1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2017-2018 Intel Corporation 5 */ 6 7 #include <linux/irq.h> 8 #include <linux/pm_runtime.h> 9 10 #include "gt/intel_engine.h" 11 #include "gt/intel_engine_pm.h" 12 #include "gt/intel_engine_user.h" 13 #include "gt/intel_gt_pm.h" 14 #include "gt/intel_rc6.h" 15 #include "gt/intel_rps.h" 16 17 #include "i915_drv.h" 18 #include "i915_pmu.h" 19 #include "intel_pm.h" 20 21 /* Frequency for the sampling timer for events which need it. */ 22 #define FREQUENCY 200 23 #define PERIOD max_t(u64, 10000, NSEC_PER_SEC / FREQUENCY) 24 25 #define ENGINE_SAMPLE_MASK \ 26 (BIT(I915_SAMPLE_BUSY) | \ 27 BIT(I915_SAMPLE_WAIT) | \ 28 BIT(I915_SAMPLE_SEMA)) 29 30 #define ENGINE_SAMPLE_BITS (1 << I915_PMU_SAMPLE_BITS) 31 32 static cpumask_t i915_pmu_cpumask; 33 34 static u8 engine_config_sample(u64 config) 35 { 36 return config & I915_PMU_SAMPLE_MASK; 37 } 38 39 static u8 engine_event_sample(struct perf_event *event) 40 { 41 return engine_config_sample(event->attr.config); 42 } 43 44 static u8 engine_event_class(struct perf_event *event) 45 { 46 return (event->attr.config >> I915_PMU_CLASS_SHIFT) & 0xff; 47 } 48 49 static u8 engine_event_instance(struct perf_event *event) 50 { 51 return (event->attr.config >> I915_PMU_SAMPLE_BITS) & 0xff; 52 } 53 54 static bool is_engine_config(u64 config) 55 { 56 return config < __I915_PMU_OTHER(0); 57 } 58 59 static unsigned int config_enabled_bit(u64 config) 60 { 61 if (is_engine_config(config)) 62 return engine_config_sample(config); 63 else 64 return ENGINE_SAMPLE_BITS + (config - __I915_PMU_OTHER(0)); 65 } 66 67 static u64 config_enabled_mask(u64 config) 68 { 69 return BIT_ULL(config_enabled_bit(config)); 70 } 71 72 static bool is_engine_event(struct perf_event *event) 73 { 74 return is_engine_config(event->attr.config); 75 } 76 77 static unsigned int event_enabled_bit(struct perf_event *event) 78 { 79 return config_enabled_bit(event->attr.config); 80 } 81 82 static bool pmu_needs_timer(struct i915_pmu *pmu, bool gpu_active) 83 { 84 struct drm_i915_private *i915 = container_of(pmu, typeof(*i915), pmu); 85 u64 enable; 86 87 /* 88 * Only some counters need the sampling timer. 89 * 90 * We start with a bitmask of all currently enabled events. 91 */ 92 enable = pmu->enable; 93 94 /* 95 * Mask out all the ones which do not need the timer, or in 96 * other words keep all the ones that could need the timer. 97 */ 98 enable &= config_enabled_mask(I915_PMU_ACTUAL_FREQUENCY) | 99 config_enabled_mask(I915_PMU_REQUESTED_FREQUENCY) | 100 ENGINE_SAMPLE_MASK; 101 102 /* 103 * When the GPU is idle per-engine counters do not need to be 104 * running so clear those bits out. 105 */ 106 if (!gpu_active) 107 enable &= ~ENGINE_SAMPLE_MASK; 108 /* 109 * Also there is software busyness tracking available we do not 110 * need the timer for I915_SAMPLE_BUSY counter. 111 */ 112 else if (i915->caps.scheduler & I915_SCHEDULER_CAP_ENGINE_BUSY_STATS) 113 enable &= ~BIT(I915_SAMPLE_BUSY); 114 115 /* 116 * If some bits remain it means we need the sampling timer running. 117 */ 118 return enable; 119 } 120 121 static u64 __get_rc6(struct intel_gt *gt) 122 { 123 struct drm_i915_private *i915 = gt->i915; 124 u64 val; 125 126 val = intel_rc6_residency_ns(>->rc6, 127 IS_VALLEYVIEW(i915) ? 128 VLV_GT_RENDER_RC6 : 129 GEN6_GT_GFX_RC6); 130 131 if (HAS_RC6p(i915)) 132 val += intel_rc6_residency_ns(>->rc6, GEN6_GT_GFX_RC6p); 133 134 if (HAS_RC6pp(i915)) 135 val += intel_rc6_residency_ns(>->rc6, GEN6_GT_GFX_RC6pp); 136 137 return val; 138 } 139 140 #if IS_ENABLED(CONFIG_PM) 141 142 static inline s64 ktime_since(const ktime_t kt) 143 { 144 return ktime_to_ns(ktime_sub(ktime_get(), kt)); 145 } 146 147 static u64 get_rc6(struct intel_gt *gt) 148 { 149 struct drm_i915_private *i915 = gt->i915; 150 struct i915_pmu *pmu = &i915->pmu; 151 unsigned long flags; 152 bool awake = false; 153 u64 val; 154 155 if (intel_gt_pm_get_if_awake(gt)) { 156 val = __get_rc6(gt); 157 intel_gt_pm_put_async(gt); 158 awake = true; 159 } 160 161 spin_lock_irqsave(&pmu->lock, flags); 162 163 if (awake) { 164 pmu->sample[__I915_SAMPLE_RC6].cur = val; 165 } else { 166 /* 167 * We think we are runtime suspended. 168 * 169 * Report the delta from when the device was suspended to now, 170 * on top of the last known real value, as the approximated RC6 171 * counter value. 172 */ 173 val = ktime_since(pmu->sleep_last); 174 val += pmu->sample[__I915_SAMPLE_RC6].cur; 175 } 176 177 if (val < pmu->sample[__I915_SAMPLE_RC6_LAST_REPORTED].cur) 178 val = pmu->sample[__I915_SAMPLE_RC6_LAST_REPORTED].cur; 179 else 180 pmu->sample[__I915_SAMPLE_RC6_LAST_REPORTED].cur = val; 181 182 spin_unlock_irqrestore(&pmu->lock, flags); 183 184 return val; 185 } 186 187 static void init_rc6(struct i915_pmu *pmu) 188 { 189 struct drm_i915_private *i915 = container_of(pmu, typeof(*i915), pmu); 190 intel_wakeref_t wakeref; 191 192 with_intel_runtime_pm(i915->gt.uncore->rpm, wakeref) { 193 pmu->sample[__I915_SAMPLE_RC6].cur = __get_rc6(&i915->gt); 194 pmu->sample[__I915_SAMPLE_RC6_LAST_REPORTED].cur = 195 pmu->sample[__I915_SAMPLE_RC6].cur; 196 pmu->sleep_last = ktime_get(); 197 } 198 } 199 200 static void park_rc6(struct drm_i915_private *i915) 201 { 202 struct i915_pmu *pmu = &i915->pmu; 203 204 pmu->sample[__I915_SAMPLE_RC6].cur = __get_rc6(&i915->gt); 205 pmu->sleep_last = ktime_get(); 206 } 207 208 #else 209 210 static u64 get_rc6(struct intel_gt *gt) 211 { 212 return __get_rc6(gt); 213 } 214 215 static void init_rc6(struct i915_pmu *pmu) { } 216 static void park_rc6(struct drm_i915_private *i915) {} 217 218 #endif 219 220 static void __i915_pmu_maybe_start_timer(struct i915_pmu *pmu) 221 { 222 if (!pmu->timer_enabled && pmu_needs_timer(pmu, true)) { 223 pmu->timer_enabled = true; 224 pmu->timer_last = ktime_get(); 225 hrtimer_start_range_ns(&pmu->timer, 226 ns_to_ktime(PERIOD), 0, 227 HRTIMER_MODE_REL_PINNED); 228 } 229 } 230 231 void i915_pmu_gt_parked(struct drm_i915_private *i915) 232 { 233 struct i915_pmu *pmu = &i915->pmu; 234 235 if (!pmu->base.event_init) 236 return; 237 238 spin_lock_irq(&pmu->lock); 239 240 park_rc6(i915); 241 242 /* 243 * Signal sampling timer to stop if only engine events are enabled and 244 * GPU went idle. 245 */ 246 pmu->timer_enabled = pmu_needs_timer(pmu, false); 247 248 spin_unlock_irq(&pmu->lock); 249 } 250 251 void i915_pmu_gt_unparked(struct drm_i915_private *i915) 252 { 253 struct i915_pmu *pmu = &i915->pmu; 254 255 if (!pmu->base.event_init) 256 return; 257 258 spin_lock_irq(&pmu->lock); 259 260 /* 261 * Re-enable sampling timer when GPU goes active. 262 */ 263 __i915_pmu_maybe_start_timer(pmu); 264 265 spin_unlock_irq(&pmu->lock); 266 } 267 268 static void 269 add_sample(struct i915_pmu_sample *sample, u32 val) 270 { 271 sample->cur += val; 272 } 273 274 static bool exclusive_mmio_access(const struct drm_i915_private *i915) 275 { 276 /* 277 * We have to avoid concurrent mmio cache line access on gen7 or 278 * risk a machine hang. For a fun history lesson dig out the old 279 * userspace intel_gpu_top and run it on Ivybridge or Haswell! 280 */ 281 return IS_GEN(i915, 7); 282 } 283 284 static void engine_sample(struct intel_engine_cs *engine, unsigned int period_ns) 285 { 286 struct intel_engine_pmu *pmu = &engine->pmu; 287 bool busy; 288 u32 val; 289 290 val = ENGINE_READ_FW(engine, RING_CTL); 291 if (val == 0) /* powerwell off => engine idle */ 292 return; 293 294 if (val & RING_WAIT) 295 add_sample(&pmu->sample[I915_SAMPLE_WAIT], period_ns); 296 if (val & RING_WAIT_SEMAPHORE) 297 add_sample(&pmu->sample[I915_SAMPLE_SEMA], period_ns); 298 299 /* No need to sample when busy stats are supported. */ 300 if (intel_engine_supports_stats(engine)) 301 return; 302 303 /* 304 * While waiting on a semaphore or event, MI_MODE reports the 305 * ring as idle. However, previously using the seqno, and with 306 * execlists sampling, we account for the ring waiting as the 307 * engine being busy. Therefore, we record the sample as being 308 * busy if either waiting or !idle. 309 */ 310 busy = val & (RING_WAIT_SEMAPHORE | RING_WAIT); 311 if (!busy) { 312 val = ENGINE_READ_FW(engine, RING_MI_MODE); 313 busy = !(val & MODE_IDLE); 314 } 315 if (busy) 316 add_sample(&pmu->sample[I915_SAMPLE_BUSY], period_ns); 317 } 318 319 static void 320 engines_sample(struct intel_gt *gt, unsigned int period_ns) 321 { 322 struct drm_i915_private *i915 = gt->i915; 323 struct intel_engine_cs *engine; 324 enum intel_engine_id id; 325 unsigned long flags; 326 327 if ((i915->pmu.enable & ENGINE_SAMPLE_MASK) == 0) 328 return; 329 330 if (!intel_gt_pm_is_awake(gt)) 331 return; 332 333 for_each_engine(engine, gt, id) { 334 if (!intel_engine_pm_get_if_awake(engine)) 335 continue; 336 337 if (exclusive_mmio_access(i915)) { 338 spin_lock_irqsave(&engine->uncore->lock, flags); 339 engine_sample(engine, period_ns); 340 spin_unlock_irqrestore(&engine->uncore->lock, flags); 341 } else { 342 engine_sample(engine, period_ns); 343 } 344 345 intel_engine_pm_put_async(engine); 346 } 347 } 348 349 static void 350 add_sample_mult(struct i915_pmu_sample *sample, u32 val, u32 mul) 351 { 352 sample->cur += mul_u32_u32(val, mul); 353 } 354 355 static bool frequency_sampling_enabled(struct i915_pmu *pmu) 356 { 357 return pmu->enable & 358 (config_enabled_mask(I915_PMU_ACTUAL_FREQUENCY) | 359 config_enabled_mask(I915_PMU_REQUESTED_FREQUENCY)); 360 } 361 362 static void 363 frequency_sample(struct intel_gt *gt, unsigned int period_ns) 364 { 365 struct drm_i915_private *i915 = gt->i915; 366 struct intel_uncore *uncore = gt->uncore; 367 struct i915_pmu *pmu = &i915->pmu; 368 struct intel_rps *rps = >->rps; 369 370 if (!frequency_sampling_enabled(pmu)) 371 return; 372 373 /* Report 0/0 (actual/requested) frequency while parked. */ 374 if (!intel_gt_pm_get_if_awake(gt)) 375 return; 376 377 if (pmu->enable & config_enabled_mask(I915_PMU_ACTUAL_FREQUENCY)) { 378 u32 val; 379 380 /* 381 * We take a quick peek here without using forcewake 382 * so that we don't perturb the system under observation 383 * (forcewake => !rc6 => increased power use). We expect 384 * that if the read fails because it is outside of the 385 * mmio power well, then it will return 0 -- in which 386 * case we assume the system is running at the intended 387 * frequency. Fortunately, the read should rarely fail! 388 */ 389 val = intel_uncore_read_fw(uncore, GEN6_RPSTAT1); 390 if (val) 391 val = intel_rps_get_cagf(rps, val); 392 else 393 val = rps->cur_freq; 394 395 add_sample_mult(&pmu->sample[__I915_SAMPLE_FREQ_ACT], 396 intel_gpu_freq(rps, val), period_ns / 1000); 397 } 398 399 if (pmu->enable & config_enabled_mask(I915_PMU_REQUESTED_FREQUENCY)) { 400 add_sample_mult(&pmu->sample[__I915_SAMPLE_FREQ_REQ], 401 intel_gpu_freq(rps, rps->cur_freq), 402 period_ns / 1000); 403 } 404 405 intel_gt_pm_put_async(gt); 406 } 407 408 static enum hrtimer_restart i915_sample(struct hrtimer *hrtimer) 409 { 410 struct drm_i915_private *i915 = 411 container_of(hrtimer, struct drm_i915_private, pmu.timer); 412 struct i915_pmu *pmu = &i915->pmu; 413 struct intel_gt *gt = &i915->gt; 414 unsigned int period_ns; 415 ktime_t now; 416 417 if (!READ_ONCE(pmu->timer_enabled)) 418 return HRTIMER_NORESTART; 419 420 now = ktime_get(); 421 period_ns = ktime_to_ns(ktime_sub(now, pmu->timer_last)); 422 pmu->timer_last = now; 423 424 /* 425 * Strictly speaking the passed in period may not be 100% accurate for 426 * all internal calculation, since some amount of time can be spent on 427 * grabbing the forcewake. However the potential error from timer call- 428 * back delay greatly dominates this so we keep it simple. 429 */ 430 engines_sample(gt, period_ns); 431 frequency_sample(gt, period_ns); 432 433 hrtimer_forward(hrtimer, now, ns_to_ktime(PERIOD)); 434 435 return HRTIMER_RESTART; 436 } 437 438 static u64 count_interrupts(struct drm_i915_private *i915) 439 { 440 /* open-coded kstat_irqs() */ 441 struct irq_desc *desc = irq_to_desc(i915->drm.pdev->irq); 442 u64 sum = 0; 443 int cpu; 444 445 if (!desc || !desc->kstat_irqs) 446 return 0; 447 448 for_each_possible_cpu(cpu) 449 sum += *per_cpu_ptr(desc->kstat_irqs, cpu); 450 451 return sum; 452 } 453 454 static void i915_pmu_event_destroy(struct perf_event *event) 455 { 456 struct drm_i915_private *i915 = 457 container_of(event->pmu, typeof(*i915), pmu.base); 458 459 drm_WARN_ON(&i915->drm, event->parent); 460 } 461 462 static int 463 engine_event_status(struct intel_engine_cs *engine, 464 enum drm_i915_pmu_engine_sample sample) 465 { 466 switch (sample) { 467 case I915_SAMPLE_BUSY: 468 case I915_SAMPLE_WAIT: 469 break; 470 case I915_SAMPLE_SEMA: 471 if (INTEL_GEN(engine->i915) < 6) 472 return -ENODEV; 473 break; 474 default: 475 return -ENOENT; 476 } 477 478 return 0; 479 } 480 481 static int 482 config_status(struct drm_i915_private *i915, u64 config) 483 { 484 switch (config) { 485 case I915_PMU_ACTUAL_FREQUENCY: 486 if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) 487 /* Requires a mutex for sampling! */ 488 return -ENODEV; 489 fallthrough; 490 case I915_PMU_REQUESTED_FREQUENCY: 491 if (INTEL_GEN(i915) < 6) 492 return -ENODEV; 493 break; 494 case I915_PMU_INTERRUPTS: 495 break; 496 case I915_PMU_RC6_RESIDENCY: 497 if (!HAS_RC6(i915)) 498 return -ENODEV; 499 break; 500 default: 501 return -ENOENT; 502 } 503 504 return 0; 505 } 506 507 static int engine_event_init(struct perf_event *event) 508 { 509 struct drm_i915_private *i915 = 510 container_of(event->pmu, typeof(*i915), pmu.base); 511 struct intel_engine_cs *engine; 512 513 engine = intel_engine_lookup_user(i915, engine_event_class(event), 514 engine_event_instance(event)); 515 if (!engine) 516 return -ENODEV; 517 518 return engine_event_status(engine, engine_event_sample(event)); 519 } 520 521 static int i915_pmu_event_init(struct perf_event *event) 522 { 523 struct drm_i915_private *i915 = 524 container_of(event->pmu, typeof(*i915), pmu.base); 525 int ret; 526 527 if (event->attr.type != event->pmu->type) 528 return -ENOENT; 529 530 /* unsupported modes and filters */ 531 if (event->attr.sample_period) /* no sampling */ 532 return -EINVAL; 533 534 if (has_branch_stack(event)) 535 return -EOPNOTSUPP; 536 537 if (event->cpu < 0) 538 return -EINVAL; 539 540 /* only allow running on one cpu at a time */ 541 if (!cpumask_test_cpu(event->cpu, &i915_pmu_cpumask)) 542 return -EINVAL; 543 544 if (is_engine_event(event)) 545 ret = engine_event_init(event); 546 else 547 ret = config_status(i915, event->attr.config); 548 if (ret) 549 return ret; 550 551 if (!event->parent) 552 event->destroy = i915_pmu_event_destroy; 553 554 return 0; 555 } 556 557 static u64 __i915_pmu_event_read(struct perf_event *event) 558 { 559 struct drm_i915_private *i915 = 560 container_of(event->pmu, typeof(*i915), pmu.base); 561 struct i915_pmu *pmu = &i915->pmu; 562 u64 val = 0; 563 564 if (is_engine_event(event)) { 565 u8 sample = engine_event_sample(event); 566 struct intel_engine_cs *engine; 567 568 engine = intel_engine_lookup_user(i915, 569 engine_event_class(event), 570 engine_event_instance(event)); 571 572 if (drm_WARN_ON_ONCE(&i915->drm, !engine)) { 573 /* Do nothing */ 574 } else if (sample == I915_SAMPLE_BUSY && 575 intel_engine_supports_stats(engine)) { 576 ktime_t unused; 577 578 val = ktime_to_ns(intel_engine_get_busy_time(engine, 579 &unused)); 580 } else { 581 val = engine->pmu.sample[sample].cur; 582 } 583 } else { 584 switch (event->attr.config) { 585 case I915_PMU_ACTUAL_FREQUENCY: 586 val = 587 div_u64(pmu->sample[__I915_SAMPLE_FREQ_ACT].cur, 588 USEC_PER_SEC /* to MHz */); 589 break; 590 case I915_PMU_REQUESTED_FREQUENCY: 591 val = 592 div_u64(pmu->sample[__I915_SAMPLE_FREQ_REQ].cur, 593 USEC_PER_SEC /* to MHz */); 594 break; 595 case I915_PMU_INTERRUPTS: 596 val = count_interrupts(i915); 597 break; 598 case I915_PMU_RC6_RESIDENCY: 599 val = get_rc6(&i915->gt); 600 break; 601 } 602 } 603 604 return val; 605 } 606 607 static void i915_pmu_event_read(struct perf_event *event) 608 { 609 struct hw_perf_event *hwc = &event->hw; 610 u64 prev, new; 611 612 again: 613 prev = local64_read(&hwc->prev_count); 614 new = __i915_pmu_event_read(event); 615 616 if (local64_cmpxchg(&hwc->prev_count, prev, new) != prev) 617 goto again; 618 619 local64_add(new - prev, &event->count); 620 } 621 622 static void i915_pmu_enable(struct perf_event *event) 623 { 624 struct drm_i915_private *i915 = 625 container_of(event->pmu, typeof(*i915), pmu.base); 626 unsigned int bit = event_enabled_bit(event); 627 struct i915_pmu *pmu = &i915->pmu; 628 unsigned long flags; 629 630 spin_lock_irqsave(&pmu->lock, flags); 631 632 /* 633 * Update the bitmask of enabled events and increment 634 * the event reference counter. 635 */ 636 BUILD_BUG_ON(ARRAY_SIZE(pmu->enable_count) != I915_PMU_MASK_BITS); 637 GEM_BUG_ON(bit >= ARRAY_SIZE(pmu->enable_count)); 638 GEM_BUG_ON(pmu->enable_count[bit] == ~0); 639 640 pmu->enable |= BIT_ULL(bit); 641 pmu->enable_count[bit]++; 642 643 /* 644 * Start the sampling timer if needed and not already enabled. 645 */ 646 __i915_pmu_maybe_start_timer(pmu); 647 648 /* 649 * For per-engine events the bitmask and reference counting 650 * is stored per engine. 651 */ 652 if (is_engine_event(event)) { 653 u8 sample = engine_event_sample(event); 654 struct intel_engine_cs *engine; 655 656 engine = intel_engine_lookup_user(i915, 657 engine_event_class(event), 658 engine_event_instance(event)); 659 660 BUILD_BUG_ON(ARRAY_SIZE(engine->pmu.enable_count) != 661 I915_ENGINE_SAMPLE_COUNT); 662 BUILD_BUG_ON(ARRAY_SIZE(engine->pmu.sample) != 663 I915_ENGINE_SAMPLE_COUNT); 664 GEM_BUG_ON(sample >= ARRAY_SIZE(engine->pmu.enable_count)); 665 GEM_BUG_ON(sample >= ARRAY_SIZE(engine->pmu.sample)); 666 GEM_BUG_ON(engine->pmu.enable_count[sample] == ~0); 667 668 engine->pmu.enable |= BIT(sample); 669 engine->pmu.enable_count[sample]++; 670 } 671 672 spin_unlock_irqrestore(&pmu->lock, flags); 673 674 /* 675 * Store the current counter value so we can report the correct delta 676 * for all listeners. Even when the event was already enabled and has 677 * an existing non-zero value. 678 */ 679 local64_set(&event->hw.prev_count, __i915_pmu_event_read(event)); 680 } 681 682 static void i915_pmu_disable(struct perf_event *event) 683 { 684 struct drm_i915_private *i915 = 685 container_of(event->pmu, typeof(*i915), pmu.base); 686 unsigned int bit = event_enabled_bit(event); 687 struct i915_pmu *pmu = &i915->pmu; 688 unsigned long flags; 689 690 spin_lock_irqsave(&pmu->lock, flags); 691 692 if (is_engine_event(event)) { 693 u8 sample = engine_event_sample(event); 694 struct intel_engine_cs *engine; 695 696 engine = intel_engine_lookup_user(i915, 697 engine_event_class(event), 698 engine_event_instance(event)); 699 700 GEM_BUG_ON(sample >= ARRAY_SIZE(engine->pmu.enable_count)); 701 GEM_BUG_ON(sample >= ARRAY_SIZE(engine->pmu.sample)); 702 GEM_BUG_ON(engine->pmu.enable_count[sample] == 0); 703 704 /* 705 * Decrement the reference count and clear the enabled 706 * bitmask when the last listener on an event goes away. 707 */ 708 if (--engine->pmu.enable_count[sample] == 0) 709 engine->pmu.enable &= ~BIT(sample); 710 } 711 712 GEM_BUG_ON(bit >= ARRAY_SIZE(pmu->enable_count)); 713 GEM_BUG_ON(pmu->enable_count[bit] == 0); 714 /* 715 * Decrement the reference count and clear the enabled 716 * bitmask when the last listener on an event goes away. 717 */ 718 if (--pmu->enable_count[bit] == 0) { 719 pmu->enable &= ~BIT_ULL(bit); 720 pmu->timer_enabled &= pmu_needs_timer(pmu, true); 721 } 722 723 spin_unlock_irqrestore(&pmu->lock, flags); 724 } 725 726 static void i915_pmu_event_start(struct perf_event *event, int flags) 727 { 728 i915_pmu_enable(event); 729 event->hw.state = 0; 730 } 731 732 static void i915_pmu_event_stop(struct perf_event *event, int flags) 733 { 734 if (flags & PERF_EF_UPDATE) 735 i915_pmu_event_read(event); 736 i915_pmu_disable(event); 737 event->hw.state = PERF_HES_STOPPED; 738 } 739 740 static int i915_pmu_event_add(struct perf_event *event, int flags) 741 { 742 if (flags & PERF_EF_START) 743 i915_pmu_event_start(event, flags); 744 745 return 0; 746 } 747 748 static void i915_pmu_event_del(struct perf_event *event, int flags) 749 { 750 i915_pmu_event_stop(event, PERF_EF_UPDATE); 751 } 752 753 static int i915_pmu_event_event_idx(struct perf_event *event) 754 { 755 return 0; 756 } 757 758 struct i915_str_attribute { 759 struct device_attribute attr; 760 const char *str; 761 }; 762 763 static ssize_t i915_pmu_format_show(struct device *dev, 764 struct device_attribute *attr, char *buf) 765 { 766 struct i915_str_attribute *eattr; 767 768 eattr = container_of(attr, struct i915_str_attribute, attr); 769 return sprintf(buf, "%s\n", eattr->str); 770 } 771 772 #define I915_PMU_FORMAT_ATTR(_name, _config) \ 773 (&((struct i915_str_attribute[]) { \ 774 { .attr = __ATTR(_name, 0444, i915_pmu_format_show, NULL), \ 775 .str = _config, } \ 776 })[0].attr.attr) 777 778 static struct attribute *i915_pmu_format_attrs[] = { 779 I915_PMU_FORMAT_ATTR(i915_eventid, "config:0-20"), 780 NULL, 781 }; 782 783 static const struct attribute_group i915_pmu_format_attr_group = { 784 .name = "format", 785 .attrs = i915_pmu_format_attrs, 786 }; 787 788 struct i915_ext_attribute { 789 struct device_attribute attr; 790 unsigned long val; 791 }; 792 793 static ssize_t i915_pmu_event_show(struct device *dev, 794 struct device_attribute *attr, char *buf) 795 { 796 struct i915_ext_attribute *eattr; 797 798 eattr = container_of(attr, struct i915_ext_attribute, attr); 799 return sprintf(buf, "config=0x%lx\n", eattr->val); 800 } 801 802 static ssize_t 803 i915_pmu_get_attr_cpumask(struct device *dev, 804 struct device_attribute *attr, 805 char *buf) 806 { 807 return cpumap_print_to_pagebuf(true, buf, &i915_pmu_cpumask); 808 } 809 810 static DEVICE_ATTR(cpumask, 0444, i915_pmu_get_attr_cpumask, NULL); 811 812 static struct attribute *i915_cpumask_attrs[] = { 813 &dev_attr_cpumask.attr, 814 NULL, 815 }; 816 817 static const struct attribute_group i915_pmu_cpumask_attr_group = { 818 .attrs = i915_cpumask_attrs, 819 }; 820 821 #define __event(__config, __name, __unit) \ 822 { \ 823 .config = (__config), \ 824 .name = (__name), \ 825 .unit = (__unit), \ 826 } 827 828 #define __engine_event(__sample, __name) \ 829 { \ 830 .sample = (__sample), \ 831 .name = (__name), \ 832 } 833 834 static struct i915_ext_attribute * 835 add_i915_attr(struct i915_ext_attribute *attr, const char *name, u64 config) 836 { 837 sysfs_attr_init(&attr->attr.attr); 838 attr->attr.attr.name = name; 839 attr->attr.attr.mode = 0444; 840 attr->attr.show = i915_pmu_event_show; 841 attr->val = config; 842 843 return ++attr; 844 } 845 846 static struct perf_pmu_events_attr * 847 add_pmu_attr(struct perf_pmu_events_attr *attr, const char *name, 848 const char *str) 849 { 850 sysfs_attr_init(&attr->attr.attr); 851 attr->attr.attr.name = name; 852 attr->attr.attr.mode = 0444; 853 attr->attr.show = perf_event_sysfs_show; 854 attr->event_str = str; 855 856 return ++attr; 857 } 858 859 static struct attribute ** 860 create_event_attributes(struct i915_pmu *pmu) 861 { 862 struct drm_i915_private *i915 = container_of(pmu, typeof(*i915), pmu); 863 static const struct { 864 u64 config; 865 const char *name; 866 const char *unit; 867 } events[] = { 868 __event(I915_PMU_ACTUAL_FREQUENCY, "actual-frequency", "M"), 869 __event(I915_PMU_REQUESTED_FREQUENCY, "requested-frequency", "M"), 870 __event(I915_PMU_INTERRUPTS, "interrupts", NULL), 871 __event(I915_PMU_RC6_RESIDENCY, "rc6-residency", "ns"), 872 }; 873 static const struct { 874 enum drm_i915_pmu_engine_sample sample; 875 char *name; 876 } engine_events[] = { 877 __engine_event(I915_SAMPLE_BUSY, "busy"), 878 __engine_event(I915_SAMPLE_SEMA, "sema"), 879 __engine_event(I915_SAMPLE_WAIT, "wait"), 880 }; 881 unsigned int count = 0; 882 struct perf_pmu_events_attr *pmu_attr = NULL, *pmu_iter; 883 struct i915_ext_attribute *i915_attr = NULL, *i915_iter; 884 struct attribute **attr = NULL, **attr_iter; 885 struct intel_engine_cs *engine; 886 unsigned int i; 887 888 /* Count how many counters we will be exposing. */ 889 for (i = 0; i < ARRAY_SIZE(events); i++) { 890 if (!config_status(i915, events[i].config)) 891 count++; 892 } 893 894 for_each_uabi_engine(engine, i915) { 895 for (i = 0; i < ARRAY_SIZE(engine_events); i++) { 896 if (!engine_event_status(engine, 897 engine_events[i].sample)) 898 count++; 899 } 900 } 901 902 /* Allocate attribute objects and table. */ 903 i915_attr = kcalloc(count, sizeof(*i915_attr), GFP_KERNEL); 904 if (!i915_attr) 905 goto err_alloc; 906 907 pmu_attr = kcalloc(count, sizeof(*pmu_attr), GFP_KERNEL); 908 if (!pmu_attr) 909 goto err_alloc; 910 911 /* Max one pointer of each attribute type plus a termination entry. */ 912 attr = kcalloc(count * 2 + 1, sizeof(*attr), GFP_KERNEL); 913 if (!attr) 914 goto err_alloc; 915 916 i915_iter = i915_attr; 917 pmu_iter = pmu_attr; 918 attr_iter = attr; 919 920 /* Initialize supported non-engine counters. */ 921 for (i = 0; i < ARRAY_SIZE(events); i++) { 922 char *str; 923 924 if (config_status(i915, events[i].config)) 925 continue; 926 927 str = kstrdup(events[i].name, GFP_KERNEL); 928 if (!str) 929 goto err; 930 931 *attr_iter++ = &i915_iter->attr.attr; 932 i915_iter = add_i915_attr(i915_iter, str, events[i].config); 933 934 if (events[i].unit) { 935 str = kasprintf(GFP_KERNEL, "%s.unit", events[i].name); 936 if (!str) 937 goto err; 938 939 *attr_iter++ = &pmu_iter->attr.attr; 940 pmu_iter = add_pmu_attr(pmu_iter, str, events[i].unit); 941 } 942 } 943 944 /* Initialize supported engine counters. */ 945 for_each_uabi_engine(engine, i915) { 946 for (i = 0; i < ARRAY_SIZE(engine_events); i++) { 947 char *str; 948 949 if (engine_event_status(engine, 950 engine_events[i].sample)) 951 continue; 952 953 str = kasprintf(GFP_KERNEL, "%s-%s", 954 engine->name, engine_events[i].name); 955 if (!str) 956 goto err; 957 958 *attr_iter++ = &i915_iter->attr.attr; 959 i915_iter = 960 add_i915_attr(i915_iter, str, 961 __I915_PMU_ENGINE(engine->uabi_class, 962 engine->uabi_instance, 963 engine_events[i].sample)); 964 965 str = kasprintf(GFP_KERNEL, "%s-%s.unit", 966 engine->name, engine_events[i].name); 967 if (!str) 968 goto err; 969 970 *attr_iter++ = &pmu_iter->attr.attr; 971 pmu_iter = add_pmu_attr(pmu_iter, str, "ns"); 972 } 973 } 974 975 pmu->i915_attr = i915_attr; 976 pmu->pmu_attr = pmu_attr; 977 978 return attr; 979 980 err:; 981 for (attr_iter = attr; *attr_iter; attr_iter++) 982 kfree((*attr_iter)->name); 983 984 err_alloc: 985 kfree(attr); 986 kfree(i915_attr); 987 kfree(pmu_attr); 988 989 return NULL; 990 } 991 992 static void free_event_attributes(struct i915_pmu *pmu) 993 { 994 struct attribute **attr_iter = pmu->events_attr_group.attrs; 995 996 for (; *attr_iter; attr_iter++) 997 kfree((*attr_iter)->name); 998 999 kfree(pmu->events_attr_group.attrs); 1000 kfree(pmu->i915_attr); 1001 kfree(pmu->pmu_attr); 1002 1003 pmu->events_attr_group.attrs = NULL; 1004 pmu->i915_attr = NULL; 1005 pmu->pmu_attr = NULL; 1006 } 1007 1008 static int i915_pmu_cpu_online(unsigned int cpu, struct hlist_node *node) 1009 { 1010 struct i915_pmu *pmu = hlist_entry_safe(node, typeof(*pmu), cpuhp.node); 1011 1012 GEM_BUG_ON(!pmu->base.event_init); 1013 1014 /* Select the first online CPU as a designated reader. */ 1015 if (!cpumask_weight(&i915_pmu_cpumask)) 1016 cpumask_set_cpu(cpu, &i915_pmu_cpumask); 1017 1018 return 0; 1019 } 1020 1021 static int i915_pmu_cpu_offline(unsigned int cpu, struct hlist_node *node) 1022 { 1023 struct i915_pmu *pmu = hlist_entry_safe(node, typeof(*pmu), cpuhp.node); 1024 unsigned int target; 1025 1026 GEM_BUG_ON(!pmu->base.event_init); 1027 1028 if (cpumask_test_and_clear_cpu(cpu, &i915_pmu_cpumask)) { 1029 target = cpumask_any_but(topology_sibling_cpumask(cpu), cpu); 1030 /* Migrate events if there is a valid target */ 1031 if (target < nr_cpu_ids) { 1032 cpumask_set_cpu(target, &i915_pmu_cpumask); 1033 perf_pmu_migrate_context(&pmu->base, cpu, target); 1034 } 1035 } 1036 1037 return 0; 1038 } 1039 1040 static int i915_pmu_register_cpuhp_state(struct i915_pmu *pmu) 1041 { 1042 enum cpuhp_state slot; 1043 int ret; 1044 1045 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, 1046 "perf/x86/intel/i915:online", 1047 i915_pmu_cpu_online, 1048 i915_pmu_cpu_offline); 1049 if (ret < 0) 1050 return ret; 1051 1052 slot = ret; 1053 ret = cpuhp_state_add_instance(slot, &pmu->cpuhp.node); 1054 if (ret) { 1055 cpuhp_remove_multi_state(slot); 1056 return ret; 1057 } 1058 1059 pmu->cpuhp.slot = slot; 1060 return 0; 1061 } 1062 1063 static void i915_pmu_unregister_cpuhp_state(struct i915_pmu *pmu) 1064 { 1065 struct drm_i915_private *i915 = container_of(pmu, typeof(*i915), pmu); 1066 1067 drm_WARN_ON(&i915->drm, pmu->cpuhp.slot == CPUHP_INVALID); 1068 drm_WARN_ON(&i915->drm, cpuhp_state_remove_instance(pmu->cpuhp.slot, &pmu->cpuhp.node)); 1069 cpuhp_remove_multi_state(pmu->cpuhp.slot); 1070 pmu->cpuhp.slot = CPUHP_INVALID; 1071 } 1072 1073 static bool is_igp(struct drm_i915_private *i915) 1074 { 1075 struct pci_dev *pdev = i915->drm.pdev; 1076 1077 /* IGP is 0000:00:02.0 */ 1078 return pci_domain_nr(pdev->bus) == 0 && 1079 pdev->bus->number == 0 && 1080 PCI_SLOT(pdev->devfn) == 2 && 1081 PCI_FUNC(pdev->devfn) == 0; 1082 } 1083 1084 void i915_pmu_register(struct drm_i915_private *i915) 1085 { 1086 struct i915_pmu *pmu = &i915->pmu; 1087 const struct attribute_group *attr_groups[] = { 1088 &i915_pmu_format_attr_group, 1089 &pmu->events_attr_group, 1090 &i915_pmu_cpumask_attr_group, 1091 NULL 1092 }; 1093 1094 int ret = -ENOMEM; 1095 1096 if (INTEL_GEN(i915) <= 2) { 1097 drm_info(&i915->drm, "PMU not supported for this GPU."); 1098 return; 1099 } 1100 1101 mtx_init(&pmu->lock, IPL_TTY); 1102 hrtimer_init(&pmu->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1103 pmu->timer.function = i915_sample; 1104 pmu->cpuhp.slot = CPUHP_INVALID; 1105 init_rc6(pmu); 1106 1107 if (!is_igp(i915)) { 1108 pmu->name = kasprintf(GFP_KERNEL, 1109 "i915_%s", 1110 dev_name(i915->drm.dev)); 1111 if (pmu->name) { 1112 /* tools/perf reserves colons as special. */ 1113 strreplace((char *)pmu->name, ':', '_'); 1114 } 1115 } else { 1116 pmu->name = "i915"; 1117 } 1118 if (!pmu->name) 1119 goto err; 1120 1121 pmu->events_attr_group.name = "events"; 1122 pmu->events_attr_group.attrs = create_event_attributes(pmu); 1123 if (!pmu->events_attr_group.attrs) 1124 goto err_name; 1125 1126 pmu->base.attr_groups = kmemdup(attr_groups, sizeof(attr_groups), 1127 GFP_KERNEL); 1128 if (!pmu->base.attr_groups) 1129 goto err_attr; 1130 1131 pmu->base.module = THIS_MODULE; 1132 pmu->base.task_ctx_nr = perf_invalid_context; 1133 pmu->base.event_init = i915_pmu_event_init; 1134 pmu->base.add = i915_pmu_event_add; 1135 pmu->base.del = i915_pmu_event_del; 1136 pmu->base.start = i915_pmu_event_start; 1137 pmu->base.stop = i915_pmu_event_stop; 1138 pmu->base.read = i915_pmu_event_read; 1139 pmu->base.event_idx = i915_pmu_event_event_idx; 1140 1141 ret = perf_pmu_register(&pmu->base, pmu->name, -1); 1142 if (ret) 1143 goto err_groups; 1144 1145 ret = i915_pmu_register_cpuhp_state(pmu); 1146 if (ret) 1147 goto err_unreg; 1148 1149 return; 1150 1151 err_unreg: 1152 perf_pmu_unregister(&pmu->base); 1153 err_groups: 1154 kfree(pmu->base.attr_groups); 1155 err_attr: 1156 pmu->base.event_init = NULL; 1157 free_event_attributes(pmu); 1158 err_name: 1159 if (!is_igp(i915)) 1160 kfree(pmu->name); 1161 err: 1162 drm_notice(&i915->drm, "Failed to register PMU!\n"); 1163 } 1164 1165 void i915_pmu_unregister(struct drm_i915_private *i915) 1166 { 1167 struct i915_pmu *pmu = &i915->pmu; 1168 1169 if (!pmu->base.event_init) 1170 return; 1171 1172 drm_WARN_ON(&i915->drm, pmu->enable); 1173 1174 hrtimer_cancel(&pmu->timer); 1175 1176 i915_pmu_unregister_cpuhp_state(pmu); 1177 1178 perf_pmu_unregister(&pmu->base); 1179 pmu->base.event_init = NULL; 1180 kfree(pmu->base.attr_groups); 1181 if (!is_igp(i915)) 1182 kfree(pmu->name); 1183 free_event_attributes(pmu); 1184 } 1185