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
678 	if (&obj->base == NULL) {
679 		ret = -ENOENT;
680 		goto unlock;
681 	}
682 
683 	/* Bounds check source.  */
684 	if (args->offset > obj->base.size ||
685 	    args->size > obj->base.size - args->offset) {
686 		ret = -EINVAL;
687 		goto out;
688 	}
689 
690 	trace_i915_gem_object_pread(obj, args->offset, args->size);
691 
692 	ret = i915_gem_shmem_pread(dev, obj, args, file);
693 
694 out:
695 	drm_gem_object_unreference(&obj->base);
696 unlock:
697 	DRM_UNLOCK();
698 	return ret;
699 }
700 
701 #ifdef __linux__
702 /* This is the fast write path which cannot handle
703  * page faults in the source data
704  */
705 
706 static inline int
707 fast_user_write(struct io_mapping *mapping,
708 		loff_t page_base, int page_offset,
709 		char __user *user_data,
710 		int length)
711 {
712 	void __iomem *vaddr_atomic;
713 	void *vaddr;
714 	unsigned long unwritten;
715 
716 	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
717 	/* We can use the cpu mem copy function because this is X86. */
718 	vaddr = (void __force*)vaddr_atomic + page_offset;
719 	unwritten = __copy_from_user_inatomic_nocache(vaddr,
720 						      user_data, length);
721 	io_mapping_unmap_atomic(vaddr_atomic);
722 	return unwritten;
723 }
724 #endif
725 
726 /**
727  * This is the fast pwrite path, where we copy the data directly from the
728  * user into the GTT, uncached.
729  */
730 static int
731 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
732 			 struct drm_i915_gem_object *obj,
733 			 struct drm_i915_gem_pwrite *args,
734 			 struct drm_file *file)
735 {
736 	drm_i915_private_t *dev_priv = dev->dev_private;
737 	bus_space_handle_t bsh;
738 	bus_addr_t offset;
739 	bus_size_t size;
740 	char *vaddr;
741 	int ret;
742 
743 	ret = i915_gem_object_pin(obj, 0, true, true);
744 	if (ret)
745 		goto out;
746 
747 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
748 	if (ret)
749 		goto out_unpin;
750 
751 	ret = i915_gem_object_put_fence(obj);
752 	if (ret)
753 		goto out_unpin;
754 
755 	offset = obj->gtt_offset + args->offset;
756 	size = round_page(offset + args->size) - trunc_page(offset);
757 
758 	if ((ret = agp_map_subregion(dev_priv->agph,
759 	    trunc_page(offset), size, &bsh)) != 0)
760 		goto out_unpin;
761 	vaddr = bus_space_vaddr(dev_priv->bst, bsh);
762 	if (vaddr == NULL) {
763 		ret = -EFAULT;
764 		goto out_unmap;
765 	}
766 
767 	ret = -copyin((char *)(uintptr_t)args->data_ptr,
768 	    vaddr + (offset & PAGE_MASK), args->size);
769 
770 out_unmap:
771 	agp_unmap_subregion(dev_priv->agph, bsh, size);
772 
773 out_unpin:
774 	i915_gem_object_unpin(obj);
775 out:
776 	return ret;
777 }
778 
779 /* Per-page copy function for the shmem pwrite fastpath.
780  * Flushes invalid cachelines before writing to the target if
781  * needs_clflush_before is set and flushes out any written cachelines after
782  * writing if needs_clflush is set. */
783 static int
784 shmem_pwrite_fast(struct vm_page *page, int shmem_page_offset, int page_length,
785 		  char __user *user_data,
786 		  bool page_do_bit17_swizzling,
787 		  bool needs_clflush_before,
788 		  bool needs_clflush_after)
789 {
790 	char *vaddr;
791 	int ret;
792 
793 	if (unlikely(page_do_bit17_swizzling))
794 		return -EINVAL;
795 
796 	vaddr = kmap_atomic(page);
797 	if (needs_clflush_before)
798 		drm_clflush_virt_range(vaddr + shmem_page_offset,
799 				       page_length);
800 	ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
801 						user_data,
802 						page_length);
803 	if (needs_clflush_after)
804 		drm_clflush_virt_range(vaddr + shmem_page_offset,
805 				       page_length);
806 	kunmap_atomic(vaddr);
807 
808 	return ret ? -EFAULT : 0;
809 }
810 
811 /* Only difference to the fast-path function is that this can handle bit17
812  * and uses non-atomic copy and kmap functions. */
813 static int
814 shmem_pwrite_slow(struct vm_page *page, int shmem_page_offset, int page_length,
815 		  char __user *user_data,
816 		  bool page_do_bit17_swizzling,
817 		  bool needs_clflush_before,
818 		  bool needs_clflush_after)
819 {
820 	char *vaddr;
821 	int ret;
822 
823 	vaddr = kmap(page);
824 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
825 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
826 					     page_length,
827 					     page_do_bit17_swizzling);
828 	if (page_do_bit17_swizzling)
829 		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
830 						user_data,
831 						page_length);
832 	else
833 		ret = __copy_from_user(vaddr + shmem_page_offset,
834 				       user_data,
835 				       page_length);
836 	if (needs_clflush_after)
837 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
838 					     page_length,
839 					     page_do_bit17_swizzling);
840 	kunmap(vaddr);
841 
842 	return ret ? -EFAULT : 0;
843 }
844 
845 static int
846 i915_gem_shmem_pwrite(struct drm_device *dev,
847 		      struct drm_i915_gem_object *obj,
848 		      struct drm_i915_gem_pwrite *args,
849 		      struct drm_file *file)
850 {
851 	ssize_t remain;
852 	off_t offset;
853 	char __user *user_data;
854 	int shmem_page_offset, page_length, ret = 0;
855 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
856 	int hit_slowpath = 0;
857 	int needs_clflush_after = 0;
858 	int needs_clflush_before = 0;
859 	int i;
860 
861 	user_data = (char __user *) (uintptr_t) args->data_ptr;
862 	remain = args->size;
863 
864 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
865 
866 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
867 		/* If we're not in the cpu write domain, set ourself into the gtt
868 		 * write domain and manually flush cachelines (if required). This
869 		 * optimizes for the case when the gpu will use the data
870 		 * right away and we therefore have to clflush anyway. */
871 		if (obj->cache_level == I915_CACHE_NONE)
872 			needs_clflush_after = 1;
873 		if (obj->gtt_space) {
874 			ret = i915_gem_object_set_to_gtt_domain(obj, true);
875 			if (ret)
876 				return ret;
877 		}
878 	}
879 	/* Same trick applies for invalidate partially written cachelines before
880 	 * writing.  */
881 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
882 	    && obj->cache_level == I915_CACHE_NONE)
883 		needs_clflush_before = 1;
884 
885 	ret = i915_gem_object_get_pages(obj);
886 	if (ret)
887 		return ret;
888 
889 	i915_gem_object_pin_pages(obj);
890 
891 	offset = args->offset;
892 	obj->dirty = 1;
893 
894 	for (i = 0; i < (obj->base.size >> PAGE_SHIFT); i++) {
895 		struct vm_page *page;
896 		int partial_cacheline_write;
897 
898 		if (i < offset >> PAGE_SHIFT)
899 			continue;
900 
901 		if (remain <= 0)
902 			break;
903 
904 		/* Operation in this page
905 		 *
906 		 * shmem_page_offset = offset within page in shmem file
907 		 * page_length = bytes to copy for this page
908 		 */
909 		shmem_page_offset = offset_in_page(offset);
910 
911 		page_length = remain;
912 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
913 			page_length = PAGE_SIZE - shmem_page_offset;
914 
915 		/* If we don't overwrite a cacheline completely we need to be
916 		 * careful to have up-to-date data by first clflushing. Don't
917 		 * overcomplicate things and flush the entire patch. */
918 		partial_cacheline_write = needs_clflush_before &&
919 			((shmem_page_offset | page_length)
920 				& (curcpu()->ci_cflushsz - 1));
921 
922 #ifdef __linux__
923 		page = sg_page(sg);
924 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
925 			(page_to_phys(page) & (1 << 17)) != 0;
926 #else
927 		page = obj->pages[i];
928 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
929 			(VM_PAGE_TO_PHYS(page) & (1 << 17)) != 0;
930 #endif
931 
932 		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
933 					user_data, page_do_bit17_swizzling,
934 					partial_cacheline_write,
935 					needs_clflush_after);
936 		if (ret == 0)
937 			goto next_page;
938 
939 		hit_slowpath = 1;
940 		DRM_UNLOCK();
941 		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
942 					user_data, page_do_bit17_swizzling,
943 					partial_cacheline_write,
944 					needs_clflush_after);
945 
946 		DRM_LOCK();
947 
948 next_page:
949 #ifdef __linux__
950 		set_page_dirty(page);
951 		mark_page_accessed(page);
952 #else
953 		atomic_clearbits_int(&page->pg_flags, PG_CLEAN);
954 #endif
955 
956 		if (ret)
957 			goto out;
958 
959 		remain -= page_length;
960 		user_data += page_length;
961 		offset += page_length;
962 	}
963 
964 out:
965 	i915_gem_object_unpin_pages(obj);
966 
967 	if (hit_slowpath) {
968 		/* Fixup: Kill any reinstated backing storage pages */
969 		if (obj->madv == __I915_MADV_PURGED)
970 			i915_gem_object_truncate(obj);
971 		/* and flush dirty cachelines in case the object isn't in the cpu write
972 		 * domain anymore. */
973 		if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
974 			i915_gem_clflush_object(obj);
975 			i915_gem_chipset_flush(dev);
976 		}
977 	}
978 
979 	if (needs_clflush_after)
980 		i915_gem_chipset_flush(dev);
981 
982 	return ret;
983 }
984 
985 /**
986  * Writes data to the object referenced by handle.
987  *
988  * On error, the contents of the buffer that were to be modified are undefined.
989  */
990 int
991 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
992 		      struct drm_file *file)
993 {
994 	struct drm_i915_gem_pwrite *args = data;
995 	struct drm_i915_gem_object *obj;
996 	int ret;
997 
998 	if (args->size == 0)
999 		return 0;
1000 
1001 	ret = i915_mutex_lock_interruptible(dev);
1002 	if (ret)
1003 		return ret;
1004 
1005 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1006 	if (&obj->base == NULL) {
1007 		ret = -ENOENT;
1008 		goto unlock;
1009 	}
1010 
1011 	/* Bounds check destination. */
1012 	if (args->offset > obj->base.size ||
1013 	    args->size > obj->base.size - args->offset) {
1014 		ret = -EINVAL;
1015 		goto out;
1016 	}
1017 
1018 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1019 
1020 	ret = -EFAULT;
1021 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1022 	 * it would end up going through the fenced access, and we'll get
1023 	 * different detiling behavior between reading and writing.
1024 	 * pread/pwrite currently are reading and writing from the CPU
1025 	 * perspective, requiring manual detiling by the client.
1026 	 */
1027 	if (obj->phys_obj) {
1028 		ret = i915_gem_phys_pwrite(dev, obj, args, file);
1029 		goto out;
1030 	}
1031 
1032 	if (obj->cache_level == I915_CACHE_NONE &&
1033 	    obj->tiling_mode == I915_TILING_NONE &&
1034 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1035 		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1036 		/* Note that the gtt paths might fail with non-page-backed user
1037 		 * pointers (e.g. gtt mappings when moving data between
1038 		 * textures). Fallback to the shmem path in that case. */
1039 	}
1040 
1041 	if (ret == -EFAULT || ret == -ENOSPC)
1042 		ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1043 
1044 out:
1045 	drm_gem_object_unreference(&obj->base);
1046 unlock:
1047 	DRM_UNLOCK();
1048 	return ret;
1049 }
1050 
1051 int
1052 i915_gem_check_wedge(struct drm_i915_private *dev_priv,
1053 		     bool interruptible)
1054 {
1055 	if (atomic_read(&dev_priv->mm.wedged)) {
1056 		bool recovery_complete;
1057 
1058 		/* Give the error handler a chance to run. */
1059 		mtx_enter(&dev_priv->error_completion_lock);
1060 		recovery_complete = dev_priv->error_completion > 0;
1061 		mtx_leave(&dev_priv->error_completion_lock);
1062 
1063 		/* Non-interruptible callers can't handle -EAGAIN, hence return
1064 		 * -EIO unconditionally for these. */
1065 		if (!interruptible)
1066 			return -EIO;
1067 
1068 		/* Recovery complete, but still wedged means reset failure. */
1069 		if (recovery_complete)
1070 			return -EIO;
1071 
1072 		return -EAGAIN;
1073 	}
1074 
1075 	return 0;
1076 }
1077 
1078 /*
1079  * Compare seqno against outstanding lazy request. Emit a request if they are
1080  * equal.
1081  */
1082 static int
1083 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
1084 {
1085 	int ret;
1086 
1087 //	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1088 
1089 	ret = 0;
1090 	if (seqno == ring->outstanding_lazy_request)
1091 		ret = i915_add_request(ring, NULL, NULL);
1092 
1093 	return ret;
1094 }
1095 
1096 /**
1097  * __wait_seqno - wait until execution of seqno has finished
1098  * @ring: the ring expected to report seqno
1099  * @seqno: duh!
1100  * @interruptible: do an interruptible wait (normally yes)
1101  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1102  *
1103  * Returns 0 if the seqno was found within the alloted time. Else returns the
1104  * errno with remaining time filled in timeout argument.
1105  */
1106 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1107 			bool interruptible, struct timespec *timeout)
1108 {
1109 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1110 	struct timespec before, now, wait_time={1,0};
1111 	struct timespec sleep_time;
1112 	unsigned long timeout_jiffies;
1113 	long end;
1114 	bool wait_forever = true;
1115 	int ret;
1116 
1117 	if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1118 		return 0;
1119 
1120 	trace_i915_gem_request_wait_begin(ring, seqno);
1121 
1122 	if (timeout != NULL) {
1123 		wait_time = *timeout;
1124 		wait_forever = false;
1125 	}
1126 
1127 	timeout_jiffies = timespec_to_jiffies(&wait_time);
1128 
1129 	if (WARN_ON(!ring->irq_get(ring)))
1130 		return -ENODEV;
1131 
1132 	/* Record current time in case interrupted by signal, or wedged * */
1133 	nanouptime(&before);
1134 
1135 #define EXIT_COND \
1136 	(i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1137 	atomic_read(&dev_priv->mm.wedged))
1138 	do {
1139 		end = timeout_jiffies;
1140 		mtx_enter(&dev_priv->irq_lock);
1141 		do {
1142 			if (EXIT_COND) {
1143 				ret = 0;
1144 				break;
1145 			}
1146 			ret = msleep(ring, &dev_priv->irq_lock,
1147 			    PZERO | (interruptible ? PCATCH : 0),
1148 			    "gemwt", end);
1149 			nanouptime(&now);
1150 			timespecsub(&now, &before, &sleep_time);
1151 			if (timespeccmp(&sleep_time, &wait_time, >=)) {
1152 				end = 0;
1153 				break;
1154 			}
1155 			end = timeout_jiffies -
1156 			    timespec_to_jiffies(&sleep_time);
1157 		} while (ret == 0);
1158 		mtx_leave(&dev_priv->irq_lock);
1159 		switch (ret) {
1160 		case 0:
1161 			break;
1162 		case ERESTART:
1163 			end = -ERESTARTSYS;
1164 			break;
1165 		case EWOULDBLOCK:
1166 			end = 0;
1167 			break;
1168 		default:
1169 			end = -ret;
1170 			break;
1171 		}
1172 
1173 		ret = i915_gem_check_wedge(dev_priv, interruptible);
1174 		if (ret)
1175 			end = ret;
1176 	} while (end == 0 && wait_forever);
1177 
1178 	nanouptime(&now);
1179 
1180 	ring->irq_put(ring);
1181 	trace_i915_gem_request_wait_end(ring, seqno);
1182 #undef EXIT_COND
1183 
1184 	if (timeout) {
1185 		timespecsub(&now, &before, &sleep_time);
1186 		timespecsub(timeout, &sleep_time, timeout);
1187 	}
1188 
1189 	switch (end) {
1190 	case -EIO:
1191 	case -EAGAIN: /* Wedged */
1192 	case -ERESTARTSYS: /* Signal */
1193 		return (int)end;
1194 	case 0: /* Timeout */
1195 		if (timeout)
1196 			timeout->tv_sec = timeout->tv_nsec = 0;
1197 		return -ETIMEDOUT;
1198 	default: /* Completed */
1199 		WARN_ON(end < 0); /* We're not aware of other errors */
1200 		return 0;
1201 	}
1202 }
1203 
1204 /**
1205  * Waits for a sequence number to be signaled, and cleans up the
1206  * request and object lists appropriately for that event.
1207  */
1208 int
1209 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1210 {
1211 	struct drm_device *dev = ring->dev;
1212 	struct drm_i915_private *dev_priv = dev->dev_private;
1213 	bool interruptible = dev_priv->mm.interruptible;
1214 	int ret;
1215 
1216 //	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1217 	BUG_ON(seqno == 0);
1218 
1219 	ret = i915_gem_check_wedge(dev_priv, interruptible);
1220 	if (ret)
1221 		return ret;
1222 
1223 	ret = i915_gem_check_olr(ring, seqno);
1224 	if (ret)
1225 		return ret;
1226 
1227 	return __wait_seqno(ring, seqno, interruptible, NULL);
1228 }
1229 
1230 /**
1231  * Ensures that all rendering to the object has completed and the object is
1232  * safe to unbind from the GTT or access from the CPU.
1233  */
1234 static __must_check int
1235 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1236 			       bool readonly)
1237 {
1238 	struct intel_ring_buffer *ring = obj->ring;
1239 	u32 seqno;
1240 	int ret;
1241 
1242 	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1243 	if (seqno == 0)
1244 		return 0;
1245 
1246 	ret = i915_wait_seqno(ring, seqno);
1247 	if (ret)
1248 		return ret;
1249 
1250 	i915_gem_retire_requests_ring(ring);
1251 
1252 	/* Manually manage the write flush as we may have not yet
1253 	 * retired the buffer.
1254 	 */
1255 	if (obj->last_write_seqno &&
1256 	    i915_seqno_passed(seqno, obj->last_write_seqno)) {
1257 		obj->last_write_seqno = 0;
1258 		obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1259 	}
1260 
1261 	return 0;
1262 }
1263 
1264 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1265  * as the object state may change during this call.
1266  */
1267 static __must_check int
1268 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1269 					    bool readonly)
1270 {
1271 	struct drm_device *dev = obj->base.dev;
1272 	struct drm_i915_private *dev_priv = dev->dev_private;
1273 	struct intel_ring_buffer *ring = obj->ring;
1274 	u32 seqno;
1275 	int ret;
1276 
1277 	rw_assert_wrlock(&dev->dev_lock);
1278 	BUG_ON(!dev_priv->mm.interruptible);
1279 
1280 	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1281 	if (seqno == 0)
1282 		return 0;
1283 
1284 	ret = i915_gem_check_wedge(dev_priv, true);
1285 	if (ret)
1286 		return ret;
1287 
1288 	ret = i915_gem_check_olr(ring, seqno);
1289 	if (ret)
1290 		return ret;
1291 
1292 	DRM_UNLOCK();
1293 	ret = __wait_seqno(ring, seqno, true, NULL);
1294 	DRM_LOCK();
1295 
1296 	i915_gem_retire_requests_ring(ring);
1297 
1298 	/* Manually manage the write flush as we may have not yet
1299 	 * retired the buffer.
1300 	 */
1301 	if (ret == 0 &&
1302 	    obj->last_write_seqno &&
1303 	    i915_seqno_passed(seqno, obj->last_write_seqno)) {
1304 		obj->last_write_seqno = 0;
1305 		obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1306 	}
1307 
1308 	return ret;
1309 }
1310 
1311 /**
1312  * Called when user space prepares to use an object with the CPU, either
1313  * through the mmap ioctl's mapping or a GTT mapping.
1314  */
1315 int
1316 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1317 			  struct drm_file *file)
1318 {
1319 	struct drm_i915_gem_set_domain *args = data;
1320 	struct drm_i915_gem_object *obj;
1321 	uint32_t read_domains = args->read_domains;
1322 	uint32_t write_domain = args->write_domain;
1323 	int ret;
1324 
1325 	/* Only handle setting domains to types used by the CPU. */
1326 	if (write_domain & I915_GEM_GPU_DOMAINS)
1327 		return -EINVAL;
1328 
1329 	if (read_domains & I915_GEM_GPU_DOMAINS)
1330 		return -EINVAL;
1331 
1332 	/* Having something in the write domain implies it's in the read
1333 	 * domain, and only that read domain.  Enforce that in the request.
1334 	 */
1335 	if (write_domain != 0 && read_domains != write_domain)
1336 		return -EINVAL;
1337 
1338 	ret = i915_mutex_lock_interruptible(dev);
1339 	if (ret)
1340 		return ret;
1341 
1342 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1343 	if (&obj->base == NULL) {
1344 		ret = -ENOENT;
1345 		goto unlock;
1346 	}
1347 
1348 	/* Try to flush the object off the GPU without holding the lock.
1349 	 * We will repeat the flush holding the lock in the normal manner
1350 	 * to catch cases where we are gazumped.
1351 	 */
1352 	ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1353 	if (ret)
1354 		goto unref;
1355 
1356 	if (read_domains & I915_GEM_DOMAIN_GTT) {
1357 		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1358 
1359 		/* Silently promote "you're not bound, there was nothing to do"
1360 		 * to success, since the client was just asking us to
1361 		 * make sure everything was done.
1362 		 */
1363 		if (ret == -EINVAL)
1364 			ret = 0;
1365 	} else {
1366 		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1367 	}
1368 
1369 unref:
1370 	drm_gem_object_unreference(&obj->base);
1371 unlock:
1372 	DRM_UNLOCK();
1373 	return ret;
1374 }
1375 
1376 /**
1377  * Called when user space has done writes to this buffer
1378  */
1379 int
1380 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1381 			 struct drm_file *file)
1382 {
1383 	struct drm_i915_gem_sw_finish *args = data;
1384 	struct drm_i915_gem_object *obj;
1385 	int ret = 0;
1386 
1387 	ret = i915_mutex_lock_interruptible(dev);
1388 	if (ret)
1389 		return ret;
1390 
1391 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1392 	if (&obj->base == NULL) {
1393 		ret = -ENOENT;
1394 		goto unlock;
1395 	}
1396 
1397 	/* Pinned buffers may be scanout, so flush the cache */
1398 	if (obj->pin_count)
1399 		i915_gem_object_flush_cpu_write_domain(obj);
1400 
1401 	drm_gem_object_unreference(&obj->base);
1402 unlock:
1403 	DRM_UNLOCK();
1404 	return ret;
1405 }
1406 
1407 /**
1408  * Maps the contents of an object, returning the address it is mapped
1409  * into.
1410  *
1411  * While the mapping holds a reference on the contents of the object, it doesn't
1412  * imply a ref on the object itself.
1413  */
1414 int
1415 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1416 		    struct drm_file *file)
1417 {
1418 	struct drm_i915_gem_mmap *args = data;
1419 	struct drm_gem_object *obj;
1420 	vaddr_t addr;
1421 	vsize_t size;
1422 	int ret;
1423 
1424 	size = round_page(args->size);
1425 	if (size == 0)
1426 		return -EINVAL;
1427 
1428 	if (args->offset + size < args->offset)
1429 		return -EINVAL;
1430 	if (args->offset & PAGE_MASK)
1431 		return -EINVAL;
1432 
1433 	obj = drm_gem_object_lookup(dev, file, args->handle);
1434 	if (obj == NULL)
1435 		return -ENOENT;
1436 
1437 	addr = 0;
1438 	ret = -uvm_map(&curproc->p_vmspace->vm_map, &addr, size,
1439 	    obj->uao, args->offset, 0, UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1440 	    UVM_INH_SHARE, UVM_ADV_RANDOM, 0));
1441 	if (ret == 0)
1442 		uao_reference(obj->uao);
1443 	drm_gem_object_unreference_unlocked(obj);
1444 	if (ret)
1445 		return ret;
1446 
1447 	args->addr_ptr = (uint64_t) addr;
1448 
1449 	return 0;
1450 }
1451 
1452 int
1453 i915_gem_fault(struct drm_gem_object *gem_obj, struct uvm_faultinfo *ufi,
1454     off_t offset, vaddr_t vaddr, vm_page_t *pps, int npages, int centeridx,
1455     vm_prot_t access_type, int flags)
1456 {
1457 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
1458 	struct drm_device *dev = obj->base.dev;
1459 	drm_i915_private_t *dev_priv = dev->dev_private;
1460 	paddr_t paddr;
1461 	int lcv, ret;
1462 	int write = !!(access_type & VM_PROT_WRITE);
1463 	vm_prot_t mapprot;
1464 	boolean_t locked = TRUE;
1465 
1466 	dev_priv->entries++;
1467 
1468 	/*
1469 	 * If we already own the lock, we must be doing a copyin or
1470 	 * copyout in one of the fast paths.  Return failure such that
1471 	 * we fall back on the slow path.
1472 	 */
1473 	if (!obj->base.map || RWLOCK_OWNER(&dev->dev_lock) == curproc) {
1474 		uvmfault_unlockall(ufi, ufi->entry->aref.ar_amap,
1475 		    &obj->base.uobj, NULL);
1476 		dev_priv->entries--;
1477 		return (VM_PAGER_BAD);
1478 	}
1479 
1480 	offset -= obj->base.map->ext;
1481 
1482 	if (rw_enter(&dev->dev_lock, RW_NOSLEEP | RW_WRITE) != 0) {
1483 		uvmfault_unlockall(ufi, NULL, &obj->base.uobj, NULL);
1484 		DRM_LOCK();
1485 		locked = uvmfault_relock(ufi);
1486 	}
1487 	if (!locked) {
1488 		DRM_UNLOCK();
1489 		dev_priv->entries--;
1490 		return (VM_PAGER_REFAULT);
1491 	}
1492 
1493 	/* Now bind it into the GTT if needed */
1494 	ret = i915_gem_object_pin(obj, 0, true, false);
1495 	if (ret)
1496 		goto unlock;
1497 
1498 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
1499 	if (ret)
1500 		goto unpin;
1501 
1502 	ret = i915_gem_object_get_fence(obj);
1503 	if (ret)
1504 		goto unpin;
1505 
1506 	obj->fault_mappable = true;
1507 
1508 	mapprot = ufi->entry->protection;
1509 	/*
1510 	 * if it's only a read fault, we only put ourselves into the gtt
1511 	 * read domain, so make sure we fault again and set ourselves to write.
1512 	 * this prevents us needing userland to do domain management and get
1513 	 * it wrong, and makes us fully coherent with the gpu re mmap.
1514 	 */
1515 	if (write == 0)
1516 		mapprot &= ~VM_PROT_WRITE;
1517 	/* XXX try and  be more efficient when we do this */
1518 	for (lcv = 0 ; lcv < npages ; lcv++, offset += PAGE_SIZE,
1519 	    vaddr += PAGE_SIZE) {
1520 		if ((flags & PGO_ALLPAGES) == 0 && lcv != centeridx)
1521 			continue;
1522 
1523 		if (pps[lcv] == PGO_DONTCARE)
1524 			continue;
1525 
1526 		paddr = dev->agp->base + obj->gtt_offset + offset;
1527 
1528 		if (pmap_enter(ufi->orig_map->pmap, vaddr, paddr,
1529 		    mapprot, PMAP_CANFAIL | mapprot) != 0) {
1530 			i915_gem_object_unpin(obj);
1531 			uvmfault_unlockall(ufi, ufi->entry->aref.ar_amap,
1532 			    NULL, NULL);
1533 			DRM_UNLOCK();
1534 			dev_priv->entries--;
1535 			pmap_update(ufi->orig_map->pmap);
1536 			uvm_wait("intelflt");
1537 			return (VM_PAGER_REFAULT);
1538 		}
1539 	}
1540 unpin:
1541 	i915_gem_object_unpin(obj);
1542 unlock:
1543 	uvmfault_unlockall(ufi, ufi->entry->aref.ar_amap, NULL, NULL);
1544 	DRM_UNLOCK();
1545 	dev_priv->entries--;
1546 	pmap_update(ufi->orig_map->pmap);
1547 
1548 	switch (ret) {
1549 	case -EIO:
1550 		/* If this -EIO is due to a gpu hang, give the reset code a
1551 		 * chance to clean up the mess. Otherwise return the proper
1552 		 * SIGBUS. */
1553 		if (!atomic_read(&dev_priv->mm.wedged))
1554 			return VM_PAGER_ERROR;
1555 	case -EAGAIN:
1556 		/* Give the error handler a chance to run and move the
1557 		 * objects off the GPU active list. Next time we service the
1558 		 * fault, we should be able to transition the page into the
1559 		 * GTT without touching the GPU (and so avoid further
1560 		 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1561 		 * with coherency, just lost writes.
1562 		 */
1563 #if 0
1564 		set_need_resched();
1565 #endif
1566 	case 0:
1567 	case -ERESTART:
1568 	case -EINTR:
1569 	case -EBUSY:
1570 		/*
1571 		 * EBUSY is ok: this just means that another thread
1572 		 * already did the job.
1573 		 */
1574 		return VM_PAGER_OK;
1575 	case -ENOMEM:
1576 		return VM_PAGER_ERROR;
1577 	case -ENOSPC:
1578 		return VM_PAGER_ERROR;
1579 	default:
1580 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1581 		return VM_PAGER_ERROR;
1582 	}
1583 }
1584 
1585 /**
1586  * i915_gem_release_mmap - remove physical page mappings
1587  * @obj: obj in question
1588  *
1589  * Preserve the reservation of the mmapping with the DRM core code, but
1590  * relinquish ownership of the pages back to the system.
1591  *
1592  * It is vital that we remove the page mapping if we have mapped a tiled
1593  * object through the GTT and then lose the fence register due to
1594  * resource pressure. Similarly if the object has been moved out of the
1595  * aperture, than pages mapped into userspace must be revoked. Removing the
1596  * mapping will then trigger a page fault on the next user access, allowing
1597  * fixup by i915_gem_fault().
1598  */
1599 void
1600 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1601 {
1602 	struct inteldrm_softc *dev_priv = obj->base.dev->dev_private;
1603 	struct vm_page *pg;
1604 
1605 	if (!obj->fault_mappable)
1606 		return;
1607 
1608 	for (pg = &dev_priv->pgs[atop(obj->gtt_offset)];
1609 	     pg != &dev_priv->pgs[atop(obj->gtt_offset + obj->base.size)];
1610 	     pg++)
1611 		pmap_page_protect(pg, VM_PROT_NONE);
1612 
1613 	obj->fault_mappable = false;
1614 }
1615 
1616 static uint32_t
1617 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1618 {
1619 	uint32_t gtt_size;
1620 
1621 	if (INTEL_INFO(dev)->gen >= 4 ||
1622 	    tiling_mode == I915_TILING_NONE)
1623 		return size;
1624 
1625 	/* Previous chips need a power-of-two fence region when tiling */
1626 	if (INTEL_INFO(dev)->gen == 3)
1627 		gtt_size = 1024*1024;
1628 	else
1629 		gtt_size = 512*1024;
1630 
1631 	while (gtt_size < size)
1632 		gtt_size <<= 1;
1633 
1634 	return gtt_size;
1635 }
1636 
1637 /**
1638  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1639  * @obj: object to check
1640  *
1641  * Return the required GTT alignment for an object, taking into account
1642  * potential fence register mapping.
1643  */
1644 static uint32_t
1645 i915_gem_get_gtt_alignment(struct drm_device *dev,
1646 			   uint32_t size,
1647 			   int tiling_mode)
1648 {
1649 	/*
1650 	 * Minimum alignment is 4k (GTT page size), but might be greater
1651 	 * if a fence register is needed for the object.
1652 	 */
1653 	if (INTEL_INFO(dev)->gen >= 4 ||
1654 	    tiling_mode == I915_TILING_NONE)
1655 		return 4096;
1656 
1657 	/*
1658 	 * Previous chips need to be aligned to the size of the smallest
1659 	 * fence register that can contain the object.
1660 	 */
1661 	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1662 }
1663 
1664 /**
1665  * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1666  *					 unfenced object
1667  * @dev: the device
1668  * @size: size of the object
1669  * @tiling_mode: tiling mode of the object
1670  *
1671  * Return the required GTT alignment for an object, only taking into account
1672  * unfenced tiled surface requirements.
1673  */
1674 uint32_t
1675 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1676 				    uint32_t size,
1677 				    int tiling_mode)
1678 {
1679 	/*
1680 	 * Minimum alignment is 4k (GTT page size) for sane hw.
1681 	 */
1682 	if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1683 	    tiling_mode == I915_TILING_NONE)
1684 		return 4096;
1685 
1686 	/* Previous hardware however needs to be aligned to a power-of-two
1687 	 * tile height. The simplest method for determining this is to reuse
1688 	 * the power-of-tile object size.
1689 	 */
1690 	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1691 }
1692 
1693 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1694 {
1695 #if 0
1696 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1697 #endif
1698 	int ret;
1699 
1700 	if (obj->base.map)
1701 		return 0;
1702 
1703 #if 0
1704 	dev_priv->mm.shrinker_no_lock_stealing = true;
1705 #endif
1706 
1707 	ret = drm_gem_create_mmap_offset(&obj->base);
1708 #if 0
1709 	if (ret != -ENOSPC)
1710 		goto out;
1711 
1712 	/* Badly fragmented mmap space? The only way we can recover
1713 	 * space is by destroying unwanted objects. We can't randomly release
1714 	 * mmap_offsets as userspace expects them to be persistent for the
1715 	 * lifetime of the objects. The closest we can is to release the
1716 	 * offsets on purgeable objects by truncating it and marking it purged,
1717 	 * which prevents userspace from ever using that object again.
1718 	 */
1719 	i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1720 	ret = drm_gem_create_mmap_offset(&obj->base);
1721 	if (ret != -ENOSPC)
1722 		goto out;
1723 
1724 	i915_gem_shrink_all(dev_priv);
1725 	ret = drm_gem_create_mmap_offset(&obj->base);
1726 out:
1727 	dev_priv->mm.shrinker_no_lock_stealing = false;
1728 #endif
1729 
1730 	return ret;
1731 }
1732 
1733 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1734 {
1735 	if (!obj->base.map)
1736 		return;
1737 
1738 	drm_gem_free_mmap_offset(&obj->base);
1739 }
1740 
1741 int
1742 i915_gem_mmap_gtt(struct drm_file *file,
1743 		  struct drm_device *dev,
1744 		  uint32_t handle,
1745 		  uint64_t *offset)
1746 {
1747 	struct drm_i915_private *dev_priv = dev->dev_private;
1748 	struct drm_i915_gem_object *obj;
1749 	int ret;
1750 
1751 	ret = i915_mutex_lock_interruptible(dev);
1752 	if (ret)
1753 		return ret;
1754 
1755 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1756 	if (&obj->base == NULL) {
1757 		ret = -ENOENT;
1758 		goto unlock;
1759 	}
1760 
1761 	if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1762 		ret = -E2BIG;
1763 		goto out;
1764 	}
1765 
1766 	if (obj->madv != I915_MADV_WILLNEED) {
1767 		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1768 		ret = -EINVAL;
1769 		goto out;
1770 	}
1771 
1772 	ret = i915_gem_object_create_mmap_offset(obj);
1773 	if (ret)
1774 		goto out;
1775 
1776 	*offset = (u64)obj->base.map->ext;
1777 
1778 out:
1779 	drm_gem_object_unreference(&obj->base);
1780 unlock:
1781 	DRM_UNLOCK();
1782 	return ret;
1783 }
1784 
1785 /**
1786  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1787  * @dev: DRM device
1788  * @data: GTT mapping ioctl data
1789  * @file: GEM object info
1790  *
1791  * Simply returns the fake offset to userspace so it can mmap it.
1792  * The mmap call will end up in drm_gem_mmap(), which will set things
1793  * up so we can get faults in the handler above.
1794  *
1795  * The fault handler will take care of binding the object into the GTT
1796  * (since it may have been evicted to make room for something), allocating
1797  * a fence register, and mapping the appropriate aperture address into
1798  * userspace.
1799  */
1800 int
1801 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1802 			struct drm_file *file)
1803 {
1804 	struct drm_i915_gem_mmap_gtt *args = data;
1805 
1806 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1807 }
1808 
1809 /* Immediately discard the backing storage */
1810 static void
1811 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1812 {
1813 	i915_gem_object_free_mmap_offset(obj);
1814 
1815 	obj->base.uao->pgops->pgo_flush(obj->base.uao, 0, obj->base.size,
1816 	    PGO_ALLPAGES | PGO_FREE);
1817 
1818 	obj->madv = __I915_MADV_PURGED;
1819 }
1820 
1821 // i915_gem_object_is_purgeable
1822 
1823 static void
1824 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1825 {
1826 	int page_count = obj->base.size / PAGE_SIZE;
1827 #ifdef __linux__
1828 	struct scatterlist *sg;
1829 #endif
1830 	int ret, i;
1831 
1832 	BUG_ON(obj->madv == __I915_MADV_PURGED);
1833 
1834 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
1835 	if (ret) {
1836 		/* In the event of a disaster, abandon all caches and
1837 		 * hope for the best.
1838 		 */
1839 		WARN_ON(ret != -EIO);
1840 		i915_gem_clflush_object(obj);
1841 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1842 	}
1843 
1844 	if (i915_gem_object_needs_bit17_swizzle(obj))
1845 		i915_gem_object_save_bit_17_swizzle(obj);
1846 
1847 	if (obj->madv == I915_MADV_DONTNEED)
1848 		obj->dirty = 0;
1849 
1850 #ifdef __linux__
1851 	for_each_sg(obj->pages->sgl, sg, page_count, i) {
1852 		struct page *page = sg_page(sg);
1853 
1854 		if (obj->dirty)
1855 			set_page_dirty(page);
1856 
1857 		if (obj->madv == I915_MADV_WILLNEED)
1858 			mark_page_accessed(page);
1859 
1860 		page_cache_release(page);
1861 	}
1862 #else
1863 	for (i = 0; i < page_count; i++) {
1864 		struct vm_page *page = obj->pages[i];
1865 
1866 		if (obj->dirty)
1867 			atomic_clearbits_int(&page->pg_flags, PG_CLEAN);
1868 	}
1869 	uvm_objunwire(obj->base.uao, 0, obj->base.size);
1870 #endif
1871 	obj->dirty = 0;
1872 
1873 #ifdef __linux__
1874 	sg_free_table(obj->pages);
1875 #endif
1876 	kfree(obj->pages);
1877 }
1878 
1879 static int
1880 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1881 {
1882 	const struct drm_i915_gem_object_ops *ops = obj->ops;
1883 
1884 	if (obj->pages == NULL)
1885 		return 0;
1886 
1887 	BUG_ON(obj->gtt_space);
1888 
1889 	if (obj->pages_pin_count)
1890 		return -EBUSY;
1891 
1892 	/* ->put_pages might need to allocate memory for the bit17 swizzle
1893 	 * array, hence protect them from being reaped by removing them from gtt
1894 	 * lists early. */
1895 	list_del(&obj->gtt_list);
1896 
1897 	ops->put_pages(obj);
1898 	obj->pages = NULL;
1899 
1900 	if (i915_gem_object_is_purgeable(obj))
1901 		i915_gem_object_truncate(obj);
1902 
1903 	return 0;
1904 }
1905 
1906 #ifdef notyet
1907 static long
1908 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1909 		  bool purgeable_only)
1910 {
1911 	struct drm_i915_gem_object *obj, *next;
1912 	long count = 0;
1913 
1914 	list_for_each_entry_safe(obj, next,
1915 				 &dev_priv->mm.unbound_list,
1916 				 gtt_list) {
1917 		if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1918 		    i915_gem_object_put_pages(obj) == 0) {
1919 			count += obj->base.size >> PAGE_SHIFT;
1920 			if (count >= target)
1921 				return count;
1922 		}
1923 	}
1924 
1925 	list_for_each_entry_safe(obj, next,
1926 				 &dev_priv->mm.inactive_list,
1927 				 mm_list) {
1928 		if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1929 		    i915_gem_object_unbind(obj) == 0 &&
1930 		    i915_gem_object_put_pages(obj) == 0) {
1931 			count += obj->base.size >> PAGE_SHIFT;
1932 			if (count >= target)
1933 				return count;
1934 		}
1935 	}
1936 
1937 	return count;
1938 }
1939 
1940 static long
1941 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1942 {
1943 	return __i915_gem_shrink(dev_priv, target, true);
1944 }
1945 
1946 static void
1947 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1948 {
1949 	struct drm_i915_gem_object *obj, *next;
1950 
1951 	i915_gem_evict_everything(dev_priv->dev);
1952 
1953 	list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
1954 		i915_gem_object_put_pages(obj);
1955 }
1956 #endif /* notyet */
1957 
1958 static int
1959 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1960 {
1961 #ifdef __linux__
1962 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1963 	int page_count, i;
1964 	struct address_space *mapping;
1965 	struct sg_table *st;
1966 	struct scatterlist *sg;
1967 	struct page *page;
1968 	gfp_t gfp;
1969 #else
1970 	int page_count, i;
1971 	struct vm_page **st;
1972 	struct pglist plist;
1973 	struct vm_page *page;
1974 #endif
1975 
1976 	/* Assert that the object is not currently in any GPU domain. As it
1977 	 * wasn't in the GTT, there shouldn't be any way it could have been in
1978 	 * a GPU cache
1979 	 */
1980 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1981 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1982 
1983 #ifdef __linux__
1984 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1985 	if (st == NULL)
1986 		return -ENOMEM;
1987 
1988 	page_count = obj->base.size / PAGE_SIZE;
1989 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1990 		sg_free_table(st);
1991 		kfree(st);
1992 		return -ENOMEM;
1993 	}
1994 
1995 	/* Get the list of pages out of our struct file.  They'll be pinned
1996 	 * at this point until we release them.
1997 	 *
1998 	 * Fail silently without starting the shrinker
1999 	 */
2000 	mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
2001 	gfp = mapping_gfp_mask(mapping);
2002 	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2003 	gfp &= ~(__GFP_IO | __GFP_WAIT);
2004 	for_each_sg(st->sgl, sg, page_count, i) {
2005 		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2006 		if (IS_ERR(page)) {
2007 			i915_gem_purge(dev_priv, page_count);
2008 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2009 		}
2010 		if (IS_ERR(page)) {
2011 			/* We've tried hard to allocate the memory by reaping
2012 			 * our own buffer, now let the real VM do its job and
2013 			 * go down in flames if truly OOM.
2014 			 */
2015 			gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
2016 			gfp |= __GFP_IO | __GFP_WAIT;
2017 
2018 			i915_gem_shrink_all(dev_priv);
2019 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2020 			if (IS_ERR(page))
2021 				goto err_pages;
2022 
2023 			gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2024 			gfp &= ~(__GFP_IO | __GFP_WAIT);
2025 		}
2026 
2027 		sg_set_page(sg, page, PAGE_SIZE, 0);
2028 	}
2029 
2030 	obj->pages = st;
2031 #else
2032 	page_count = obj->base.size / PAGE_SIZE;
2033 	st = malloc(page_count * sizeof(struct vm_page *), M_DRM,
2034 	    M_WAITOK | M_CANFAIL);
2035 	if (st == NULL)
2036 		return -ENOMEM;
2037 
2038 	TAILQ_INIT(&plist);
2039 	if (uvm_objwire(obj->base.uao, 0, obj->base.size, &plist))
2040 		goto err_pages;
2041 
2042 	i = 0;
2043 	TAILQ_FOREACH(page, &plist, pageq) {
2044 		st[i] = page;
2045 		i++;
2046 	}
2047 	obj->pages = st;
2048 #endif
2049 
2050 	if (i915_gem_object_needs_bit17_swizzle(obj))
2051 		i915_gem_object_do_bit_17_swizzle(obj);
2052 
2053 	return 0;
2054 
2055 #ifdef __linux__
2056 err_pages:
2057 	for_each_sg(st->sgl, sg, i, page_count)
2058 		page_cache_release(sg_page(sg));
2059 	sg_free_table(st);
2060 	kfree(st);
2061 	return PTR_ERR(page);
2062 #else
2063 err_pages:
2064 	free(st, M_DRM);
2065 	return -ENOMEM;
2066 #endif
2067 }
2068 
2069 /* Ensure that the associated pages are gathered from the backing storage
2070  * and pinned into our object. i915_gem_object_get_pages() may be called
2071  * multiple times before they are released by a single call to
2072  * i915_gem_object_put_pages() - once the pages are no longer referenced
2073  * either as a result of memory pressure (reaping pages under the shrinker)
2074  * or as the object is itself released.
2075  */
2076 int
2077 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2078 {
2079 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2080 	const struct drm_i915_gem_object_ops *ops = obj->ops;
2081 	int ret;
2082 
2083 	if (obj->pages)
2084 		return 0;
2085 
2086 	BUG_ON(obj->pages_pin_count);
2087 
2088 	ret = ops->get_pages(obj);
2089 	if (ret)
2090 		return ret;
2091 
2092 	list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2093 	return 0;
2094 }
2095 
2096 void
2097 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2098 			       struct intel_ring_buffer *ring)
2099 {
2100 	struct drm_device *dev = obj->base.dev;
2101 	struct drm_i915_private *dev_priv = dev->dev_private;
2102 	u32 seqno = intel_ring_get_seqno(ring);
2103 
2104 	BUG_ON(ring == NULL);
2105 	if (obj->ring != ring && obj->last_write_seqno) {
2106 		/* Keep the seqno relative to the current ring */
2107 		obj->last_write_seqno = seqno;
2108 	}
2109 	obj->ring = ring;
2110 
2111 	/* Add a reference if we're newly entering the active list. */
2112 	if (!obj->active) {
2113 		drm_gem_object_reference(&obj->base);
2114 		obj->active = 1;
2115 	}
2116 
2117 	/* Move from whatever list we were on to the tail of execution. */
2118 	list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
2119 	list_move_tail(&obj->ring_list, &ring->active_list);
2120 
2121 	obj->last_read_seqno = seqno;
2122 
2123 	if (obj->fenced_gpu_access) {
2124 		obj->last_fenced_seqno = seqno;
2125 
2126 		/* Bump MRU to take account of the delayed flush */
2127 		if (obj->fence_reg != I915_FENCE_REG_NONE) {
2128 			struct drm_i915_fence_reg *reg;
2129 
2130 			reg = &dev_priv->fence_regs[obj->fence_reg];
2131 			list_move_tail(&reg->lru_list,
2132 				       &dev_priv->mm.fence_list);
2133 		}
2134 	}
2135 }
2136 
2137 static void
2138 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2139 {
2140 	struct drm_device *dev = obj->base.dev;
2141 	struct drm_i915_private *dev_priv = dev->dev_private;
2142 
2143 	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2144 	BUG_ON(!obj->active);
2145 
2146 	list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2147 
2148 	list_del_init(&obj->ring_list);
2149 	obj->ring = NULL;
2150 
2151 	obj->last_read_seqno = 0;
2152 	obj->last_write_seqno = 0;
2153 	obj->base.write_domain = 0;
2154 
2155 	obj->last_fenced_seqno = 0;
2156 	obj->fenced_gpu_access = false;
2157 
2158 	obj->active = 0;
2159 	drm_gem_object_unreference(&obj->base);
2160 
2161 	WARN_ON(i915_verify_lists(dev));
2162 }
2163 
2164 static int
2165 i915_gem_handle_seqno_wrap(struct drm_device *dev)
2166 {
2167 	struct drm_i915_private *dev_priv = dev->dev_private;
2168 	struct intel_ring_buffer *ring;
2169 	int ret, i, j;
2170 
2171 	/* The hardware uses various monotonic 32-bit counters, if we
2172 	 * detect that they will wraparound we need to idle the GPU
2173 	 * and reset those counters.
2174 	 */
2175 	ret = 0;
2176 	for_each_ring(ring, dev_priv, i) {
2177 		for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2178 			ret |= ring->sync_seqno[j] != 0;
2179 	}
2180 	if (ret == 0)
2181 		return ret;
2182 
2183 	ret = i915_gpu_idle(dev);
2184 	if (ret)
2185 		return ret;
2186 
2187 	i915_gem_retire_requests(dev);
2188 	for_each_ring(ring, dev_priv, i) {
2189 		for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2190 			ring->sync_seqno[j] = 0;
2191 	}
2192 
2193 	return 0;
2194 }
2195 
2196 int
2197 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2198 {
2199 	struct drm_i915_private *dev_priv = dev->dev_private;
2200 
2201 	/* reserve 0 for non-seqno */
2202 	if (dev_priv->next_seqno == 0) {
2203 		int ret = i915_gem_handle_seqno_wrap(dev);
2204 		if (ret)
2205 			return ret;
2206 
2207 		dev_priv->next_seqno = 1;
2208 	}
2209 
2210 	*seqno = dev_priv->next_seqno++;
2211 	return 0;
2212 }
2213 
2214 int
2215 i915_add_request(struct intel_ring_buffer *ring,
2216 		 struct drm_file *file,
2217 		 u32 *out_seqno)
2218 {
2219 	drm_i915_private_t *dev_priv = ring->dev->dev_private;
2220 	struct drm_i915_gem_request *request;
2221 	u32 request_ring_position;
2222 	int was_empty;
2223 	int ret;
2224 
2225 	/*
2226 	 * Emit any outstanding flushes - execbuf can fail to emit the flush
2227 	 * after having emitted the batchbuffer command. Hence we need to fix
2228 	 * things up similar to emitting the lazy request. The difference here
2229 	 * is that the flush _must_ happen before the next request, no matter
2230 	 * what.
2231 	 */
2232 	ret = intel_ring_flush_all_caches(ring);
2233 	if (ret)
2234 		return ret;
2235 
2236 	request = kmalloc(sizeof(*request), GFP_KERNEL);
2237 	if (request == NULL)
2238 		return -ENOMEM;
2239 
2240 
2241 	/* Record the position of the start of the request so that
2242 	 * should we detect the updated seqno part-way through the
2243 	 * GPU processing the request, we never over-estimate the
2244 	 * position of the head.
2245 	 */
2246 	request_ring_position = intel_ring_get_tail(ring);
2247 
2248 	ret = ring->add_request(ring);
2249 	if (ret) {
2250 		kfree(request);
2251 		return ret;
2252 	}
2253 
2254 	request->seqno = intel_ring_get_seqno(ring);
2255 	request->ring = ring;
2256 	request->tail = request_ring_position;
2257 	request->emitted_ticks = ticks;
2258 	was_empty = list_empty(&ring->request_list);
2259 	list_add_tail(&request->list, &ring->request_list);
2260 	request->file_priv = NULL;
2261 
2262 	if (file) {
2263 		struct drm_i915_file_private *file_priv = file->driver_priv;
2264 
2265 		mtx_enter(&file_priv->mm.lock);
2266 		request->file_priv = file_priv;
2267 		list_add_tail(&request->client_list,
2268 			      &file_priv->mm.request_list);
2269 		mtx_leave(&file_priv->mm.lock);
2270 	}
2271 
2272 	trace_i915_gem_request_add(ring, request->seqno);
2273 	ring->outstanding_lazy_request = 0;
2274 
2275 	if (!dev_priv->mm.suspended) {
2276 		if (i915_enable_hangcheck) {
2277 			timeout_add_msec(&dev_priv->hangcheck_timer,
2278 			    DRM_I915_HANGCHECK_PERIOD);
2279 		}
2280 		if (was_empty) {
2281 			timeout_add_sec(&dev_priv->mm.retire_timer, 1);
2282 			intel_mark_busy(ring->dev);
2283 		}
2284 	}
2285 
2286 	if (out_seqno)
2287 		*out_seqno = request->seqno;
2288 	return 0;
2289 }
2290 
2291 static inline void
2292 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2293 {
2294 	struct drm_i915_file_private *file_priv = request->file_priv;
2295 
2296 	if (!file_priv)
2297 		return;
2298 
2299 	mtx_enter(&file_priv->mm.lock);
2300 	if (request->file_priv) {
2301 		list_del(&request->client_list);
2302 		request->file_priv = NULL;
2303 	}
2304 	mtx_leave(&file_priv->mm.lock);
2305 }
2306 
2307 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2308 				      struct intel_ring_buffer *ring)
2309 {
2310 	while (!list_empty(&ring->request_list)) {
2311 		struct drm_i915_gem_request *request;
2312 
2313 		request = list_first_entry(&ring->request_list,
2314 					   struct drm_i915_gem_request,
2315 					   list);
2316 
2317 		list_del(&request->list);
2318 		i915_gem_request_remove_from_client(request);
2319 		kfree(request);
2320 	}
2321 
2322 	while (!list_empty(&ring->active_list)) {
2323 		struct drm_i915_gem_object *obj;
2324 
2325 		obj = list_first_entry(&ring->active_list,
2326 				       struct drm_i915_gem_object,
2327 				       ring_list);
2328 
2329 		i915_gem_object_move_to_inactive(obj);
2330 	}
2331 }
2332 
2333 static void i915_gem_reset_fences(struct drm_device *dev)
2334 {
2335 	struct drm_i915_private *dev_priv = dev->dev_private;
2336 	int i;
2337 
2338 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2339 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2340 
2341 		i915_gem_write_fence(dev, i, NULL);
2342 
2343 		if (reg->obj)
2344 			i915_gem_object_fence_lost(reg->obj);
2345 
2346 		reg->pin_count = 0;
2347 		reg->obj = NULL;
2348 		INIT_LIST_HEAD(&reg->lru_list);
2349 	}
2350 
2351 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2352 }
2353 
2354 void i915_gem_reset(struct drm_device *dev)
2355 {
2356 	struct drm_i915_private *dev_priv = dev->dev_private;
2357 	struct drm_i915_gem_object *obj;
2358 	struct intel_ring_buffer *ring;
2359 	int i;
2360 
2361 	for_each_ring(ring, dev_priv, i)
2362 		i915_gem_reset_ring_lists(dev_priv, ring);
2363 
2364 	/* Move everything out of the GPU domains to ensure we do any
2365 	 * necessary invalidation upon reuse.
2366 	 */
2367 	list_for_each_entry(obj,
2368 			    &dev_priv->mm.inactive_list,
2369 			    mm_list)
2370 	{
2371 		obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2372 	}
2373 
2374 	/* The fence registers are invalidated so clear them out */
2375 	i915_gem_reset_fences(dev);
2376 }
2377 
2378 /**
2379  * This function clears the request list as sequence numbers are passed.
2380  */
2381 void
2382 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2383 {
2384 	uint32_t seqno;
2385 
2386 	if (list_empty(&ring->request_list))
2387 		return;
2388 
2389 	WARN_ON(i915_verify_lists(ring->dev));
2390 
2391 	seqno = ring->get_seqno(ring, true);
2392 
2393 	while (!list_empty(&ring->request_list)) {
2394 		struct drm_i915_gem_request *request;
2395 
2396 		request = list_first_entry(&ring->request_list,
2397 					   struct drm_i915_gem_request,
2398 					   list);
2399 
2400 		if (!i915_seqno_passed(seqno, request->seqno))
2401 			break;
2402 
2403 		trace_i915_gem_request_retire(ring, request->seqno);
2404 		/* We know the GPU must have read the request to have
2405 		 * sent us the seqno + interrupt, so use the position
2406 		 * of tail of the request to update the last known position
2407 		 * of the GPU head.
2408 		 */
2409 		ring->last_retired_head = request->tail;
2410 
2411 		list_del(&request->list);
2412 		i915_gem_request_remove_from_client(request);
2413 		kfree(request);
2414 	}
2415 
2416 	/* Move any buffers on the active list that are no longer referenced
2417 	 * by the ringbuffer to the flushing/inactive lists as appropriate.
2418 	 */
2419 	while (!list_empty(&ring->active_list)) {
2420 		struct drm_i915_gem_object *obj;
2421 
2422 		obj = list_first_entry(&ring->active_list,
2423 				      struct drm_i915_gem_object,
2424 				      ring_list);
2425 
2426 		if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2427 			break;
2428 
2429 		i915_gem_object_move_to_inactive(obj);
2430 	}
2431 
2432 	if (unlikely(ring->trace_irq_seqno &&
2433 		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2434 		ring->irq_put(ring);
2435 		ring->trace_irq_seqno = 0;
2436 	}
2437 
2438 	WARN_ON(i915_verify_lists(ring->dev));
2439 }
2440 
2441 void
2442 i915_gem_retire_requests(struct drm_device *dev)
2443 {
2444 	drm_i915_private_t *dev_priv = dev->dev_private;
2445 	struct intel_ring_buffer *ring;
2446 	int i;
2447 
2448 	for_each_ring(ring, dev_priv, i)
2449 		i915_gem_retire_requests_ring(ring);
2450 }
2451 
2452 void
2453 i915_gem_retire_work_handler(void *arg1, void *unused)
2454 {
2455 	drm_i915_private_t *dev_priv = arg1;
2456 	struct drm_device *dev;
2457 	struct intel_ring_buffer *ring;
2458 	bool idle;
2459 	int i;
2460 
2461 	dev = (struct drm_device *)dev_priv->drmdev;
2462 
2463 	/* Come back later if the device is busy... */
2464 	if (rw_enter(&dev->dev_lock, RW_NOSLEEP | RW_WRITE)) {
2465 		timeout_add_sec(&dev_priv->mm.retire_timer, 1);
2466 		return;
2467 	}
2468 
2469 	i915_gem_retire_requests(dev);
2470 
2471 	/* Send a periodic flush down the ring so we don't hold onto GEM
2472 	 * objects indefinitely.
2473 	 */
2474 	idle = true;
2475 	for_each_ring(ring, dev_priv, i) {
2476 		if (ring->gpu_caches_dirty)
2477 			i915_add_request(ring, NULL, NULL);
2478 
2479 		idle &= list_empty(&ring->request_list);
2480 	}
2481 
2482 	if (!dev_priv->mm.suspended && !idle)
2483 		timeout_add_sec(&dev_priv->mm.retire_timer, 1);
2484 	if (idle)
2485 		intel_mark_idle(dev);
2486 
2487 	DRM_UNLOCK();
2488 }
2489 
2490 /**
2491  * Ensures that an object will eventually get non-busy by flushing any required
2492  * write domains, emitting any outstanding lazy request and retiring and
2493  * completed requests.
2494  */
2495 static int
2496 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2497 {
2498 	int ret;
2499 
2500 	if (obj->active) {
2501 		ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2502 		if (ret)
2503 			return ret;
2504 
2505 		i915_gem_retire_requests_ring(obj->ring);
2506 	}
2507 
2508 	return 0;
2509 }
2510 
2511 /**
2512  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2513  * @DRM_IOCTL_ARGS: standard ioctl arguments
2514  *
2515  * Returns 0 if successful, else an error is returned with the remaining time in
2516  * the timeout parameter.
2517  *  -ETIME: object is still busy after timeout
2518  *  -ERESTARTSYS: signal interrupted the wait
2519  *  -ENONENT: object doesn't exist
2520  * Also possible, but rare:
2521  *  -EAGAIN: GPU wedged
2522  *  -ENOMEM: damn
2523  *  -ENODEV: Internal IRQ fail
2524  *  -E?: The add request failed
2525  *
2526  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2527  * non-zero timeout parameter the wait ioctl will wait for the given number of
2528  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2529  * without holding struct_mutex the object may become re-busied before this
2530  * function completes. A similar but shorter * race condition exists in the busy
2531  * ioctl
2532  */
2533 int
2534 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2535 {
2536 	struct drm_i915_gem_wait *args = data;
2537 	struct drm_i915_gem_object *obj;
2538 	struct intel_ring_buffer *ring = NULL;
2539 	struct timespec timeout_stack, *timeout = NULL;
2540 	u32 seqno = 0;
2541 	int ret = 0;
2542 
2543 	if (args->timeout_ns >= 0) {
2544 		timeout_stack = ns_to_timespec(args->timeout_ns);
2545 		timeout = &timeout_stack;
2546 	}
2547 
2548 	ret = i915_mutex_lock_interruptible(dev);
2549 	if (ret)
2550 		return ret;
2551 
2552 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2553 	if (&obj->base == NULL) {
2554 		DRM_UNLOCK();
2555 		return -ENOENT;
2556 	}
2557 
2558 	/* Need to make sure the object gets inactive eventually. */
2559 	ret = i915_gem_object_flush_active(obj);
2560 	if (ret)
2561 		goto out;
2562 
2563 	if (obj->active) {
2564 		seqno = obj->last_read_seqno;
2565 		ring = obj->ring;
2566 	}
2567 
2568 	if (seqno == 0)
2569 		 goto out;
2570 
2571 	/* Do this after OLR check to make sure we make forward progress polling
2572 	 * on this IOCTL with a 0 timeout (like busy ioctl)
2573 	 */
2574 	if (!args->timeout_ns) {
2575 		ret = -ETIMEDOUT;
2576 		goto out;
2577 	}
2578 
2579 	drm_gem_object_unreference(&obj->base);
2580 	DRM_UNLOCK();
2581 
2582 	ret = __wait_seqno(ring, seqno, true, timeout);
2583 	if (timeout) {
2584 		WARN_ON(!timespec_valid(timeout));
2585 		args->timeout_ns = timespec_to_ns(timeout);
2586 	}
2587 	return ret;
2588 
2589 out:
2590 	drm_gem_object_unreference(&obj->base);
2591 	DRM_UNLOCK();
2592 	return ret;
2593 }
2594 
2595 /**
2596  * i915_gem_object_sync - sync an object to a ring.
2597  *
2598  * @obj: object which may be in use on another ring.
2599  * @to: ring we wish to use the object on. May be NULL.
2600  *
2601  * This code is meant to abstract object synchronization with the GPU.
2602  * Calling with NULL implies synchronizing the object with the CPU
2603  * rather than a particular GPU ring.
2604  *
2605  * Returns 0 if successful, else propagates up the lower layer error.
2606  */
2607 int
2608 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2609 		     struct intel_ring_buffer *to)
2610 {
2611 	struct intel_ring_buffer *from = obj->ring;
2612 	u32 seqno;
2613 	int ret, idx;
2614 
2615 	if (from == NULL || to == from)
2616 		return 0;
2617 
2618 	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2619 		return i915_gem_object_wait_rendering(obj, false);
2620 
2621 	idx = intel_ring_sync_index(from, to);
2622 
2623 	seqno = obj->last_read_seqno;
2624 	if (seqno <= from->sync_seqno[idx])
2625 		return 0;
2626 
2627 	ret = i915_gem_check_olr(obj->ring, seqno);
2628 	if (ret)
2629 		return ret;
2630 
2631 	ret = to->sync_to(to, from, seqno);
2632 	if (!ret)
2633 		/* We use last_read_seqno because sync_to()
2634 		 * might have just caused seqno wrap under
2635 		 * the radar.
2636 		 */
2637 		from->sync_seqno[idx] = obj->last_read_seqno;
2638 
2639 	return ret;
2640 }
2641 
2642 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2643 {
2644 	u32 old_write_domain, old_read_domains;
2645 
2646 	/* Act a barrier for all accesses through the GTT */
2647 	DRM_MEMORYBARRIER();
2648 
2649 	/* Force a pagefault for domain tracking on next user access */
2650 	i915_gem_release_mmap(obj);
2651 
2652 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2653 		return;
2654 
2655 	old_read_domains = obj->base.read_domains;
2656 	old_write_domain = obj->base.write_domain;
2657 
2658 	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2659 	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2660 
2661 	trace_i915_gem_object_change_domain(obj,
2662 					    old_read_domains,
2663 					    old_write_domain);
2664 }
2665 
2666 /**
2667  * Unbinds an object from the GTT aperture.
2668  */
2669 int
2670 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2671 {
2672 	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2673 	int ret = 0;
2674 
2675 	if (obj->gtt_space == NULL)
2676 		return 0;
2677 
2678 	if (obj->pin_count)
2679 		return -EBUSY;
2680 
2681 	BUG_ON(obj->pages == NULL);
2682 
2683 	ret = i915_gem_object_finish_gpu(obj);
2684 	if (ret)
2685 		return ret;
2686 	/* Continue on if we fail due to EIO, the GPU is hung so we
2687 	 * should be safe and we need to cleanup or else we might
2688 	 * cause memory corruption through use-after-free.
2689 	 */
2690 
2691 	i915_gem_object_finish_gtt(obj);
2692 
2693 	/* release the fence reg _after_ flushing */
2694 	ret = i915_gem_object_put_fence(obj);
2695 	if (ret)
2696 		return ret;
2697 
2698 	trace_i915_gem_object_unbind(obj);
2699 
2700 	if (obj->has_global_gtt_mapping)
2701 		i915_gem_gtt_unbind_object(obj);
2702 #ifdef notyet
2703 	if (obj->has_aliasing_ppgtt_mapping) {
2704 		i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2705 		obj->has_aliasing_ppgtt_mapping = 0;
2706 	}
2707 #endif
2708 	i915_gem_gtt_finish_object(obj);
2709 
2710 	list_del(&obj->mm_list);
2711 	list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2712 	/* Avoid an unnecessary call to unbind on rebind. */
2713 	obj->map_and_fenceable = true;
2714 
2715 	drm_mm_put_block(obj->gtt_space);
2716 	obj->gtt_space = NULL;
2717 	obj->gtt_offset = 0;
2718 
2719 	/* XXX Until we've hooked up the shrinking functions. */
2720 	i915_gem_object_put_pages(obj);
2721 
2722 	return 0;
2723 }
2724 
2725 int i915_gpu_idle(struct drm_device *dev)
2726 {
2727 	drm_i915_private_t *dev_priv = dev->dev_private;
2728 	struct intel_ring_buffer *ring;
2729 	int ret, i;
2730 
2731 	/* Flush everything onto the inactive list. */
2732 	for_each_ring(ring, dev_priv, i) {
2733 		ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2734 		if (ret)
2735 			return ret;
2736 
2737 		ret = intel_ring_idle(ring);
2738 		if (ret)
2739 			return ret;
2740 	}
2741 
2742 	return 0;
2743 }
2744 
2745 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2746 				 struct drm_i915_gem_object *obj)
2747 {
2748 	drm_i915_private_t *dev_priv = dev->dev_private;
2749 	int fence_reg;
2750 	int fence_pitch_shift;
2751 
2752 	if (INTEL_INFO(dev)->gen >= 6) {
2753 		fence_reg = FENCE_REG_SANDYBRIDGE_0;
2754 		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2755 	} else {
2756 		fence_reg = FENCE_REG_965_0;
2757 		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2758 	}
2759 
2760 	fence_reg += reg * 8;
2761 
2762 	/* To w/a incoherency with non-atomic 64-bit register updates,
2763 	 * we split the 64-bit update into two 32-bit writes. In order
2764 	 * for a partial fence not to be evaluated between writes, we
2765 	 * precede the update with write to turn off the fence register,
2766 	 * and only enable the fence as the last step.
2767 	 *
2768 	 * For extra levels of paranoia, we make sure each step lands
2769 	 * before applying the next step.
2770 	 */
2771 	I915_WRITE(fence_reg, 0);
2772 	POSTING_READ(fence_reg);
2773 
2774 	if (obj) {
2775 		u32 size = obj->gtt_space->size;
2776 		uint64_t val;
2777 
2778 		val = (uint64_t)((obj->gtt_offset + size - 4096) &
2779 				 0xfffff000) << 32;
2780 		val |= obj->gtt_offset & 0xfffff000;
2781 		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2782 		if (obj->tiling_mode == I915_TILING_Y)
2783 			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2784 		val |= I965_FENCE_REG_VALID;
2785 
2786 		I915_WRITE(fence_reg + 4, val >> 32);
2787 		POSTING_READ(fence_reg + 4);
2788 
2789 		I915_WRITE(fence_reg + 0, val);
2790 		POSTING_READ(fence_reg);
2791 	} else {
2792 		I915_WRITE(fence_reg + 4, 0);
2793 		POSTING_READ(fence_reg + 4);
2794 	}
2795 }
2796 
2797 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2798 				 struct drm_i915_gem_object *obj)
2799 {
2800 	drm_i915_private_t *dev_priv = dev->dev_private;
2801 	u32 val;
2802 
2803 	if (obj) {
2804 		u32 size = obj->gtt_space->size;
2805 		int pitch_val;
2806 		int tile_width;
2807 
2808 		WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2809 		     (size & -size) != size ||
2810 		     (obj->gtt_offset & (size - 1)),
2811 		     "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2812 		     obj->gtt_offset, obj->map_and_fenceable, size);
2813 
2814 		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2815 			tile_width = 128;
2816 		else
2817 			tile_width = 512;
2818 
2819 		/* Note: pitch better be a power of two tile widths */
2820 		pitch_val = obj->stride / tile_width;
2821 		pitch_val = ffs(pitch_val) - 1;
2822 
2823 		val = obj->gtt_offset;
2824 		if (obj->tiling_mode == I915_TILING_Y)
2825 			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2826 		val |= I915_FENCE_SIZE_BITS(size);
2827 		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2828 		val |= I830_FENCE_REG_VALID;
2829 	} else
2830 		val = 0;
2831 
2832 	if (reg < 8)
2833 		reg = FENCE_REG_830_0 + reg * 4;
2834 	else
2835 		reg = FENCE_REG_945_8 + (reg - 8) * 4;
2836 
2837 	I915_WRITE(reg, val);
2838 	POSTING_READ(reg);
2839 }
2840 
2841 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2842 				struct drm_i915_gem_object *obj)
2843 {
2844 	drm_i915_private_t *dev_priv = dev->dev_private;
2845 	uint32_t val;
2846 
2847 	if (obj) {
2848 		u32 size = obj->gtt_space->size;
2849 		uint32_t pitch_val;
2850 
2851 		WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2852 		     (size & -size) != size ||
2853 		     (obj->gtt_offset & (size - 1)),
2854 		     "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2855 		     obj->gtt_offset, size);
2856 
2857 		pitch_val = obj->stride / 128;
2858 		pitch_val = ffs(pitch_val) - 1;
2859 
2860 		val = obj->gtt_offset;
2861 		if (obj->tiling_mode == I915_TILING_Y)
2862 			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2863 		val |= I830_FENCE_SIZE_BITS(size);
2864 		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2865 		val |= I830_FENCE_REG_VALID;
2866 	} else
2867 		val = 0;
2868 
2869 	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2870 	POSTING_READ(FENCE_REG_830_0 + reg * 4);
2871 }
2872 
2873 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2874 				 struct drm_i915_gem_object *obj)
2875 {
2876 	switch (INTEL_INFO(dev)->gen) {
2877 	case 7:
2878 	case 6:
2879 	case 5:
2880 	case 4: i965_write_fence_reg(dev, reg, obj); break;
2881 	case 3: i915_write_fence_reg(dev, reg, obj); break;
2882 	case 2: i830_write_fence_reg(dev, reg, obj); break;
2883 	default: break;
2884 	}
2885 }
2886 
2887 static inline int fence_number(struct drm_i915_private *dev_priv,
2888 			       struct drm_i915_fence_reg *fence)
2889 {
2890 	return fence - dev_priv->fence_regs;
2891 }
2892 
2893 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2894 					 struct drm_i915_fence_reg *fence,
2895 					 bool enable)
2896 {
2897 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2898 	int reg = fence_number(dev_priv, fence);
2899 
2900 	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2901 
2902 	if (enable) {
2903 		obj->fence_reg = reg;
2904 		fence->obj = obj;
2905 		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2906 	} else {
2907 		obj->fence_reg = I915_FENCE_REG_NONE;
2908 		fence->obj = NULL;
2909 		list_del_init(&fence->lru_list);
2910 	}
2911 }
2912 
2913 static int
2914 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2915 {
2916 	if (obj->last_fenced_seqno) {
2917 		int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2918 		if (ret)
2919 			return ret;
2920 
2921 		obj->last_fenced_seqno = 0;
2922 	}
2923 
2924 	/* Ensure that all CPU reads are completed before installing a fence
2925 	 * and all writes before removing the fence.
2926 	 */
2927 	if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2928 		DRM_WRITEMEMORYBARRIER();
2929 
2930 	obj->fenced_gpu_access = false;
2931 	return 0;
2932 }
2933 
2934 int
2935 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2936 {
2937 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2938 	int ret;
2939 
2940 	ret = i915_gem_object_flush_fence(obj);
2941 	if (ret)
2942 		return ret;
2943 
2944 	if (obj->fence_reg == I915_FENCE_REG_NONE)
2945 		return 0;
2946 
2947 	i915_gem_object_update_fence(obj,
2948 				     &dev_priv->fence_regs[obj->fence_reg],
2949 				     false);
2950 	i915_gem_object_fence_lost(obj);
2951 
2952 	return 0;
2953 }
2954 
2955 static struct drm_i915_fence_reg *
2956 i915_find_fence_reg(struct drm_device *dev)
2957 {
2958 	struct drm_i915_private *dev_priv = dev->dev_private;
2959 	struct drm_i915_fence_reg *reg, *avail;
2960 	int i;
2961 
2962 	/* First try to find a free reg */
2963 	avail = NULL;
2964 	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2965 		reg = &dev_priv->fence_regs[i];
2966 		if (!reg->obj)
2967 			return reg;
2968 
2969 		if (!reg->pin_count)
2970 			avail = reg;
2971 	}
2972 
2973 	if (avail == NULL)
2974 		return NULL;
2975 
2976 	/* None available, try to steal one or wait for a user to finish */
2977 	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2978 		if (reg->pin_count)
2979 			continue;
2980 
2981 		return reg;
2982 	}
2983 
2984 	return NULL;
2985 }
2986 
2987 /**
2988  * i915_gem_object_get_fence - set up fencing for an object
2989  * @obj: object to map through a fence reg
2990  *
2991  * When mapping objects through the GTT, userspace wants to be able to write
2992  * to them without having to worry about swizzling if the object is tiled.
2993  * This function walks the fence regs looking for a free one for @obj,
2994  * stealing one if it can't find any.
2995  *
2996  * It then sets up the reg based on the object's properties: address, pitch
2997  * and tiling format.
2998  *
2999  * For an untiled surface, this removes any existing fence.
3000  */
3001 int
3002 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3003 {
3004 	struct drm_device *dev = obj->base.dev;
3005 	struct drm_i915_private *dev_priv = dev->dev_private;
3006 	bool enable = obj->tiling_mode != I915_TILING_NONE;
3007 	struct drm_i915_fence_reg *reg;
3008 	int ret;
3009 
3010 	/* Have we updated the tiling parameters upon the object and so
3011 	 * will need to serialise the write to the associated fence register?
3012 	 */
3013 	if (obj->fence_dirty) {
3014 		ret = i915_gem_object_flush_fence(obj);
3015 		if (ret)
3016 			return ret;
3017 	}
3018 
3019 	/* Just update our place in the LRU if our fence is getting reused. */
3020 	if (obj->fence_reg != I915_FENCE_REG_NONE) {
3021 		reg = &dev_priv->fence_regs[obj->fence_reg];
3022 		if (!obj->fence_dirty) {
3023 			list_move_tail(&reg->lru_list,
3024 				       &dev_priv->mm.fence_list);
3025 			return 0;
3026 		}
3027 	} else if (enable) {
3028 		reg = i915_find_fence_reg(dev);
3029 		if (reg == NULL)
3030 			return -EDEADLK;
3031 
3032 		if (reg->obj) {
3033 			struct drm_i915_gem_object *old = reg->obj;
3034 
3035 			ret = i915_gem_object_flush_fence(old);
3036 			if (ret)
3037 				return ret;
3038 
3039 			i915_gem_object_fence_lost(old);
3040 		}
3041 	} else
3042 		return 0;
3043 
3044 	i915_gem_object_update_fence(obj, reg, enable);
3045 	obj->fence_dirty = false;
3046 
3047 	return 0;
3048 }
3049 
3050 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3051 				     struct drm_mm_node *gtt_space,
3052 				     unsigned long cache_level)
3053 {
3054 	struct drm_mm_node *other;
3055 
3056 	/* On non-LLC machines we have to be careful when putting differing
3057 	 * types of snoopable memory together to avoid the prefetcher
3058 	 * crossing memory domains and dieing.
3059 	 */
3060 	if (HAS_LLC(dev))
3061 		return true;
3062 
3063 	if (gtt_space == NULL)
3064 		return true;
3065 
3066 	if (list_empty(&gtt_space->node_list))
3067 		return true;
3068 
3069 	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3070 	if (other->allocated && !other->hole_follows && other->color != cache_level)
3071 		return false;
3072 
3073 	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3074 	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3075 		return false;
3076 
3077 	return true;
3078 }
3079 
3080 static void i915_gem_verify_gtt(struct drm_device *dev)
3081 {
3082 }
3083 
3084 /**
3085  * Finds free space in the GTT aperture and binds the object there.
3086  */
3087 static int
3088 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
3089 			    unsigned alignment,
3090 			    bool map_and_fenceable,
3091 			    bool nonblocking)
3092 {
3093 	struct drm_device *dev = obj->base.dev;
3094 	drm_i915_private_t *dev_priv = dev->dev_private;
3095 	struct drm_mm_node *node;
3096 	u32 size, fence_size, fence_alignment, unfenced_alignment;
3097 	bool mappable, fenceable;
3098 	int ret;
3099 
3100 	if (obj->madv != I915_MADV_WILLNEED) {
3101 		DRM_ERROR("Attempting to bind a purgeable object\n");
3102 		return -EINVAL;
3103 	}
3104 
3105 	fence_size = i915_gem_get_gtt_size(dev,
3106 					   obj->base.size,
3107 					   obj->tiling_mode);
3108 	fence_alignment = i915_gem_get_gtt_alignment(dev,
3109 						     obj->base.size,
3110 						     obj->tiling_mode);
3111 	unfenced_alignment =
3112 		i915_gem_get_unfenced_gtt_alignment(dev,
3113 						    obj->base.size,
3114 						    obj->tiling_mode);
3115 
3116 	if (alignment == 0)
3117 		alignment = map_and_fenceable ? fence_alignment :
3118 						unfenced_alignment;
3119 	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
3120 		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3121 		return -EINVAL;
3122 	}
3123 
3124 	size = map_and_fenceable ? fence_size : obj->base.size;
3125 
3126 	/* If the object is bigger than the entire aperture, reject it early
3127 	 * before evicting everything in a vain attempt to find space.
3128 	 */
3129 	if (obj->base.size >
3130 	    (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
3131 		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
3132 		return -E2BIG;
3133 	}
3134 
3135 	ret = i915_gem_object_get_pages(obj);
3136 	if (ret)
3137 		return ret;
3138 
3139 	i915_gem_object_pin_pages(obj);
3140 
3141 	node = kzalloc(sizeof(*node), GFP_KERNEL);
3142 	if (node == NULL) {
3143 		i915_gem_object_unpin_pages(obj);
3144 		/* XXX Until we've hooked up the shrinking functions. */
3145 		i915_gem_object_put_pages(obj);
3146 		return -ENOMEM;
3147 	}
3148 
3149  search_free:
3150 	if (map_and_fenceable)
3151 		ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space, node,
3152 							  size, alignment, obj->cache_level,
3153 							  0, dev_priv->mm.gtt_mappable_end);
3154 	else
3155 		ret = drm_mm_insert_node_generic(&dev_priv->mm.gtt_space, node,
3156 						 size, alignment, obj->cache_level);
3157 	if (ret) {
3158 		ret = i915_gem_evict_something(dev, size, alignment,
3159 					       obj->cache_level,
3160 					       map_and_fenceable,
3161 					       nonblocking);
3162 		if (ret == 0)
3163 			goto search_free;
3164 
3165 		i915_gem_object_unpin_pages(obj);
3166 		/* XXX Until we've hooked up the shrinking functions. */
3167 		i915_gem_object_put_pages(obj);
3168 		kfree(node);
3169 		return ret;
3170 	}
3171 	if (WARN_ON(!i915_gem_valid_gtt_space(dev, node, obj->cache_level))) {
3172 		i915_gem_object_unpin_pages(obj);
3173 		/* XXX Until we've hooked up the shrinking functions. */
3174 		i915_gem_object_put_pages(obj);
3175 		drm_mm_put_block(node);
3176 		return -EINVAL;
3177 	}
3178 
3179 	ret = i915_gem_gtt_prepare_object(obj);
3180 	if (ret) {
3181 		i915_gem_object_unpin_pages(obj);
3182 		/* XXX Until we've hooked up the shrinking functions. */
3183 		i915_gem_object_put_pages(obj);
3184 		drm_mm_put_block(node);
3185 		return ret;
3186 	}
3187 
3188 	list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
3189 	list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3190 
3191 	obj->gtt_space = node;
3192 	obj->gtt_offset = node->start;
3193 
3194 	fenceable =
3195 		node->size == fence_size &&
3196 		(node->start & (fence_alignment - 1)) == 0;
3197 
3198 	mappable =
3199 		obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
3200 
3201 	obj->map_and_fenceable = mappable && fenceable;
3202 
3203 	i915_gem_object_unpin_pages(obj);
3204 	trace_i915_gem_object_bind(obj, map_and_fenceable);
3205 	i915_gem_verify_gtt(dev);
3206 	return 0;
3207 }
3208 
3209 void
3210 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
3211 {
3212 	/* If we don't have a page list set up, then we're not pinned
3213 	 * to GPU, and we can ignore the cache flush because it'll happen
3214 	 * again at bind time.
3215 	 */
3216 	if (obj->pages == NULL)
3217 		return;
3218 
3219 	/* If the GPU is snooping the contents of the CPU cache,
3220 	 * we do not need to manually clear the CPU cache lines.  However,
3221 	 * the caches are only snooped when the render cache is
3222 	 * flushed/invalidated.  As we always have to emit invalidations
3223 	 * and flushes when moving into and out of the RENDER domain, correct
3224 	 * snooping behaviour occurs naturally as the result of our domain
3225 	 * tracking.
3226 	 */
3227 	if (obj->cache_level != I915_CACHE_NONE)
3228 		return;
3229 
3230 #if 0
3231 	trace_i915_gem_object_clflush(obj);
3232 
3233 	drm_clflush_sg(obj->pages);
3234 #else
3235 {
3236 	int page_count = obj->base.size >> PAGE_SHIFT;
3237 	int i;
3238 
3239 	for (i = 0; i < page_count; i++)
3240 		pmap_flush_page(VM_PAGE_TO_PHYS(obj->pages[i]));
3241 }
3242 #endif
3243 }
3244 
3245 /** Flushes the GTT write domain for the object if it's dirty. */
3246 static void
3247 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3248 {
3249 	uint32_t old_write_domain;
3250 
3251 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3252 		return;
3253 
3254 	/* No actual flushing is required for the GTT write domain.  Writes
3255 	 * to it immediately go to main memory as far as we know, so there's
3256 	 * no chipset flush.  It also doesn't land in render cache.
3257 	 *
3258 	 * However, we do have to enforce the order so that all writes through
3259 	 * the GTT land before any writes to the device, such as updates to
3260 	 * the GATT itself.
3261 	 */
3262 	DRM_WRITEMEMORYBARRIER();
3263 
3264 	old_write_domain = obj->base.write_domain;
3265 	obj->base.write_domain = 0;
3266 
3267 	trace_i915_gem_object_change_domain(obj,
3268 					    obj->base.read_domains,
3269 					    old_write_domain);
3270 }
3271 
3272 /** Flushes the CPU write domain for the object if it's dirty. */
3273 static void
3274 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3275 {
3276 	uint32_t old_write_domain;
3277 
3278 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3279 		return;
3280 
3281 	i915_gem_clflush_object(obj);
3282 	i915_gem_chipset_flush(obj->base.dev);
3283 	old_write_domain = obj->base.write_domain;
3284 	obj->base.write_domain = 0;
3285 
3286 	trace_i915_gem_object_change_domain(obj,
3287 					    obj->base.read_domains,
3288 					    old_write_domain);
3289 }
3290 
3291 /**
3292  * Moves a single object to the GTT read, and possibly write domain.
3293  *
3294  * This function returns when the move is complete, including waiting on
3295  * flushes to occur.
3296  */
3297 int
3298 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3299 {
3300 	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3301 	uint32_t old_write_domain, old_read_domains;
3302 	int ret;
3303 
3304 	/* Not valid to be called on unbound objects. */
3305 	if (obj->gtt_space == NULL)
3306 		return -EINVAL;
3307 
3308 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3309 		return 0;
3310 
3311 	ret = i915_gem_object_wait_rendering(obj, !write);
3312 	if (ret)
3313 		return ret;
3314 
3315 	i915_gem_object_flush_cpu_write_domain(obj);
3316 
3317 	old_write_domain = obj->base.write_domain;
3318 	old_read_domains = obj->base.read_domains;
3319 
3320 	/* It should now be out of any other write domains, and we can update
3321 	 * the domain values for our changes.
3322 	 */
3323 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3324 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3325 	if (write) {
3326 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3327 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3328 		obj->dirty = 1;
3329 	}
3330 
3331 	trace_i915_gem_object_change_domain(obj,
3332 					    old_read_domains,
3333 					    old_write_domain);
3334 
3335 	/* And bump the LRU for this access */
3336 	if (i915_gem_object_is_inactive(obj))
3337 		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3338 
3339 	return 0;
3340 }
3341 
3342 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3343 				    enum i915_cache_level cache_level)
3344 {
3345 	struct drm_device *dev = obj->base.dev;
3346 #ifdef notyet
3347 	drm_i915_private_t *dev_priv = dev->dev_private;
3348 #endif
3349 	int ret;
3350 
3351 	if (obj->cache_level == cache_level)
3352 		return 0;
3353 
3354 	if (obj->pin_count) {
3355 		DRM_DEBUG("can not change the cache level of pinned objects\n");
3356 		return -EBUSY;
3357 	}
3358 
3359 	if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3360 		ret = i915_gem_object_unbind(obj);
3361 		if (ret)
3362 			return ret;
3363 	}
3364 
3365 	if (obj->gtt_space) {
3366 		ret = i915_gem_object_finish_gpu(obj);
3367 		if (ret)
3368 			return ret;
3369 
3370 		i915_gem_object_finish_gtt(obj);
3371 
3372 		/* Before SandyBridge, you could not use tiling or fence
3373 		 * registers with snooped memory, so relinquish any fences
3374 		 * currently pointing to our region in the aperture.
3375 		 */
3376 		if (INTEL_INFO(dev)->gen < 6) {
3377 			ret = i915_gem_object_put_fence(obj);
3378 			if (ret)
3379 				return ret;
3380 		}
3381 
3382 		if (obj->has_global_gtt_mapping)
3383 			i915_gem_gtt_bind_object(obj, cache_level);
3384 #ifdef notyet
3385 		if (obj->has_aliasing_ppgtt_mapping)
3386 			i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3387 					       obj, cache_level);
3388 #endif
3389 
3390 		obj->gtt_space->color = cache_level;
3391 	}
3392 
3393 	if (cache_level == I915_CACHE_NONE) {
3394 		u32 old_read_domains, old_write_domain;
3395 
3396 		/* If we're coming from LLC cached, then we haven't
3397 		 * actually been tracking whether the data is in the
3398 		 * CPU cache or not, since we only allow one bit set
3399 		 * in obj->write_domain and have been skipping the clflushes.
3400 		 * Just set it to the CPU cache for now.
3401 		 */
3402 		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3403 		WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3404 
3405 		old_read_domains = obj->base.read_domains;
3406 		old_write_domain = obj->base.write_domain;
3407 
3408 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3409 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3410 
3411 		trace_i915_gem_object_change_domain(obj,
3412 						    old_read_domains,
3413 						    old_write_domain);
3414 	}
3415 
3416 	obj->cache_level = cache_level;
3417 	i915_gem_verify_gtt(dev);
3418 	return 0;
3419 }
3420 
3421 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3422 			       struct drm_file *file)
3423 {
3424 	struct drm_i915_gem_caching *args = data;
3425 	struct drm_i915_gem_object *obj;
3426 	int ret;
3427 
3428 	ret = i915_mutex_lock_interruptible(dev);
3429 	if (ret)
3430 		return ret;
3431 
3432 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3433 	if (&obj->base == NULL) {
3434 		ret = -ENOENT;
3435 		goto unlock;
3436 	}
3437 
3438 	args->caching = obj->cache_level != I915_CACHE_NONE;
3439 
3440 	drm_gem_object_unreference(&obj->base);
3441 unlock:
3442 	DRM_UNLOCK();
3443 	return ret;
3444 }
3445 
3446 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3447 			       struct drm_file *file)
3448 {
3449 	struct drm_i915_gem_caching *args = data;
3450 	struct drm_i915_gem_object *obj;
3451 	enum i915_cache_level level;
3452 	int ret;
3453 
3454 	switch (args->caching) {
3455 	case I915_CACHING_NONE:
3456 		level = I915_CACHE_NONE;
3457 		break;
3458 	case I915_CACHING_CACHED:
3459 		level = I915_CACHE_LLC;
3460 		break;
3461 	default:
3462 		return -EINVAL;
3463 	}
3464 
3465 	ret = i915_mutex_lock_interruptible(dev);
3466 	if (ret)
3467 		return ret;
3468 
3469 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3470 	if (&obj->base == NULL) {
3471 		ret = -ENOENT;
3472 		goto unlock;
3473 	}
3474 
3475 	ret = i915_gem_object_set_cache_level(obj, level);
3476 
3477 	drm_gem_object_unreference(&obj->base);
3478 unlock:
3479 	DRM_UNLOCK();
3480 	return ret;
3481 }
3482 
3483 /*
3484  * Prepare buffer for display plane (scanout, cursors, etc).
3485  * Can be called from an uninterruptible phase (modesetting) and allows
3486  * any flushes to be pipelined (for pageflips).
3487  */
3488 int
3489 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3490 				     u32 alignment,
3491 				     struct intel_ring_buffer *pipelined)
3492 {
3493 	u32 old_read_domains, old_write_domain;
3494 	int ret;
3495 
3496 	if (pipelined != obj->ring) {
3497 		ret = i915_gem_object_sync(obj, pipelined);
3498 		if (ret)
3499 			return ret;
3500 	}
3501 
3502 	/* The display engine is not coherent with the LLC cache on gen6.  As
3503 	 * a result, we make sure that the pinning that is about to occur is
3504 	 * done with uncached PTEs. This is lowest common denominator for all
3505 	 * chipsets.
3506 	 *
3507 	 * However for gen6+, we could do better by using the GFDT bit instead
3508 	 * of uncaching, which would allow us to flush all the LLC-cached data
3509 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3510 	 */
3511 	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3512 	if (ret)
3513 		return ret;
3514 
3515 	/* As the user may map the buffer once pinned in the display plane
3516 	 * (e.g. libkms for the bootup splash), we have to ensure that we
3517 	 * always use map_and_fenceable for all scanout buffers.
3518 	 */
3519 	ret = i915_gem_object_pin(obj, alignment, true, false);
3520 	if (ret)
3521 		return ret;
3522 
3523 	i915_gem_object_flush_cpu_write_domain(obj);
3524 
3525 	old_write_domain = obj->base.write_domain;
3526 	old_read_domains = obj->base.read_domains;
3527 
3528 	/* It should now be out of any other write domains, and we can update
3529 	 * the domain values for our changes.
3530 	 */
3531 	obj->base.write_domain = 0;
3532 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3533 
3534 	trace_i915_gem_object_change_domain(obj,
3535 					    old_read_domains,
3536 					    old_write_domain);
3537 
3538 	return 0;
3539 }
3540 
3541 int
3542 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3543 {
3544 	int ret;
3545 
3546 	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3547 		return 0;
3548 
3549 	ret = i915_gem_object_wait_rendering(obj, false);
3550 	if (ret)
3551 		return ret;
3552 
3553 	/* Ensure that we invalidate the GPU's caches and TLBs. */
3554 	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3555 	return 0;
3556 }
3557 
3558 /**
3559  * Moves a single object to the CPU read, and possibly write domain.
3560  *
3561  * This function returns when the move is complete, including waiting on
3562  * flushes to occur.
3563  */
3564 int
3565 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3566 {
3567 	uint32_t old_write_domain, old_read_domains;
3568 	int ret;
3569 
3570 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3571 		return 0;
3572 
3573 	ret = i915_gem_object_wait_rendering(obj, !write);
3574 	if (ret)
3575 		return ret;
3576 
3577 	i915_gem_object_flush_gtt_write_domain(obj);
3578 
3579 	old_write_domain = obj->base.write_domain;
3580 	old_read_domains = obj->base.read_domains;
3581 
3582 	/* Flush the CPU cache if it's still invalid. */
3583 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3584 		i915_gem_clflush_object(obj);
3585 
3586 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3587 	}
3588 
3589 	/* It should now be out of any other write domains, and we can update
3590 	 * the domain values for our changes.
3591 	 */
3592 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3593 
3594 	/* If we're writing through the CPU, then the GPU read domains will
3595 	 * need to be invalidated at next use.
3596 	 */
3597 	if (write) {
3598 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3599 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3600 	}
3601 
3602 	trace_i915_gem_object_change_domain(obj,
3603 					    old_read_domains,
3604 					    old_write_domain);
3605 
3606 	return 0;
3607 }
3608 
3609 /* Throttle our rendering by waiting until the ring has completed our requests
3610  * emitted over 20 msec ago.
3611  *
3612  * Note that if we were to use the current jiffies each time around the loop,
3613  * we wouldn't escape the function with any frames outstanding if the time to
3614  * render a frame was over 20ms.
3615  *
3616  * This should get us reasonable parallelism between CPU and GPU but also
3617  * relatively low latency when blocking on a particular request to finish.
3618  */
3619 int
3620 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3621 {
3622 	struct drm_i915_private *dev_priv = dev->dev_private;
3623 	struct drm_i915_file_private *file_priv = file->driver_priv;
3624 	unsigned long recent_enough = ticks - msecs_to_jiffies(20);
3625 	struct drm_i915_gem_request *request;
3626 	struct intel_ring_buffer *ring = NULL;
3627 	u32 seqno = 0;
3628 	int ret;
3629 
3630 	if (atomic_read(&dev_priv->mm.wedged))
3631 		return -EIO;
3632 
3633 	mtx_enter(&file_priv->mm.lock);
3634 	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3635 		if (time_after_eq(request->emitted_ticks, recent_enough))
3636 			break;
3637 
3638 		ring = request->ring;
3639 		seqno = request->seqno;
3640 	}
3641 	mtx_leave(&file_priv->mm.lock);
3642 
3643 	if (seqno == 0)
3644 		return 0;
3645 
3646 	ret = __wait_seqno(ring, seqno, true, NULL);
3647 	if (ret == 0)
3648 		timeout_add_sec(&dev_priv->mm.retire_timer, 0);
3649 
3650 	return ret;
3651 }
3652 
3653 int
3654 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3655 		    uint32_t alignment,
3656 		    bool map_and_fenceable,
3657 		    bool nonblocking)
3658 {
3659 	int ret;
3660 
3661 	if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3662 		return -EBUSY;
3663 
3664 	if (obj->gtt_space != NULL) {
3665 		if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3666 		    (map_and_fenceable && !obj->map_and_fenceable)) {
3667 			WARN(obj->pin_count,
3668 			     "bo is already pinned with incorrect alignment:"
3669 			     " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3670 			     " obj->map_and_fenceable=%d\n",
3671 			     obj->gtt_offset, alignment,
3672 			     map_and_fenceable,
3673 			     obj->map_and_fenceable);
3674 			ret = i915_gem_object_unbind(obj);
3675 			if (ret)
3676 				return ret;
3677 		}
3678 	}
3679 
3680 	if (obj->gtt_space == NULL) {
3681 #ifdef notyet
3682 		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3683 #endif
3684 
3685 		ret = i915_gem_object_bind_to_gtt(obj, alignment,
3686 						  map_and_fenceable,
3687 						  nonblocking);
3688 		if (ret)
3689 			return ret;
3690 
3691 #ifdef notyet
3692 		if (!dev_priv->mm.aliasing_ppgtt)
3693 #endif
3694 			i915_gem_gtt_bind_object(obj, obj->cache_level);
3695 	}
3696 
3697 	if (!obj->has_global_gtt_mapping && map_and_fenceable)
3698 		i915_gem_gtt_bind_object(obj, obj->cache_level);
3699 
3700 	obj->pin_count++;
3701 	obj->pin_mappable |= map_and_fenceable;
3702 
3703 	return 0;
3704 }
3705 
3706 void
3707 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3708 {
3709 	BUG_ON(obj->pin_count == 0);
3710 	BUG_ON(obj->gtt_space == NULL);
3711 
3712 	if (--obj->pin_count == 0)
3713 		obj->pin_mappable = false;
3714 }
3715 
3716 int
3717 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3718 		   struct drm_file *file)
3719 {
3720 	struct drm_i915_gem_pin *args = data;
3721 	struct drm_i915_gem_object *obj;
3722 	int ret;
3723 
3724 	ret = i915_mutex_lock_interruptible(dev);
3725 	if (ret)
3726 		return ret;
3727 
3728 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3729 	if (&obj->base == NULL) {
3730 		ret = -ENOENT;
3731 		goto unlock;
3732 	}
3733 
3734 	if (obj->madv != I915_MADV_WILLNEED) {
3735 		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3736 		ret = -EINVAL;
3737 		goto out;
3738 	}
3739 
3740 	if (obj->pin_filp != NULL && obj->pin_filp != file) {
3741 		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3742 			  args->handle);
3743 		ret = -EINVAL;
3744 		goto out;
3745 	}
3746 
3747 	if (obj->user_pin_count == 0) {
3748 		ret = i915_gem_object_pin(obj, args->alignment, true, false);
3749 		if (ret)
3750 			goto out;
3751 	}
3752 
3753 	obj->user_pin_count++;
3754 	obj->pin_filp = file;
3755 
3756 	/* XXX - flush the CPU caches for pinned objects
3757 	 * as the X server doesn't manage domains yet
3758 	 */
3759 	i915_gem_object_flush_cpu_write_domain(obj);
3760 	args->offset = obj->gtt_offset;
3761 out:
3762 	drm_gem_object_unreference(&obj->base);
3763 unlock:
3764 	DRM_UNLOCK();
3765 	return ret;
3766 }
3767 
3768 int
3769 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3770 		     struct drm_file *file)
3771 {
3772 	struct drm_i915_gem_pin *args = data;
3773 	struct drm_i915_gem_object *obj;
3774 	int ret;
3775 
3776 	ret = i915_mutex_lock_interruptible(dev);
3777 	if (ret)
3778 		return ret;
3779 
3780 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3781 	if (&obj->base == NULL) {
3782 		ret = -ENOENT;
3783 		goto unlock;
3784 	}
3785 
3786 	if (obj->pin_filp != file) {
3787 		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3788 			  args->handle);
3789 		ret = -EINVAL;
3790 		goto out;
3791 	}
3792 	obj->user_pin_count--;
3793 	if (obj->user_pin_count == 0) {
3794 		obj->pin_filp = NULL;
3795 		i915_gem_object_unpin(obj);
3796 	}
3797 
3798 out:
3799 	drm_gem_object_unreference(&obj->base);
3800 unlock:
3801 	DRM_UNLOCK();
3802 	return ret;
3803 }
3804 
3805 int
3806 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3807 		    struct drm_file *file)
3808 {
3809 	struct drm_i915_gem_busy *args = data;
3810 	struct drm_i915_gem_object *obj;
3811 	int ret;
3812 
3813 	ret = i915_mutex_lock_interruptible(dev);
3814 	if (ret)
3815 		return ret;
3816 
3817 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3818 	if (&obj->base == NULL) {
3819 		ret = -ENOENT;
3820 		goto unlock;
3821 	}
3822 
3823 	/* Count all active objects as busy, even if they are currently not used
3824 	 * by the gpu. Users of this interface expect objects to eventually
3825 	 * become non-busy without any further actions, therefore emit any
3826 	 * necessary flushes here.
3827 	 */
3828 	ret = i915_gem_object_flush_active(obj);
3829 
3830 	args->busy = obj->active;
3831 	if (obj->ring) {
3832 //		BUILD_BUG_ON(I915_NUM_RINGS > 16);
3833 		args->busy |= intel_ring_flag(obj->ring) << 16;
3834 	}
3835 
3836 	drm_gem_object_unreference(&obj->base);
3837 unlock:
3838 	DRM_UNLOCK();
3839 	return ret;
3840 }
3841 
3842 #ifdef notyet
3843 int
3844 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3845 			struct drm_file *file_priv)
3846 {
3847 	return i915_gem_ring_throttle(dev, file_priv);
3848 }
3849 #endif
3850 
3851 int
3852 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3853 		       struct drm_file *file_priv)
3854 {
3855 	struct drm_i915_gem_madvise *args = data;
3856 	struct drm_i915_gem_object *obj;
3857 	int ret;
3858 
3859 	switch (args->madv) {
3860 	case I915_MADV_DONTNEED:
3861 	case I915_MADV_WILLNEED:
3862 	    break;
3863 	default:
3864 	    return -EINVAL;
3865 	}
3866 
3867 	ret = i915_mutex_lock_interruptible(dev);
3868 	if (ret)
3869 		return ret;
3870 
3871 	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3872 	if (&obj->base == NULL) {
3873 		ret = -ENOENT;
3874 		goto unlock;
3875 	}
3876 
3877 	if (obj->pin_count) {
3878 		ret = -EINVAL;
3879 		goto out;
3880 	}
3881 
3882 	if (obj->madv != __I915_MADV_PURGED)
3883 		obj->madv = args->madv;
3884 
3885 	/* if the object is no longer attached, discard its backing storage */
3886 	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3887 		i915_gem_object_truncate(obj);
3888 
3889 	args->retained = obj->madv != __I915_MADV_PURGED;
3890 
3891 out:
3892 	drm_gem_object_unreference(&obj->base);
3893 unlock:
3894 	DRM_UNLOCK();
3895 	return ret;
3896 }
3897 
3898 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3899 			  const struct drm_i915_gem_object_ops *ops)
3900 {
3901 	INIT_LIST_HEAD(&obj->mm_list);
3902 	INIT_LIST_HEAD(&obj->gtt_list);
3903 	INIT_LIST_HEAD(&obj->ring_list);
3904 	INIT_LIST_HEAD(&obj->exec_list);
3905 
3906 	obj->ops = ops;
3907 
3908 	obj->fence_reg = I915_FENCE_REG_NONE;
3909 	obj->madv = I915_MADV_WILLNEED;
3910 	/* Avoid an unnecessary call to unbind on the first bind. */
3911 	obj->map_and_fenceable = true;
3912 
3913 	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3914 }
3915 
3916 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3917 	.get_pages = i915_gem_object_get_pages_gtt,
3918 	.put_pages = i915_gem_object_put_pages_gtt,
3919 };
3920 
3921 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3922 						  size_t size)
3923 {
3924 	struct drm_i915_gem_object *obj;
3925 
3926 	obj = pool_get(&dev->objpl, PR_WAITOK | PR_ZERO);
3927 	if (obj == NULL)
3928 		return NULL;
3929 
3930 	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3931 		pool_put(&dev->objpl, obj);
3932 		return NULL;
3933 	}
3934 
3935 	i915_gem_object_init(obj, &i915_gem_object_ops);
3936 
3937 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3938 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3939 
3940 	if (HAS_LLC(dev)) {
3941 		/* On some devices, we can have the GPU use the LLC (the CPU
3942 		 * cache) for about a 10% performance improvement
3943 		 * compared to uncached.  Graphics requests other than
3944 		 * display scanout are coherent with the CPU in
3945 		 * accessing this cache.  This means in this mode we
3946 		 * don't need to clflush on the CPU side, and on the
3947 		 * GPU side we only need to flush internal caches to
3948 		 * get data visible to the CPU.
3949 		 *
3950 		 * However, we maintain the display planes as UC, and so
3951 		 * need to rebind when first used as such.
3952 		 */
3953 		obj->cache_level = I915_CACHE_LLC;
3954 	} else
3955 		obj->cache_level = I915_CACHE_NONE;
3956 
3957 	return obj;
3958 }
3959 
3960 int i915_gem_init_object(struct drm_gem_object *obj)
3961 {
3962 	BUG();
3963 
3964 	return 0;
3965 }
3966 
3967 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3968 {
3969 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3970 	struct drm_device *dev = obj->base.dev;
3971 	drm_i915_private_t *dev_priv = dev->dev_private;
3972 
3973 	if (obj->phys_obj)
3974 		i915_gem_detach_phys_object(dev, obj);
3975 
3976 	obj->pin_count = 0;
3977 	i915_gem_object_unbind(obj);
3978 
3979 	obj->pages_pin_count = 0;
3980 	i915_gem_object_put_pages(obj);
3981 	i915_gem_object_free_mmap_offset(obj);
3982 
3983 	BUG_ON(obj->pages);
3984 
3985 	drm_gem_object_release(&obj->base);
3986 	i915_gem_info_remove_obj(dev_priv, obj->base.size);
3987 
3988 	kfree(obj->bit_17);
3989 	pool_put(&dev->objpl, obj);
3990 }
3991 
3992 int
3993 i915_gem_idle(struct drm_device *dev)
3994 {
3995 	drm_i915_private_t *dev_priv = dev->dev_private;
3996 	int ret;
3997 
3998 	DRM_LOCK();
3999 
4000 	if (dev_priv->mm.suspended) {
4001 		DRM_UNLOCK();
4002 		return 0;
4003 	}
4004 
4005 	ret = i915_gpu_idle(dev);
4006 	if (ret) {
4007 		DRM_UNLOCK();
4008 		return ret;
4009 	}
4010 	i915_gem_retire_requests(dev);
4011 
4012 	/* Under UMS, be paranoid and evict. */
4013 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4014 		i915_gem_evict_everything(dev);
4015 
4016 	i915_gem_reset_fences(dev);
4017 
4018 	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
4019 	 * We need to replace this with a semaphore, or something.
4020 	 * And not confound mm.suspended!
4021 	 */
4022 	dev_priv->mm.suspended = 1;
4023 	timeout_del(&dev_priv->hangcheck_timer);
4024 
4025 	i915_kernel_lost_context(dev);
4026 	i915_gem_cleanup_ringbuffer(dev);
4027 
4028 	DRM_UNLOCK();
4029 
4030 	/* Cancel the retire work handler, which should be idle now. */
4031 	timeout_del(&dev_priv->mm.retire_timer);
4032 	task_del(dev_priv->mm.retire_taskq, &dev_priv->mm.retire_task);
4033 
4034 	return 0;
4035 }
4036 
4037 #ifdef notyet
4038 void i915_gem_l3_remap(struct drm_device *dev)
4039 {
4040 	drm_i915_private_t *dev_priv = dev->dev_private;
4041 	u32 misccpctl;
4042 	int i;
4043 
4044 	if (!HAS_L3_GPU_CACHE(dev))
4045 		return;
4046 
4047 	if (!dev_priv->l3_parity.remap_info)
4048 		return;
4049 
4050 	misccpctl = I915_READ(GEN7_MISCCPCTL);
4051 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
4052 	POSTING_READ(GEN7_MISCCPCTL);
4053 
4054 	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4055 		u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
4056 		if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
4057 			DRM_DEBUG("0x%x was already programmed to %x\n",
4058 				  GEN7_L3LOG_BASE + i, remap);
4059 		if (remap && !dev_priv->l3_parity.remap_info[i/4])
4060 			DRM_DEBUG_DRIVER("Clearing remapped register\n");
4061 		I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
4062 	}
4063 
4064 	/* Make sure all the writes land before disabling dop clock gating */
4065 	POSTING_READ(GEN7_L3LOG_BASE);
4066 
4067 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
4068 }
4069 #endif /* notyet */
4070 
4071 void i915_gem_init_swizzling(struct drm_device *dev)
4072 {
4073 	drm_i915_private_t *dev_priv = dev->dev_private;
4074 
4075 	if (INTEL_INFO(dev)->gen < 5 ||
4076 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4077 		return;
4078 
4079 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4080 				 DISP_TILE_SURFACE_SWIZZLING);
4081 
4082 	if (IS_GEN5(dev))
4083 		return;
4084 
4085 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4086 	if (IS_GEN6(dev))
4087 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4088 	else
4089 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4090 }
4091 
4092 static bool
4093 intel_enable_blt(struct drm_device *dev)
4094 {
4095 	if (!HAS_BLT(dev))
4096 		return false;
4097 
4098 #ifdef notyet
4099 	/* The blitter was dysfunctional on early prototypes */
4100 	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4101 		DRM_INFO("BLT not supported on this pre-production hardware;"
4102 			 " graphics performance will be degraded.\n");
4103 		return false;
4104 	}
4105 #endif
4106 
4107 	return true;
4108 }
4109 
4110 int
4111 i915_gem_init_hw(struct drm_device *dev)
4112 {
4113 	drm_i915_private_t *dev_priv = dev->dev_private;
4114 	int ret;
4115 
4116 #ifdef notyet
4117 	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4118 		return -EIO;
4119 #endif
4120 
4121 	if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
4122 		I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
4123 
4124 #ifdef notyet
4125 	i915_gem_l3_remap(dev);
4126 #endif
4127 
4128 	i915_gem_init_swizzling(dev);
4129 
4130 	ret = intel_init_render_ring_buffer(dev);
4131 	if (ret)
4132 		return ret;
4133 
4134 	if (HAS_BSD(dev)) {
4135 		ret = intel_init_bsd_ring_buffer(dev);
4136 		if (ret)
4137 			goto cleanup_render_ring;
4138 	}
4139 
4140 	if (intel_enable_blt(dev)) {
4141 		ret = intel_init_blt_ring_buffer(dev);
4142 		if (ret)
4143 			goto cleanup_bsd_ring;
4144 	}
4145 
4146 	dev_priv->next_seqno = 1;
4147 
4148 	/*
4149 	 * XXX: There was some w/a described somewhere suggesting loading
4150 	 * contexts before PPGTT.
4151 	 */
4152 	i915_gem_context_init(dev);
4153 #ifdef notyet
4154 	i915_gem_init_ppgtt(dev);
4155 #endif
4156 
4157 	return 0;
4158 
4159 cleanup_bsd_ring:
4160 	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4161 cleanup_render_ring:
4162 	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4163 	return ret;
4164 }
4165 
4166 #ifdef notyet
4167 static bool
4168 intel_enable_ppgtt(struct drm_device *dev)
4169 {
4170 	if (i915_enable_ppgtt >= 0)
4171 		return i915_enable_ppgtt;
4172 
4173 #ifdef CONFIG_INTEL_IOMMU
4174 	/* Disable ppgtt on SNB if VT-d is on. */
4175 	if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
4176 		return false;
4177 #endif
4178 
4179 	return true;
4180 }
4181 #endif /* notyet */
4182 
4183 int i915_gem_init(struct drm_device *dev)
4184 {
4185 	unsigned long gtt_size, mappable_size;
4186 	int ret;
4187 
4188 	gtt_size = dev->agp->info.ai_aperture_size;
4189 	mappable_size = dev->agp->info.ai_aperture_size;
4190 
4191 	DRM_LOCK();
4192 #ifdef notyet
4193 	if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
4194 		/* PPGTT pdes are stolen from global gtt ptes, so shrink the
4195 		 * aperture accordingly when using aliasing ppgtt. */
4196 		gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
4197 
4198 		i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
4199 
4200 		ret = i915_gem_init_aliasing_ppgtt(dev);
4201 		if (ret) {
4202 			mutex_unlock(&dev->struct_mutex);
4203 			return ret;
4204 		}
4205 	} else {
4206 #endif
4207 		/* Let GEM Manage all of the aperture.
4208 		 *
4209 		 * However, leave one page at the end still bound to the scratch
4210 		 * page.  There are a number of places where the hardware
4211 		 * apparently prefetches past the end of the object, and we've
4212 		 * seen multiple hangs with the GPU head pointer stuck in a
4213 		 * batchbuffer bound at the last page of the aperture.  One page
4214 		 * should be enough to keep any prefetching inside of the
4215 		 * aperture.
4216 		 */
4217 		i915_gem_init_global_gtt(dev, 0, mappable_size,
4218 					 gtt_size);
4219 #ifdef notyet
4220 	}
4221 #endif
4222 
4223 	ret = i915_gem_init_hw(dev);
4224 	DRM_UNLOCK();
4225 	if (ret) {
4226 		i915_gem_cleanup_aliasing_ppgtt(dev);
4227 		return ret;
4228 	}
4229 
4230 #ifdef __linux__
4231 	/* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4232 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4233 		dev_priv->dri1.allow_batchbuffer = 1;
4234 #endif
4235 	return 0;
4236 }
4237 
4238 void
4239 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4240 {
4241 	drm_i915_private_t *dev_priv = dev->dev_private;
4242 	struct intel_ring_buffer *ring;
4243 	int i;
4244 
4245 	for_each_ring(ring, dev_priv, i)
4246 		intel_cleanup_ring_buffer(ring);
4247 }
4248 
4249 int
4250 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4251 		       struct drm_file *file_priv)
4252 {
4253 	drm_i915_private_t *dev_priv = dev->dev_private;
4254 	int ret;
4255 
4256 	if (drm_core_check_feature(dev, DRIVER_MODESET))
4257 		return 0;
4258 
4259 	if (atomic_read(&dev_priv->mm.wedged)) {
4260 		DRM_ERROR("Reenabling wedged hardware, good luck\n");
4261 		atomic_set(&dev_priv->mm.wedged, 0);
4262 	}
4263 
4264 	DRM_LOCK();
4265 	dev_priv->mm.suspended = 0;
4266 
4267 	ret = i915_gem_init_hw(dev);
4268 	if (ret != 0) {
4269 		DRM_UNLOCK();
4270 		return ret;
4271 	}
4272 
4273 	BUG_ON(!list_empty(&dev_priv->mm.active_list));
4274 	DRM_UNLOCK();
4275 
4276 	ret = drm_irq_install(dev);
4277 	if (ret)
4278 		goto cleanup_ringbuffer;
4279 
4280 	return 0;
4281 
4282 cleanup_ringbuffer:
4283 	DRM_LOCK();
4284 	i915_gem_cleanup_ringbuffer(dev);
4285 	dev_priv->mm.suspended = 1;
4286 	DRM_UNLOCK();
4287 
4288 	return ret;
4289 }
4290 
4291 int
4292 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4293 		       struct drm_file *file_priv)
4294 {
4295 	if (drm_core_check_feature(dev, DRIVER_MODESET))
4296 		return 0;
4297 
4298 	drm_irq_uninstall(dev);
4299 	return i915_gem_idle(dev);
4300 }
4301 
4302 #ifdef notyet
4303 void
4304 i915_gem_lastclose(struct drm_device *dev)
4305 {
4306 	int ret;
4307 
4308 	if (drm_core_check_feature(dev, DRIVER_MODESET))
4309 		return;
4310 
4311 	ret = i915_gem_idle(dev);
4312 	if (ret)
4313 		DRM_ERROR("failed to idle hardware: %d\n", ret);
4314 }
4315 #endif /* notyet */
4316 
4317 static void
4318 init_ring_lists(struct intel_ring_buffer *ring)
4319 {
4320 	INIT_LIST_HEAD(&ring->active_list);
4321 	INIT_LIST_HEAD(&ring->request_list);
4322 }
4323 
4324 void
4325 i915_gem_load(struct drm_device *dev)
4326 {
4327 	int i;
4328 	drm_i915_private_t *dev_priv = dev->dev_private;
4329 
4330 	INIT_LIST_HEAD(&dev_priv->mm.active_list);
4331 	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4332 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4333 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4334 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4335 	for (i = 0; i < I915_NUM_RINGS; i++)
4336 		init_ring_lists(&dev_priv->ring[i]);
4337 	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4338 		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4339 	task_set(&dev_priv->mm.retire_task, i915_gem_retire_work_handler,
4340 	    dev_priv, NULL);
4341 	timeout_set(&dev_priv->mm.retire_timer, inteldrm_timeout, dev_priv);
4342 #if 0
4343 	init_completion(&dev_priv->error_completion);
4344 #else
4345 	dev_priv->error_completion = 0;
4346 #endif
4347 
4348 	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4349 	if (IS_GEN3(dev)) {
4350 		I915_WRITE(MI_ARB_STATE,
4351 			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4352 	}
4353 
4354 	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4355 
4356 	/* Old X drivers will take 0-2 for front, back, depth buffers */
4357 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4358 		dev_priv->fence_reg_start = 3;
4359 
4360 	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4361 		dev_priv->num_fence_regs = 16;
4362 	else
4363 		dev_priv->num_fence_regs = 8;
4364 
4365 	/* Initialize fence registers to zero */
4366 	i915_gem_reset_fences(dev);
4367 
4368 	i915_gem_detect_bit_6_swizzle(dev);
4369 #if 0
4370 	init_waitqueue_head(&dev_priv->pending_flip_queue);
4371 #endif
4372 
4373 	dev_priv->mm.interruptible = true;
4374 
4375 #if 0
4376 	dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4377 	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4378 	register_shrinker(&dev_priv->mm.inactive_shrinker);
4379 #endif
4380 }
4381 
4382 /*
4383  * Create a physically contiguous memory object for this object
4384  * e.g. for cursor + overlay regs
4385  */
4386 static int i915_gem_init_phys_object(struct drm_device *dev,
4387 				     int id, int size, int align)
4388 {
4389 	drm_i915_private_t *dev_priv = dev->dev_private;
4390 	struct drm_i915_gem_phys_object *phys_obj;
4391 	int ret;
4392 
4393 	if (dev_priv->mm.phys_objs[id - 1] || !size)
4394 		return 0;
4395 
4396 	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4397 	if (!phys_obj)
4398 		return -ENOMEM;
4399 
4400 	phys_obj->id = id;
4401 
4402 	phys_obj->handle = drm_dmamem_alloc(dev->dmat, size, align, 1, size, BUS_DMA_NOCACHE, 0);
4403 	if (!phys_obj->handle) {
4404 		ret = -ENOMEM;
4405 		goto kfree_obj;
4406 	}
4407 
4408 	dev_priv->mm.phys_objs[id - 1] = phys_obj;
4409 
4410 	return 0;
4411 kfree_obj:
4412 	kfree(phys_obj);
4413 	return ret;
4414 }
4415 
4416 #ifdef notyet
4417 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4418 {
4419 	drm_i915_private_t *dev_priv = dev->dev_private;
4420 	struct drm_i915_gem_phys_object *phys_obj;
4421 
4422 	if (!dev_priv->mm.phys_objs[id - 1])
4423 		return;
4424 
4425 	phys_obj = dev_priv->mm.phys_objs[id - 1];
4426 	if (phys_obj->cur_obj) {
4427 		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4428 	}
4429 
4430 #ifdef CONFIG_X86
4431 	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4432 #endif
4433 	drm_pci_free(dev, phys_obj->handle);
4434 	kfree(phys_obj);
4435 	dev_priv->mm.phys_objs[id - 1] = NULL;
4436 }
4437 
4438 void i915_gem_free_all_phys_object(struct drm_device *dev)
4439 {
4440 	int i;
4441 
4442 	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4443 		i915_gem_free_phys_object(dev, i);
4444 }
4445 #endif /* notyet */
4446 
4447 void i915_gem_detach_phys_object(struct drm_device *dev,
4448 				 struct drm_i915_gem_object *obj)
4449 {
4450 	char *vaddr;
4451 	int i;
4452 	int page_count;
4453 
4454 	if (!obj->phys_obj)
4455 		return;
4456 	vaddr = obj->phys_obj->handle->kva;
4457 
4458 	page_count = obj->base.size / PAGE_SIZE;
4459 	for (i = 0; i < page_count; i++) {
4460 #ifdef notyet
4461 		struct page *page = shmem_read_mapping_page(mapping, i);
4462 		if (!IS_ERR(page)) {
4463 			char *dst = kmap_atomic(page);
4464 			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4465 			kunmap_atomic(dst);
4466 
4467 			drm_clflush_pages(&page, 1);
4468 
4469 			set_page_dirty(page);
4470 			mark_page_accessed(page);
4471 			page_cache_release(page);
4472 		}
4473 #endif
4474 	}
4475 	i915_gem_chipset_flush(dev);
4476 
4477 	obj->phys_obj->cur_obj = NULL;
4478 	obj->phys_obj = NULL;
4479 }
4480 
4481 int
4482 i915_gem_attach_phys_object(struct drm_device *dev,
4483 			    struct drm_i915_gem_object *obj,
4484 			    int id,
4485 			    int align)
4486 {
4487 	drm_i915_private_t *dev_priv = dev->dev_private;
4488 	int ret = 0;
4489 	int page_count;
4490 	int i;
4491 
4492 	if (id > I915_MAX_PHYS_OBJECT)
4493 		return -EINVAL;
4494 
4495 	if (obj->phys_obj) {
4496 		if (obj->phys_obj->id == id)
4497 			return 0;
4498 		i915_gem_detach_phys_object(dev, obj);
4499 	}
4500 
4501 	/* create a new object */
4502 	if (!dev_priv->mm.phys_objs[id - 1]) {
4503 		ret = i915_gem_init_phys_object(dev, id,
4504 						obj->base.size, align);
4505 		if (ret) {
4506 			DRM_ERROR("failed to init phys object %d size: %zu\n",
4507 				  id, obj->base.size);
4508 			return ret;
4509 		}
4510 	}
4511 
4512 	/* bind to the object */
4513 	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4514 	obj->phys_obj->cur_obj = obj;
4515 
4516 	page_count = obj->base.size / PAGE_SIZE;
4517 
4518 	for (i = 0; i < page_count; i++) {
4519 #ifdef notyet
4520 		struct page *page;
4521 		char *dst, *src;
4522 
4523 		page = shmem_read_mapping_page(mapping, i);
4524 		if (IS_ERR(page))
4525 			return PTR_ERR(page);
4526 
4527 		src = kmap_atomic(page);
4528 		dst = obj->phys_obj->handle->kva + (i * PAGE_SIZE);
4529 		memcpy(dst, src, PAGE_SIZE);
4530 		kunmap_atomic(src);
4531 
4532 		mark_page_accessed(page);
4533 		page_cache_release(page);
4534 #endif
4535 	}
4536 
4537 	return 0;
4538 }
4539 
4540 static int
4541 i915_gem_phys_pwrite(struct drm_device *dev,
4542 		     struct drm_i915_gem_object *obj,
4543 		     struct drm_i915_gem_pwrite *args,
4544 		     struct drm_file *file_priv)
4545 {
4546 	void *vaddr = obj->phys_obj->handle->kva + args->offset;
4547 	int ret;
4548 
4549 	ret = -copyin((char *)(uintptr_t)args->data_ptr,
4550 	    vaddr, args->size);
4551 
4552 	i915_gem_chipset_flush(dev);
4553 
4554 	return ret;
4555 }
4556 
4557 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4558 {
4559 	struct drm_i915_file_private *file_priv = file->driver_priv;
4560 
4561 	/* Clean up our request list when the client is going away, so that
4562 	 * later retire_requests won't dereference our soon-to-be-gone
4563 	 * file_priv.
4564 	 */
4565 	mtx_enter(&file_priv->mm.lock);
4566 	while (!list_empty(&file_priv->mm.request_list)) {
4567 		struct drm_i915_gem_request *request;
4568 
4569 		request = list_first_entry(&file_priv->mm.request_list,
4570 					   struct drm_i915_gem_request,
4571 					   client_list);
4572 		list_del(&request->client_list);
4573 		request->file_priv = NULL;
4574 	}
4575 	mtx_leave(&file_priv->mm.lock);
4576 }
4577 
4578 #ifdef notyet
4579 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4580 {
4581 	if (!mutex_is_locked(mutex))
4582 		return false;
4583 
4584 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4585 	return mutex->owner == task;
4586 #else
4587 	/* Since UP may be pre-empted, we cannot assume that we own the lock */
4588 	return false;
4589 #endif
4590 }
4591 
4592 static int
4593 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4594 {
4595 	struct drm_i915_private *dev_priv =
4596 		container_of(shrinker,
4597 			     struct drm_i915_private,
4598 			     mm.inactive_shrinker);
4599 	struct drm_device *dev = dev_priv->dev;
4600 	struct drm_i915_gem_object *obj;
4601 	int nr_to_scan = sc->nr_to_scan;
4602 	bool unlock = true;
4603 	int cnt;
4604 
4605 	if (!mutex_trylock(&dev->struct_mutex)) {
4606 		if (!mutex_is_locked_by(&dev->struct_mutex, current))
4607 			return 0;
4608 
4609 		if (dev_priv->mm.shrinker_no_lock_stealing)
4610 			return 0;
4611 
4612 		unlock = false;
4613 	}
4614 
4615 	if (nr_to_scan) {
4616 		nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4617 		if (nr_to_scan > 0)
4618 			nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
4619 							false);
4620 		if (nr_to_scan > 0)
4621 			i915_gem_shrink_all(dev_priv);
4622 	}
4623 
4624 	cnt = 0;
4625 	list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
4626 		if (obj->pages_pin_count == 0)
4627 			cnt += obj->base.size >> PAGE_SHIFT;
4628 	list_for_each_entry(obj, &dev_priv->mm.inactive_list, mm_list)
4629 		if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4630 			cnt += obj->base.size >> PAGE_SHIFT;
4631 
4632 	if (unlock)
4633 		mutex_unlock(&dev->struct_mutex);
4634 	return cnt;
4635 }
4636 #endif /* notyet */
4637 
4638 #define NSEC_PER_SEC	1000000000L
4639 
4640 static inline int64_t
4641 timespec_to_ns(const struct timespec *ts)
4642 {
4643 	return ((ts->tv_sec * NSEC_PER_SEC) + ts->tv_nsec);
4644 }
4645 
4646 static inline int
4647 timespec_to_jiffies(const struct timespec *ts)
4648 {
4649 	long long to_ticks;
4650 
4651 	to_ticks = (long long)hz * ts->tv_sec + ts->tv_nsec / (tick * 1000);
4652 	if (to_ticks > INT_MAX)
4653 		to_ticks = INT_MAX;
4654 
4655 	return ((int)to_ticks);
4656 }
4657 
4658 static struct timespec
4659 ns_to_timespec(const int64_t nsec)
4660 {
4661 	struct timespec ts;
4662 	int32_t rem;
4663 
4664 	if (nsec == 0) {
4665 		ts.tv_sec = 0;
4666 		ts.tv_nsec = 0;
4667 		return (ts);
4668 	}
4669 
4670 	ts.tv_sec = nsec / NSEC_PER_SEC;
4671 	rem = nsec % NSEC_PER_SEC;
4672 	if (rem < 0) {
4673 		ts.tv_sec--;
4674 		rem += NSEC_PER_SEC;
4675 	}
4676 	ts.tv_nsec = rem;
4677 	return (ts);
4678 }
4679 
4680 static inline int
4681 timespec_valid(const struct timespec *ts)
4682 {
4683 	if (ts->tv_sec < 0 || ts->tv_sec > 100000000 ||
4684 	    ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
4685 		return (0);
4686 	return (1);
4687 }
4688