1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*- 2 */ 3 /* 4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas. 5 * All Rights Reserved. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the 9 * "Software"), to deal in the Software without restriction, including 10 * without limitation the rights to use, copy, modify, merge, publish, 11 * distribute, sub license, and/or sell copies of the Software, and to 12 * permit persons to whom the Software is furnished to do so, subject to 13 * the following conditions: 14 * 15 * The above copyright notice and this permission notice (including the 16 * next paragraph) shall be included in all copies or substantial portions 17 * of the Software. 18 * 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. 22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR 23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, 24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 26 * 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include <linux/circ_buf.h> 32 #include <linux/slab.h> 33 #include <linux/sysrq.h> 34 35 #include <drm/drm_drv.h> 36 #include <drm/drm_irq.h> 37 38 #include "display/intel_display_types.h" 39 #include "display/intel_fifo_underrun.h" 40 #include "display/intel_hotplug.h" 41 #include "display/intel_lpe_audio.h" 42 #include "display/intel_psr.h" 43 44 #include "gt/intel_gt.h" 45 #include "gt/intel_gt_irq.h" 46 #include "gt/intel_gt_pm_irq.h" 47 #include "gt/intel_rps.h" 48 49 #include "i915_drv.h" 50 #include "i915_irq.h" 51 #include "i915_trace.h" 52 #include "intel_pm.h" 53 54 /** 55 * DOC: interrupt handling 56 * 57 * These functions provide the basic support for enabling and disabling the 58 * interrupt handling support. There's a lot more functionality in i915_irq.c 59 * and related files, but that will be described in separate chapters. 60 */ 61 62 typedef bool (*long_pulse_detect_func)(enum hpd_pin pin, u32 val); 63 64 static const u32 hpd_ilk[HPD_NUM_PINS] = { 65 [HPD_PORT_A] = DE_DP_A_HOTPLUG, 66 }; 67 68 static const u32 hpd_ivb[HPD_NUM_PINS] = { 69 [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB, 70 }; 71 72 static const u32 hpd_bdw[HPD_NUM_PINS] = { 73 [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG, 74 }; 75 76 static const u32 hpd_ibx[HPD_NUM_PINS] = { 77 [HPD_CRT] = SDE_CRT_HOTPLUG, 78 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG, 79 [HPD_PORT_B] = SDE_PORTB_HOTPLUG, 80 [HPD_PORT_C] = SDE_PORTC_HOTPLUG, 81 [HPD_PORT_D] = SDE_PORTD_HOTPLUG, 82 }; 83 84 static const u32 hpd_cpt[HPD_NUM_PINS] = { 85 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT, 86 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT, 87 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT, 88 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT, 89 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT, 90 }; 91 92 static const u32 hpd_spt[HPD_NUM_PINS] = { 93 [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT, 94 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT, 95 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT, 96 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT, 97 [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT, 98 }; 99 100 static const u32 hpd_mask_i915[HPD_NUM_PINS] = { 101 [HPD_CRT] = CRT_HOTPLUG_INT_EN, 102 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN, 103 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN, 104 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN, 105 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN, 106 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN, 107 }; 108 109 static const u32 hpd_status_g4x[HPD_NUM_PINS] = { 110 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS, 111 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X, 112 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X, 113 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS, 114 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS, 115 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS, 116 }; 117 118 static const u32 hpd_status_i915[HPD_NUM_PINS] = { 119 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS, 120 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915, 121 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915, 122 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS, 123 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS, 124 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS, 125 }; 126 127 /* BXT hpd list */ 128 static const u32 hpd_bxt[HPD_NUM_PINS] = { 129 [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA, 130 [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB, 131 [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC, 132 }; 133 134 static const u32 hpd_gen11[HPD_NUM_PINS] = { 135 [HPD_PORT_C] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG, 136 [HPD_PORT_D] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG, 137 [HPD_PORT_E] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG, 138 [HPD_PORT_F] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG, 139 }; 140 141 static const u32 hpd_gen12[HPD_NUM_PINS] = { 142 [HPD_PORT_D] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG, 143 [HPD_PORT_E] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG, 144 [HPD_PORT_F] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG, 145 [HPD_PORT_G] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG, 146 [HPD_PORT_H] = GEN12_TC5_HOTPLUG | GEN12_TBT5_HOTPLUG, 147 [HPD_PORT_I] = GEN12_TC6_HOTPLUG | GEN12_TBT6_HOTPLUG, 148 }; 149 150 static const u32 hpd_icp[HPD_NUM_PINS] = { 151 [HPD_PORT_A] = SDE_DDI_HOTPLUG_ICP(PORT_A), 152 [HPD_PORT_B] = SDE_DDI_HOTPLUG_ICP(PORT_B), 153 [HPD_PORT_C] = SDE_TC_HOTPLUG_ICP(PORT_TC1), 154 [HPD_PORT_D] = SDE_TC_HOTPLUG_ICP(PORT_TC2), 155 [HPD_PORT_E] = SDE_TC_HOTPLUG_ICP(PORT_TC3), 156 [HPD_PORT_F] = SDE_TC_HOTPLUG_ICP(PORT_TC4), 157 }; 158 159 static const u32 hpd_tgp[HPD_NUM_PINS] = { 160 [HPD_PORT_A] = SDE_DDI_HOTPLUG_ICP(PORT_A), 161 [HPD_PORT_B] = SDE_DDI_HOTPLUG_ICP(PORT_B), 162 [HPD_PORT_C] = SDE_DDI_HOTPLUG_ICP(PORT_C), 163 [HPD_PORT_D] = SDE_TC_HOTPLUG_ICP(PORT_TC1), 164 [HPD_PORT_E] = SDE_TC_HOTPLUG_ICP(PORT_TC2), 165 [HPD_PORT_F] = SDE_TC_HOTPLUG_ICP(PORT_TC3), 166 [HPD_PORT_G] = SDE_TC_HOTPLUG_ICP(PORT_TC4), 167 [HPD_PORT_H] = SDE_TC_HOTPLUG_ICP(PORT_TC5), 168 [HPD_PORT_I] = SDE_TC_HOTPLUG_ICP(PORT_TC6), 169 }; 170 171 static void 172 intel_handle_vblank(struct drm_i915_private *dev_priv, enum pipe pipe) 173 { 174 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 175 176 drm_crtc_handle_vblank(&crtc->base); 177 } 178 179 void gen3_irq_reset(struct intel_uncore *uncore, i915_reg_t imr, 180 i915_reg_t iir, i915_reg_t ier) 181 { 182 intel_uncore_write(uncore, imr, 0xffffffff); 183 intel_uncore_posting_read(uncore, imr); 184 185 intel_uncore_write(uncore, ier, 0); 186 187 /* IIR can theoretically queue up two events. Be paranoid. */ 188 intel_uncore_write(uncore, iir, 0xffffffff); 189 intel_uncore_posting_read(uncore, iir); 190 intel_uncore_write(uncore, iir, 0xffffffff); 191 intel_uncore_posting_read(uncore, iir); 192 } 193 194 void gen2_irq_reset(struct intel_uncore *uncore) 195 { 196 intel_uncore_write16(uncore, GEN2_IMR, 0xffff); 197 intel_uncore_posting_read16(uncore, GEN2_IMR); 198 199 intel_uncore_write16(uncore, GEN2_IER, 0); 200 201 /* IIR can theoretically queue up two events. Be paranoid. */ 202 intel_uncore_write16(uncore, GEN2_IIR, 0xffff); 203 intel_uncore_posting_read16(uncore, GEN2_IIR); 204 intel_uncore_write16(uncore, GEN2_IIR, 0xffff); 205 intel_uncore_posting_read16(uncore, GEN2_IIR); 206 } 207 208 /* 209 * We should clear IMR at preinstall/uninstall, and just check at postinstall. 210 */ 211 static void gen3_assert_iir_is_zero(struct intel_uncore *uncore, i915_reg_t reg) 212 { 213 u32 val = intel_uncore_read(uncore, reg); 214 215 if (val == 0) 216 return; 217 218 drm_WARN(&uncore->i915->drm, 1, 219 "Interrupt register 0x%x is not zero: 0x%08x\n", 220 i915_mmio_reg_offset(reg), val); 221 intel_uncore_write(uncore, reg, 0xffffffff); 222 intel_uncore_posting_read(uncore, reg); 223 intel_uncore_write(uncore, reg, 0xffffffff); 224 intel_uncore_posting_read(uncore, reg); 225 } 226 227 static void gen2_assert_iir_is_zero(struct intel_uncore *uncore) 228 { 229 u16 val = intel_uncore_read16(uncore, GEN2_IIR); 230 231 if (val == 0) 232 return; 233 234 drm_WARN(&uncore->i915->drm, 1, 235 "Interrupt register 0x%x is not zero: 0x%08x\n", 236 i915_mmio_reg_offset(GEN2_IIR), val); 237 intel_uncore_write16(uncore, GEN2_IIR, 0xffff); 238 intel_uncore_posting_read16(uncore, GEN2_IIR); 239 intel_uncore_write16(uncore, GEN2_IIR, 0xffff); 240 intel_uncore_posting_read16(uncore, GEN2_IIR); 241 } 242 243 void gen3_irq_init(struct intel_uncore *uncore, 244 i915_reg_t imr, u32 imr_val, 245 i915_reg_t ier, u32 ier_val, 246 i915_reg_t iir) 247 { 248 gen3_assert_iir_is_zero(uncore, iir); 249 250 intel_uncore_write(uncore, ier, ier_val); 251 intel_uncore_write(uncore, imr, imr_val); 252 intel_uncore_posting_read(uncore, imr); 253 } 254 255 void gen2_irq_init(struct intel_uncore *uncore, 256 u32 imr_val, u32 ier_val) 257 { 258 gen2_assert_iir_is_zero(uncore); 259 260 intel_uncore_write16(uncore, GEN2_IER, ier_val); 261 intel_uncore_write16(uncore, GEN2_IMR, imr_val); 262 intel_uncore_posting_read16(uncore, GEN2_IMR); 263 } 264 265 /* For display hotplug interrupt */ 266 static inline void 267 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv, 268 u32 mask, 269 u32 bits) 270 { 271 u32 val; 272 273 lockdep_assert_held(&dev_priv->irq_lock); 274 drm_WARN_ON(&dev_priv->drm, bits & ~mask); 275 276 val = I915_READ(PORT_HOTPLUG_EN); 277 val &= ~mask; 278 val |= bits; 279 I915_WRITE(PORT_HOTPLUG_EN, val); 280 } 281 282 /** 283 * i915_hotplug_interrupt_update - update hotplug interrupt enable 284 * @dev_priv: driver private 285 * @mask: bits to update 286 * @bits: bits to enable 287 * NOTE: the HPD enable bits are modified both inside and outside 288 * of an interrupt context. To avoid that read-modify-write cycles 289 * interfer, these bits are protected by a spinlock. Since this 290 * function is usually not called from a context where the lock is 291 * held already, this function acquires the lock itself. A non-locking 292 * version is also available. 293 */ 294 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv, 295 u32 mask, 296 u32 bits) 297 { 298 spin_lock_irq(&dev_priv->irq_lock); 299 i915_hotplug_interrupt_update_locked(dev_priv, mask, bits); 300 spin_unlock_irq(&dev_priv->irq_lock); 301 } 302 303 /** 304 * ilk_update_display_irq - update DEIMR 305 * @dev_priv: driver private 306 * @interrupt_mask: mask of interrupt bits to update 307 * @enabled_irq_mask: mask of interrupt bits to enable 308 */ 309 void ilk_update_display_irq(struct drm_i915_private *dev_priv, 310 u32 interrupt_mask, 311 u32 enabled_irq_mask) 312 { 313 u32 new_val; 314 315 lockdep_assert_held(&dev_priv->irq_lock); 316 317 drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask); 318 319 if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv))) 320 return; 321 322 new_val = dev_priv->irq_mask; 323 new_val &= ~interrupt_mask; 324 new_val |= (~enabled_irq_mask & interrupt_mask); 325 326 if (new_val != dev_priv->irq_mask) { 327 dev_priv->irq_mask = new_val; 328 I915_WRITE(DEIMR, dev_priv->irq_mask); 329 POSTING_READ(DEIMR); 330 } 331 } 332 333 /** 334 * bdw_update_port_irq - update DE port interrupt 335 * @dev_priv: driver private 336 * @interrupt_mask: mask of interrupt bits to update 337 * @enabled_irq_mask: mask of interrupt bits to enable 338 */ 339 static void bdw_update_port_irq(struct drm_i915_private *dev_priv, 340 u32 interrupt_mask, 341 u32 enabled_irq_mask) 342 { 343 u32 new_val; 344 u32 old_val; 345 346 lockdep_assert_held(&dev_priv->irq_lock); 347 348 drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask); 349 350 if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv))) 351 return; 352 353 old_val = I915_READ(GEN8_DE_PORT_IMR); 354 355 new_val = old_val; 356 new_val &= ~interrupt_mask; 357 new_val |= (~enabled_irq_mask & interrupt_mask); 358 359 if (new_val != old_val) { 360 I915_WRITE(GEN8_DE_PORT_IMR, new_val); 361 POSTING_READ(GEN8_DE_PORT_IMR); 362 } 363 } 364 365 /** 366 * bdw_update_pipe_irq - update DE pipe interrupt 367 * @dev_priv: driver private 368 * @pipe: pipe whose interrupt to update 369 * @interrupt_mask: mask of interrupt bits to update 370 * @enabled_irq_mask: mask of interrupt bits to enable 371 */ 372 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv, 373 enum pipe pipe, 374 u32 interrupt_mask, 375 u32 enabled_irq_mask) 376 { 377 u32 new_val; 378 379 lockdep_assert_held(&dev_priv->irq_lock); 380 381 drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask); 382 383 if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv))) 384 return; 385 386 new_val = dev_priv->de_irq_mask[pipe]; 387 new_val &= ~interrupt_mask; 388 new_val |= (~enabled_irq_mask & interrupt_mask); 389 390 if (new_val != dev_priv->de_irq_mask[pipe]) { 391 dev_priv->de_irq_mask[pipe] = new_val; 392 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]); 393 POSTING_READ(GEN8_DE_PIPE_IMR(pipe)); 394 } 395 } 396 397 /** 398 * ibx_display_interrupt_update - update SDEIMR 399 * @dev_priv: driver private 400 * @interrupt_mask: mask of interrupt bits to update 401 * @enabled_irq_mask: mask of interrupt bits to enable 402 */ 403 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv, 404 u32 interrupt_mask, 405 u32 enabled_irq_mask) 406 { 407 u32 sdeimr = I915_READ(SDEIMR); 408 sdeimr &= ~interrupt_mask; 409 sdeimr |= (~enabled_irq_mask & interrupt_mask); 410 411 drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask); 412 413 lockdep_assert_held(&dev_priv->irq_lock); 414 415 if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv))) 416 return; 417 418 I915_WRITE(SDEIMR, sdeimr); 419 POSTING_READ(SDEIMR); 420 } 421 422 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv, 423 enum pipe pipe) 424 { 425 u32 status_mask = dev_priv->pipestat_irq_mask[pipe]; 426 u32 enable_mask = status_mask << 16; 427 428 lockdep_assert_held(&dev_priv->irq_lock); 429 430 if (INTEL_GEN(dev_priv) < 5) 431 goto out; 432 433 /* 434 * On pipe A we don't support the PSR interrupt yet, 435 * on pipe B and C the same bit MBZ. 436 */ 437 if (drm_WARN_ON_ONCE(&dev_priv->drm, 438 status_mask & PIPE_A_PSR_STATUS_VLV)) 439 return 0; 440 /* 441 * On pipe B and C we don't support the PSR interrupt yet, on pipe 442 * A the same bit is for perf counters which we don't use either. 443 */ 444 if (drm_WARN_ON_ONCE(&dev_priv->drm, 445 status_mask & PIPE_B_PSR_STATUS_VLV)) 446 return 0; 447 448 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS | 449 SPRITE0_FLIP_DONE_INT_EN_VLV | 450 SPRITE1_FLIP_DONE_INT_EN_VLV); 451 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV) 452 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV; 453 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV) 454 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV; 455 456 out: 457 drm_WARN_ONCE(&dev_priv->drm, 458 enable_mask & ~PIPESTAT_INT_ENABLE_MASK || 459 status_mask & ~PIPESTAT_INT_STATUS_MASK, 460 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n", 461 pipe_name(pipe), enable_mask, status_mask); 462 463 return enable_mask; 464 } 465 466 void i915_enable_pipestat(struct drm_i915_private *dev_priv, 467 enum pipe pipe, u32 status_mask) 468 { 469 i915_reg_t reg = PIPESTAT(pipe); 470 u32 enable_mask; 471 472 drm_WARN_ONCE(&dev_priv->drm, status_mask & ~PIPESTAT_INT_STATUS_MASK, 473 "pipe %c: status_mask=0x%x\n", 474 pipe_name(pipe), status_mask); 475 476 lockdep_assert_held(&dev_priv->irq_lock); 477 drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)); 478 479 if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask) 480 return; 481 482 dev_priv->pipestat_irq_mask[pipe] |= status_mask; 483 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe); 484 485 I915_WRITE(reg, enable_mask | status_mask); 486 POSTING_READ(reg); 487 } 488 489 void i915_disable_pipestat(struct drm_i915_private *dev_priv, 490 enum pipe pipe, u32 status_mask) 491 { 492 i915_reg_t reg = PIPESTAT(pipe); 493 u32 enable_mask; 494 495 drm_WARN_ONCE(&dev_priv->drm, status_mask & ~PIPESTAT_INT_STATUS_MASK, 496 "pipe %c: status_mask=0x%x\n", 497 pipe_name(pipe), status_mask); 498 499 lockdep_assert_held(&dev_priv->irq_lock); 500 drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)); 501 502 if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0) 503 return; 504 505 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask; 506 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe); 507 508 I915_WRITE(reg, enable_mask | status_mask); 509 POSTING_READ(reg); 510 } 511 512 static bool i915_has_asle(struct drm_i915_private *dev_priv) 513 { 514 if (!dev_priv->opregion.asle) 515 return false; 516 517 return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv); 518 } 519 520 /** 521 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion 522 * @dev_priv: i915 device private 523 */ 524 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv) 525 { 526 if (!i915_has_asle(dev_priv)) 527 return; 528 529 spin_lock_irq(&dev_priv->irq_lock); 530 531 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS); 532 if (INTEL_GEN(dev_priv) >= 4) 533 i915_enable_pipestat(dev_priv, PIPE_A, 534 PIPE_LEGACY_BLC_EVENT_STATUS); 535 536 spin_unlock_irq(&dev_priv->irq_lock); 537 } 538 539 /* 540 * This timing diagram depicts the video signal in and 541 * around the vertical blanking period. 542 * 543 * Assumptions about the fictitious mode used in this example: 544 * vblank_start >= 3 545 * vsync_start = vblank_start + 1 546 * vsync_end = vblank_start + 2 547 * vtotal = vblank_start + 3 548 * 549 * start of vblank: 550 * latch double buffered registers 551 * increment frame counter (ctg+) 552 * generate start of vblank interrupt (gen4+) 553 * | 554 * | frame start: 555 * | generate frame start interrupt (aka. vblank interrupt) (gmch) 556 * | may be shifted forward 1-3 extra lines via PIPECONF 557 * | | 558 * | | start of vsync: 559 * | | generate vsync interrupt 560 * | | | 561 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx 562 * . \hs/ . \hs/ \hs/ \hs/ . \hs/ 563 * ----va---> <-----------------vb--------------------> <--------va------------- 564 * | | <----vs-----> | 565 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2) 566 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+) 567 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi) 568 * | | | 569 * last visible pixel first visible pixel 570 * | increment frame counter (gen3/4) 571 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4) 572 * 573 * x = horizontal active 574 * _ = horizontal blanking 575 * hs = horizontal sync 576 * va = vertical active 577 * vb = vertical blanking 578 * vs = vertical sync 579 * vbs = vblank_start (number) 580 * 581 * Summary: 582 * - most events happen at the start of horizontal sync 583 * - frame start happens at the start of horizontal blank, 1-4 lines 584 * (depending on PIPECONF settings) after the start of vblank 585 * - gen3/4 pixel and frame counter are synchronized with the start 586 * of horizontal active on the first line of vertical active 587 */ 588 589 /* Called from drm generic code, passed a 'crtc', which 590 * we use as a pipe index 591 */ 592 u32 i915_get_vblank_counter(struct drm_crtc *crtc) 593 { 594 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 595 struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)]; 596 const struct drm_display_mode *mode = &vblank->hwmode; 597 enum pipe pipe = to_intel_crtc(crtc)->pipe; 598 i915_reg_t high_frame, low_frame; 599 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal; 600 unsigned long irqflags; 601 602 /* 603 * On i965gm TV output the frame counter only works up to 604 * the point when we enable the TV encoder. After that the 605 * frame counter ceases to work and reads zero. We need a 606 * vblank wait before enabling the TV encoder and so we 607 * have to enable vblank interrupts while the frame counter 608 * is still in a working state. However the core vblank code 609 * does not like us returning non-zero frame counter values 610 * when we've told it that we don't have a working frame 611 * counter. Thus we must stop non-zero values leaking out. 612 */ 613 if (!vblank->max_vblank_count) 614 return 0; 615 616 htotal = mode->crtc_htotal; 617 hsync_start = mode->crtc_hsync_start; 618 vbl_start = mode->crtc_vblank_start; 619 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 620 vbl_start = DIV_ROUND_UP(vbl_start, 2); 621 622 /* Convert to pixel count */ 623 vbl_start *= htotal; 624 625 /* Start of vblank event occurs at start of hsync */ 626 vbl_start -= htotal - hsync_start; 627 628 high_frame = PIPEFRAME(pipe); 629 low_frame = PIPEFRAMEPIXEL(pipe); 630 631 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 632 633 /* 634 * High & low register fields aren't synchronized, so make sure 635 * we get a low value that's stable across two reads of the high 636 * register. 637 */ 638 do { 639 high1 = intel_de_read_fw(dev_priv, high_frame) & PIPE_FRAME_HIGH_MASK; 640 low = intel_de_read_fw(dev_priv, low_frame); 641 high2 = intel_de_read_fw(dev_priv, high_frame) & PIPE_FRAME_HIGH_MASK; 642 } while (high1 != high2); 643 644 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 645 646 high1 >>= PIPE_FRAME_HIGH_SHIFT; 647 pixel = low & PIPE_PIXEL_MASK; 648 low >>= PIPE_FRAME_LOW_SHIFT; 649 650 /* 651 * The frame counter increments at beginning of active. 652 * Cook up a vblank counter by also checking the pixel 653 * counter against vblank start. 654 */ 655 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff; 656 } 657 658 u32 g4x_get_vblank_counter(struct drm_crtc *crtc) 659 { 660 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 661 enum pipe pipe = to_intel_crtc(crtc)->pipe; 662 663 return I915_READ(PIPE_FRMCOUNT_G4X(pipe)); 664 } 665 666 /* 667 * On certain encoders on certain platforms, pipe 668 * scanline register will not work to get the scanline, 669 * since the timings are driven from the PORT or issues 670 * with scanline register updates. 671 * This function will use Framestamp and current 672 * timestamp registers to calculate the scanline. 673 */ 674 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc) 675 { 676 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 677 struct drm_vblank_crtc *vblank = 678 &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)]; 679 const struct drm_display_mode *mode = &vblank->hwmode; 680 u32 vblank_start = mode->crtc_vblank_start; 681 u32 vtotal = mode->crtc_vtotal; 682 u32 htotal = mode->crtc_htotal; 683 u32 clock = mode->crtc_clock; 684 u32 scanline, scan_prev_time, scan_curr_time, scan_post_time; 685 686 /* 687 * To avoid the race condition where we might cross into the 688 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR 689 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR 690 * during the same frame. 691 */ 692 do { 693 /* 694 * This field provides read back of the display 695 * pipe frame time stamp. The time stamp value 696 * is sampled at every start of vertical blank. 697 */ 698 scan_prev_time = intel_de_read_fw(dev_priv, 699 PIPE_FRMTMSTMP(crtc->pipe)); 700 701 /* 702 * The TIMESTAMP_CTR register has the current 703 * time stamp value. 704 */ 705 scan_curr_time = intel_de_read_fw(dev_priv, IVB_TIMESTAMP_CTR); 706 707 scan_post_time = intel_de_read_fw(dev_priv, 708 PIPE_FRMTMSTMP(crtc->pipe)); 709 } while (scan_post_time != scan_prev_time); 710 711 scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time, 712 clock), 1000 * htotal); 713 scanline = min(scanline, vtotal - 1); 714 scanline = (scanline + vblank_start) % vtotal; 715 716 return scanline; 717 } 718 719 /* 720 * intel_de_read_fw(), only for fast reads of display block, no need for 721 * forcewake etc. 722 */ 723 static int __intel_get_crtc_scanline(struct intel_crtc *crtc) 724 { 725 struct drm_device *dev = crtc->base.dev; 726 struct drm_i915_private *dev_priv = to_i915(dev); 727 const struct drm_display_mode *mode; 728 struct drm_vblank_crtc *vblank; 729 enum pipe pipe = crtc->pipe; 730 int position, vtotal; 731 732 if (!crtc->active) 733 return -1; 734 735 vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)]; 736 mode = &vblank->hwmode; 737 738 if (mode->private_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP) 739 return __intel_get_crtc_scanline_from_timestamp(crtc); 740 741 vtotal = mode->crtc_vtotal; 742 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 743 vtotal /= 2; 744 745 if (IS_GEN(dev_priv, 2)) 746 position = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2; 747 else 748 position = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3; 749 750 /* 751 * On HSW, the DSL reg (0x70000) appears to return 0 if we 752 * read it just before the start of vblank. So try it again 753 * so we don't accidentally end up spanning a vblank frame 754 * increment, causing the pipe_update_end() code to squak at us. 755 * 756 * The nature of this problem means we can't simply check the ISR 757 * bit and return the vblank start value; nor can we use the scanline 758 * debug register in the transcoder as it appears to have the same 759 * problem. We may need to extend this to include other platforms, 760 * but so far testing only shows the problem on HSW. 761 */ 762 if (HAS_DDI(dev_priv) && !position) { 763 int i, temp; 764 765 for (i = 0; i < 100; i++) { 766 udelay(1); 767 temp = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3; 768 if (temp != position) { 769 position = temp; 770 break; 771 } 772 } 773 } 774 775 /* 776 * See update_scanline_offset() for the details on the 777 * scanline_offset adjustment. 778 */ 779 return (position + crtc->scanline_offset) % vtotal; 780 } 781 782 static bool i915_get_crtc_scanoutpos(struct drm_crtc *_crtc, 783 bool in_vblank_irq, 784 int *vpos, int *hpos, 785 ktime_t *stime, ktime_t *etime, 786 const struct drm_display_mode *mode) 787 { 788 struct drm_device *dev = _crtc->dev; 789 struct drm_i915_private *dev_priv = to_i915(dev); 790 struct intel_crtc *crtc = to_intel_crtc(_crtc); 791 enum pipe pipe = crtc->pipe; 792 int position; 793 int vbl_start, vbl_end, hsync_start, htotal, vtotal; 794 unsigned long irqflags; 795 bool use_scanline_counter = INTEL_GEN(dev_priv) >= 5 || 796 IS_G4X(dev_priv) || IS_GEN(dev_priv, 2) || 797 mode->private_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER; 798 799 if (drm_WARN_ON(&dev_priv->drm, !mode->crtc_clock)) { 800 drm_dbg(&dev_priv->drm, 801 "trying to get scanoutpos for disabled " 802 "pipe %c\n", pipe_name(pipe)); 803 return false; 804 } 805 806 htotal = mode->crtc_htotal; 807 hsync_start = mode->crtc_hsync_start; 808 vtotal = mode->crtc_vtotal; 809 vbl_start = mode->crtc_vblank_start; 810 vbl_end = mode->crtc_vblank_end; 811 812 if (mode->flags & DRM_MODE_FLAG_INTERLACE) { 813 vbl_start = DIV_ROUND_UP(vbl_start, 2); 814 vbl_end /= 2; 815 vtotal /= 2; 816 } 817 818 /* 819 * Lock uncore.lock, as we will do multiple timing critical raw 820 * register reads, potentially with preemption disabled, so the 821 * following code must not block on uncore.lock. 822 */ 823 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 824 825 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */ 826 827 /* Get optional system timestamp before query. */ 828 if (stime) 829 *stime = ktime_get(); 830 831 if (use_scanline_counter) { 832 /* No obvious pixelcount register. Only query vertical 833 * scanout position from Display scan line register. 834 */ 835 position = __intel_get_crtc_scanline(crtc); 836 } else { 837 /* Have access to pixelcount since start of frame. 838 * We can split this into vertical and horizontal 839 * scanout position. 840 */ 841 position = (intel_de_read_fw(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT; 842 843 /* convert to pixel counts */ 844 vbl_start *= htotal; 845 vbl_end *= htotal; 846 vtotal *= htotal; 847 848 /* 849 * In interlaced modes, the pixel counter counts all pixels, 850 * so one field will have htotal more pixels. In order to avoid 851 * the reported position from jumping backwards when the pixel 852 * counter is beyond the length of the shorter field, just 853 * clamp the position the length of the shorter field. This 854 * matches how the scanline counter based position works since 855 * the scanline counter doesn't count the two half lines. 856 */ 857 if (position >= vtotal) 858 position = vtotal - 1; 859 860 /* 861 * Start of vblank interrupt is triggered at start of hsync, 862 * just prior to the first active line of vblank. However we 863 * consider lines to start at the leading edge of horizontal 864 * active. So, should we get here before we've crossed into 865 * the horizontal active of the first line in vblank, we would 866 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that, 867 * always add htotal-hsync_start to the current pixel position. 868 */ 869 position = (position + htotal - hsync_start) % vtotal; 870 } 871 872 /* Get optional system timestamp after query. */ 873 if (etime) 874 *etime = ktime_get(); 875 876 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */ 877 878 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 879 880 /* 881 * While in vblank, position will be negative 882 * counting up towards 0 at vbl_end. And outside 883 * vblank, position will be positive counting 884 * up since vbl_end. 885 */ 886 if (position >= vbl_start) 887 position -= vbl_end; 888 else 889 position += vtotal - vbl_end; 890 891 if (use_scanline_counter) { 892 *vpos = position; 893 *hpos = 0; 894 } else { 895 *vpos = position / htotal; 896 *hpos = position - (*vpos * htotal); 897 } 898 899 return true; 900 } 901 902 bool intel_crtc_get_vblank_timestamp(struct drm_crtc *crtc, int *max_error, 903 ktime_t *vblank_time, bool in_vblank_irq) 904 { 905 return drm_crtc_vblank_helper_get_vblank_timestamp_internal( 906 crtc, max_error, vblank_time, in_vblank_irq, 907 i915_get_crtc_scanoutpos); 908 } 909 910 int intel_get_crtc_scanline(struct intel_crtc *crtc) 911 { 912 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 913 unsigned long irqflags; 914 int position; 915 916 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); 917 position = __intel_get_crtc_scanline(crtc); 918 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); 919 920 return position; 921 } 922 923 /** 924 * ivb_parity_work - Workqueue called when a parity error interrupt 925 * occurred. 926 * @work: workqueue struct 927 * 928 * Doesn't actually do anything except notify userspace. As a consequence of 929 * this event, userspace should try to remap the bad rows since statistically 930 * it is likely the same row is more likely to go bad again. 931 */ 932 static void ivb_parity_work(struct work_struct *work) 933 { 934 struct drm_i915_private *dev_priv = 935 container_of(work, typeof(*dev_priv), l3_parity.error_work); 936 struct intel_gt *gt = &dev_priv->gt; 937 u32 error_status, row, bank, subbank; 938 char *parity_event[6]; 939 u32 misccpctl; 940 u8 slice = 0; 941 942 /* We must turn off DOP level clock gating to access the L3 registers. 943 * In order to prevent a get/put style interface, acquire struct mutex 944 * any time we access those registers. 945 */ 946 mutex_lock(&dev_priv->drm.struct_mutex); 947 948 /* If we've screwed up tracking, just let the interrupt fire again */ 949 if (drm_WARN_ON(&dev_priv->drm, !dev_priv->l3_parity.which_slice)) 950 goto out; 951 952 misccpctl = I915_READ(GEN7_MISCCPCTL); 953 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE); 954 POSTING_READ(GEN7_MISCCPCTL); 955 956 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) { 957 i915_reg_t reg; 958 959 slice--; 960 if (drm_WARN_ON_ONCE(&dev_priv->drm, 961 slice >= NUM_L3_SLICES(dev_priv))) 962 break; 963 964 dev_priv->l3_parity.which_slice &= ~(1<<slice); 965 966 reg = GEN7_L3CDERRST1(slice); 967 968 error_status = I915_READ(reg); 969 row = GEN7_PARITY_ERROR_ROW(error_status); 970 bank = GEN7_PARITY_ERROR_BANK(error_status); 971 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status); 972 973 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE); 974 POSTING_READ(reg); 975 976 parity_event[0] = I915_L3_PARITY_UEVENT "=1"; 977 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row); 978 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank); 979 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank); 980 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice); 981 parity_event[5] = NULL; 982 983 kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj, 984 KOBJ_CHANGE, parity_event); 985 986 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n", 987 slice, row, bank, subbank); 988 989 kfree(parity_event[4]); 990 kfree(parity_event[3]); 991 kfree(parity_event[2]); 992 kfree(parity_event[1]); 993 } 994 995 I915_WRITE(GEN7_MISCCPCTL, misccpctl); 996 997 out: 998 drm_WARN_ON(&dev_priv->drm, dev_priv->l3_parity.which_slice); 999 spin_lock_irq(>->irq_lock); 1000 gen5_gt_enable_irq(gt, GT_PARITY_ERROR(dev_priv)); 1001 spin_unlock_irq(>->irq_lock); 1002 1003 mutex_unlock(&dev_priv->drm.struct_mutex); 1004 } 1005 1006 static bool gen11_port_hotplug_long_detect(enum hpd_pin pin, u32 val) 1007 { 1008 switch (pin) { 1009 case HPD_PORT_C: 1010 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1); 1011 case HPD_PORT_D: 1012 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2); 1013 case HPD_PORT_E: 1014 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3); 1015 case HPD_PORT_F: 1016 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4); 1017 default: 1018 return false; 1019 } 1020 } 1021 1022 static bool gen12_port_hotplug_long_detect(enum hpd_pin pin, u32 val) 1023 { 1024 switch (pin) { 1025 case HPD_PORT_D: 1026 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1); 1027 case HPD_PORT_E: 1028 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2); 1029 case HPD_PORT_F: 1030 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3); 1031 case HPD_PORT_G: 1032 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4); 1033 case HPD_PORT_H: 1034 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC5); 1035 case HPD_PORT_I: 1036 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC6); 1037 default: 1038 return false; 1039 } 1040 } 1041 1042 static bool bxt_port_hotplug_long_detect(enum hpd_pin pin, u32 val) 1043 { 1044 switch (pin) { 1045 case HPD_PORT_A: 1046 return val & PORTA_HOTPLUG_LONG_DETECT; 1047 case HPD_PORT_B: 1048 return val & PORTB_HOTPLUG_LONG_DETECT; 1049 case HPD_PORT_C: 1050 return val & PORTC_HOTPLUG_LONG_DETECT; 1051 default: 1052 return false; 1053 } 1054 } 1055 1056 static bool icp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val) 1057 { 1058 switch (pin) { 1059 case HPD_PORT_A: 1060 return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(PORT_A); 1061 case HPD_PORT_B: 1062 return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(PORT_B); 1063 case HPD_PORT_C: 1064 return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(PORT_C); 1065 default: 1066 return false; 1067 } 1068 } 1069 1070 static bool icp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val) 1071 { 1072 switch (pin) { 1073 case HPD_PORT_C: 1074 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1); 1075 case HPD_PORT_D: 1076 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2); 1077 case HPD_PORT_E: 1078 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3); 1079 case HPD_PORT_F: 1080 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4); 1081 default: 1082 return false; 1083 } 1084 } 1085 1086 static bool tgp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val) 1087 { 1088 switch (pin) { 1089 case HPD_PORT_D: 1090 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1); 1091 case HPD_PORT_E: 1092 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2); 1093 case HPD_PORT_F: 1094 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3); 1095 case HPD_PORT_G: 1096 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4); 1097 case HPD_PORT_H: 1098 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC5); 1099 case HPD_PORT_I: 1100 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC6); 1101 default: 1102 return false; 1103 } 1104 } 1105 1106 static bool spt_port_hotplug2_long_detect(enum hpd_pin pin, u32 val) 1107 { 1108 switch (pin) { 1109 case HPD_PORT_E: 1110 return val & PORTE_HOTPLUG_LONG_DETECT; 1111 default: 1112 return false; 1113 } 1114 } 1115 1116 static bool spt_port_hotplug_long_detect(enum hpd_pin pin, u32 val) 1117 { 1118 switch (pin) { 1119 case HPD_PORT_A: 1120 return val & PORTA_HOTPLUG_LONG_DETECT; 1121 case HPD_PORT_B: 1122 return val & PORTB_HOTPLUG_LONG_DETECT; 1123 case HPD_PORT_C: 1124 return val & PORTC_HOTPLUG_LONG_DETECT; 1125 case HPD_PORT_D: 1126 return val & PORTD_HOTPLUG_LONG_DETECT; 1127 default: 1128 return false; 1129 } 1130 } 1131 1132 static bool ilk_port_hotplug_long_detect(enum hpd_pin pin, u32 val) 1133 { 1134 switch (pin) { 1135 case HPD_PORT_A: 1136 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT; 1137 default: 1138 return false; 1139 } 1140 } 1141 1142 static bool pch_port_hotplug_long_detect(enum hpd_pin pin, u32 val) 1143 { 1144 switch (pin) { 1145 case HPD_PORT_B: 1146 return val & PORTB_HOTPLUG_LONG_DETECT; 1147 case HPD_PORT_C: 1148 return val & PORTC_HOTPLUG_LONG_DETECT; 1149 case HPD_PORT_D: 1150 return val & PORTD_HOTPLUG_LONG_DETECT; 1151 default: 1152 return false; 1153 } 1154 } 1155 1156 static bool i9xx_port_hotplug_long_detect(enum hpd_pin pin, u32 val) 1157 { 1158 switch (pin) { 1159 case HPD_PORT_B: 1160 return val & PORTB_HOTPLUG_INT_LONG_PULSE; 1161 case HPD_PORT_C: 1162 return val & PORTC_HOTPLUG_INT_LONG_PULSE; 1163 case HPD_PORT_D: 1164 return val & PORTD_HOTPLUG_INT_LONG_PULSE; 1165 default: 1166 return false; 1167 } 1168 } 1169 1170 /* 1171 * Get a bit mask of pins that have triggered, and which ones may be long. 1172 * This can be called multiple times with the same masks to accumulate 1173 * hotplug detection results from several registers. 1174 * 1175 * Note that the caller is expected to zero out the masks initially. 1176 */ 1177 static void intel_get_hpd_pins(struct drm_i915_private *dev_priv, 1178 u32 *pin_mask, u32 *long_mask, 1179 u32 hotplug_trigger, u32 dig_hotplug_reg, 1180 const u32 hpd[HPD_NUM_PINS], 1181 bool long_pulse_detect(enum hpd_pin pin, u32 val)) 1182 { 1183 enum hpd_pin pin; 1184 1185 BUILD_BUG_ON(BITS_PER_TYPE(*pin_mask) < HPD_NUM_PINS); 1186 1187 for_each_hpd_pin(pin) { 1188 if ((hpd[pin] & hotplug_trigger) == 0) 1189 continue; 1190 1191 *pin_mask |= BIT(pin); 1192 1193 if (long_pulse_detect(pin, dig_hotplug_reg)) 1194 *long_mask |= BIT(pin); 1195 } 1196 1197 drm_dbg(&dev_priv->drm, 1198 "hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x, long 0x%08x\n", 1199 hotplug_trigger, dig_hotplug_reg, *pin_mask, *long_mask); 1200 1201 } 1202 1203 static void gmbus_irq_handler(struct drm_i915_private *dev_priv) 1204 { 1205 wake_up_all(&dev_priv->gmbus_wait_queue); 1206 } 1207 1208 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv) 1209 { 1210 wake_up_all(&dev_priv->gmbus_wait_queue); 1211 } 1212 1213 #if defined(CONFIG_DEBUG_FS) 1214 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, 1215 enum pipe pipe, 1216 u32 crc0, u32 crc1, 1217 u32 crc2, u32 crc3, 1218 u32 crc4) 1219 { 1220 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); 1221 struct intel_pipe_crc *pipe_crc = &crtc->pipe_crc; 1222 u32 crcs[5] = { crc0, crc1, crc2, crc3, crc4 }; 1223 1224 trace_intel_pipe_crc(crtc, crcs); 1225 1226 spin_lock(&pipe_crc->lock); 1227 /* 1228 * For some not yet identified reason, the first CRC is 1229 * bonkers. So let's just wait for the next vblank and read 1230 * out the buggy result. 1231 * 1232 * On GEN8+ sometimes the second CRC is bonkers as well, so 1233 * don't trust that one either. 1234 */ 1235 if (pipe_crc->skipped <= 0 || 1236 (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) { 1237 pipe_crc->skipped++; 1238 spin_unlock(&pipe_crc->lock); 1239 return; 1240 } 1241 spin_unlock(&pipe_crc->lock); 1242 1243 drm_crtc_add_crc_entry(&crtc->base, true, 1244 drm_crtc_accurate_vblank_count(&crtc->base), 1245 crcs); 1246 } 1247 #else 1248 static inline void 1249 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, 1250 enum pipe pipe, 1251 u32 crc0, u32 crc1, 1252 u32 crc2, u32 crc3, 1253 u32 crc4) {} 1254 #endif 1255 1256 1257 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, 1258 enum pipe pipe) 1259 { 1260 display_pipe_crc_irq_handler(dev_priv, pipe, 1261 I915_READ(PIPE_CRC_RES_1_IVB(pipe)), 1262 0, 0, 0, 0); 1263 } 1264 1265 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, 1266 enum pipe pipe) 1267 { 1268 display_pipe_crc_irq_handler(dev_priv, pipe, 1269 I915_READ(PIPE_CRC_RES_1_IVB(pipe)), 1270 I915_READ(PIPE_CRC_RES_2_IVB(pipe)), 1271 I915_READ(PIPE_CRC_RES_3_IVB(pipe)), 1272 I915_READ(PIPE_CRC_RES_4_IVB(pipe)), 1273 I915_READ(PIPE_CRC_RES_5_IVB(pipe))); 1274 } 1275 1276 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv, 1277 enum pipe pipe) 1278 { 1279 u32 res1, res2; 1280 1281 if (INTEL_GEN(dev_priv) >= 3) 1282 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe)); 1283 else 1284 res1 = 0; 1285 1286 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) 1287 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe)); 1288 else 1289 res2 = 0; 1290 1291 display_pipe_crc_irq_handler(dev_priv, pipe, 1292 I915_READ(PIPE_CRC_RES_RED(pipe)), 1293 I915_READ(PIPE_CRC_RES_GREEN(pipe)), 1294 I915_READ(PIPE_CRC_RES_BLUE(pipe)), 1295 res1, res2); 1296 } 1297 1298 static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv) 1299 { 1300 enum pipe pipe; 1301 1302 for_each_pipe(dev_priv, pipe) { 1303 I915_WRITE(PIPESTAT(pipe), 1304 PIPESTAT_INT_STATUS_MASK | 1305 PIPE_FIFO_UNDERRUN_STATUS); 1306 1307 dev_priv->pipestat_irq_mask[pipe] = 0; 1308 } 1309 } 1310 1311 static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv, 1312 u32 iir, u32 pipe_stats[I915_MAX_PIPES]) 1313 { 1314 enum pipe pipe; 1315 1316 spin_lock(&dev_priv->irq_lock); 1317 1318 if (!dev_priv->display_irqs_enabled) { 1319 spin_unlock(&dev_priv->irq_lock); 1320 return; 1321 } 1322 1323 for_each_pipe(dev_priv, pipe) { 1324 i915_reg_t reg; 1325 u32 status_mask, enable_mask, iir_bit = 0; 1326 1327 /* 1328 * PIPESTAT bits get signalled even when the interrupt is 1329 * disabled with the mask bits, and some of the status bits do 1330 * not generate interrupts at all (like the underrun bit). Hence 1331 * we need to be careful that we only handle what we want to 1332 * handle. 1333 */ 1334 1335 /* fifo underruns are filterered in the underrun handler. */ 1336 status_mask = PIPE_FIFO_UNDERRUN_STATUS; 1337 1338 switch (pipe) { 1339 default: 1340 case PIPE_A: 1341 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT; 1342 break; 1343 case PIPE_B: 1344 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT; 1345 break; 1346 case PIPE_C: 1347 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT; 1348 break; 1349 } 1350 if (iir & iir_bit) 1351 status_mask |= dev_priv->pipestat_irq_mask[pipe]; 1352 1353 if (!status_mask) 1354 continue; 1355 1356 reg = PIPESTAT(pipe); 1357 pipe_stats[pipe] = I915_READ(reg) & status_mask; 1358 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe); 1359 1360 /* 1361 * Clear the PIPE*STAT regs before the IIR 1362 * 1363 * Toggle the enable bits to make sure we get an 1364 * edge in the ISR pipe event bit if we don't clear 1365 * all the enabled status bits. Otherwise the edge 1366 * triggered IIR on i965/g4x wouldn't notice that 1367 * an interrupt is still pending. 1368 */ 1369 if (pipe_stats[pipe]) { 1370 I915_WRITE(reg, pipe_stats[pipe]); 1371 I915_WRITE(reg, enable_mask); 1372 } 1373 } 1374 spin_unlock(&dev_priv->irq_lock); 1375 } 1376 1377 static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv, 1378 u16 iir, u32 pipe_stats[I915_MAX_PIPES]) 1379 { 1380 enum pipe pipe; 1381 1382 for_each_pipe(dev_priv, pipe) { 1383 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS) 1384 intel_handle_vblank(dev_priv, pipe); 1385 1386 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) 1387 i9xx_pipe_crc_irq_handler(dev_priv, pipe); 1388 1389 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) 1390 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 1391 } 1392 } 1393 1394 static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv, 1395 u32 iir, u32 pipe_stats[I915_MAX_PIPES]) 1396 { 1397 bool blc_event = false; 1398 enum pipe pipe; 1399 1400 for_each_pipe(dev_priv, pipe) { 1401 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS) 1402 intel_handle_vblank(dev_priv, pipe); 1403 1404 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS) 1405 blc_event = true; 1406 1407 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) 1408 i9xx_pipe_crc_irq_handler(dev_priv, pipe); 1409 1410 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) 1411 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 1412 } 1413 1414 if (blc_event || (iir & I915_ASLE_INTERRUPT)) 1415 intel_opregion_asle_intr(dev_priv); 1416 } 1417 1418 static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv, 1419 u32 iir, u32 pipe_stats[I915_MAX_PIPES]) 1420 { 1421 bool blc_event = false; 1422 enum pipe pipe; 1423 1424 for_each_pipe(dev_priv, pipe) { 1425 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS) 1426 intel_handle_vblank(dev_priv, pipe); 1427 1428 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS) 1429 blc_event = true; 1430 1431 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) 1432 i9xx_pipe_crc_irq_handler(dev_priv, pipe); 1433 1434 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) 1435 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 1436 } 1437 1438 if (blc_event || (iir & I915_ASLE_INTERRUPT)) 1439 intel_opregion_asle_intr(dev_priv); 1440 1441 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS) 1442 gmbus_irq_handler(dev_priv); 1443 } 1444 1445 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv, 1446 u32 pipe_stats[I915_MAX_PIPES]) 1447 { 1448 enum pipe pipe; 1449 1450 for_each_pipe(dev_priv, pipe) { 1451 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS) 1452 intel_handle_vblank(dev_priv, pipe); 1453 1454 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) 1455 i9xx_pipe_crc_irq_handler(dev_priv, pipe); 1456 1457 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) 1458 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 1459 } 1460 1461 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS) 1462 gmbus_irq_handler(dev_priv); 1463 } 1464 1465 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv) 1466 { 1467 u32 hotplug_status = 0, hotplug_status_mask; 1468 int i; 1469 1470 if (IS_G4X(dev_priv) || 1471 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 1472 hotplug_status_mask = HOTPLUG_INT_STATUS_G4X | 1473 DP_AUX_CHANNEL_MASK_INT_STATUS_G4X; 1474 else 1475 hotplug_status_mask = HOTPLUG_INT_STATUS_I915; 1476 1477 /* 1478 * We absolutely have to clear all the pending interrupt 1479 * bits in PORT_HOTPLUG_STAT. Otherwise the ISR port 1480 * interrupt bit won't have an edge, and the i965/g4x 1481 * edge triggered IIR will not notice that an interrupt 1482 * is still pending. We can't use PORT_HOTPLUG_EN to 1483 * guarantee the edge as the act of toggling the enable 1484 * bits can itself generate a new hotplug interrupt :( 1485 */ 1486 for (i = 0; i < 10; i++) { 1487 u32 tmp = I915_READ(PORT_HOTPLUG_STAT) & hotplug_status_mask; 1488 1489 if (tmp == 0) 1490 return hotplug_status; 1491 1492 hotplug_status |= tmp; 1493 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status); 1494 } 1495 1496 drm_WARN_ONCE(&dev_priv->drm, 1, 1497 "PORT_HOTPLUG_STAT did not clear (0x%08x)\n", 1498 I915_READ(PORT_HOTPLUG_STAT)); 1499 1500 return hotplug_status; 1501 } 1502 1503 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv, 1504 u32 hotplug_status) 1505 { 1506 u32 pin_mask = 0, long_mask = 0; 1507 1508 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || 1509 IS_CHERRYVIEW(dev_priv)) { 1510 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X; 1511 1512 if (hotplug_trigger) { 1513 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 1514 hotplug_trigger, hotplug_trigger, 1515 hpd_status_g4x, 1516 i9xx_port_hotplug_long_detect); 1517 1518 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 1519 } 1520 1521 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X) 1522 dp_aux_irq_handler(dev_priv); 1523 } else { 1524 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915; 1525 1526 if (hotplug_trigger) { 1527 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 1528 hotplug_trigger, hotplug_trigger, 1529 hpd_status_i915, 1530 i9xx_port_hotplug_long_detect); 1531 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 1532 } 1533 } 1534 } 1535 1536 static irqreturn_t valleyview_irq_handler(int irq, void *arg) 1537 { 1538 struct drm_i915_private *dev_priv = arg; 1539 irqreturn_t ret = IRQ_NONE; 1540 1541 if (!intel_irqs_enabled(dev_priv)) 1542 return IRQ_NONE; 1543 1544 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 1545 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 1546 1547 do { 1548 u32 iir, gt_iir, pm_iir; 1549 u32 pipe_stats[I915_MAX_PIPES] = {}; 1550 u32 hotplug_status = 0; 1551 u32 ier = 0; 1552 1553 gt_iir = I915_READ(GTIIR); 1554 pm_iir = I915_READ(GEN6_PMIIR); 1555 iir = I915_READ(VLV_IIR); 1556 1557 if (gt_iir == 0 && pm_iir == 0 && iir == 0) 1558 break; 1559 1560 ret = IRQ_HANDLED; 1561 1562 /* 1563 * Theory on interrupt generation, based on empirical evidence: 1564 * 1565 * x = ((VLV_IIR & VLV_IER) || 1566 * (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) && 1567 * (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE))); 1568 * 1569 * A CPU interrupt will only be raised when 'x' has a 0->1 edge. 1570 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to 1571 * guarantee the CPU interrupt will be raised again even if we 1572 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR 1573 * bits this time around. 1574 */ 1575 I915_WRITE(VLV_MASTER_IER, 0); 1576 ier = I915_READ(VLV_IER); 1577 I915_WRITE(VLV_IER, 0); 1578 1579 if (gt_iir) 1580 I915_WRITE(GTIIR, gt_iir); 1581 if (pm_iir) 1582 I915_WRITE(GEN6_PMIIR, pm_iir); 1583 1584 if (iir & I915_DISPLAY_PORT_INTERRUPT) 1585 hotplug_status = i9xx_hpd_irq_ack(dev_priv); 1586 1587 /* Call regardless, as some status bits might not be 1588 * signalled in iir */ 1589 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats); 1590 1591 if (iir & (I915_LPE_PIPE_A_INTERRUPT | 1592 I915_LPE_PIPE_B_INTERRUPT)) 1593 intel_lpe_audio_irq_handler(dev_priv); 1594 1595 /* 1596 * VLV_IIR is single buffered, and reflects the level 1597 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last. 1598 */ 1599 if (iir) 1600 I915_WRITE(VLV_IIR, iir); 1601 1602 I915_WRITE(VLV_IER, ier); 1603 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE); 1604 1605 if (gt_iir) 1606 gen6_gt_irq_handler(&dev_priv->gt, gt_iir); 1607 if (pm_iir) 1608 gen6_rps_irq_handler(&dev_priv->gt.rps, pm_iir); 1609 1610 if (hotplug_status) 1611 i9xx_hpd_irq_handler(dev_priv, hotplug_status); 1612 1613 valleyview_pipestat_irq_handler(dev_priv, pipe_stats); 1614 } while (0); 1615 1616 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 1617 1618 return ret; 1619 } 1620 1621 static irqreturn_t cherryview_irq_handler(int irq, void *arg) 1622 { 1623 struct drm_i915_private *dev_priv = arg; 1624 irqreturn_t ret = IRQ_NONE; 1625 1626 if (!intel_irqs_enabled(dev_priv)) 1627 return IRQ_NONE; 1628 1629 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 1630 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 1631 1632 do { 1633 u32 master_ctl, iir; 1634 u32 pipe_stats[I915_MAX_PIPES] = {}; 1635 u32 hotplug_status = 0; 1636 u32 ier = 0; 1637 1638 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL; 1639 iir = I915_READ(VLV_IIR); 1640 1641 if (master_ctl == 0 && iir == 0) 1642 break; 1643 1644 ret = IRQ_HANDLED; 1645 1646 /* 1647 * Theory on interrupt generation, based on empirical evidence: 1648 * 1649 * x = ((VLV_IIR & VLV_IER) || 1650 * ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) && 1651 * (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL))); 1652 * 1653 * A CPU interrupt will only be raised when 'x' has a 0->1 edge. 1654 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to 1655 * guarantee the CPU interrupt will be raised again even if we 1656 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL 1657 * bits this time around. 1658 */ 1659 I915_WRITE(GEN8_MASTER_IRQ, 0); 1660 ier = I915_READ(VLV_IER); 1661 I915_WRITE(VLV_IER, 0); 1662 1663 gen8_gt_irq_handler(&dev_priv->gt, master_ctl); 1664 1665 if (iir & I915_DISPLAY_PORT_INTERRUPT) 1666 hotplug_status = i9xx_hpd_irq_ack(dev_priv); 1667 1668 /* Call regardless, as some status bits might not be 1669 * signalled in iir */ 1670 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats); 1671 1672 if (iir & (I915_LPE_PIPE_A_INTERRUPT | 1673 I915_LPE_PIPE_B_INTERRUPT | 1674 I915_LPE_PIPE_C_INTERRUPT)) 1675 intel_lpe_audio_irq_handler(dev_priv); 1676 1677 /* 1678 * VLV_IIR is single buffered, and reflects the level 1679 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last. 1680 */ 1681 if (iir) 1682 I915_WRITE(VLV_IIR, iir); 1683 1684 I915_WRITE(VLV_IER, ier); 1685 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL); 1686 1687 if (hotplug_status) 1688 i9xx_hpd_irq_handler(dev_priv, hotplug_status); 1689 1690 valleyview_pipestat_irq_handler(dev_priv, pipe_stats); 1691 } while (0); 1692 1693 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 1694 1695 return ret; 1696 } 1697 1698 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv, 1699 u32 hotplug_trigger, 1700 const u32 hpd[HPD_NUM_PINS]) 1701 { 1702 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0; 1703 1704 /* 1705 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU 1706 * unless we touch the hotplug register, even if hotplug_trigger is 1707 * zero. Not acking leads to "The master control interrupt lied (SDE)!" 1708 * errors. 1709 */ 1710 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG); 1711 if (!hotplug_trigger) { 1712 u32 mask = PORTA_HOTPLUG_STATUS_MASK | 1713 PORTD_HOTPLUG_STATUS_MASK | 1714 PORTC_HOTPLUG_STATUS_MASK | 1715 PORTB_HOTPLUG_STATUS_MASK; 1716 dig_hotplug_reg &= ~mask; 1717 } 1718 1719 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg); 1720 if (!hotplug_trigger) 1721 return; 1722 1723 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger, 1724 dig_hotplug_reg, hpd, 1725 pch_port_hotplug_long_detect); 1726 1727 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 1728 } 1729 1730 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir) 1731 { 1732 enum pipe pipe; 1733 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK; 1734 1735 ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx); 1736 1737 if (pch_iir & SDE_AUDIO_POWER_MASK) { 1738 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >> 1739 SDE_AUDIO_POWER_SHIFT); 1740 drm_dbg(&dev_priv->drm, "PCH audio power change on port %d\n", 1741 port_name(port)); 1742 } 1743 1744 if (pch_iir & SDE_AUX_MASK) 1745 dp_aux_irq_handler(dev_priv); 1746 1747 if (pch_iir & SDE_GMBUS) 1748 gmbus_irq_handler(dev_priv); 1749 1750 if (pch_iir & SDE_AUDIO_HDCP_MASK) 1751 drm_dbg(&dev_priv->drm, "PCH HDCP audio interrupt\n"); 1752 1753 if (pch_iir & SDE_AUDIO_TRANS_MASK) 1754 drm_dbg(&dev_priv->drm, "PCH transcoder audio interrupt\n"); 1755 1756 if (pch_iir & SDE_POISON) 1757 drm_err(&dev_priv->drm, "PCH poison interrupt\n"); 1758 1759 if (pch_iir & SDE_FDI_MASK) { 1760 for_each_pipe(dev_priv, pipe) 1761 drm_dbg(&dev_priv->drm, " pipe %c FDI IIR: 0x%08x\n", 1762 pipe_name(pipe), 1763 I915_READ(FDI_RX_IIR(pipe))); 1764 } 1765 1766 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE)) 1767 drm_dbg(&dev_priv->drm, "PCH transcoder CRC done interrupt\n"); 1768 1769 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR)) 1770 drm_dbg(&dev_priv->drm, 1771 "PCH transcoder CRC error interrupt\n"); 1772 1773 if (pch_iir & SDE_TRANSA_FIFO_UNDER) 1774 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A); 1775 1776 if (pch_iir & SDE_TRANSB_FIFO_UNDER) 1777 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B); 1778 } 1779 1780 static void ivb_err_int_handler(struct drm_i915_private *dev_priv) 1781 { 1782 u32 err_int = I915_READ(GEN7_ERR_INT); 1783 enum pipe pipe; 1784 1785 if (err_int & ERR_INT_POISON) 1786 drm_err(&dev_priv->drm, "Poison interrupt\n"); 1787 1788 for_each_pipe(dev_priv, pipe) { 1789 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe)) 1790 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 1791 1792 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) { 1793 if (IS_IVYBRIDGE(dev_priv)) 1794 ivb_pipe_crc_irq_handler(dev_priv, pipe); 1795 else 1796 hsw_pipe_crc_irq_handler(dev_priv, pipe); 1797 } 1798 } 1799 1800 I915_WRITE(GEN7_ERR_INT, err_int); 1801 } 1802 1803 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv) 1804 { 1805 u32 serr_int = I915_READ(SERR_INT); 1806 enum pipe pipe; 1807 1808 if (serr_int & SERR_INT_POISON) 1809 drm_err(&dev_priv->drm, "PCH poison interrupt\n"); 1810 1811 for_each_pipe(dev_priv, pipe) 1812 if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe)) 1813 intel_pch_fifo_underrun_irq_handler(dev_priv, pipe); 1814 1815 I915_WRITE(SERR_INT, serr_int); 1816 } 1817 1818 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir) 1819 { 1820 enum pipe pipe; 1821 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT; 1822 1823 ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt); 1824 1825 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) { 1826 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >> 1827 SDE_AUDIO_POWER_SHIFT_CPT); 1828 drm_dbg(&dev_priv->drm, "PCH audio power change on port %c\n", 1829 port_name(port)); 1830 } 1831 1832 if (pch_iir & SDE_AUX_MASK_CPT) 1833 dp_aux_irq_handler(dev_priv); 1834 1835 if (pch_iir & SDE_GMBUS_CPT) 1836 gmbus_irq_handler(dev_priv); 1837 1838 if (pch_iir & SDE_AUDIO_CP_REQ_CPT) 1839 drm_dbg(&dev_priv->drm, "Audio CP request interrupt\n"); 1840 1841 if (pch_iir & SDE_AUDIO_CP_CHG_CPT) 1842 drm_dbg(&dev_priv->drm, "Audio CP change interrupt\n"); 1843 1844 if (pch_iir & SDE_FDI_MASK_CPT) { 1845 for_each_pipe(dev_priv, pipe) 1846 drm_dbg(&dev_priv->drm, " pipe %c FDI IIR: 0x%08x\n", 1847 pipe_name(pipe), 1848 I915_READ(FDI_RX_IIR(pipe))); 1849 } 1850 1851 if (pch_iir & SDE_ERROR_CPT) 1852 cpt_serr_int_handler(dev_priv); 1853 } 1854 1855 static void icp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir) 1856 { 1857 u32 ddi_hotplug_trigger, tc_hotplug_trigger; 1858 u32 pin_mask = 0, long_mask = 0; 1859 bool (*tc_port_hotplug_long_detect)(enum hpd_pin pin, u32 val); 1860 const u32 *pins; 1861 1862 if (HAS_PCH_TGP(dev_priv)) { 1863 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_TGP; 1864 tc_hotplug_trigger = pch_iir & SDE_TC_MASK_TGP; 1865 tc_port_hotplug_long_detect = tgp_tc_port_hotplug_long_detect; 1866 pins = hpd_tgp; 1867 } else if (HAS_PCH_JSP(dev_priv)) { 1868 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_TGP; 1869 tc_hotplug_trigger = 0; 1870 pins = hpd_tgp; 1871 } else if (HAS_PCH_MCC(dev_priv)) { 1872 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_ICP; 1873 tc_hotplug_trigger = pch_iir & SDE_TC_HOTPLUG_ICP(PORT_TC1); 1874 tc_port_hotplug_long_detect = icp_tc_port_hotplug_long_detect; 1875 pins = hpd_icp; 1876 } else { 1877 drm_WARN(&dev_priv->drm, !HAS_PCH_ICP(dev_priv), 1878 "Unrecognized PCH type 0x%x\n", 1879 INTEL_PCH_TYPE(dev_priv)); 1880 1881 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_ICP; 1882 tc_hotplug_trigger = pch_iir & SDE_TC_MASK_ICP; 1883 tc_port_hotplug_long_detect = icp_tc_port_hotplug_long_detect; 1884 pins = hpd_icp; 1885 } 1886 1887 if (ddi_hotplug_trigger) { 1888 u32 dig_hotplug_reg; 1889 1890 dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_DDI); 1891 I915_WRITE(SHOTPLUG_CTL_DDI, dig_hotplug_reg); 1892 1893 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 1894 ddi_hotplug_trigger, 1895 dig_hotplug_reg, pins, 1896 icp_ddi_port_hotplug_long_detect); 1897 } 1898 1899 if (tc_hotplug_trigger) { 1900 u32 dig_hotplug_reg; 1901 1902 dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_TC); 1903 I915_WRITE(SHOTPLUG_CTL_TC, dig_hotplug_reg); 1904 1905 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 1906 tc_hotplug_trigger, 1907 dig_hotplug_reg, pins, 1908 tc_port_hotplug_long_detect); 1909 } 1910 1911 if (pin_mask) 1912 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 1913 1914 if (pch_iir & SDE_GMBUS_ICP) 1915 gmbus_irq_handler(dev_priv); 1916 } 1917 1918 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir) 1919 { 1920 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT & 1921 ~SDE_PORTE_HOTPLUG_SPT; 1922 u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT; 1923 u32 pin_mask = 0, long_mask = 0; 1924 1925 if (hotplug_trigger) { 1926 u32 dig_hotplug_reg; 1927 1928 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG); 1929 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg); 1930 1931 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 1932 hotplug_trigger, dig_hotplug_reg, hpd_spt, 1933 spt_port_hotplug_long_detect); 1934 } 1935 1936 if (hotplug2_trigger) { 1937 u32 dig_hotplug_reg; 1938 1939 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2); 1940 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg); 1941 1942 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, 1943 hotplug2_trigger, dig_hotplug_reg, hpd_spt, 1944 spt_port_hotplug2_long_detect); 1945 } 1946 1947 if (pin_mask) 1948 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 1949 1950 if (pch_iir & SDE_GMBUS_CPT) 1951 gmbus_irq_handler(dev_priv); 1952 } 1953 1954 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv, 1955 u32 hotplug_trigger, 1956 const u32 hpd[HPD_NUM_PINS]) 1957 { 1958 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0; 1959 1960 dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL); 1961 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg); 1962 1963 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger, 1964 dig_hotplug_reg, hpd, 1965 ilk_port_hotplug_long_detect); 1966 1967 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 1968 } 1969 1970 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv, 1971 u32 de_iir) 1972 { 1973 enum pipe pipe; 1974 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG; 1975 1976 if (hotplug_trigger) 1977 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk); 1978 1979 if (de_iir & DE_AUX_CHANNEL_A) 1980 dp_aux_irq_handler(dev_priv); 1981 1982 if (de_iir & DE_GSE) 1983 intel_opregion_asle_intr(dev_priv); 1984 1985 if (de_iir & DE_POISON) 1986 drm_err(&dev_priv->drm, "Poison interrupt\n"); 1987 1988 for_each_pipe(dev_priv, pipe) { 1989 if (de_iir & DE_PIPE_VBLANK(pipe)) 1990 intel_handle_vblank(dev_priv, pipe); 1991 1992 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe)) 1993 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 1994 1995 if (de_iir & DE_PIPE_CRC_DONE(pipe)) 1996 i9xx_pipe_crc_irq_handler(dev_priv, pipe); 1997 } 1998 1999 /* check event from PCH */ 2000 if (de_iir & DE_PCH_EVENT) { 2001 u32 pch_iir = I915_READ(SDEIIR); 2002 2003 if (HAS_PCH_CPT(dev_priv)) 2004 cpt_irq_handler(dev_priv, pch_iir); 2005 else 2006 ibx_irq_handler(dev_priv, pch_iir); 2007 2008 /* should clear PCH hotplug event before clear CPU irq */ 2009 I915_WRITE(SDEIIR, pch_iir); 2010 } 2011 2012 if (IS_GEN(dev_priv, 5) && de_iir & DE_PCU_EVENT) 2013 gen5_rps_irq_handler(&dev_priv->gt.rps); 2014 } 2015 2016 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv, 2017 u32 de_iir) 2018 { 2019 enum pipe pipe; 2020 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB; 2021 2022 if (hotplug_trigger) 2023 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb); 2024 2025 if (de_iir & DE_ERR_INT_IVB) 2026 ivb_err_int_handler(dev_priv); 2027 2028 if (de_iir & DE_EDP_PSR_INT_HSW) { 2029 u32 psr_iir = I915_READ(EDP_PSR_IIR); 2030 2031 intel_psr_irq_handler(dev_priv, psr_iir); 2032 I915_WRITE(EDP_PSR_IIR, psr_iir); 2033 } 2034 2035 if (de_iir & DE_AUX_CHANNEL_A_IVB) 2036 dp_aux_irq_handler(dev_priv); 2037 2038 if (de_iir & DE_GSE_IVB) 2039 intel_opregion_asle_intr(dev_priv); 2040 2041 for_each_pipe(dev_priv, pipe) { 2042 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe))) 2043 intel_handle_vblank(dev_priv, pipe); 2044 } 2045 2046 /* check event from PCH */ 2047 if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) { 2048 u32 pch_iir = I915_READ(SDEIIR); 2049 2050 cpt_irq_handler(dev_priv, pch_iir); 2051 2052 /* clear PCH hotplug event before clear CPU irq */ 2053 I915_WRITE(SDEIIR, pch_iir); 2054 } 2055 } 2056 2057 /* 2058 * To handle irqs with the minimum potential races with fresh interrupts, we: 2059 * 1 - Disable Master Interrupt Control. 2060 * 2 - Find the source(s) of the interrupt. 2061 * 3 - Clear the Interrupt Identity bits (IIR). 2062 * 4 - Process the interrupt(s) that had bits set in the IIRs. 2063 * 5 - Re-enable Master Interrupt Control. 2064 */ 2065 static irqreturn_t ilk_irq_handler(int irq, void *arg) 2066 { 2067 struct drm_i915_private *dev_priv = arg; 2068 u32 de_iir, gt_iir, de_ier, sde_ier = 0; 2069 irqreturn_t ret = IRQ_NONE; 2070 2071 if (!intel_irqs_enabled(dev_priv)) 2072 return IRQ_NONE; 2073 2074 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 2075 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 2076 2077 /* disable master interrupt before clearing iir */ 2078 de_ier = I915_READ(DEIER); 2079 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL); 2080 2081 /* Disable south interrupts. We'll only write to SDEIIR once, so further 2082 * interrupts will will be stored on its back queue, and then we'll be 2083 * able to process them after we restore SDEIER (as soon as we restore 2084 * it, we'll get an interrupt if SDEIIR still has something to process 2085 * due to its back queue). */ 2086 if (!HAS_PCH_NOP(dev_priv)) { 2087 sde_ier = I915_READ(SDEIER); 2088 I915_WRITE(SDEIER, 0); 2089 } 2090 2091 /* Find, clear, then process each source of interrupt */ 2092 2093 gt_iir = I915_READ(GTIIR); 2094 if (gt_iir) { 2095 I915_WRITE(GTIIR, gt_iir); 2096 ret = IRQ_HANDLED; 2097 if (INTEL_GEN(dev_priv) >= 6) 2098 gen6_gt_irq_handler(&dev_priv->gt, gt_iir); 2099 else 2100 gen5_gt_irq_handler(&dev_priv->gt, gt_iir); 2101 } 2102 2103 de_iir = I915_READ(DEIIR); 2104 if (de_iir) { 2105 I915_WRITE(DEIIR, de_iir); 2106 ret = IRQ_HANDLED; 2107 if (INTEL_GEN(dev_priv) >= 7) 2108 ivb_display_irq_handler(dev_priv, de_iir); 2109 else 2110 ilk_display_irq_handler(dev_priv, de_iir); 2111 } 2112 2113 if (INTEL_GEN(dev_priv) >= 6) { 2114 u32 pm_iir = I915_READ(GEN6_PMIIR); 2115 if (pm_iir) { 2116 I915_WRITE(GEN6_PMIIR, pm_iir); 2117 ret = IRQ_HANDLED; 2118 gen6_rps_irq_handler(&dev_priv->gt.rps, pm_iir); 2119 } 2120 } 2121 2122 I915_WRITE(DEIER, de_ier); 2123 if (!HAS_PCH_NOP(dev_priv)) 2124 I915_WRITE(SDEIER, sde_ier); 2125 2126 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 2127 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 2128 2129 return ret; 2130 } 2131 2132 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv, 2133 u32 hotplug_trigger, 2134 const u32 hpd[HPD_NUM_PINS]) 2135 { 2136 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0; 2137 2138 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG); 2139 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg); 2140 2141 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger, 2142 dig_hotplug_reg, hpd, 2143 bxt_port_hotplug_long_detect); 2144 2145 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 2146 } 2147 2148 static void gen11_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 iir) 2149 { 2150 u32 pin_mask = 0, long_mask = 0; 2151 u32 trigger_tc = iir & GEN11_DE_TC_HOTPLUG_MASK; 2152 u32 trigger_tbt = iir & GEN11_DE_TBT_HOTPLUG_MASK; 2153 long_pulse_detect_func long_pulse_detect; 2154 const u32 *hpd; 2155 2156 if (INTEL_GEN(dev_priv) >= 12) { 2157 long_pulse_detect = gen12_port_hotplug_long_detect; 2158 hpd = hpd_gen12; 2159 } else { 2160 long_pulse_detect = gen11_port_hotplug_long_detect; 2161 hpd = hpd_gen11; 2162 } 2163 2164 if (trigger_tc) { 2165 u32 dig_hotplug_reg; 2166 2167 dig_hotplug_reg = I915_READ(GEN11_TC_HOTPLUG_CTL); 2168 I915_WRITE(GEN11_TC_HOTPLUG_CTL, dig_hotplug_reg); 2169 2170 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tc, 2171 dig_hotplug_reg, hpd, long_pulse_detect); 2172 } 2173 2174 if (trigger_tbt) { 2175 u32 dig_hotplug_reg; 2176 2177 dig_hotplug_reg = I915_READ(GEN11_TBT_HOTPLUG_CTL); 2178 I915_WRITE(GEN11_TBT_HOTPLUG_CTL, dig_hotplug_reg); 2179 2180 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tbt, 2181 dig_hotplug_reg, hpd, long_pulse_detect); 2182 } 2183 2184 if (pin_mask) 2185 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask); 2186 else 2187 drm_err(&dev_priv->drm, 2188 "Unexpected DE HPD interrupt 0x%08x\n", iir); 2189 } 2190 2191 static u32 gen8_de_port_aux_mask(struct drm_i915_private *dev_priv) 2192 { 2193 u32 mask; 2194 2195 if (INTEL_GEN(dev_priv) >= 12) 2196 return TGL_DE_PORT_AUX_DDIA | 2197 TGL_DE_PORT_AUX_DDIB | 2198 TGL_DE_PORT_AUX_DDIC | 2199 TGL_DE_PORT_AUX_USBC1 | 2200 TGL_DE_PORT_AUX_USBC2 | 2201 TGL_DE_PORT_AUX_USBC3 | 2202 TGL_DE_PORT_AUX_USBC4 | 2203 TGL_DE_PORT_AUX_USBC5 | 2204 TGL_DE_PORT_AUX_USBC6; 2205 2206 2207 mask = GEN8_AUX_CHANNEL_A; 2208 if (INTEL_GEN(dev_priv) >= 9) 2209 mask |= GEN9_AUX_CHANNEL_B | 2210 GEN9_AUX_CHANNEL_C | 2211 GEN9_AUX_CHANNEL_D; 2212 2213 if (IS_CNL_WITH_PORT_F(dev_priv) || IS_GEN(dev_priv, 11)) 2214 mask |= CNL_AUX_CHANNEL_F; 2215 2216 if (IS_GEN(dev_priv, 11)) 2217 mask |= ICL_AUX_CHANNEL_E; 2218 2219 return mask; 2220 } 2221 2222 static u32 gen8_de_pipe_fault_mask(struct drm_i915_private *dev_priv) 2223 { 2224 if (INTEL_GEN(dev_priv) >= 11) 2225 return GEN11_DE_PIPE_IRQ_FAULT_ERRORS; 2226 else if (INTEL_GEN(dev_priv) >= 9) 2227 return GEN9_DE_PIPE_IRQ_FAULT_ERRORS; 2228 else 2229 return GEN8_DE_PIPE_IRQ_FAULT_ERRORS; 2230 } 2231 2232 static void 2233 gen8_de_misc_irq_handler(struct drm_i915_private *dev_priv, u32 iir) 2234 { 2235 bool found = false; 2236 2237 if (iir & GEN8_DE_MISC_GSE) { 2238 intel_opregion_asle_intr(dev_priv); 2239 found = true; 2240 } 2241 2242 if (iir & GEN8_DE_EDP_PSR) { 2243 u32 psr_iir; 2244 i915_reg_t iir_reg; 2245 2246 if (INTEL_GEN(dev_priv) >= 12) 2247 iir_reg = TRANS_PSR_IIR(dev_priv->psr.transcoder); 2248 else 2249 iir_reg = EDP_PSR_IIR; 2250 2251 psr_iir = I915_READ(iir_reg); 2252 I915_WRITE(iir_reg, psr_iir); 2253 2254 if (psr_iir) 2255 found = true; 2256 2257 intel_psr_irq_handler(dev_priv, psr_iir); 2258 } 2259 2260 if (!found) 2261 drm_err(&dev_priv->drm, "Unexpected DE Misc interrupt\n"); 2262 } 2263 2264 static irqreturn_t 2265 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl) 2266 { 2267 irqreturn_t ret = IRQ_NONE; 2268 u32 iir; 2269 enum pipe pipe; 2270 2271 if (master_ctl & GEN8_DE_MISC_IRQ) { 2272 iir = I915_READ(GEN8_DE_MISC_IIR); 2273 if (iir) { 2274 I915_WRITE(GEN8_DE_MISC_IIR, iir); 2275 ret = IRQ_HANDLED; 2276 gen8_de_misc_irq_handler(dev_priv, iir); 2277 } else { 2278 drm_err(&dev_priv->drm, 2279 "The master control interrupt lied (DE MISC)!\n"); 2280 } 2281 } 2282 2283 if (INTEL_GEN(dev_priv) >= 11 && (master_ctl & GEN11_DE_HPD_IRQ)) { 2284 iir = I915_READ(GEN11_DE_HPD_IIR); 2285 if (iir) { 2286 I915_WRITE(GEN11_DE_HPD_IIR, iir); 2287 ret = IRQ_HANDLED; 2288 gen11_hpd_irq_handler(dev_priv, iir); 2289 } else { 2290 drm_err(&dev_priv->drm, 2291 "The master control interrupt lied, (DE HPD)!\n"); 2292 } 2293 } 2294 2295 if (master_ctl & GEN8_DE_PORT_IRQ) { 2296 iir = I915_READ(GEN8_DE_PORT_IIR); 2297 if (iir) { 2298 u32 tmp_mask; 2299 bool found = false; 2300 2301 I915_WRITE(GEN8_DE_PORT_IIR, iir); 2302 ret = IRQ_HANDLED; 2303 2304 if (iir & gen8_de_port_aux_mask(dev_priv)) { 2305 dp_aux_irq_handler(dev_priv); 2306 found = true; 2307 } 2308 2309 if (IS_GEN9_LP(dev_priv)) { 2310 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK; 2311 if (tmp_mask) { 2312 bxt_hpd_irq_handler(dev_priv, tmp_mask, 2313 hpd_bxt); 2314 found = true; 2315 } 2316 } else if (IS_BROADWELL(dev_priv)) { 2317 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG; 2318 if (tmp_mask) { 2319 ilk_hpd_irq_handler(dev_priv, 2320 tmp_mask, hpd_bdw); 2321 found = true; 2322 } 2323 } 2324 2325 if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) { 2326 gmbus_irq_handler(dev_priv); 2327 found = true; 2328 } 2329 2330 if (!found) 2331 drm_err(&dev_priv->drm, 2332 "Unexpected DE Port interrupt\n"); 2333 } 2334 else 2335 drm_err(&dev_priv->drm, 2336 "The master control interrupt lied (DE PORT)!\n"); 2337 } 2338 2339 for_each_pipe(dev_priv, pipe) { 2340 u32 fault_errors; 2341 2342 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe))) 2343 continue; 2344 2345 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe)); 2346 if (!iir) { 2347 drm_err(&dev_priv->drm, 2348 "The master control interrupt lied (DE PIPE)!\n"); 2349 continue; 2350 } 2351 2352 ret = IRQ_HANDLED; 2353 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir); 2354 2355 if (iir & GEN8_PIPE_VBLANK) 2356 intel_handle_vblank(dev_priv, pipe); 2357 2358 if (iir & GEN8_PIPE_CDCLK_CRC_DONE) 2359 hsw_pipe_crc_irq_handler(dev_priv, pipe); 2360 2361 if (iir & GEN8_PIPE_FIFO_UNDERRUN) 2362 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe); 2363 2364 fault_errors = iir & gen8_de_pipe_fault_mask(dev_priv); 2365 if (fault_errors) 2366 drm_err(&dev_priv->drm, 2367 "Fault errors on pipe %c: 0x%08x\n", 2368 pipe_name(pipe), 2369 fault_errors); 2370 } 2371 2372 if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) && 2373 master_ctl & GEN8_DE_PCH_IRQ) { 2374 /* 2375 * FIXME(BDW): Assume for now that the new interrupt handling 2376 * scheme also closed the SDE interrupt handling race we've seen 2377 * on older pch-split platforms. But this needs testing. 2378 */ 2379 iir = I915_READ(SDEIIR); 2380 if (iir) { 2381 I915_WRITE(SDEIIR, iir); 2382 ret = IRQ_HANDLED; 2383 2384 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) 2385 icp_irq_handler(dev_priv, iir); 2386 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT) 2387 spt_irq_handler(dev_priv, iir); 2388 else 2389 cpt_irq_handler(dev_priv, iir); 2390 } else { 2391 /* 2392 * Like on previous PCH there seems to be something 2393 * fishy going on with forwarding PCH interrupts. 2394 */ 2395 drm_dbg(&dev_priv->drm, 2396 "The master control interrupt lied (SDE)!\n"); 2397 } 2398 } 2399 2400 return ret; 2401 } 2402 2403 static inline u32 gen8_master_intr_disable(void __iomem * const regs) 2404 { 2405 raw_reg_write(regs, GEN8_MASTER_IRQ, 0); 2406 2407 /* 2408 * Now with master disabled, get a sample of level indications 2409 * for this interrupt. Indications will be cleared on related acks. 2410 * New indications can and will light up during processing, 2411 * and will generate new interrupt after enabling master. 2412 */ 2413 return raw_reg_read(regs, GEN8_MASTER_IRQ); 2414 } 2415 2416 static inline void gen8_master_intr_enable(void __iomem * const regs) 2417 { 2418 raw_reg_write(regs, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL); 2419 } 2420 2421 static irqreturn_t gen8_irq_handler(int irq, void *arg) 2422 { 2423 struct drm_i915_private *dev_priv = arg; 2424 void __iomem * const regs = dev_priv->uncore.regs; 2425 u32 master_ctl; 2426 2427 if (!intel_irqs_enabled(dev_priv)) 2428 return IRQ_NONE; 2429 2430 master_ctl = gen8_master_intr_disable(regs); 2431 if (!master_ctl) { 2432 gen8_master_intr_enable(regs); 2433 return IRQ_NONE; 2434 } 2435 2436 /* Find, queue (onto bottom-halves), then clear each source */ 2437 gen8_gt_irq_handler(&dev_priv->gt, master_ctl); 2438 2439 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 2440 if (master_ctl & ~GEN8_GT_IRQS) { 2441 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 2442 gen8_de_irq_handler(dev_priv, master_ctl); 2443 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 2444 } 2445 2446 gen8_master_intr_enable(regs); 2447 2448 return IRQ_HANDLED; 2449 } 2450 2451 static u32 2452 gen11_gu_misc_irq_ack(struct intel_gt *gt, const u32 master_ctl) 2453 { 2454 void __iomem * const regs = gt->uncore->regs; 2455 u32 iir; 2456 2457 if (!(master_ctl & GEN11_GU_MISC_IRQ)) 2458 return 0; 2459 2460 iir = raw_reg_read(regs, GEN11_GU_MISC_IIR); 2461 if (likely(iir)) 2462 raw_reg_write(regs, GEN11_GU_MISC_IIR, iir); 2463 2464 return iir; 2465 } 2466 2467 static void 2468 gen11_gu_misc_irq_handler(struct intel_gt *gt, const u32 iir) 2469 { 2470 if (iir & GEN11_GU_MISC_GSE) 2471 intel_opregion_asle_intr(gt->i915); 2472 } 2473 2474 static inline u32 gen11_master_intr_disable(void __iomem * const regs) 2475 { 2476 raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0); 2477 2478 /* 2479 * Now with master disabled, get a sample of level indications 2480 * for this interrupt. Indications will be cleared on related acks. 2481 * New indications can and will light up during processing, 2482 * and will generate new interrupt after enabling master. 2483 */ 2484 return raw_reg_read(regs, GEN11_GFX_MSTR_IRQ); 2485 } 2486 2487 static inline void gen11_master_intr_enable(void __iomem * const regs) 2488 { 2489 raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ); 2490 } 2491 2492 static void 2493 gen11_display_irq_handler(struct drm_i915_private *i915) 2494 { 2495 void __iomem * const regs = i915->uncore.regs; 2496 const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL); 2497 2498 disable_rpm_wakeref_asserts(&i915->runtime_pm); 2499 /* 2500 * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ 2501 * for the display related bits. 2502 */ 2503 raw_reg_write(regs, GEN11_DISPLAY_INT_CTL, 0x0); 2504 gen8_de_irq_handler(i915, disp_ctl); 2505 raw_reg_write(regs, GEN11_DISPLAY_INT_CTL, 2506 GEN11_DISPLAY_IRQ_ENABLE); 2507 2508 enable_rpm_wakeref_asserts(&i915->runtime_pm); 2509 } 2510 2511 static __always_inline irqreturn_t 2512 __gen11_irq_handler(struct drm_i915_private * const i915, 2513 u32 (*intr_disable)(void __iomem * const regs), 2514 void (*intr_enable)(void __iomem * const regs)) 2515 { 2516 void __iomem * const regs = i915->uncore.regs; 2517 struct intel_gt *gt = &i915->gt; 2518 u32 master_ctl; 2519 u32 gu_misc_iir; 2520 2521 if (!intel_irqs_enabled(i915)) 2522 return IRQ_NONE; 2523 2524 master_ctl = intr_disable(regs); 2525 if (!master_ctl) { 2526 intr_enable(regs); 2527 return IRQ_NONE; 2528 } 2529 2530 /* Find, queue (onto bottom-halves), then clear each source */ 2531 gen11_gt_irq_handler(gt, master_ctl); 2532 2533 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 2534 if (master_ctl & GEN11_DISPLAY_IRQ) 2535 gen11_display_irq_handler(i915); 2536 2537 gu_misc_iir = gen11_gu_misc_irq_ack(gt, master_ctl); 2538 2539 intr_enable(regs); 2540 2541 gen11_gu_misc_irq_handler(gt, gu_misc_iir); 2542 2543 return IRQ_HANDLED; 2544 } 2545 2546 static irqreturn_t gen11_irq_handler(int irq, void *arg) 2547 { 2548 return __gen11_irq_handler(arg, 2549 gen11_master_intr_disable, 2550 gen11_master_intr_enable); 2551 } 2552 2553 /* Called from drm generic code, passed 'crtc' which 2554 * we use as a pipe index 2555 */ 2556 int i8xx_enable_vblank(struct drm_crtc *crtc) 2557 { 2558 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 2559 enum pipe pipe = to_intel_crtc(crtc)->pipe; 2560 unsigned long irqflags; 2561 2562 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2563 i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS); 2564 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2565 2566 return 0; 2567 } 2568 2569 int i915gm_enable_vblank(struct drm_crtc *crtc) 2570 { 2571 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 2572 2573 /* 2574 * Vblank interrupts fail to wake the device up from C2+. 2575 * Disabling render clock gating during C-states avoids 2576 * the problem. There is a small power cost so we do this 2577 * only when vblank interrupts are actually enabled. 2578 */ 2579 if (dev_priv->vblank_enabled++ == 0) 2580 I915_WRITE(SCPD0, _MASKED_BIT_ENABLE(CSTATE_RENDER_CLOCK_GATE_DISABLE)); 2581 2582 return i8xx_enable_vblank(crtc); 2583 } 2584 2585 int i965_enable_vblank(struct drm_crtc *crtc) 2586 { 2587 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 2588 enum pipe pipe = to_intel_crtc(crtc)->pipe; 2589 unsigned long irqflags; 2590 2591 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2592 i915_enable_pipestat(dev_priv, pipe, 2593 PIPE_START_VBLANK_INTERRUPT_STATUS); 2594 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2595 2596 return 0; 2597 } 2598 2599 int ilk_enable_vblank(struct drm_crtc *crtc) 2600 { 2601 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 2602 enum pipe pipe = to_intel_crtc(crtc)->pipe; 2603 unsigned long irqflags; 2604 u32 bit = INTEL_GEN(dev_priv) >= 7 ? 2605 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe); 2606 2607 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2608 ilk_enable_display_irq(dev_priv, bit); 2609 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2610 2611 /* Even though there is no DMC, frame counter can get stuck when 2612 * PSR is active as no frames are generated. 2613 */ 2614 if (HAS_PSR(dev_priv)) 2615 drm_crtc_vblank_restore(crtc); 2616 2617 return 0; 2618 } 2619 2620 int bdw_enable_vblank(struct drm_crtc *crtc) 2621 { 2622 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 2623 enum pipe pipe = to_intel_crtc(crtc)->pipe; 2624 unsigned long irqflags; 2625 2626 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2627 bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK); 2628 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2629 2630 /* Even if there is no DMC, frame counter can get stuck when 2631 * PSR is active as no frames are generated, so check only for PSR. 2632 */ 2633 if (HAS_PSR(dev_priv)) 2634 drm_crtc_vblank_restore(crtc); 2635 2636 return 0; 2637 } 2638 2639 /* Called from drm generic code, passed 'crtc' which 2640 * we use as a pipe index 2641 */ 2642 void i8xx_disable_vblank(struct drm_crtc *crtc) 2643 { 2644 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 2645 enum pipe pipe = to_intel_crtc(crtc)->pipe; 2646 unsigned long irqflags; 2647 2648 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2649 i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS); 2650 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2651 } 2652 2653 void i915gm_disable_vblank(struct drm_crtc *crtc) 2654 { 2655 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 2656 2657 i8xx_disable_vblank(crtc); 2658 2659 if (--dev_priv->vblank_enabled == 0) 2660 I915_WRITE(SCPD0, _MASKED_BIT_DISABLE(CSTATE_RENDER_CLOCK_GATE_DISABLE)); 2661 } 2662 2663 void i965_disable_vblank(struct drm_crtc *crtc) 2664 { 2665 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 2666 enum pipe pipe = to_intel_crtc(crtc)->pipe; 2667 unsigned long irqflags; 2668 2669 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2670 i915_disable_pipestat(dev_priv, pipe, 2671 PIPE_START_VBLANK_INTERRUPT_STATUS); 2672 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2673 } 2674 2675 void ilk_disable_vblank(struct drm_crtc *crtc) 2676 { 2677 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 2678 enum pipe pipe = to_intel_crtc(crtc)->pipe; 2679 unsigned long irqflags; 2680 u32 bit = INTEL_GEN(dev_priv) >= 7 ? 2681 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe); 2682 2683 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2684 ilk_disable_display_irq(dev_priv, bit); 2685 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2686 } 2687 2688 void bdw_disable_vblank(struct drm_crtc *crtc) 2689 { 2690 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 2691 enum pipe pipe = to_intel_crtc(crtc)->pipe; 2692 unsigned long irqflags; 2693 2694 spin_lock_irqsave(&dev_priv->irq_lock, irqflags); 2695 bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK); 2696 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); 2697 } 2698 2699 static void ibx_irq_reset(struct drm_i915_private *dev_priv) 2700 { 2701 struct intel_uncore *uncore = &dev_priv->uncore; 2702 2703 if (HAS_PCH_NOP(dev_priv)) 2704 return; 2705 2706 GEN3_IRQ_RESET(uncore, SDE); 2707 2708 if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv)) 2709 I915_WRITE(SERR_INT, 0xffffffff); 2710 } 2711 2712 /* 2713 * SDEIER is also touched by the interrupt handler to work around missed PCH 2714 * interrupts. Hence we can't update it after the interrupt handler is enabled - 2715 * instead we unconditionally enable all PCH interrupt sources here, but then 2716 * only unmask them as needed with SDEIMR. 2717 * 2718 * This function needs to be called before interrupts are enabled. 2719 */ 2720 static void ibx_irq_pre_postinstall(struct drm_i915_private *dev_priv) 2721 { 2722 if (HAS_PCH_NOP(dev_priv)) 2723 return; 2724 2725 drm_WARN_ON(&dev_priv->drm, I915_READ(SDEIER) != 0); 2726 I915_WRITE(SDEIER, 0xffffffff); 2727 POSTING_READ(SDEIER); 2728 } 2729 2730 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv) 2731 { 2732 struct intel_uncore *uncore = &dev_priv->uncore; 2733 2734 if (IS_CHERRYVIEW(dev_priv)) 2735 intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK_CHV); 2736 else 2737 intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK); 2738 2739 i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0); 2740 intel_uncore_write(uncore, PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); 2741 2742 i9xx_pipestat_irq_reset(dev_priv); 2743 2744 GEN3_IRQ_RESET(uncore, VLV_); 2745 dev_priv->irq_mask = ~0u; 2746 } 2747 2748 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv) 2749 { 2750 struct intel_uncore *uncore = &dev_priv->uncore; 2751 2752 u32 pipestat_mask; 2753 u32 enable_mask; 2754 enum pipe pipe; 2755 2756 pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS; 2757 2758 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS); 2759 for_each_pipe(dev_priv, pipe) 2760 i915_enable_pipestat(dev_priv, pipe, pipestat_mask); 2761 2762 enable_mask = I915_DISPLAY_PORT_INTERRUPT | 2763 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 2764 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 2765 I915_LPE_PIPE_A_INTERRUPT | 2766 I915_LPE_PIPE_B_INTERRUPT; 2767 2768 if (IS_CHERRYVIEW(dev_priv)) 2769 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT | 2770 I915_LPE_PIPE_C_INTERRUPT; 2771 2772 drm_WARN_ON(&dev_priv->drm, dev_priv->irq_mask != ~0u); 2773 2774 dev_priv->irq_mask = ~enable_mask; 2775 2776 GEN3_IRQ_INIT(uncore, VLV_, dev_priv->irq_mask, enable_mask); 2777 } 2778 2779 /* drm_dma.h hooks 2780 */ 2781 static void ilk_irq_reset(struct drm_i915_private *dev_priv) 2782 { 2783 struct intel_uncore *uncore = &dev_priv->uncore; 2784 2785 GEN3_IRQ_RESET(uncore, DE); 2786 if (IS_GEN(dev_priv, 7)) 2787 intel_uncore_write(uncore, GEN7_ERR_INT, 0xffffffff); 2788 2789 if (IS_HASWELL(dev_priv)) { 2790 intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff); 2791 intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff); 2792 } 2793 2794 gen5_gt_irq_reset(&dev_priv->gt); 2795 2796 ibx_irq_reset(dev_priv); 2797 } 2798 2799 static void valleyview_irq_reset(struct drm_i915_private *dev_priv) 2800 { 2801 I915_WRITE(VLV_MASTER_IER, 0); 2802 POSTING_READ(VLV_MASTER_IER); 2803 2804 gen5_gt_irq_reset(&dev_priv->gt); 2805 2806 spin_lock_irq(&dev_priv->irq_lock); 2807 if (dev_priv->display_irqs_enabled) 2808 vlv_display_irq_reset(dev_priv); 2809 spin_unlock_irq(&dev_priv->irq_lock); 2810 } 2811 2812 static void gen8_irq_reset(struct drm_i915_private *dev_priv) 2813 { 2814 struct intel_uncore *uncore = &dev_priv->uncore; 2815 enum pipe pipe; 2816 2817 gen8_master_intr_disable(dev_priv->uncore.regs); 2818 2819 gen8_gt_irq_reset(&dev_priv->gt); 2820 2821 intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff); 2822 intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff); 2823 2824 for_each_pipe(dev_priv, pipe) 2825 if (intel_display_power_is_enabled(dev_priv, 2826 POWER_DOMAIN_PIPE(pipe))) 2827 GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe); 2828 2829 GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_); 2830 GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_); 2831 GEN3_IRQ_RESET(uncore, GEN8_PCU_); 2832 2833 if (HAS_PCH_SPLIT(dev_priv)) 2834 ibx_irq_reset(dev_priv); 2835 } 2836 2837 static void gen11_display_irq_reset(struct drm_i915_private *dev_priv) 2838 { 2839 struct intel_uncore *uncore = &dev_priv->uncore; 2840 enum pipe pipe; 2841 2842 intel_uncore_write(uncore, GEN11_DISPLAY_INT_CTL, 0); 2843 2844 if (INTEL_GEN(dev_priv) >= 12) { 2845 enum transcoder trans; 2846 2847 for (trans = TRANSCODER_A; trans <= TRANSCODER_D; trans++) { 2848 enum intel_display_power_domain domain; 2849 2850 domain = POWER_DOMAIN_TRANSCODER(trans); 2851 if (!intel_display_power_is_enabled(dev_priv, domain)) 2852 continue; 2853 2854 intel_uncore_write(uncore, TRANS_PSR_IMR(trans), 0xffffffff); 2855 intel_uncore_write(uncore, TRANS_PSR_IIR(trans), 0xffffffff); 2856 } 2857 } else { 2858 intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff); 2859 intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff); 2860 } 2861 2862 for_each_pipe(dev_priv, pipe) 2863 if (intel_display_power_is_enabled(dev_priv, 2864 POWER_DOMAIN_PIPE(pipe))) 2865 GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe); 2866 2867 GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_); 2868 GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_); 2869 GEN3_IRQ_RESET(uncore, GEN11_DE_HPD_); 2870 2871 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) 2872 GEN3_IRQ_RESET(uncore, SDE); 2873 } 2874 2875 static void gen11_irq_reset(struct drm_i915_private *dev_priv) 2876 { 2877 struct intel_uncore *uncore = &dev_priv->uncore; 2878 2879 gen11_master_intr_disable(dev_priv->uncore.regs); 2880 2881 gen11_gt_irq_reset(&dev_priv->gt); 2882 gen11_display_irq_reset(dev_priv); 2883 2884 GEN3_IRQ_RESET(uncore, GEN11_GU_MISC_); 2885 GEN3_IRQ_RESET(uncore, GEN8_PCU_); 2886 } 2887 2888 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv, 2889 u8 pipe_mask) 2890 { 2891 struct intel_uncore *uncore = &dev_priv->uncore; 2892 2893 u32 extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN; 2894 enum pipe pipe; 2895 2896 spin_lock_irq(&dev_priv->irq_lock); 2897 2898 if (!intel_irqs_enabled(dev_priv)) { 2899 spin_unlock_irq(&dev_priv->irq_lock); 2900 return; 2901 } 2902 2903 for_each_pipe_masked(dev_priv, pipe, pipe_mask) 2904 GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe, 2905 dev_priv->de_irq_mask[pipe], 2906 ~dev_priv->de_irq_mask[pipe] | extra_ier); 2907 2908 spin_unlock_irq(&dev_priv->irq_lock); 2909 } 2910 2911 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv, 2912 u8 pipe_mask) 2913 { 2914 struct intel_uncore *uncore = &dev_priv->uncore; 2915 enum pipe pipe; 2916 2917 spin_lock_irq(&dev_priv->irq_lock); 2918 2919 if (!intel_irqs_enabled(dev_priv)) { 2920 spin_unlock_irq(&dev_priv->irq_lock); 2921 return; 2922 } 2923 2924 for_each_pipe_masked(dev_priv, pipe, pipe_mask) 2925 GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe); 2926 2927 spin_unlock_irq(&dev_priv->irq_lock); 2928 2929 /* make sure we're done processing display irqs */ 2930 intel_synchronize_irq(dev_priv); 2931 } 2932 2933 static void cherryview_irq_reset(struct drm_i915_private *dev_priv) 2934 { 2935 struct intel_uncore *uncore = &dev_priv->uncore; 2936 2937 I915_WRITE(GEN8_MASTER_IRQ, 0); 2938 POSTING_READ(GEN8_MASTER_IRQ); 2939 2940 gen8_gt_irq_reset(&dev_priv->gt); 2941 2942 GEN3_IRQ_RESET(uncore, GEN8_PCU_); 2943 2944 spin_lock_irq(&dev_priv->irq_lock); 2945 if (dev_priv->display_irqs_enabled) 2946 vlv_display_irq_reset(dev_priv); 2947 spin_unlock_irq(&dev_priv->irq_lock); 2948 } 2949 2950 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv, 2951 const u32 hpd[HPD_NUM_PINS]) 2952 { 2953 struct intel_encoder *encoder; 2954 u32 enabled_irqs = 0; 2955 2956 for_each_intel_encoder(&dev_priv->drm, encoder) 2957 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED) 2958 enabled_irqs |= hpd[encoder->hpd_pin]; 2959 2960 return enabled_irqs; 2961 } 2962 2963 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv) 2964 { 2965 u32 hotplug; 2966 2967 /* 2968 * Enable digital hotplug on the PCH, and configure the DP short pulse 2969 * duration to 2ms (which is the minimum in the Display Port spec). 2970 * The pulse duration bits are reserved on LPT+. 2971 */ 2972 hotplug = I915_READ(PCH_PORT_HOTPLUG); 2973 hotplug &= ~(PORTB_PULSE_DURATION_MASK | 2974 PORTC_PULSE_DURATION_MASK | 2975 PORTD_PULSE_DURATION_MASK); 2976 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms; 2977 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms; 2978 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms; 2979 /* 2980 * When CPU and PCH are on the same package, port A 2981 * HPD must be enabled in both north and south. 2982 */ 2983 if (HAS_PCH_LPT_LP(dev_priv)) 2984 hotplug |= PORTA_HOTPLUG_ENABLE; 2985 I915_WRITE(PCH_PORT_HOTPLUG, hotplug); 2986 } 2987 2988 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv) 2989 { 2990 u32 hotplug_irqs, enabled_irqs; 2991 2992 if (HAS_PCH_IBX(dev_priv)) { 2993 hotplug_irqs = SDE_HOTPLUG_MASK; 2994 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx); 2995 } else { 2996 hotplug_irqs = SDE_HOTPLUG_MASK_CPT; 2997 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt); 2998 } 2999 3000 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs); 3001 3002 ibx_hpd_detection_setup(dev_priv); 3003 } 3004 3005 static void icp_hpd_detection_setup(struct drm_i915_private *dev_priv, 3006 u32 ddi_hotplug_enable_mask, 3007 u32 tc_hotplug_enable_mask) 3008 { 3009 u32 hotplug; 3010 3011 hotplug = I915_READ(SHOTPLUG_CTL_DDI); 3012 hotplug |= ddi_hotplug_enable_mask; 3013 I915_WRITE(SHOTPLUG_CTL_DDI, hotplug); 3014 3015 if (tc_hotplug_enable_mask) { 3016 hotplug = I915_READ(SHOTPLUG_CTL_TC); 3017 hotplug |= tc_hotplug_enable_mask; 3018 I915_WRITE(SHOTPLUG_CTL_TC, hotplug); 3019 } 3020 } 3021 3022 static void icp_hpd_irq_setup(struct drm_i915_private *dev_priv, 3023 u32 sde_ddi_mask, u32 sde_tc_mask, 3024 u32 ddi_enable_mask, u32 tc_enable_mask, 3025 const u32 *pins) 3026 { 3027 u32 hotplug_irqs, enabled_irqs; 3028 3029 hotplug_irqs = sde_ddi_mask | sde_tc_mask; 3030 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, pins); 3031 3032 I915_WRITE(SHPD_FILTER_CNT, SHPD_FILTER_CNT_500_ADJ); 3033 3034 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs); 3035 3036 icp_hpd_detection_setup(dev_priv, ddi_enable_mask, tc_enable_mask); 3037 } 3038 3039 /* 3040 * EHL doesn't need most of gen11_hpd_irq_setup, it's handling only the 3041 * equivalent of SDE. 3042 */ 3043 static void mcc_hpd_irq_setup(struct drm_i915_private *dev_priv) 3044 { 3045 icp_hpd_irq_setup(dev_priv, 3046 SDE_DDI_MASK_ICP, SDE_TC_HOTPLUG_ICP(PORT_TC1), 3047 ICP_DDI_HPD_ENABLE_MASK, ICP_TC_HPD_ENABLE(PORT_TC1), 3048 hpd_icp); 3049 } 3050 3051 /* 3052 * JSP behaves exactly the same as MCC above except that port C is mapped to 3053 * the DDI-C pins instead of the TC1 pins. This means we should follow TGP's 3054 * masks & tables rather than ICP's masks & tables. 3055 */ 3056 static void jsp_hpd_irq_setup(struct drm_i915_private *dev_priv) 3057 { 3058 icp_hpd_irq_setup(dev_priv, 3059 SDE_DDI_MASK_TGP, 0, 3060 TGP_DDI_HPD_ENABLE_MASK, 0, 3061 hpd_tgp); 3062 } 3063 3064 static void gen11_hpd_detection_setup(struct drm_i915_private *dev_priv) 3065 { 3066 u32 hotplug; 3067 3068 hotplug = I915_READ(GEN11_TC_HOTPLUG_CTL); 3069 hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) | 3070 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) | 3071 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) | 3072 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4); 3073 I915_WRITE(GEN11_TC_HOTPLUG_CTL, hotplug); 3074 3075 hotplug = I915_READ(GEN11_TBT_HOTPLUG_CTL); 3076 hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) | 3077 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) | 3078 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) | 3079 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4); 3080 I915_WRITE(GEN11_TBT_HOTPLUG_CTL, hotplug); 3081 } 3082 3083 static void gen11_hpd_irq_setup(struct drm_i915_private *dev_priv) 3084 { 3085 u32 hotplug_irqs, enabled_irqs; 3086 const u32 *hpd; 3087 u32 val; 3088 3089 hpd = INTEL_GEN(dev_priv) >= 12 ? hpd_gen12 : hpd_gen11; 3090 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd); 3091 hotplug_irqs = GEN11_DE_TC_HOTPLUG_MASK | GEN11_DE_TBT_HOTPLUG_MASK; 3092 3093 val = I915_READ(GEN11_DE_HPD_IMR); 3094 val &= ~hotplug_irqs; 3095 val |= ~enabled_irqs & hotplug_irqs; 3096 I915_WRITE(GEN11_DE_HPD_IMR, val); 3097 POSTING_READ(GEN11_DE_HPD_IMR); 3098 3099 gen11_hpd_detection_setup(dev_priv); 3100 3101 if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP) 3102 icp_hpd_irq_setup(dev_priv, SDE_DDI_MASK_TGP, SDE_TC_MASK_TGP, 3103 TGP_DDI_HPD_ENABLE_MASK, 3104 TGP_TC_HPD_ENABLE_MASK, hpd_tgp); 3105 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) 3106 icp_hpd_irq_setup(dev_priv, SDE_DDI_MASK_ICP, SDE_TC_MASK_ICP, 3107 ICP_DDI_HPD_ENABLE_MASK, 3108 ICP_TC_HPD_ENABLE_MASK, hpd_icp); 3109 } 3110 3111 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv) 3112 { 3113 u32 val, hotplug; 3114 3115 /* Display WA #1179 WaHardHangonHotPlug: cnp */ 3116 if (HAS_PCH_CNP(dev_priv)) { 3117 val = I915_READ(SOUTH_CHICKEN1); 3118 val &= ~CHASSIS_CLK_REQ_DURATION_MASK; 3119 val |= CHASSIS_CLK_REQ_DURATION(0xf); 3120 I915_WRITE(SOUTH_CHICKEN1, val); 3121 } 3122 3123 /* Enable digital hotplug on the PCH */ 3124 hotplug = I915_READ(PCH_PORT_HOTPLUG); 3125 hotplug |= PORTA_HOTPLUG_ENABLE | 3126 PORTB_HOTPLUG_ENABLE | 3127 PORTC_HOTPLUG_ENABLE | 3128 PORTD_HOTPLUG_ENABLE; 3129 I915_WRITE(PCH_PORT_HOTPLUG, hotplug); 3130 3131 hotplug = I915_READ(PCH_PORT_HOTPLUG2); 3132 hotplug |= PORTE_HOTPLUG_ENABLE; 3133 I915_WRITE(PCH_PORT_HOTPLUG2, hotplug); 3134 } 3135 3136 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv) 3137 { 3138 u32 hotplug_irqs, enabled_irqs; 3139 3140 if (INTEL_PCH_TYPE(dev_priv) >= PCH_CNP) 3141 I915_WRITE(SHPD_FILTER_CNT, SHPD_FILTER_CNT_500_ADJ); 3142 3143 hotplug_irqs = SDE_HOTPLUG_MASK_SPT; 3144 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt); 3145 3146 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs); 3147 3148 spt_hpd_detection_setup(dev_priv); 3149 } 3150 3151 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv) 3152 { 3153 u32 hotplug; 3154 3155 /* 3156 * Enable digital hotplug on the CPU, and configure the DP short pulse 3157 * duration to 2ms (which is the minimum in the Display Port spec) 3158 * The pulse duration bits are reserved on HSW+. 3159 */ 3160 hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL); 3161 hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK; 3162 hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | 3163 DIGITAL_PORTA_PULSE_DURATION_2ms; 3164 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug); 3165 } 3166 3167 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv) 3168 { 3169 u32 hotplug_irqs, enabled_irqs; 3170 3171 if (INTEL_GEN(dev_priv) >= 8) { 3172 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG; 3173 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw); 3174 3175 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs); 3176 } else if (INTEL_GEN(dev_priv) >= 7) { 3177 hotplug_irqs = DE_DP_A_HOTPLUG_IVB; 3178 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb); 3179 3180 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs); 3181 } else { 3182 hotplug_irqs = DE_DP_A_HOTPLUG; 3183 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk); 3184 3185 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs); 3186 } 3187 3188 ilk_hpd_detection_setup(dev_priv); 3189 3190 ibx_hpd_irq_setup(dev_priv); 3191 } 3192 3193 static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv, 3194 u32 enabled_irqs) 3195 { 3196 u32 hotplug; 3197 3198 hotplug = I915_READ(PCH_PORT_HOTPLUG); 3199 hotplug |= PORTA_HOTPLUG_ENABLE | 3200 PORTB_HOTPLUG_ENABLE | 3201 PORTC_HOTPLUG_ENABLE; 3202 3203 drm_dbg_kms(&dev_priv->drm, 3204 "Invert bit setting: hp_ctl:%x hp_port:%x\n", 3205 hotplug, enabled_irqs); 3206 hotplug &= ~BXT_DDI_HPD_INVERT_MASK; 3207 3208 /* 3209 * For BXT invert bit has to be set based on AOB design 3210 * for HPD detection logic, update it based on VBT fields. 3211 */ 3212 if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) && 3213 intel_bios_is_port_hpd_inverted(dev_priv, PORT_A)) 3214 hotplug |= BXT_DDIA_HPD_INVERT; 3215 if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) && 3216 intel_bios_is_port_hpd_inverted(dev_priv, PORT_B)) 3217 hotplug |= BXT_DDIB_HPD_INVERT; 3218 if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) && 3219 intel_bios_is_port_hpd_inverted(dev_priv, PORT_C)) 3220 hotplug |= BXT_DDIC_HPD_INVERT; 3221 3222 I915_WRITE(PCH_PORT_HOTPLUG, hotplug); 3223 } 3224 3225 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv) 3226 { 3227 __bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK); 3228 } 3229 3230 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv) 3231 { 3232 u32 hotplug_irqs, enabled_irqs; 3233 3234 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt); 3235 hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK; 3236 3237 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs); 3238 3239 __bxt_hpd_detection_setup(dev_priv, enabled_irqs); 3240 } 3241 3242 static void ibx_irq_postinstall(struct drm_i915_private *dev_priv) 3243 { 3244 u32 mask; 3245 3246 if (HAS_PCH_NOP(dev_priv)) 3247 return; 3248 3249 if (HAS_PCH_IBX(dev_priv)) 3250 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON; 3251 else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv)) 3252 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT; 3253 else 3254 mask = SDE_GMBUS_CPT; 3255 3256 gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR); 3257 I915_WRITE(SDEIMR, ~mask); 3258 3259 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) || 3260 HAS_PCH_LPT(dev_priv)) 3261 ibx_hpd_detection_setup(dev_priv); 3262 else 3263 spt_hpd_detection_setup(dev_priv); 3264 } 3265 3266 static void ilk_irq_postinstall(struct drm_i915_private *dev_priv) 3267 { 3268 struct intel_uncore *uncore = &dev_priv->uncore; 3269 u32 display_mask, extra_mask; 3270 3271 if (INTEL_GEN(dev_priv) >= 7) { 3272 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB | 3273 DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB); 3274 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB | 3275 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB | 3276 DE_DP_A_HOTPLUG_IVB); 3277 } else { 3278 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT | 3279 DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE | 3280 DE_PIPEA_CRC_DONE | DE_POISON); 3281 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT | 3282 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN | 3283 DE_DP_A_HOTPLUG); 3284 } 3285 3286 if (IS_HASWELL(dev_priv)) { 3287 gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR); 3288 display_mask |= DE_EDP_PSR_INT_HSW; 3289 } 3290 3291 dev_priv->irq_mask = ~display_mask; 3292 3293 ibx_irq_pre_postinstall(dev_priv); 3294 3295 GEN3_IRQ_INIT(uncore, DE, dev_priv->irq_mask, 3296 display_mask | extra_mask); 3297 3298 gen5_gt_irq_postinstall(&dev_priv->gt); 3299 3300 ilk_hpd_detection_setup(dev_priv); 3301 3302 ibx_irq_postinstall(dev_priv); 3303 3304 if (IS_IRONLAKE_M(dev_priv)) { 3305 /* Enable PCU event interrupts 3306 * 3307 * spinlocking not required here for correctness since interrupt 3308 * setup is guaranteed to run in single-threaded context. But we 3309 * need it to make the assert_spin_locked happy. */ 3310 spin_lock_irq(&dev_priv->irq_lock); 3311 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT); 3312 spin_unlock_irq(&dev_priv->irq_lock); 3313 } 3314 } 3315 3316 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv) 3317 { 3318 lockdep_assert_held(&dev_priv->irq_lock); 3319 3320 if (dev_priv->display_irqs_enabled) 3321 return; 3322 3323 dev_priv->display_irqs_enabled = true; 3324 3325 if (intel_irqs_enabled(dev_priv)) { 3326 vlv_display_irq_reset(dev_priv); 3327 vlv_display_irq_postinstall(dev_priv); 3328 } 3329 } 3330 3331 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv) 3332 { 3333 lockdep_assert_held(&dev_priv->irq_lock); 3334 3335 if (!dev_priv->display_irqs_enabled) 3336 return; 3337 3338 dev_priv->display_irqs_enabled = false; 3339 3340 if (intel_irqs_enabled(dev_priv)) 3341 vlv_display_irq_reset(dev_priv); 3342 } 3343 3344 3345 static void valleyview_irq_postinstall(struct drm_i915_private *dev_priv) 3346 { 3347 gen5_gt_irq_postinstall(&dev_priv->gt); 3348 3349 spin_lock_irq(&dev_priv->irq_lock); 3350 if (dev_priv->display_irqs_enabled) 3351 vlv_display_irq_postinstall(dev_priv); 3352 spin_unlock_irq(&dev_priv->irq_lock); 3353 3354 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE); 3355 POSTING_READ(VLV_MASTER_IER); 3356 } 3357 3358 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv) 3359 { 3360 struct intel_uncore *uncore = &dev_priv->uncore; 3361 3362 u32 de_pipe_masked = gen8_de_pipe_fault_mask(dev_priv) | 3363 GEN8_PIPE_CDCLK_CRC_DONE; 3364 u32 de_pipe_enables; 3365 u32 de_port_masked = gen8_de_port_aux_mask(dev_priv); 3366 u32 de_port_enables; 3367 u32 de_misc_masked = GEN8_DE_EDP_PSR; 3368 enum pipe pipe; 3369 3370 if (INTEL_GEN(dev_priv) <= 10) 3371 de_misc_masked |= GEN8_DE_MISC_GSE; 3372 3373 if (IS_GEN9_LP(dev_priv)) 3374 de_port_masked |= BXT_DE_PORT_GMBUS; 3375 3376 de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK | 3377 GEN8_PIPE_FIFO_UNDERRUN; 3378 3379 de_port_enables = de_port_masked; 3380 if (IS_GEN9_LP(dev_priv)) 3381 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK; 3382 else if (IS_BROADWELL(dev_priv)) 3383 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG; 3384 3385 if (INTEL_GEN(dev_priv) >= 12) { 3386 enum transcoder trans; 3387 3388 for (trans = TRANSCODER_A; trans <= TRANSCODER_D; trans++) { 3389 enum intel_display_power_domain domain; 3390 3391 domain = POWER_DOMAIN_TRANSCODER(trans); 3392 if (!intel_display_power_is_enabled(dev_priv, domain)) 3393 continue; 3394 3395 gen3_assert_iir_is_zero(uncore, TRANS_PSR_IIR(trans)); 3396 } 3397 } else { 3398 gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR); 3399 } 3400 3401 for_each_pipe(dev_priv, pipe) { 3402 dev_priv->de_irq_mask[pipe] = ~de_pipe_masked; 3403 3404 if (intel_display_power_is_enabled(dev_priv, 3405 POWER_DOMAIN_PIPE(pipe))) 3406 GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe, 3407 dev_priv->de_irq_mask[pipe], 3408 de_pipe_enables); 3409 } 3410 3411 GEN3_IRQ_INIT(uncore, GEN8_DE_PORT_, ~de_port_masked, de_port_enables); 3412 GEN3_IRQ_INIT(uncore, GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked); 3413 3414 if (INTEL_GEN(dev_priv) >= 11) { 3415 u32 de_hpd_masked = 0; 3416 u32 de_hpd_enables = GEN11_DE_TC_HOTPLUG_MASK | 3417 GEN11_DE_TBT_HOTPLUG_MASK; 3418 3419 GEN3_IRQ_INIT(uncore, GEN11_DE_HPD_, ~de_hpd_masked, 3420 de_hpd_enables); 3421 gen11_hpd_detection_setup(dev_priv); 3422 } else if (IS_GEN9_LP(dev_priv)) { 3423 bxt_hpd_detection_setup(dev_priv); 3424 } else if (IS_BROADWELL(dev_priv)) { 3425 ilk_hpd_detection_setup(dev_priv); 3426 } 3427 } 3428 3429 static void gen8_irq_postinstall(struct drm_i915_private *dev_priv) 3430 { 3431 if (HAS_PCH_SPLIT(dev_priv)) 3432 ibx_irq_pre_postinstall(dev_priv); 3433 3434 gen8_gt_irq_postinstall(&dev_priv->gt); 3435 gen8_de_irq_postinstall(dev_priv); 3436 3437 if (HAS_PCH_SPLIT(dev_priv)) 3438 ibx_irq_postinstall(dev_priv); 3439 3440 gen8_master_intr_enable(dev_priv->uncore.regs); 3441 } 3442 3443 static void icp_irq_postinstall(struct drm_i915_private *dev_priv) 3444 { 3445 u32 mask = SDE_GMBUS_ICP; 3446 3447 drm_WARN_ON(&dev_priv->drm, I915_READ(SDEIER) != 0); 3448 I915_WRITE(SDEIER, 0xffffffff); 3449 POSTING_READ(SDEIER); 3450 3451 gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR); 3452 I915_WRITE(SDEIMR, ~mask); 3453 3454 if (HAS_PCH_TGP(dev_priv)) 3455 icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK, 3456 TGP_TC_HPD_ENABLE_MASK); 3457 else if (HAS_PCH_JSP(dev_priv)) 3458 icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK, 0); 3459 else if (HAS_PCH_MCC(dev_priv)) 3460 icp_hpd_detection_setup(dev_priv, ICP_DDI_HPD_ENABLE_MASK, 3461 ICP_TC_HPD_ENABLE(PORT_TC1)); 3462 else 3463 icp_hpd_detection_setup(dev_priv, ICP_DDI_HPD_ENABLE_MASK, 3464 ICP_TC_HPD_ENABLE_MASK); 3465 } 3466 3467 static void gen11_irq_postinstall(struct drm_i915_private *dev_priv) 3468 { 3469 struct intel_uncore *uncore = &dev_priv->uncore; 3470 u32 gu_misc_masked = GEN11_GU_MISC_GSE; 3471 3472 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) 3473 icp_irq_postinstall(dev_priv); 3474 3475 gen11_gt_irq_postinstall(&dev_priv->gt); 3476 gen8_de_irq_postinstall(dev_priv); 3477 3478 GEN3_IRQ_INIT(uncore, GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked); 3479 3480 I915_WRITE(GEN11_DISPLAY_INT_CTL, GEN11_DISPLAY_IRQ_ENABLE); 3481 3482 gen11_master_intr_enable(uncore->regs); 3483 POSTING_READ(GEN11_GFX_MSTR_IRQ); 3484 } 3485 3486 static void cherryview_irq_postinstall(struct drm_i915_private *dev_priv) 3487 { 3488 gen8_gt_irq_postinstall(&dev_priv->gt); 3489 3490 spin_lock_irq(&dev_priv->irq_lock); 3491 if (dev_priv->display_irqs_enabled) 3492 vlv_display_irq_postinstall(dev_priv); 3493 spin_unlock_irq(&dev_priv->irq_lock); 3494 3495 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL); 3496 POSTING_READ(GEN8_MASTER_IRQ); 3497 } 3498 3499 static void i8xx_irq_reset(struct drm_i915_private *dev_priv) 3500 { 3501 struct intel_uncore *uncore = &dev_priv->uncore; 3502 3503 i9xx_pipestat_irq_reset(dev_priv); 3504 3505 GEN2_IRQ_RESET(uncore); 3506 } 3507 3508 static void i8xx_irq_postinstall(struct drm_i915_private *dev_priv) 3509 { 3510 struct intel_uncore *uncore = &dev_priv->uncore; 3511 u16 enable_mask; 3512 3513 intel_uncore_write16(uncore, 3514 EMR, 3515 ~(I915_ERROR_PAGE_TABLE | 3516 I915_ERROR_MEMORY_REFRESH)); 3517 3518 /* Unmask the interrupts that we always want on. */ 3519 dev_priv->irq_mask = 3520 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 3521 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 3522 I915_MASTER_ERROR_INTERRUPT); 3523 3524 enable_mask = 3525 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 3526 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 3527 I915_MASTER_ERROR_INTERRUPT | 3528 I915_USER_INTERRUPT; 3529 3530 GEN2_IRQ_INIT(uncore, dev_priv->irq_mask, enable_mask); 3531 3532 /* Interrupt setup is already guaranteed to be single-threaded, this is 3533 * just to make the assert_spin_locked check happy. */ 3534 spin_lock_irq(&dev_priv->irq_lock); 3535 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS); 3536 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS); 3537 spin_unlock_irq(&dev_priv->irq_lock); 3538 } 3539 3540 static void i8xx_error_irq_ack(struct drm_i915_private *i915, 3541 u16 *eir, u16 *eir_stuck) 3542 { 3543 struct intel_uncore *uncore = &i915->uncore; 3544 u16 emr; 3545 3546 *eir = intel_uncore_read16(uncore, EIR); 3547 3548 if (*eir) 3549 intel_uncore_write16(uncore, EIR, *eir); 3550 3551 *eir_stuck = intel_uncore_read16(uncore, EIR); 3552 if (*eir_stuck == 0) 3553 return; 3554 3555 /* 3556 * Toggle all EMR bits to make sure we get an edge 3557 * in the ISR master error bit if we don't clear 3558 * all the EIR bits. Otherwise the edge triggered 3559 * IIR on i965/g4x wouldn't notice that an interrupt 3560 * is still pending. Also some EIR bits can't be 3561 * cleared except by handling the underlying error 3562 * (or by a GPU reset) so we mask any bit that 3563 * remains set. 3564 */ 3565 emr = intel_uncore_read16(uncore, EMR); 3566 intel_uncore_write16(uncore, EMR, 0xffff); 3567 intel_uncore_write16(uncore, EMR, emr | *eir_stuck); 3568 } 3569 3570 static void i8xx_error_irq_handler(struct drm_i915_private *dev_priv, 3571 u16 eir, u16 eir_stuck) 3572 { 3573 DRM_DEBUG("Master Error: EIR 0x%04x\n", eir); 3574 3575 if (eir_stuck) 3576 drm_dbg(&dev_priv->drm, "EIR stuck: 0x%04x, masked\n", 3577 eir_stuck); 3578 } 3579 3580 static void i9xx_error_irq_ack(struct drm_i915_private *dev_priv, 3581 u32 *eir, u32 *eir_stuck) 3582 { 3583 u32 emr; 3584 3585 *eir = I915_READ(EIR); 3586 3587 I915_WRITE(EIR, *eir); 3588 3589 *eir_stuck = I915_READ(EIR); 3590 if (*eir_stuck == 0) 3591 return; 3592 3593 /* 3594 * Toggle all EMR bits to make sure we get an edge 3595 * in the ISR master error bit if we don't clear 3596 * all the EIR bits. Otherwise the edge triggered 3597 * IIR on i965/g4x wouldn't notice that an interrupt 3598 * is still pending. Also some EIR bits can't be 3599 * cleared except by handling the underlying error 3600 * (or by a GPU reset) so we mask any bit that 3601 * remains set. 3602 */ 3603 emr = I915_READ(EMR); 3604 I915_WRITE(EMR, 0xffffffff); 3605 I915_WRITE(EMR, emr | *eir_stuck); 3606 } 3607 3608 static void i9xx_error_irq_handler(struct drm_i915_private *dev_priv, 3609 u32 eir, u32 eir_stuck) 3610 { 3611 DRM_DEBUG("Master Error, EIR 0x%08x\n", eir); 3612 3613 if (eir_stuck) 3614 drm_dbg(&dev_priv->drm, "EIR stuck: 0x%08x, masked\n", 3615 eir_stuck); 3616 } 3617 3618 static irqreturn_t i8xx_irq_handler(int irq, void *arg) 3619 { 3620 struct drm_i915_private *dev_priv = arg; 3621 irqreturn_t ret = IRQ_NONE; 3622 3623 if (!intel_irqs_enabled(dev_priv)) 3624 return IRQ_NONE; 3625 3626 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 3627 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 3628 3629 do { 3630 u32 pipe_stats[I915_MAX_PIPES] = {}; 3631 u16 eir = 0, eir_stuck = 0; 3632 u16 iir; 3633 3634 iir = intel_uncore_read16(&dev_priv->uncore, GEN2_IIR); 3635 if (iir == 0) 3636 break; 3637 3638 ret = IRQ_HANDLED; 3639 3640 /* Call regardless, as some status bits might not be 3641 * signalled in iir */ 3642 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats); 3643 3644 if (iir & I915_MASTER_ERROR_INTERRUPT) 3645 i8xx_error_irq_ack(dev_priv, &eir, &eir_stuck); 3646 3647 intel_uncore_write16(&dev_priv->uncore, GEN2_IIR, iir); 3648 3649 if (iir & I915_USER_INTERRUPT) 3650 intel_engine_signal_breadcrumbs(dev_priv->engine[RCS0]); 3651 3652 if (iir & I915_MASTER_ERROR_INTERRUPT) 3653 i8xx_error_irq_handler(dev_priv, eir, eir_stuck); 3654 3655 i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats); 3656 } while (0); 3657 3658 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 3659 3660 return ret; 3661 } 3662 3663 static void i915_irq_reset(struct drm_i915_private *dev_priv) 3664 { 3665 struct intel_uncore *uncore = &dev_priv->uncore; 3666 3667 if (I915_HAS_HOTPLUG(dev_priv)) { 3668 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0); 3669 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); 3670 } 3671 3672 i9xx_pipestat_irq_reset(dev_priv); 3673 3674 GEN3_IRQ_RESET(uncore, GEN2_); 3675 } 3676 3677 static void i915_irq_postinstall(struct drm_i915_private *dev_priv) 3678 { 3679 struct intel_uncore *uncore = &dev_priv->uncore; 3680 u32 enable_mask; 3681 3682 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | 3683 I915_ERROR_MEMORY_REFRESH)); 3684 3685 /* Unmask the interrupts that we always want on. */ 3686 dev_priv->irq_mask = 3687 ~(I915_ASLE_INTERRUPT | 3688 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 3689 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 3690 I915_MASTER_ERROR_INTERRUPT); 3691 3692 enable_mask = 3693 I915_ASLE_INTERRUPT | 3694 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 3695 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 3696 I915_MASTER_ERROR_INTERRUPT | 3697 I915_USER_INTERRUPT; 3698 3699 if (I915_HAS_HOTPLUG(dev_priv)) { 3700 /* Enable in IER... */ 3701 enable_mask |= I915_DISPLAY_PORT_INTERRUPT; 3702 /* and unmask in IMR */ 3703 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT; 3704 } 3705 3706 GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask); 3707 3708 /* Interrupt setup is already guaranteed to be single-threaded, this is 3709 * just to make the assert_spin_locked check happy. */ 3710 spin_lock_irq(&dev_priv->irq_lock); 3711 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS); 3712 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS); 3713 spin_unlock_irq(&dev_priv->irq_lock); 3714 3715 i915_enable_asle_pipestat(dev_priv); 3716 } 3717 3718 static irqreturn_t i915_irq_handler(int irq, void *arg) 3719 { 3720 struct drm_i915_private *dev_priv = arg; 3721 irqreturn_t ret = IRQ_NONE; 3722 3723 if (!intel_irqs_enabled(dev_priv)) 3724 return IRQ_NONE; 3725 3726 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 3727 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 3728 3729 do { 3730 u32 pipe_stats[I915_MAX_PIPES] = {}; 3731 u32 eir = 0, eir_stuck = 0; 3732 u32 hotplug_status = 0; 3733 u32 iir; 3734 3735 iir = I915_READ(GEN2_IIR); 3736 if (iir == 0) 3737 break; 3738 3739 ret = IRQ_HANDLED; 3740 3741 if (I915_HAS_HOTPLUG(dev_priv) && 3742 iir & I915_DISPLAY_PORT_INTERRUPT) 3743 hotplug_status = i9xx_hpd_irq_ack(dev_priv); 3744 3745 /* Call regardless, as some status bits might not be 3746 * signalled in iir */ 3747 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats); 3748 3749 if (iir & I915_MASTER_ERROR_INTERRUPT) 3750 i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck); 3751 3752 I915_WRITE(GEN2_IIR, iir); 3753 3754 if (iir & I915_USER_INTERRUPT) 3755 intel_engine_signal_breadcrumbs(dev_priv->engine[RCS0]); 3756 3757 if (iir & I915_MASTER_ERROR_INTERRUPT) 3758 i9xx_error_irq_handler(dev_priv, eir, eir_stuck); 3759 3760 if (hotplug_status) 3761 i9xx_hpd_irq_handler(dev_priv, hotplug_status); 3762 3763 i915_pipestat_irq_handler(dev_priv, iir, pipe_stats); 3764 } while (0); 3765 3766 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 3767 3768 return ret; 3769 } 3770 3771 static void i965_irq_reset(struct drm_i915_private *dev_priv) 3772 { 3773 struct intel_uncore *uncore = &dev_priv->uncore; 3774 3775 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0); 3776 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); 3777 3778 i9xx_pipestat_irq_reset(dev_priv); 3779 3780 GEN3_IRQ_RESET(uncore, GEN2_); 3781 } 3782 3783 static void i965_irq_postinstall(struct drm_i915_private *dev_priv) 3784 { 3785 struct intel_uncore *uncore = &dev_priv->uncore; 3786 u32 enable_mask; 3787 u32 error_mask; 3788 3789 /* 3790 * Enable some error detection, note the instruction error mask 3791 * bit is reserved, so we leave it masked. 3792 */ 3793 if (IS_G4X(dev_priv)) { 3794 error_mask = ~(GM45_ERROR_PAGE_TABLE | 3795 GM45_ERROR_MEM_PRIV | 3796 GM45_ERROR_CP_PRIV | 3797 I915_ERROR_MEMORY_REFRESH); 3798 } else { 3799 error_mask = ~(I915_ERROR_PAGE_TABLE | 3800 I915_ERROR_MEMORY_REFRESH); 3801 } 3802 I915_WRITE(EMR, error_mask); 3803 3804 /* Unmask the interrupts that we always want on. */ 3805 dev_priv->irq_mask = 3806 ~(I915_ASLE_INTERRUPT | 3807 I915_DISPLAY_PORT_INTERRUPT | 3808 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 3809 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 3810 I915_MASTER_ERROR_INTERRUPT); 3811 3812 enable_mask = 3813 I915_ASLE_INTERRUPT | 3814 I915_DISPLAY_PORT_INTERRUPT | 3815 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | 3816 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | 3817 I915_MASTER_ERROR_INTERRUPT | 3818 I915_USER_INTERRUPT; 3819 3820 if (IS_G4X(dev_priv)) 3821 enable_mask |= I915_BSD_USER_INTERRUPT; 3822 3823 GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask); 3824 3825 /* Interrupt setup is already guaranteed to be single-threaded, this is 3826 * just to make the assert_spin_locked check happy. */ 3827 spin_lock_irq(&dev_priv->irq_lock); 3828 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS); 3829 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS); 3830 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS); 3831 spin_unlock_irq(&dev_priv->irq_lock); 3832 3833 i915_enable_asle_pipestat(dev_priv); 3834 } 3835 3836 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv) 3837 { 3838 u32 hotplug_en; 3839 3840 lockdep_assert_held(&dev_priv->irq_lock); 3841 3842 /* Note HDMI and DP share hotplug bits */ 3843 /* enable bits are the same for all generations */ 3844 hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915); 3845 /* Programming the CRT detection parameters tends 3846 to generate a spurious hotplug event about three 3847 seconds later. So just do it once. 3848 */ 3849 if (IS_G4X(dev_priv)) 3850 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64; 3851 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50; 3852 3853 /* Ignore TV since it's buggy */ 3854 i915_hotplug_interrupt_update_locked(dev_priv, 3855 HOTPLUG_INT_EN_MASK | 3856 CRT_HOTPLUG_VOLTAGE_COMPARE_MASK | 3857 CRT_HOTPLUG_ACTIVATION_PERIOD_64, 3858 hotplug_en); 3859 } 3860 3861 static irqreturn_t i965_irq_handler(int irq, void *arg) 3862 { 3863 struct drm_i915_private *dev_priv = arg; 3864 irqreturn_t ret = IRQ_NONE; 3865 3866 if (!intel_irqs_enabled(dev_priv)) 3867 return IRQ_NONE; 3868 3869 /* IRQs are synced during runtime_suspend, we don't require a wakeref */ 3870 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 3871 3872 do { 3873 u32 pipe_stats[I915_MAX_PIPES] = {}; 3874 u32 eir = 0, eir_stuck = 0; 3875 u32 hotplug_status = 0; 3876 u32 iir; 3877 3878 iir = I915_READ(GEN2_IIR); 3879 if (iir == 0) 3880 break; 3881 3882 ret = IRQ_HANDLED; 3883 3884 if (iir & I915_DISPLAY_PORT_INTERRUPT) 3885 hotplug_status = i9xx_hpd_irq_ack(dev_priv); 3886 3887 /* Call regardless, as some status bits might not be 3888 * signalled in iir */ 3889 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats); 3890 3891 if (iir & I915_MASTER_ERROR_INTERRUPT) 3892 i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck); 3893 3894 I915_WRITE(GEN2_IIR, iir); 3895 3896 if (iir & I915_USER_INTERRUPT) 3897 intel_engine_signal_breadcrumbs(dev_priv->engine[RCS0]); 3898 3899 if (iir & I915_BSD_USER_INTERRUPT) 3900 intel_engine_signal_breadcrumbs(dev_priv->engine[VCS0]); 3901 3902 if (iir & I915_MASTER_ERROR_INTERRUPT) 3903 i9xx_error_irq_handler(dev_priv, eir, eir_stuck); 3904 3905 if (hotplug_status) 3906 i9xx_hpd_irq_handler(dev_priv, hotplug_status); 3907 3908 i965_pipestat_irq_handler(dev_priv, iir, pipe_stats); 3909 } while (0); 3910 3911 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm); 3912 3913 return ret; 3914 } 3915 3916 /** 3917 * intel_irq_init - initializes irq support 3918 * @dev_priv: i915 device instance 3919 * 3920 * This function initializes all the irq support including work items, timers 3921 * and all the vtables. It does not setup the interrupt itself though. 3922 */ 3923 void intel_irq_init(struct drm_i915_private *dev_priv) 3924 { 3925 struct drm_device *dev = &dev_priv->drm; 3926 int i; 3927 3928 intel_hpd_init_work(dev_priv); 3929 3930 INIT_WORK(&dev_priv->l3_parity.error_work, ivb_parity_work); 3931 for (i = 0; i < MAX_L3_SLICES; ++i) 3932 dev_priv->l3_parity.remap_info[i] = NULL; 3933 3934 /* pre-gen11 the guc irqs bits are in the upper 16 bits of the pm reg */ 3935 if (HAS_GT_UC(dev_priv) && INTEL_GEN(dev_priv) < 11) 3936 dev_priv->gt.pm_guc_events = GUC_INTR_GUC2HOST << 16; 3937 3938 dev->vblank_disable_immediate = true; 3939 3940 /* Most platforms treat the display irq block as an always-on 3941 * power domain. vlv/chv can disable it at runtime and need 3942 * special care to avoid writing any of the display block registers 3943 * outside of the power domain. We defer setting up the display irqs 3944 * in this case to the runtime pm. 3945 */ 3946 dev_priv->display_irqs_enabled = true; 3947 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 3948 dev_priv->display_irqs_enabled = false; 3949 3950 dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD; 3951 /* If we have MST support, we want to avoid doing short HPD IRQ storm 3952 * detection, as short HPD storms will occur as a natural part of 3953 * sideband messaging with MST. 3954 * On older platforms however, IRQ storms can occur with both long and 3955 * short pulses, as seen on some G4x systems. 3956 */ 3957 dev_priv->hotplug.hpd_short_storm_enabled = !HAS_DP_MST(dev_priv); 3958 3959 if (HAS_GMCH(dev_priv)) { 3960 if (I915_HAS_HOTPLUG(dev_priv)) 3961 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup; 3962 } else { 3963 if (HAS_PCH_JSP(dev_priv)) 3964 dev_priv->display.hpd_irq_setup = jsp_hpd_irq_setup; 3965 else if (HAS_PCH_MCC(dev_priv)) 3966 dev_priv->display.hpd_irq_setup = mcc_hpd_irq_setup; 3967 else if (INTEL_GEN(dev_priv) >= 11) 3968 dev_priv->display.hpd_irq_setup = gen11_hpd_irq_setup; 3969 else if (IS_GEN9_LP(dev_priv)) 3970 dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup; 3971 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT) 3972 dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup; 3973 else 3974 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup; 3975 } 3976 } 3977 3978 /** 3979 * intel_irq_fini - deinitializes IRQ support 3980 * @i915: i915 device instance 3981 * 3982 * This function deinitializes all the IRQ support. 3983 */ 3984 void intel_irq_fini(struct drm_i915_private *i915) 3985 { 3986 int i; 3987 3988 for (i = 0; i < MAX_L3_SLICES; ++i) 3989 kfree(i915->l3_parity.remap_info[i]); 3990 } 3991 3992 static irq_handler_t intel_irq_handler(struct drm_i915_private *dev_priv) 3993 { 3994 if (HAS_GMCH(dev_priv)) { 3995 if (IS_CHERRYVIEW(dev_priv)) 3996 return cherryview_irq_handler; 3997 else if (IS_VALLEYVIEW(dev_priv)) 3998 return valleyview_irq_handler; 3999 else if (IS_GEN(dev_priv, 4)) 4000 return i965_irq_handler; 4001 else if (IS_GEN(dev_priv, 3)) 4002 return i915_irq_handler; 4003 else 4004 return i8xx_irq_handler; 4005 } else { 4006 if (INTEL_GEN(dev_priv) >= 11) 4007 return gen11_irq_handler; 4008 else if (INTEL_GEN(dev_priv) >= 8) 4009 return gen8_irq_handler; 4010 else 4011 return ilk_irq_handler; 4012 } 4013 } 4014 4015 static void intel_irq_reset(struct drm_i915_private *dev_priv) 4016 { 4017 if (HAS_GMCH(dev_priv)) { 4018 if (IS_CHERRYVIEW(dev_priv)) 4019 cherryview_irq_reset(dev_priv); 4020 else if (IS_VALLEYVIEW(dev_priv)) 4021 valleyview_irq_reset(dev_priv); 4022 else if (IS_GEN(dev_priv, 4)) 4023 i965_irq_reset(dev_priv); 4024 else if (IS_GEN(dev_priv, 3)) 4025 i915_irq_reset(dev_priv); 4026 else 4027 i8xx_irq_reset(dev_priv); 4028 } else { 4029 if (INTEL_GEN(dev_priv) >= 11) 4030 gen11_irq_reset(dev_priv); 4031 else if (INTEL_GEN(dev_priv) >= 8) 4032 gen8_irq_reset(dev_priv); 4033 else 4034 ilk_irq_reset(dev_priv); 4035 } 4036 } 4037 4038 static void intel_irq_postinstall(struct drm_i915_private *dev_priv) 4039 { 4040 if (HAS_GMCH(dev_priv)) { 4041 if (IS_CHERRYVIEW(dev_priv)) 4042 cherryview_irq_postinstall(dev_priv); 4043 else if (IS_VALLEYVIEW(dev_priv)) 4044 valleyview_irq_postinstall(dev_priv); 4045 else if (IS_GEN(dev_priv, 4)) 4046 i965_irq_postinstall(dev_priv); 4047 else if (IS_GEN(dev_priv, 3)) 4048 i915_irq_postinstall(dev_priv); 4049 else 4050 i8xx_irq_postinstall(dev_priv); 4051 } else { 4052 if (INTEL_GEN(dev_priv) >= 11) 4053 gen11_irq_postinstall(dev_priv); 4054 else if (INTEL_GEN(dev_priv) >= 8) 4055 gen8_irq_postinstall(dev_priv); 4056 else 4057 ilk_irq_postinstall(dev_priv); 4058 } 4059 } 4060 4061 /** 4062 * intel_irq_install - enables the hardware interrupt 4063 * @dev_priv: i915 device instance 4064 * 4065 * This function enables the hardware interrupt handling, but leaves the hotplug 4066 * handling still disabled. It is called after intel_irq_init(). 4067 * 4068 * In the driver load and resume code we need working interrupts in a few places 4069 * but don't want to deal with the hassle of concurrent probe and hotplug 4070 * workers. Hence the split into this two-stage approach. 4071 */ 4072 int intel_irq_install(struct drm_i915_private *dev_priv) 4073 { 4074 int irq = dev_priv->drm.pdev->irq; 4075 int ret; 4076 4077 /* 4078 * We enable some interrupt sources in our postinstall hooks, so mark 4079 * interrupts as enabled _before_ actually enabling them to avoid 4080 * special cases in our ordering checks. 4081 */ 4082 dev_priv->runtime_pm.irqs_enabled = true; 4083 4084 dev_priv->drm.irq_enabled = true; 4085 4086 intel_irq_reset(dev_priv); 4087 4088 ret = request_irq(irq, intel_irq_handler(dev_priv), 4089 IRQF_SHARED, DRIVER_NAME, dev_priv); 4090 if (ret < 0) { 4091 dev_priv->drm.irq_enabled = false; 4092 return ret; 4093 } 4094 #ifdef __OpenBSD__ 4095 dev_priv->irq_handler = intel_irq_handler(dev_priv); 4096 #endif 4097 4098 intel_irq_postinstall(dev_priv); 4099 4100 return ret; 4101 } 4102 4103 /** 4104 * intel_irq_uninstall - finilizes all irq handling 4105 * @dev_priv: i915 device instance 4106 * 4107 * This stops interrupt and hotplug handling and unregisters and frees all 4108 * resources acquired in the init functions. 4109 */ 4110 void intel_irq_uninstall(struct drm_i915_private *dev_priv) 4111 { 4112 int irq = dev_priv->drm.pdev->irq; 4113 4114 /* 4115 * FIXME we can get called twice during driver probe 4116 * error handling as well as during driver remove due to 4117 * intel_modeset_driver_remove() calling us out of sequence. 4118 * Would be nice if it didn't do that... 4119 */ 4120 if (!dev_priv->drm.irq_enabled) 4121 return; 4122 4123 dev_priv->drm.irq_enabled = false; 4124 4125 intel_irq_reset(dev_priv); 4126 4127 free_irq(irq, dev_priv); 4128 #ifdef __OpenBSD__ 4129 dev_priv->irq_handler = NULL; 4130 #endif 4131 4132 intel_hpd_cancel_work(dev_priv); 4133 dev_priv->runtime_pm.irqs_enabled = false; 4134 } 4135 4136 /** 4137 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling 4138 * @dev_priv: i915 device instance 4139 * 4140 * This function is used to disable interrupts at runtime, both in the runtime 4141 * pm and the system suspend/resume code. 4142 */ 4143 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv) 4144 { 4145 intel_irq_reset(dev_priv); 4146 dev_priv->runtime_pm.irqs_enabled = false; 4147 intel_synchronize_irq(dev_priv); 4148 } 4149 4150 /** 4151 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling 4152 * @dev_priv: i915 device instance 4153 * 4154 * This function is used to enable interrupts at runtime, both in the runtime 4155 * pm and the system suspend/resume code. 4156 */ 4157 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv) 4158 { 4159 dev_priv->runtime_pm.irqs_enabled = true; 4160 intel_irq_reset(dev_priv); 4161 intel_irq_postinstall(dev_priv); 4162 } 4163 4164 bool intel_irqs_enabled(struct drm_i915_private *dev_priv) 4165 { 4166 /* 4167 * We only use drm_irq_uninstall() at unload and VT switch, so 4168 * this is the only thing we need to check. 4169 */ 4170 return dev_priv->runtime_pm.irqs_enabled; 4171 } 4172 4173 void intel_synchronize_irq(struct drm_i915_private *i915) 4174 { 4175 #ifdef __linux__ 4176 synchronize_irq(i915->drm.pdev->irq); 4177 #else 4178 intr_barrier(i915->irqh); 4179 #endif 4180 } 4181