xref: /openbsd/sys/dev/pci/if_ale.c (revision 898184e3)
1 /*	$OpenBSD: if_ale.c,v 1.25 2012/11/29 21:10:32 brad Exp $	*/
2 /*-
3  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD: src/sys/dev/ale/if_ale.c,v 1.3 2008/12/03 09:01:12 yongari Exp $
29  */
30 
31 /* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */
32 
33 #include "bpfilter.h"
34 #include "vlan.h"
35 
36 #include <sys/param.h>
37 #include <sys/endian.h>
38 #include <sys/systm.h>
39 #include <sys/types.h>
40 #include <sys/sockio.h>
41 #include <sys/mbuf.h>
42 #include <sys/queue.h>
43 #include <sys/kernel.h>
44 #include <sys/device.h>
45 #include <sys/timeout.h>
46 #include <sys/socket.h>
47 
48 #include <machine/bus.h>
49 
50 #include <net/if.h>
51 #include <net/if_dl.h>
52 #include <net/if_llc.h>
53 #include <net/if_media.h>
54 
55 #ifdef INET
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/in_var.h>
59 #include <netinet/ip.h>
60 #include <netinet/if_ether.h>
61 #endif
62 
63 #include <net/if_types.h>
64 #include <net/if_vlan_var.h>
65 
66 #if NBPFILTER > 0
67 #include <net/bpf.h>
68 #endif
69 
70 #include <dev/rndvar.h>
71 
72 #include <dev/mii/mii.h>
73 #include <dev/mii/miivar.h>
74 
75 #include <dev/pci/pcireg.h>
76 #include <dev/pci/pcivar.h>
77 #include <dev/pci/pcidevs.h>
78 
79 #include <dev/pci/if_alereg.h>
80 
81 int	ale_match(struct device *, void *, void *);
82 void	ale_attach(struct device *, struct device *, void *);
83 int	ale_detach(struct device *, int);
84 int	ale_activate(struct device *, int);
85 
86 int	ale_miibus_readreg(struct device *, int, int);
87 void	ale_miibus_writereg(struct device *, int, int, int);
88 void	ale_miibus_statchg(struct device *);
89 
90 int	ale_init(struct ifnet *);
91 void	ale_start(struct ifnet *);
92 int	ale_ioctl(struct ifnet *, u_long, caddr_t);
93 void	ale_watchdog(struct ifnet *);
94 int	ale_mediachange(struct ifnet *);
95 void	ale_mediastatus(struct ifnet *, struct ifmediareq *);
96 
97 int	ale_intr(void *);
98 int	ale_rxeof(struct ale_softc *sc);
99 void	ale_rx_update_page(struct ale_softc *, struct ale_rx_page **,
100 	    uint32_t, uint32_t *);
101 void	ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t);
102 void	ale_txeof(struct ale_softc *);
103 
104 int	ale_dma_alloc(struct ale_softc *);
105 void	ale_dma_free(struct ale_softc *);
106 int	ale_encap(struct ale_softc *, struct mbuf **);
107 void	ale_init_rx_pages(struct ale_softc *);
108 void	ale_init_tx_ring(struct ale_softc *);
109 
110 void	ale_stop(struct ale_softc *);
111 void	ale_tick(void *);
112 void	ale_get_macaddr(struct ale_softc *);
113 void	ale_mac_config(struct ale_softc *);
114 void	ale_phy_reset(struct ale_softc *);
115 void	ale_reset(struct ale_softc *);
116 void	ale_iff(struct ale_softc *);
117 void	ale_rxvlan(struct ale_softc *);
118 void	ale_stats_clear(struct ale_softc *);
119 void	ale_stats_update(struct ale_softc *);
120 void	ale_stop_mac(struct ale_softc *);
121 
122 const struct pci_matchid ale_devices[] = {
123 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_L1E }
124 };
125 
126 struct cfattach ale_ca = {
127 	sizeof (struct ale_softc), ale_match, ale_attach, NULL,
128 	ale_activate
129 };
130 
131 struct cfdriver ale_cd = {
132 	NULL, "ale", DV_IFNET
133 };
134 
135 int aledebug = 0;
136 #define DPRINTF(x)	do { if (aledebug) printf x; } while (0)
137 
138 #define ALE_CSUM_FEATURES	(M_TCP_CSUM_OUT | M_UDP_CSUM_OUT)
139 
140 int
141 ale_miibus_readreg(struct device *dev, int phy, int reg)
142 {
143 	struct ale_softc *sc = (struct ale_softc *)dev;
144 	uint32_t v;
145 	int i;
146 
147 	if (phy != sc->ale_phyaddr)
148 		return (0);
149 
150 	if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0 &&
151 	    reg == MII_EXTSR)
152 		return (0);
153 
154 	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
155 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
156 	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
157 		DELAY(5);
158 		v = CSR_READ_4(sc, ALE_MDIO);
159 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
160 			break;
161 	}
162 
163 	if (i == 0) {
164 		printf("%s: phy read timeout: phy %d, reg %d\n",
165 		    sc->sc_dev.dv_xname, phy, reg);
166 		return (0);
167 	}
168 
169 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
170 }
171 
172 void
173 ale_miibus_writereg(struct device *dev, int phy, int reg, int val)
174 {
175 	struct ale_softc *sc = (struct ale_softc *)dev;
176 	uint32_t v;
177 	int i;
178 
179 	if (phy != sc->ale_phyaddr)
180 		return;
181 
182 	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
183 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
184 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
185 	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
186 		DELAY(5);
187 		v = CSR_READ_4(sc, ALE_MDIO);
188 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
189 			break;
190 	}
191 
192 	if (i == 0)
193 		printf("%s: phy write timeout: phy %d, reg %d\n",
194 		    sc->sc_dev.dv_xname, phy, reg);
195 }
196 
197 void
198 ale_miibus_statchg(struct device *dev)
199 {
200 	struct ale_softc *sc = (struct ale_softc *)dev;
201 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
202 	struct mii_data *mii = &sc->sc_miibus;
203 	uint32_t reg;
204 
205 	if ((ifp->if_flags & IFF_RUNNING) == 0)
206 		return;
207 
208 	sc->ale_flags &= ~ALE_FLAG_LINK;
209 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
210 	    (IFM_ACTIVE | IFM_AVALID)) {
211 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
212 		case IFM_10_T:
213 		case IFM_100_TX:
214 			sc->ale_flags |= ALE_FLAG_LINK;
215 			break;
216 
217 		case IFM_1000_T:
218 			if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
219 				sc->ale_flags |= ALE_FLAG_LINK;
220 			break;
221 
222 		default:
223 			break;
224 		}
225 	}
226 
227 	/* Stop Rx/Tx MACs. */
228 	ale_stop_mac(sc);
229 
230 	/* Program MACs with resolved speed/duplex/flow-control. */
231 	if ((sc->ale_flags & ALE_FLAG_LINK) != 0) {
232 		ale_mac_config(sc);
233 		/* Reenable Tx/Rx MACs. */
234 		reg = CSR_READ_4(sc, ALE_MAC_CFG);
235 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
236 		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
237 	}
238 }
239 
240 void
241 ale_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
242 {
243 	struct ale_softc *sc = ifp->if_softc;
244 	struct mii_data *mii = &sc->sc_miibus;
245 
246 	if ((ifp->if_flags & IFF_UP) == 0)
247 		return;
248 
249 	mii_pollstat(mii);
250 	ifmr->ifm_status = mii->mii_media_status;
251 	ifmr->ifm_active = mii->mii_media_active;
252 }
253 
254 int
255 ale_mediachange(struct ifnet *ifp)
256 {
257 	struct ale_softc *sc = ifp->if_softc;
258 	struct mii_data *mii = &sc->sc_miibus;
259 	int error;
260 
261 	if (mii->mii_instance != 0) {
262 		struct mii_softc *miisc;
263 
264 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
265 			mii_phy_reset(miisc);
266 	}
267 	error = mii_mediachg(mii);
268 
269 	return (error);
270 }
271 
272 int
273 ale_match(struct device *dev, void *match, void *aux)
274 {
275 	return pci_matchbyid((struct pci_attach_args *)aux, ale_devices,
276 	    sizeof (ale_devices) / sizeof (ale_devices[0]));
277 }
278 
279 void
280 ale_get_macaddr(struct ale_softc *sc)
281 {
282 	uint32_t ea[2], reg;
283 	int i, vpdc;
284 
285 	reg = CSR_READ_4(sc, ALE_SPI_CTRL);
286 	if ((reg & SPI_VPD_ENB) != 0) {
287 		reg &= ~SPI_VPD_ENB;
288 		CSR_WRITE_4(sc, ALE_SPI_CTRL, reg);
289 	}
290 
291 	if (pci_get_capability(sc->sc_pct, sc->sc_pcitag, PCI_CAP_VPD,
292 	    &vpdc, NULL)) {
293 		/*
294 		 * PCI VPD capability found, let TWSI reload EEPROM.
295 		 * This will set ethernet address of controller.
296 		 */
297 		CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) |
298 		    TWSI_CTRL_SW_LD_START);
299 		for (i = 100; i > 0; i--) {
300 			DELAY(1000);
301 			reg = CSR_READ_4(sc, ALE_TWSI_CTRL);
302 			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
303 				break;
304 		}
305 		if (i == 0)
306 			printf("%s: reloading EEPROM timeout!\n",
307 			    sc->sc_dev.dv_xname);
308 	} else {
309 		if (aledebug)
310 			printf("%s: PCI VPD capability not found!\n",
311 			    sc->sc_dev.dv_xname);
312 	}
313 
314 	ea[0] = CSR_READ_4(sc, ALE_PAR0);
315 	ea[1] = CSR_READ_4(sc, ALE_PAR1);
316 	sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF;
317 	sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF;
318 	sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF;
319 	sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF;
320 	sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF;
321 	sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF;
322 }
323 
324 void
325 ale_phy_reset(struct ale_softc *sc)
326 {
327 	/* Reset magic from Linux. */
328 	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
329 	    GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
330 	    GPHY_CTRL_PHY_PLL_ON);
331 	DELAY(1000);
332 	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
333 	    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE |
334 	    GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON);
335 	DELAY(1000);
336 
337 #define	ATPHY_DBG_ADDR		0x1D
338 #define	ATPHY_DBG_DATA		0x1E
339 
340 	/* Enable hibernation mode. */
341 	ale_miibus_writereg(&sc->sc_dev, sc->ale_phyaddr,
342 	    ATPHY_DBG_ADDR, 0x0B);
343 	ale_miibus_writereg(&sc->sc_dev, sc->ale_phyaddr,
344 	    ATPHY_DBG_DATA, 0xBC00);
345 	/* Set Class A/B for all modes. */
346 	ale_miibus_writereg(&sc->sc_dev, sc->ale_phyaddr,
347 	    ATPHY_DBG_ADDR, 0x00);
348 	ale_miibus_writereg(&sc->sc_dev, sc->ale_phyaddr,
349 	    ATPHY_DBG_DATA, 0x02EF);
350 	/* Enable 10BT power saving. */
351 	ale_miibus_writereg(&sc->sc_dev, sc->ale_phyaddr,
352 	    ATPHY_DBG_ADDR, 0x12);
353 	ale_miibus_writereg(&sc->sc_dev, sc->ale_phyaddr,
354 	    ATPHY_DBG_DATA, 0x4C04);
355 	/* Adjust 1000T power. */
356 	ale_miibus_writereg(&sc->sc_dev, sc->ale_phyaddr,
357 	    ATPHY_DBG_ADDR, 0x04);
358 	ale_miibus_writereg(&sc->sc_dev, sc->ale_phyaddr,
359 	    ATPHY_DBG_ADDR, 0x8BBB);
360 	/* 10BT center tap voltage. */
361 	ale_miibus_writereg(&sc->sc_dev, sc->ale_phyaddr,
362 	    ATPHY_DBG_ADDR, 0x05);
363 	ale_miibus_writereg(&sc->sc_dev, sc->ale_phyaddr,
364 	    ATPHY_DBG_ADDR, 0x2C46);
365 
366 #undef	ATPHY_DBG_ADDR
367 #undef	ATPHY_DBG_DATA
368 	DELAY(1000);
369 }
370 
371 void
372 ale_attach(struct device *parent, struct device *self, void *aux)
373 {
374 	struct ale_softc *sc = (struct ale_softc *)self;
375 	struct pci_attach_args *pa = aux;
376 	pci_chipset_tag_t pc = pa->pa_pc;
377 	pci_intr_handle_t ih;
378 	const char *intrstr;
379 	struct ifnet *ifp;
380 	pcireg_t memtype;
381 	int mii_flags, error = 0;
382 	uint32_t rxf_len, txf_len;
383 	const char *chipname;
384 
385 	/*
386 	 * Allocate IO memory
387 	 */
388 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, ALE_PCIR_BAR);
389 	if (pci_mapreg_map(pa, ALE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
390 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size, 0)) {
391 		printf(": can't map mem space\n");
392 		return;
393 	}
394 
395 	if (pci_intr_map_msi(pa, &ih) != 0 && pci_intr_map(pa, &ih) != 0) {
396 		printf(": can't map interrupt\n");
397 		goto fail;
398 	}
399 
400 	/*
401 	 * Allocate IRQ
402 	 */
403 	intrstr = pci_intr_string(pc, ih);
404 	sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, ale_intr, sc,
405 	    sc->sc_dev.dv_xname);
406 	if (sc->sc_irq_handle == NULL) {
407 		printf(": could not establish interrupt");
408 		if (intrstr != NULL)
409 			printf(" at %s", intrstr);
410 		printf("\n");
411 		goto fail;
412 	}
413 
414 	sc->sc_dmat = pa->pa_dmat;
415 	sc->sc_pct = pa->pa_pc;
416 	sc->sc_pcitag = pa->pa_tag;
417 
418 	/* Set PHY address. */
419 	sc->ale_phyaddr = ALE_PHY_ADDR;
420 
421 	/* Reset PHY. */
422 	ale_phy_reset(sc);
423 
424 	/* Reset the ethernet controller. */
425 	ale_reset(sc);
426 
427 	/* Get PCI and chip id/revision. */
428 	sc->ale_rev = PCI_REVISION(pa->pa_class);
429 	if (sc->ale_rev >= 0xF0) {
430 		/* L2E Rev. B. AR8114 */
431 		sc->ale_flags |= ALE_FLAG_FASTETHER;
432 		chipname = "AR8114";
433 	} else {
434 		if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) {
435 			/* L1E AR8121 */
436 			sc->ale_flags |= ALE_FLAG_JUMBO;
437 			chipname = "AR8121";
438 		} else {
439 			/* L2E Rev. A. AR8113 */
440 			sc->ale_flags |= ALE_FLAG_FASTETHER;
441 			chipname = "AR8113";
442 		}
443 	}
444 
445 	printf(": %s, %s", chipname, intrstr);
446 
447 	/*
448 	 * All known controllers seems to require 4 bytes alignment
449 	 * of Tx buffers to make Tx checksum offload with custom
450 	 * checksum generation method work.
451 	 */
452 	sc->ale_flags |= ALE_FLAG_TXCSUM_BUG;
453 
454 	/*
455 	 * All known controllers seems to have issues on Rx checksum
456 	 * offload for fragmented IP datagrams.
457 	 */
458 	sc->ale_flags |= ALE_FLAG_RXCSUM_BUG;
459 
460 	/*
461 	 * Don't use Tx CMB. It is known to cause RRS update failure
462 	 * under certain circumstances. Typical phenomenon of the
463 	 * issue would be unexpected sequence number encountered in
464 	 * Rx handler.
465 	 */
466 	sc->ale_flags |= ALE_FLAG_TXCMB_BUG;
467 	sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >>
468 	    MASTER_CHIP_REV_SHIFT;
469 	if (aledebug) {
470 		printf("%s: PCI device revision : 0x%04x\n",
471 		    sc->sc_dev.dv_xname, sc->ale_rev);
472 		printf("%s: Chip id/revision : 0x%04x\n",
473 		    sc->sc_dev.dv_xname, sc->ale_chip_rev);
474 	}
475 
476 	/*
477 	 * Uninitialized hardware returns an invalid chip id/revision
478 	 * as well as 0xFFFFFFFF for Tx/Rx fifo length.
479 	 */
480 	txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN);
481 	rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
482 	if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF ||
483 	    rxf_len == 0xFFFFFFF) {
484 		printf("%s: chip revision : 0x%04x, %u Tx FIFO "
485 		    "%u Rx FIFO -- not initialized?\n", sc->sc_dev.dv_xname,
486 		    sc->ale_chip_rev, txf_len, rxf_len);
487 		goto fail;
488 	}
489 
490 	if (aledebug) {
491 		printf("%s: %u Tx FIFO, %u Rx FIFO\n", sc->sc_dev.dv_xname,
492 		    txf_len, rxf_len);
493 	}
494 
495 	/* Set max allowable DMA size. */
496 	sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128;
497 	sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128;
498 
499 	error = ale_dma_alloc(sc);
500 	if (error)
501 		goto fail;
502 
503 	/* Load station address. */
504 	ale_get_macaddr(sc);
505 
506 	ifp = &sc->sc_arpcom.ac_if;
507 	ifp->if_softc = sc;
508 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
509 	ifp->if_ioctl = ale_ioctl;
510 	ifp->if_start = ale_start;
511 	ifp->if_watchdog = ale_watchdog;
512 	IFQ_SET_MAXLEN(&ifp->if_snd, ALE_TX_RING_CNT - 1);
513 	IFQ_SET_READY(&ifp->if_snd);
514 	bcopy(sc->ale_eaddr, sc->sc_arpcom.ac_enaddr, ETHER_ADDR_LEN);
515 	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
516 
517 	ifp->if_capabilities = IFCAP_VLAN_MTU;
518 
519 #ifdef ALE_CHECKSUM
520 	ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
521 	    IFCAP_CSUM_UDPv4;
522 #endif
523 
524 #if NVLAN > 0
525 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
526 #endif
527 
528 	printf(", address %s\n", ether_sprintf(sc->sc_arpcom.ac_enaddr));
529 
530 	/* Set up MII bus. */
531 	sc->sc_miibus.mii_ifp = ifp;
532 	sc->sc_miibus.mii_readreg = ale_miibus_readreg;
533 	sc->sc_miibus.mii_writereg = ale_miibus_writereg;
534 	sc->sc_miibus.mii_statchg = ale_miibus_statchg;
535 
536 	ifmedia_init(&sc->sc_miibus.mii_media, 0, ale_mediachange,
537 	    ale_mediastatus);
538 	mii_flags = 0;
539 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
540 		mii_flags |= MIIF_DOPAUSE;
541 	mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
542 	    MII_OFFSET_ANY, mii_flags);
543 
544 	if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
545 		printf("%s: no PHY found!\n", sc->sc_dev.dv_xname);
546 		ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
547 		    0, NULL);
548 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
549 	} else
550 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
551 
552 	if_attach(ifp);
553 	ether_ifattach(ifp);
554 
555 	timeout_set(&sc->ale_tick_ch, ale_tick, sc);
556 
557 	return;
558 fail:
559 	ale_dma_free(sc);
560 	if (sc->sc_irq_handle != NULL)
561 		pci_intr_disestablish(pc, sc->sc_irq_handle);
562 	if (sc->sc_mem_size)
563 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
564 }
565 
566 int
567 ale_detach(struct device *self, int flags)
568 {
569 	struct ale_softc *sc = (struct ale_softc *)self;
570 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
571 	int s;
572 
573 	s = splnet();
574 	ale_stop(sc);
575 	splx(s);
576 
577 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
578 
579 	/* Delete all remaining media. */
580 	ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
581 
582 	ether_ifdetach(ifp);
583 	if_detach(ifp);
584 	ale_dma_free(sc);
585 
586 	if (sc->sc_irq_handle != NULL) {
587 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
588 		sc->sc_irq_handle = NULL;
589 	}
590 
591 	return (0);
592 }
593 
594 int
595 ale_activate(struct device *self, int act)
596 {
597 	struct ale_softc *sc = (struct ale_softc *)self;
598 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
599 	int rv = 0;
600 
601 	switch (act) {
602 	case DVACT_QUIESCE:
603 		rv = config_activate_children(self, act);
604 		break;
605 	case DVACT_SUSPEND:
606 		if (ifp->if_flags & IFF_RUNNING)
607 			ale_stop(sc);
608 		rv = config_activate_children(self, act);
609 		break;
610 	case DVACT_RESUME:
611 		rv = config_activate_children(self, act);
612 		if (ifp->if_flags & IFF_UP)
613 			ale_init(ifp);
614 		break;
615 	}
616 	return (rv);
617 }
618 
619 int
620 ale_dma_alloc(struct ale_softc *sc)
621 {
622 	struct ale_txdesc *txd;
623 	int nsegs, error, guard_size, i;
624 
625 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
626 		guard_size = ALE_JUMBO_FRAMELEN;
627 	else
628 		guard_size = ALE_MAX_FRAMELEN;
629 	sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ,
630 	    ALE_RX_PAGE_ALIGN);
631 
632 	/*
633 	 * Create DMA stuffs for TX ring
634 	 */
635 	error = bus_dmamap_create(sc->sc_dmat, ALE_TX_RING_SZ, 1,
636 	    ALE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_ring_map);
637 	if (error)
638 		return (ENOBUFS);
639 
640 	/* Allocate DMA'able memory for TX ring */
641 	error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_RING_SZ,
642 	    ETHER_ALIGN, 0, &sc->ale_cdata.ale_tx_ring_seg, 1,
643 	    &nsegs, BUS_DMA_WAITOK | BUS_DMA_ZERO);
644 	if (error) {
645 		printf("%s: could not allocate DMA'able memory for Tx ring.\n",
646 		    sc->sc_dev.dv_xname);
647 		return error;
648 	}
649 
650 	error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_ring_seg,
651 	    nsegs, ALE_TX_RING_SZ, (caddr_t *)&sc->ale_cdata.ale_tx_ring,
652 	    BUS_DMA_NOWAIT);
653 	if (error)
654 		return (ENOBUFS);
655 
656 	/* Load the DMA map for Tx ring. */
657 	error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map,
658 	    sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
659 	if (error) {
660 		printf("%s: could not load DMA'able memory for Tx ring.\n",
661 		    sc->sc_dev.dv_xname);
662 		bus_dmamem_free(sc->sc_dmat,
663 		    (bus_dma_segment_t *)&sc->ale_cdata.ale_tx_ring, 1);
664 		return error;
665 	}
666 	sc->ale_cdata.ale_tx_ring_paddr =
667 	    sc->ale_cdata.ale_tx_ring_map->dm_segs[0].ds_addr;
668 
669 	for (i = 0; i < ALE_RX_PAGES; i++) {
670 		/*
671 		 * Create DMA stuffs for RX pages
672 		 */
673 		error = bus_dmamap_create(sc->sc_dmat, sc->ale_pagesize, 1,
674 		    sc->ale_pagesize, 0, BUS_DMA_NOWAIT,
675 		    &sc->ale_cdata.ale_rx_page[i].page_map);
676 		if (error)
677 			return (ENOBUFS);
678 
679 		/* Allocate DMA'able memory for RX pages */
680 		error = bus_dmamem_alloc(sc->sc_dmat, sc->ale_pagesize,
681 		    ETHER_ALIGN, 0, &sc->ale_cdata.ale_rx_page[i].page_seg,
682 		    1, &nsegs, BUS_DMA_WAITOK | BUS_DMA_ZERO);
683 		if (error) {
684 			printf("%s: could not allocate DMA'able memory for "
685 			    "Rx ring.\n", sc->sc_dev.dv_xname);
686 			return error;
687 		}
688 		error = bus_dmamem_map(sc->sc_dmat,
689 		    &sc->ale_cdata.ale_rx_page[i].page_seg, nsegs,
690 		    sc->ale_pagesize,
691 		    (caddr_t *)&sc->ale_cdata.ale_rx_page[i].page_addr,
692 		    BUS_DMA_NOWAIT);
693 		if (error)
694 			return (ENOBUFS);
695 
696 		/* Load the DMA map for Rx pages. */
697 		error = bus_dmamap_load(sc->sc_dmat,
698 		    sc->ale_cdata.ale_rx_page[i].page_map,
699 		    sc->ale_cdata.ale_rx_page[i].page_addr,
700 		    sc->ale_pagesize, NULL, BUS_DMA_WAITOK);
701 		if (error) {
702 			printf("%s: could not load DMA'able memory for "
703 			    "Rx pages.\n", sc->sc_dev.dv_xname);
704 			bus_dmamem_free(sc->sc_dmat,
705 			    (bus_dma_segment_t *)sc->ale_cdata.ale_rx_page[i].page_addr, 1);
706 			return error;
707 		}
708 		sc->ale_cdata.ale_rx_page[i].page_paddr =
709 		    sc->ale_cdata.ale_rx_page[i].page_map->dm_segs[0].ds_addr;
710 	}
711 
712 	/*
713 	 * Create DMA stuffs for Tx CMB.
714 	 */
715 	error = bus_dmamap_create(sc->sc_dmat, ALE_TX_CMB_SZ, 1,
716 	    ALE_TX_CMB_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_cmb_map);
717 	if (error)
718 		return (ENOBUFS);
719 
720 	/* Allocate DMA'able memory for Tx CMB. */
721 	error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_CMB_SZ, ETHER_ALIGN, 0,
722 	    &sc->ale_cdata.ale_tx_cmb_seg, 1, &nsegs,
723 	    BUS_DMA_WAITOK |BUS_DMA_ZERO);
724 
725 	if (error) {
726 		printf("%s: could not allocate DMA'able memory for Tx CMB.\n",
727 		    sc->sc_dev.dv_xname);
728 		return error;
729 	}
730 
731 	error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_cmb_seg,
732 	    nsegs, ALE_TX_CMB_SZ, (caddr_t *)&sc->ale_cdata.ale_tx_cmb,
733 	    BUS_DMA_NOWAIT);
734 	if (error)
735 		return (ENOBUFS);
736 
737 	/* Load the DMA map for Tx CMB. */
738 	error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map,
739 	    sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ, NULL, BUS_DMA_WAITOK);
740 	if (error) {
741 		printf("%s: could not load DMA'able memory for Tx CMB.\n",
742 		    sc->sc_dev.dv_xname);
743 		bus_dmamem_free(sc->sc_dmat,
744 		    (bus_dma_segment_t *)&sc->ale_cdata.ale_tx_cmb, 1);
745 		return error;
746 	}
747 
748 	sc->ale_cdata.ale_tx_cmb_paddr =
749 	    sc->ale_cdata.ale_tx_cmb_map->dm_segs[0].ds_addr;
750 
751 	for (i = 0; i < ALE_RX_PAGES; i++) {
752 		/*
753 		 * Create DMA stuffs for Rx CMB.
754 		 */
755 		error = bus_dmamap_create(sc->sc_dmat, ALE_RX_CMB_SZ, 1,
756 		    ALE_RX_CMB_SZ, 0, BUS_DMA_NOWAIT,
757 		    &sc->ale_cdata.ale_rx_page[i].cmb_map);
758 		if (error)
759 			return (ENOBUFS);
760 
761 		/* Allocate DMA'able memory for Rx CMB */
762 		error = bus_dmamem_alloc(sc->sc_dmat, ALE_RX_CMB_SZ,
763 		    ETHER_ALIGN, 0, &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1,
764 		    &nsegs, BUS_DMA_WAITOK | BUS_DMA_ZERO);
765 		if (error) {
766 			printf("%s: could not allocate DMA'able memory for "
767 			    "Rx CMB\n", sc->sc_dev.dv_xname);
768 			return error;
769 		}
770 		error = bus_dmamem_map(sc->sc_dmat,
771 		    &sc->ale_cdata.ale_rx_page[i].cmb_seg, nsegs,
772 		    ALE_RX_CMB_SZ,
773 		    (caddr_t *)&sc->ale_cdata.ale_rx_page[i].cmb_addr,
774 		    BUS_DMA_NOWAIT);
775 		if (error)
776 			return (ENOBUFS);
777 
778 		/* Load the DMA map for Rx CMB */
779 		error = bus_dmamap_load(sc->sc_dmat,
780 		    sc->ale_cdata.ale_rx_page[i].cmb_map,
781 		    sc->ale_cdata.ale_rx_page[i].cmb_addr,
782 		    ALE_RX_CMB_SZ, NULL, BUS_DMA_WAITOK);
783 		if (error) {
784 			printf("%s: could not load DMA'able memory for Rx CMB"
785 			    "\n", sc->sc_dev.dv_xname);
786 			bus_dmamem_free(sc->sc_dmat,
787 			    (bus_dma_segment_t *)&sc->ale_cdata.ale_rx_page[i].cmb_addr, 1);
788 			return error;
789 		}
790 		sc->ale_cdata.ale_rx_page[i].cmb_paddr =
791 		    sc->ale_cdata.ale_rx_page[i].cmb_map->dm_segs[0].ds_addr;
792 	}
793 
794 
795 	/* Create DMA maps for Tx buffers. */
796 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
797 		txd = &sc->ale_cdata.ale_txdesc[i];
798 		txd->tx_m = NULL;
799 		txd->tx_dmamap = NULL;
800 		error = bus_dmamap_create(sc->sc_dmat, ALE_TSO_MAXSIZE,
801 		    ALE_MAXTXSEGS, ALE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
802 		    &txd->tx_dmamap);
803 		if (error) {
804 			printf("%s: could not create Tx dmamap.\n",
805 			    sc->sc_dev.dv_xname);
806 			return error;
807 		}
808 	}
809 
810 	return (0);
811 }
812 
813 void
814 ale_dma_free(struct ale_softc *sc)
815 {
816 	struct ale_txdesc *txd;
817 	int i;
818 
819 	/* Tx buffers. */
820 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
821 		txd = &sc->ale_cdata.ale_txdesc[i];
822 		if (txd->tx_dmamap != NULL) {
823 			bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
824 			txd->tx_dmamap = NULL;
825 		}
826 	}
827 
828 	/* Tx descriptor ring. */
829 	if (sc->ale_cdata.ale_tx_ring_map != NULL)
830 		bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map);
831 	if (sc->ale_cdata.ale_tx_ring_map != NULL &&
832 	    sc->ale_cdata.ale_tx_ring != NULL)
833 		bus_dmamem_free(sc->sc_dmat,
834 		    (bus_dma_segment_t *)sc->ale_cdata.ale_tx_ring, 1);
835 	sc->ale_cdata.ale_tx_ring = NULL;
836 	sc->ale_cdata.ale_tx_ring_map = NULL;
837 
838 	/* Rx page block. */
839 	for (i = 0; i < ALE_RX_PAGES; i++) {
840 		if (sc->ale_cdata.ale_rx_page[i].page_map != NULL)
841 			bus_dmamap_unload(sc->sc_dmat,
842 			    sc->ale_cdata.ale_rx_page[i].page_map);
843 		if (sc->ale_cdata.ale_rx_page[i].page_map != NULL &&
844 		    sc->ale_cdata.ale_rx_page[i].page_addr != NULL)
845 			bus_dmamem_free(sc->sc_dmat,
846 			    (bus_dma_segment_t *)sc->ale_cdata.ale_rx_page[i].page_addr, 1);
847 		sc->ale_cdata.ale_rx_page[i].page_addr = NULL;
848 		sc->ale_cdata.ale_rx_page[i].page_map = NULL;
849 	}
850 
851 	/* Rx CMB. */
852 	for (i = 0; i < ALE_RX_PAGES; i++) {
853 		if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL)
854 			bus_dmamap_unload(sc->sc_dmat,
855 			    sc->ale_cdata.ale_rx_page[i].cmb_map);
856 		if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL &&
857 		    sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL)
858 			bus_dmamem_free(sc->sc_dmat,
859 			    (bus_dma_segment_t *)sc->ale_cdata.ale_rx_page[i].cmb_addr, 1);
860 		sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL;
861 		sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
862 	}
863 
864 	/* Tx CMB. */
865 	if (sc->ale_cdata.ale_tx_cmb_map != NULL)
866 		bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map);
867 	if (sc->ale_cdata.ale_tx_cmb_map != NULL &&
868 	    sc->ale_cdata.ale_tx_cmb != NULL)
869 		bus_dmamem_free(sc->sc_dmat,
870 		    (bus_dma_segment_t *)sc->ale_cdata.ale_tx_cmb, 1);
871 	sc->ale_cdata.ale_tx_cmb = NULL;
872 	sc->ale_cdata.ale_tx_cmb_map = NULL;
873 
874 }
875 
876 int
877 ale_encap(struct ale_softc *sc, struct mbuf **m_head)
878 {
879 	struct ale_txdesc *txd, *txd_last;
880 	struct tx_desc *desc;
881 	struct mbuf *m;
882 	bus_dmamap_t map;
883 	uint32_t cflags, poff, vtag;
884 	int error, i, prod;
885 
886 	m = *m_head;
887 	cflags = vtag = 0;
888 	poff = 0;
889 
890 	prod = sc->ale_cdata.ale_tx_prod;
891 	txd = &sc->ale_cdata.ale_txdesc[prod];
892 	txd_last = txd;
893 	map = txd->tx_dmamap;
894 
895 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
896 	if (error != 0 && error != EFBIG)
897 		goto drop;
898 	if (error != 0) {
899 		if (m_defrag(*m_head, M_DONTWAIT)) {
900 			error = ENOBUFS;
901 			goto drop;
902 		}
903 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
904 		    BUS_DMA_NOWAIT);
905 		if (error != 0)
906 			goto drop;
907 	}
908 
909 	/* Check descriptor overrun. */
910 	if (sc->ale_cdata.ale_tx_cnt + map->dm_nsegs >= ALE_TX_RING_CNT - 2) {
911 		bus_dmamap_unload(sc->sc_dmat, map);
912 		return (ENOBUFS);
913 	}
914 
915 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
916 	    BUS_DMASYNC_PREWRITE);
917 
918 	m = *m_head;
919 	/* Configure Tx checksum offload. */
920 	if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) {
921 		/*
922 		 * AR81xx supports Tx custom checksum offload feature
923 		 * that offloads single 16bit checksum computation.
924 		 * So you can choose one among IP, TCP and UDP.
925 		 * Normally driver sets checksum start/insertion
926 		 * position from the information of TCP/UDP frame as
927 		 * TCP/UDP checksum takes more time than that of IP.
928 		 * However it seems that custom checksum offload
929 		 * requires 4 bytes aligned Tx buffers due to hardware
930 		 * bug.
931 		 * AR81xx also supports explicit Tx checksum computation
932 		 * if it is told that the size of IP header and TCP
933 		 * header(for UDP, the header size does not matter
934 		 * because it's fixed length). However with this scheme
935 		 * TSO does not work so you have to choose one either
936 		 * TSO or explicit Tx checksum offload. I chosen TSO
937 		 * plus custom checksum offload with work-around which
938 		 * will cover most common usage for this consumer
939 		 * ethernet controller. The work-around takes a lot of
940 		 * CPU cycles if Tx buffer is not aligned on 4 bytes
941 		 * boundary, though.
942 		 */
943 		cflags |= ALE_TD_CXSUM;
944 		/* Set checksum start offset. */
945 		cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT);
946 	}
947 
948 #if NVLAN > 0
949 	/* Configure VLAN hardware tag insertion. */
950 	if (m->m_flags & M_VLANTAG) {
951 		vtag = ALE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
952 		vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK);
953 		cflags |= ALE_TD_INSERT_VLAN_TAG;
954 	}
955 #endif
956 
957 	desc = NULL;
958 	for (i = 0; i < map->dm_nsegs; i++) {
959 		desc = &sc->ale_cdata.ale_tx_ring[prod];
960 		desc->addr = htole64(map->dm_segs[i].ds_addr);
961 		desc->len =
962 		    htole32(ALE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
963 		desc->flags = htole32(cflags);
964 		sc->ale_cdata.ale_tx_cnt++;
965 		ALE_DESC_INC(prod, ALE_TX_RING_CNT);
966 	}
967 
968 	/* Update producer index. */
969 	sc->ale_cdata.ale_tx_prod = prod;
970 
971 	/* Finally set EOP on the last descriptor. */
972 	prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT;
973 	desc = &sc->ale_cdata.ale_tx_ring[prod];
974 	desc->flags |= htole32(ALE_TD_EOP);
975 
976 	/* Swap dmamap of the first and the last. */
977 	txd = &sc->ale_cdata.ale_txdesc[prod];
978 	map = txd_last->tx_dmamap;
979 	txd_last->tx_dmamap = txd->tx_dmamap;
980 	txd->tx_dmamap = map;
981 	txd->tx_m = m;
982 
983 	/* Sync descriptors. */
984 	bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
985 	    sc->ale_cdata.ale_tx_ring_map->dm_mapsize,
986 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
987 
988 	return (0);
989 
990  drop:
991 	m_freem(*m_head);
992 	*m_head = NULL;
993 	return (error);
994 }
995 
996 void
997 ale_start(struct ifnet *ifp)
998 {
999         struct ale_softc *sc = ifp->if_softc;
1000 	struct mbuf *m_head;
1001 	int enq;
1002 
1003 	/* Reclaim transmitted frames. */
1004 	if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT)
1005 		ale_txeof(sc);
1006 
1007 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1008 		return;
1009 	if ((sc->ale_flags & ALE_FLAG_LINK) == 0)
1010 		return;
1011 	if (IFQ_IS_EMPTY(&ifp->if_snd))
1012 		return;
1013 
1014 	enq = 0;
1015 	for (;;) {
1016 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1017 		if (m_head == NULL)
1018 			break;
1019 
1020 		/*
1021 		 * Pack the data into the transmit ring. If we
1022 		 * don't have room, set the OACTIVE flag and wait
1023 		 * for the NIC to drain the ring.
1024 		 */
1025 		if (ale_encap(sc, &m_head)) {
1026 			if (m_head == NULL)
1027 				ifp->if_oerrors++;
1028 			else {
1029 				IF_PREPEND(&ifp->if_snd, m_head);
1030 				ifp->if_flags |= IFF_OACTIVE;
1031 			}
1032 			break;
1033 		}
1034 
1035 		enq = 1;
1036 
1037 #if NBPFILTER > 0
1038 		/*
1039 		 * If there's a BPF listener, bounce a copy of this frame
1040 		 * to him.
1041 		 */
1042 		if (ifp->if_bpf != NULL)
1043 			bpf_mtap_ether(ifp->if_bpf, m_head, BPF_DIRECTION_OUT);
1044 #endif
1045 	}
1046 
1047 	if (enq) {
1048 		/* Kick. */
1049 		CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX,
1050 		    sc->ale_cdata.ale_tx_prod);
1051 
1052 		/* Set a timeout in case the chip goes out to lunch. */
1053 		ifp->if_timer = ALE_TX_TIMEOUT;
1054 	}
1055 }
1056 
1057 void
1058 ale_watchdog(struct ifnet *ifp)
1059 {
1060 	struct ale_softc *sc = ifp->if_softc;
1061 
1062 	if ((sc->ale_flags & ALE_FLAG_LINK) == 0) {
1063 		printf("%s: watchdog timeout (missed link)\n",
1064 		    sc->sc_dev.dv_xname);
1065 		ifp->if_oerrors++;
1066 		ale_init(ifp);
1067 		return;
1068 	}
1069 
1070 	printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
1071 	ifp->if_oerrors++;
1072 	ale_init(ifp);
1073 	ale_start(ifp);
1074 }
1075 
1076 int
1077 ale_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1078 {
1079 	struct ale_softc *sc = ifp->if_softc;
1080 	struct mii_data *mii = &sc->sc_miibus;
1081 	struct ifaddr *ifa = (struct ifaddr *)data;
1082 	struct ifreq *ifr = (struct ifreq *)data;
1083 	int s, error = 0;
1084 
1085 	s = splnet();
1086 
1087 	switch (cmd) {
1088 	case SIOCSIFADDR:
1089 		ifp->if_flags |= IFF_UP;
1090 		if (!(ifp->if_flags & IFF_RUNNING))
1091 			ale_init(ifp);
1092 #ifdef INET
1093 		if (ifa->ifa_addr->sa_family == AF_INET)
1094 			arp_ifinit(&sc->sc_arpcom, ifa);
1095 #endif
1096 		break;
1097 
1098 	case SIOCSIFFLAGS:
1099 		if (ifp->if_flags & IFF_UP) {
1100 			if (ifp->if_flags & IFF_RUNNING)
1101 				error = ENETRESET;
1102 			else
1103 				ale_init(ifp);
1104 		} else {
1105 			if (ifp->if_flags & IFF_RUNNING)
1106 				ale_stop(sc);
1107 		}
1108 		break;
1109 
1110 	case SIOCSIFMEDIA:
1111 	case SIOCGIFMEDIA:
1112 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1113 		break;
1114 
1115 	default:
1116 		error = ether_ioctl(ifp, &sc->sc_arpcom, cmd, data);
1117 		break;
1118 	}
1119 
1120 	if (error == ENETRESET) {
1121 		if (ifp->if_flags & IFF_RUNNING)
1122 			ale_iff(sc);
1123 		error = 0;
1124 	}
1125 
1126 	splx(s);
1127 	return (error);
1128 }
1129 
1130 void
1131 ale_mac_config(struct ale_softc *sc)
1132 {
1133 	struct mii_data *mii;
1134 	uint32_t reg;
1135 
1136 	mii = &sc->sc_miibus;
1137 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
1138 	reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
1139 	    MAC_CFG_SPEED_MASK);
1140 	/* Reprogram MAC with resolved speed/duplex. */
1141 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1142 	case IFM_10_T:
1143 	case IFM_100_TX:
1144 		reg |= MAC_CFG_SPEED_10_100;
1145 		break;
1146 	case IFM_1000_T:
1147 		reg |= MAC_CFG_SPEED_1000;
1148 		break;
1149 	}
1150 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1151 		reg |= MAC_CFG_FULL_DUPLEX;
1152 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1153 			reg |= MAC_CFG_TX_FC;
1154 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1155 			reg |= MAC_CFG_RX_FC;
1156 	}
1157 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1158 }
1159 
1160 void
1161 ale_stats_clear(struct ale_softc *sc)
1162 {
1163 	struct smb sb;
1164 	uint32_t *reg;
1165 	int i;
1166 
1167 	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
1168 		CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
1169 		i += sizeof(uint32_t);
1170 	}
1171 	/* Read Tx statistics. */
1172 	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
1173 		CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
1174 		i += sizeof(uint32_t);
1175 	}
1176 }
1177 
1178 void
1179 ale_stats_update(struct ale_softc *sc)
1180 {
1181 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1182 	struct ale_hw_stats *stat;
1183 	struct smb sb, *smb;
1184 	uint32_t *reg;
1185 	int i;
1186 
1187 	stat = &sc->ale_stats;
1188 	smb = &sb;
1189 
1190 	/* Read Rx statistics. */
1191 	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
1192 		*reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
1193 		i += sizeof(uint32_t);
1194 	}
1195 	/* Read Tx statistics. */
1196 	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
1197 		*reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
1198 		i += sizeof(uint32_t);
1199 	}
1200 
1201 	/* Rx stats. */
1202 	stat->rx_frames += smb->rx_frames;
1203 	stat->rx_bcast_frames += smb->rx_bcast_frames;
1204 	stat->rx_mcast_frames += smb->rx_mcast_frames;
1205 	stat->rx_pause_frames += smb->rx_pause_frames;
1206 	stat->rx_control_frames += smb->rx_control_frames;
1207 	stat->rx_crcerrs += smb->rx_crcerrs;
1208 	stat->rx_lenerrs += smb->rx_lenerrs;
1209 	stat->rx_bytes += smb->rx_bytes;
1210 	stat->rx_runts += smb->rx_runts;
1211 	stat->rx_fragments += smb->rx_fragments;
1212 	stat->rx_pkts_64 += smb->rx_pkts_64;
1213 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
1214 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
1215 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
1216 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
1217 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
1218 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
1219 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
1220 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
1221 	stat->rx_rrs_errs += smb->rx_rrs_errs;
1222 	stat->rx_alignerrs += smb->rx_alignerrs;
1223 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
1224 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
1225 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
1226 
1227 	/* Tx stats. */
1228 	stat->tx_frames += smb->tx_frames;
1229 	stat->tx_bcast_frames += smb->tx_bcast_frames;
1230 	stat->tx_mcast_frames += smb->tx_mcast_frames;
1231 	stat->tx_pause_frames += smb->tx_pause_frames;
1232 	stat->tx_excess_defer += smb->tx_excess_defer;
1233 	stat->tx_control_frames += smb->tx_control_frames;
1234 	stat->tx_deferred += smb->tx_deferred;
1235 	stat->tx_bytes += smb->tx_bytes;
1236 	stat->tx_pkts_64 += smb->tx_pkts_64;
1237 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
1238 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
1239 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
1240 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
1241 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
1242 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
1243 	stat->tx_single_colls += smb->tx_single_colls;
1244 	stat->tx_multi_colls += smb->tx_multi_colls;
1245 	stat->tx_late_colls += smb->tx_late_colls;
1246 	stat->tx_excess_colls += smb->tx_excess_colls;
1247 	stat->tx_abort += smb->tx_abort;
1248 	stat->tx_underrun += smb->tx_underrun;
1249 	stat->tx_desc_underrun += smb->tx_desc_underrun;
1250 	stat->tx_lenerrs += smb->tx_lenerrs;
1251 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
1252 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
1253 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
1254 
1255 	/* Update counters in ifnet. */
1256 	ifp->if_opackets += smb->tx_frames;
1257 
1258 	ifp->if_collisions += smb->tx_single_colls +
1259 	    smb->tx_multi_colls * 2 + smb->tx_late_colls +
1260 	    smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;
1261 
1262 	/*
1263 	 * XXX
1264 	 * tx_pkts_truncated counter looks suspicious. It constantly
1265 	 * increments with no sign of Tx errors. This may indicate
1266 	 * the counter name is not correct one so I've removed the
1267 	 * counter in output errors.
1268 	 */
1269 	ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
1270 	    smb->tx_underrun;
1271 
1272 	ifp->if_ipackets += smb->rx_frames;
1273 
1274 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
1275 	    smb->rx_runts + smb->rx_pkts_truncated +
1276 	    smb->rx_fifo_oflows + smb->rx_rrs_errs +
1277 	    smb->rx_alignerrs;
1278 }
1279 
1280 int
1281 ale_intr(void *xsc)
1282 {
1283 	struct ale_softc *sc = xsc;
1284 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1285 	uint32_t status;
1286 
1287 	status = CSR_READ_4(sc, ALE_INTR_STATUS);
1288 	if ((status & ALE_INTRS) == 0)
1289 		return (0);
1290 
1291 	/* Acknowledge and disable interrupts. */
1292 	CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT);
1293 
1294 	if (ifp->if_flags & IFF_RUNNING) {
1295 		int error;
1296 
1297 		error = ale_rxeof(sc);
1298 		if (error) {
1299 			sc->ale_stats.reset_brk_seq++;
1300 			ale_init(ifp);
1301 			return (0);
1302 		}
1303 
1304 		if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
1305 			if (status & INTR_DMA_RD_TO_RST)
1306 				printf("%s: DMA read error! -- resetting\n",
1307 				    sc->sc_dev.dv_xname);
1308 			if (status & INTR_DMA_WR_TO_RST)
1309 				printf("%s: DMA write error! -- resetting\n",
1310 				    sc->sc_dev.dv_xname);
1311 			ale_init(ifp);
1312 			return (0);
1313 		}
1314 
1315 		ale_txeof(sc);
1316 		ale_start(ifp);
1317 	}
1318 
1319 	/* Re-enable interrupts. */
1320 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF);
1321 	return (1);
1322 }
1323 
1324 void
1325 ale_txeof(struct ale_softc *sc)
1326 {
1327 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1328 	struct ale_txdesc *txd;
1329 	uint32_t cons, prod;
1330 	int prog;
1331 
1332 	if (sc->ale_cdata.ale_tx_cnt == 0)
1333 		return;
1334 
1335 	bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1336 	    sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1337 	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) {
1338 		bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0,
1339 		    sc->ale_cdata.ale_tx_cmb_map->dm_mapsize,
1340 		    BUS_DMASYNC_POSTREAD);
1341 		prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK;
1342 	} else
1343 		prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX);
1344 	cons = sc->ale_cdata.ale_tx_cons;
1345 	/*
1346 	 * Go through our Tx list and free mbufs for those
1347 	 * frames which have been transmitted.
1348 	 */
1349 	for (prog = 0; cons != prod; prog++,
1350 	     ALE_DESC_INC(cons, ALE_TX_RING_CNT)) {
1351 		if (sc->ale_cdata.ale_tx_cnt <= 0)
1352 			break;
1353 		prog++;
1354 		ifp->if_flags &= ~IFF_OACTIVE;
1355 		sc->ale_cdata.ale_tx_cnt--;
1356 		txd = &sc->ale_cdata.ale_txdesc[cons];
1357 		if (txd->tx_m != NULL) {
1358 			/* Reclaim transmitted mbufs. */
1359 			bus_dmamap_sync(sc->sc_dmat, txd->tx_dmamap, 0,
1360 			    txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1361 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1362 			m_freem(txd->tx_m);
1363 			txd->tx_m = NULL;
1364 		}
1365 	}
1366 
1367 	if (prog > 0) {
1368 		sc->ale_cdata.ale_tx_cons = cons;
1369 		/*
1370 		 * Unarm watchdog timer only when there is no pending
1371 		 * Tx descriptors in queue.
1372 		 */
1373 		if (sc->ale_cdata.ale_tx_cnt == 0)
1374 			ifp->if_timer = 0;
1375 	}
1376 }
1377 
1378 void
1379 ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page,
1380     uint32_t length, uint32_t *prod)
1381 {
1382 	struct ale_rx_page *rx_page;
1383 
1384 	rx_page = *page;
1385 	/* Update consumer position. */
1386 	rx_page->cons += roundup(length + sizeof(struct rx_rs),
1387 	    ALE_RX_PAGE_ALIGN);
1388 	if (rx_page->cons >= ALE_RX_PAGE_SZ) {
1389 		/*
1390 		 * End of Rx page reached, let hardware reuse
1391 		 * this page.
1392 		 */
1393 		rx_page->cons = 0;
1394 		*rx_page->cmb_addr = 0;
1395 		bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1396 		    rx_page->cmb_map->dm_mapsize,
1397 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1398 		CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp,
1399 		    RXF_VALID);
1400 		/* Switch to alternate Rx page. */
1401 		sc->ale_cdata.ale_rx_curp ^= 1;
1402 		rx_page = *page =
1403 		    &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
1404 		/* Page flipped, sync CMB and Rx page. */
1405 		bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1406 		    rx_page->page_map->dm_mapsize,
1407 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1408 		bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1409 		    rx_page->cmb_map->dm_mapsize,
1410 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1411 		/* Sync completed, cache updated producer index. */
1412 		*prod = *rx_page->cmb_addr;
1413 	}
1414 }
1415 
1416 
1417 /*
1418  * It seems that AR81xx controller can compute partial checksum.
1419  * The partial checksum value can be used to accelerate checksum
1420  * computation for fragmented TCP/UDP packets. Upper network stack
1421  * already takes advantage of the partial checksum value in IP
1422  * reassembly stage. But I'm not sure the correctness of the
1423  * partial hardware checksum assistance due to lack of data sheet.
1424  * In addition, the Rx feature of controller that requires copying
1425  * for every frames effectively nullifies one of most nice offload
1426  * capability of controller.
1427  */
1428 void
1429 ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status)
1430 {
1431 	struct ip *ip;
1432 	char *p;
1433 
1434 	if ((status & ALE_RD_IPCSUM_NOK) == 0)
1435 		m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
1436 
1437 	if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) {
1438 		if (((status & ALE_RD_IPV4_FRAG) == 0) &&
1439 		    ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) &&
1440 		    ((status & ALE_RD_TCP_UDPCSUM_NOK) == 0)) {
1441 			m->m_pkthdr.csum_flags |=
1442 			    M_TCP_CSUM_IN_OK | M_UDP_CSUM_IN_OK;
1443 		}
1444 	} else {
1445 		if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0 &&
1446 		    (status & ALE_RD_TCP_UDPCSUM_NOK) == 0) {
1447 			p = mtod(m, char *);
1448 			p += ETHER_HDR_LEN;
1449 			if ((status & ALE_RD_802_3) != 0)
1450 				p += LLC_SNAPFRAMELEN;
1451 #if NVLAN > 0
1452 			if (status & ALE_RD_VLAN)
1453 				p += EVL_ENCAPLEN;
1454 #endif
1455 			ip = (struct ip *)p;
1456 			if (ip->ip_off != 0 && (status & ALE_RD_IPV4_DF) == 0)
1457 				return;
1458 			m->m_pkthdr.csum_flags |=
1459 			    M_TCP_CSUM_IN_OK | M_UDP_CSUM_IN_OK;
1460 		}
1461 	}
1462 	/*
1463 	 * Don't mark bad checksum for TCP/UDP frames
1464 	 * as fragmented frames may always have set
1465 	 * bad checksummed bit of frame status.
1466 	 */
1467 }
1468 
1469 /* Process received frames. */
1470 int
1471 ale_rxeof(struct ale_softc *sc)
1472 {
1473 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1474 	struct ale_rx_page *rx_page;
1475 	struct rx_rs *rs;
1476 	struct mbuf *m;
1477 	uint32_t length, prod, seqno, status;
1478 	int prog;
1479 
1480 	rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
1481 	bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1482 	    rx_page->cmb_map->dm_mapsize,
1483 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1484 	bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1485 	    rx_page->page_map->dm_mapsize,
1486 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1487 	/*
1488 	 * Don't directly access producer index as hardware may
1489 	 * update it while Rx handler is in progress. It would
1490 	 * be even better if there is a way to let hardware
1491 	 * know how far driver processed its received frames.
1492 	 * Alternatively, hardware could provide a way to disable
1493 	 * CMB updates until driver acknowledges the end of CMB
1494 	 * access.
1495 	 */
1496 	prod = *rx_page->cmb_addr;
1497 	for (prog = 0; ; prog++) {
1498 		if (rx_page->cons >= prod)
1499 			break;
1500 		rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons);
1501 		seqno = ALE_RX_SEQNO(letoh32(rs->seqno));
1502 		if (sc->ale_cdata.ale_rx_seqno != seqno) {
1503 			/*
1504 			 * Normally I believe this should not happen unless
1505 			 * severe driver bug or corrupted memory. However
1506 			 * it seems to happen under certain conditions which
1507 			 * is triggered by abrupt Rx events such as initiation
1508 			 * of bulk transfer of remote host. It's not easy to
1509 			 * reproduce this and I doubt it could be related
1510 			 * with FIFO overflow of hardware or activity of Tx
1511 			 * CMB updates. I also remember similar behaviour
1512 			 * seen on RealTek 8139 which uses resembling Rx
1513 			 * scheme.
1514 			 */
1515 			if (aledebug)
1516 				printf("%s: garbled seq: %u, expected: %u -- "
1517 				    "resetting!\n", sc->sc_dev.dv_xname,
1518 				    seqno, sc->ale_cdata.ale_rx_seqno);
1519 			return (EIO);
1520 		}
1521 		/* Frame received. */
1522 		sc->ale_cdata.ale_rx_seqno++;
1523 		length = ALE_RX_BYTES(letoh32(rs->length));
1524 		status = letoh32(rs->flags);
1525 		if (status & ALE_RD_ERROR) {
1526 			/*
1527 			 * We want to pass the following frames to upper
1528 			 * layer regardless of error status of Rx return
1529 			 * status.
1530 			 *
1531 			 *  o IP/TCP/UDP checksum is bad.
1532 			 *  o frame length and protocol specific length
1533 			 *     does not match.
1534 			 */
1535 			if (status & (ALE_RD_CRC | ALE_RD_CODE |
1536 			    ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW |
1537 			    ALE_RD_TRUNC)) {
1538 				ale_rx_update_page(sc, &rx_page, length, &prod);
1539 				continue;
1540 			}
1541 		}
1542 		/*
1543 		 * m_devget(9) is major bottle-neck of ale(4)(It comes
1544 		 * from hardware limitation). For jumbo frames we could
1545 		 * get a slightly better performance if driver use
1546 		 * m_getjcl(9) with proper buffer size argument. However
1547 		 * that would make code more complicated and I don't
1548 		 * think users would expect good Rx performance numbers
1549 		 * on these low-end consumer ethernet controller.
1550 		 */
1551 		m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN,
1552 		    ETHER_ALIGN, ifp, NULL);
1553 		if (m == NULL) {
1554 			ifp->if_iqdrops++;
1555 			ale_rx_update_page(sc, &rx_page, length, &prod);
1556 			continue;
1557 		}
1558 		if (status & ALE_RD_IPV4)
1559 			ale_rxcsum(sc, m, status);
1560 #if NVLAN > 0
1561 		if (status & ALE_RD_VLAN) {
1562 			uint32_t vtags = ALE_RX_VLAN(letoh32(rs->vtags));
1563 			m->m_pkthdr.ether_vtag = ALE_RX_VLAN_TAG(vtags);
1564 			m->m_flags |= M_VLANTAG;
1565 		}
1566 #endif
1567 
1568 
1569 #if NBPFILTER > 0
1570 		if (ifp->if_bpf)
1571 			bpf_mtap_ether(ifp->if_bpf, m, BPF_DIRECTION_IN);
1572 #endif
1573 
1574 		/* Pass it to upper layer. */
1575 		ether_input_mbuf(ifp, m);
1576 
1577 		ale_rx_update_page(sc, &rx_page, length, &prod);
1578 	}
1579 
1580 	return 0;
1581 }
1582 
1583 void
1584 ale_tick(void *xsc)
1585 {
1586 	struct ale_softc *sc = xsc;
1587 	struct mii_data *mii = &sc->sc_miibus;
1588 	int s;
1589 
1590 	s = splnet();
1591 	mii_tick(mii);
1592 	ale_stats_update(sc);
1593 
1594 	timeout_add_sec(&sc->ale_tick_ch, 1);
1595 	splx(s);
1596 }
1597 
1598 void
1599 ale_reset(struct ale_softc *sc)
1600 {
1601 	uint32_t reg;
1602 	int i;
1603 
1604 	/* Initialize PCIe module. From Linux. */
1605 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1606 
1607 	CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET);
1608 	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
1609 		DELAY(10);
1610 		if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0)
1611 			break;
1612 	}
1613 	if (i == 0)
1614 		printf("%s: master reset timeout!\n", sc->sc_dev.dv_xname);
1615 
1616 	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
1617 		if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0)
1618 			break;
1619 		DELAY(10);
1620 	}
1621 
1622 	if (i == 0)
1623 		printf("%s: reset timeout(0x%08x)!\n", sc->sc_dev.dv_xname,
1624 		    reg);
1625 }
1626 
1627 int
1628 ale_init(struct ifnet *ifp)
1629 {
1630 	struct ale_softc *sc = ifp->if_softc;
1631 	struct mii_data *mii;
1632 	uint8_t eaddr[ETHER_ADDR_LEN];
1633 	bus_addr_t paddr;
1634 	uint32_t reg, rxf_hi, rxf_lo;
1635 
1636 	/*
1637 	 * Cancel any pending I/O.
1638 	 */
1639 	ale_stop(sc);
1640 
1641 	/*
1642 	 * Reset the chip to a known state.
1643 	 */
1644 	ale_reset(sc);
1645 
1646 	/* Initialize Tx descriptors, DMA memory blocks. */
1647 	ale_init_rx_pages(sc);
1648 	ale_init_tx_ring(sc);
1649 
1650 	/* Reprogram the station address. */
1651 	bcopy(LLADDR(ifp->if_sadl), eaddr, ETHER_ADDR_LEN);
1652 	CSR_WRITE_4(sc, ALE_PAR0,
1653 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1654 	CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]);
1655 
1656 	/*
1657 	 * Clear WOL status and disable all WOL feature as WOL
1658 	 * would interfere Rx operation under normal environments.
1659 	 */
1660 	CSR_READ_4(sc, ALE_WOL_CFG);
1661 	CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
1662 
1663 	/*
1664 	 * Set Tx descriptor/RXF0/CMB base addresses. They share
1665 	 * the same high address part of DMAable region.
1666 	 */
1667 	paddr = sc->ale_cdata.ale_tx_ring_paddr;
1668 	CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr));
1669 	CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr));
1670 	CSR_WRITE_4(sc, ALE_TPD_CNT,
1671 	    (ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK);
1672 
1673 	/* Set Rx page base address, note we use single queue. */
1674 	paddr = sc->ale_cdata.ale_rx_page[0].page_paddr;
1675 	CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr));
1676 	paddr = sc->ale_cdata.ale_rx_page[1].page_paddr;
1677 	CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr));
1678 
1679 	/* Set Tx/Rx CMB addresses. */
1680 	paddr = sc->ale_cdata.ale_tx_cmb_paddr;
1681 	CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr));
1682 	paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr;
1683 	CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr));
1684 	paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr;
1685 	CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr));
1686 
1687 	/* Mark RXF0 is valid. */
1688 	CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID);
1689 	CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID);
1690 	/*
1691 	 * No need to initialize RFX1/RXF2/RXF3. We don't use
1692 	 * multi-queue yet.
1693 	 */
1694 
1695 	/* Set Rx page size, excluding guard frame size. */
1696 	CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ);
1697 
1698 	/* Tell hardware that we're ready to load DMA blocks. */
1699 	CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD);
1700 
1701 	/* Set Rx/Tx interrupt trigger threshold. */
1702 	CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) |
1703 	    (4 << INT_TRIG_TX_THRESH_SHIFT));
1704 	/*
1705 	 * XXX
1706 	 * Set interrupt trigger timer, its purpose and relation
1707 	 * with interrupt moderation mechanism is not clear yet.
1708 	 */
1709 	CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER,
1710 	    ((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) |
1711 	    (ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT)));
1712 
1713 	/* Configure interrupt moderation timer. */
1714 	sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
1715 	sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
1716 	reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT;
1717 	reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT;
1718 	CSR_WRITE_4(sc, ALE_IM_TIMER, reg);
1719 	reg = CSR_READ_4(sc, ALE_MASTER_CFG);
1720 	reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK);
1721 	reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
1722 	if (ALE_USECS(sc->ale_int_rx_mod) != 0)
1723 		reg |= MASTER_IM_RX_TIMER_ENB;
1724 	if (ALE_USECS(sc->ale_int_tx_mod) != 0)
1725 		reg |= MASTER_IM_TX_TIMER_ENB;
1726 	CSR_WRITE_4(sc, ALE_MASTER_CFG, reg);
1727 	CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000));
1728 
1729 	/* Set Maximum frame size of controller. */
1730 	if (ifp->if_mtu < ETHERMTU)
1731 		sc->ale_max_frame_size = ETHERMTU;
1732 	else
1733 		sc->ale_max_frame_size = ifp->if_mtu;
1734 	sc->ale_max_frame_size += ETHER_HDR_LEN + EVL_ENCAPLEN + ETHER_CRC_LEN;
1735 	CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size);
1736 
1737 	/* Configure IPG/IFG parameters. */
1738 	CSR_WRITE_4(sc, ALE_IPG_IFG_CFG,
1739 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
1740 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1741 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1742 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
1743 
1744 	/* Set parameters for half-duplex media. */
1745 	CSR_WRITE_4(sc, ALE_HDPX_CFG,
1746 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1747 	    HDPX_CFG_LCOL_MASK) |
1748 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1749 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1750 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1751 	    HDPX_CFG_ABEBT_MASK) |
1752 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1753 	    HDPX_CFG_JAMIPG_MASK));
1754 
1755 	/* Configure Tx jumbo frame parameters. */
1756 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
1757 		if (ifp->if_mtu < ETHERMTU)
1758 			reg = sc->ale_max_frame_size;
1759 		else if (ifp->if_mtu < 6 * 1024)
1760 			reg = (sc->ale_max_frame_size * 2) / 3;
1761 		else
1762 			reg = sc->ale_max_frame_size / 2;
1763 		CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH,
1764 		    roundup(reg, TX_JUMBO_THRESH_UNIT) >>
1765 		    TX_JUMBO_THRESH_UNIT_SHIFT);
1766 	}
1767 
1768 	/* Configure TxQ. */
1769 	reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT))
1770 	    << TXQ_CFG_TX_FIFO_BURST_SHIFT;
1771 	reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1772 	    TXQ_CFG_TPD_BURST_MASK;
1773 	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB);
1774 
1775 	/* Configure Rx jumbo frame & flow control parameters. */
1776 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
1777 		reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT);
1778 		CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH,
1779 		    (((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) <<
1780 		    RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) |
1781 		    ((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) &
1782 		    RX_JUMBO_LKAH_MASK));
1783 		reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
1784 		rxf_hi = (reg * 7) / 10;
1785 		rxf_lo = (reg * 3)/ 10;
1786 		CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH,
1787 		    ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
1788 		    RX_FIFO_PAUSE_THRESH_LO_MASK) |
1789 		    ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
1790 		     RX_FIFO_PAUSE_THRESH_HI_MASK));
1791 	}
1792 
1793 	/* Disable RSS. */
1794 	CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0);
1795 	CSR_WRITE_4(sc, ALE_RSS_CPU, 0);
1796 
1797 	/* Configure RxQ. */
1798 	CSR_WRITE_4(sc, ALE_RXQ_CFG,
1799 	    RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1800 
1801 	/* Configure DMA parameters. */
1802 	reg = 0;
1803 	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0)
1804 		reg |= DMA_CFG_TXCMB_ENB;
1805 	CSR_WRITE_4(sc, ALE_DMA_CFG,
1806 	    DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 |
1807 	    sc->ale_dma_rd_burst | reg |
1808 	    sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB |
1809 	    ((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
1810 	    DMA_CFG_RD_DELAY_CNT_MASK) |
1811 	    ((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
1812 	    DMA_CFG_WR_DELAY_CNT_MASK));
1813 
1814 	/*
1815 	 * Hardware can be configured to issue SMB interrupt based
1816 	 * on programmed interval. Since there is a callout that is
1817 	 * invoked for every hz in driver we use that instead of
1818 	 * relying on periodic SMB interrupt.
1819 	 */
1820 	CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0));
1821 
1822 	/* Clear MAC statistics. */
1823 	ale_stats_clear(sc);
1824 
1825 	/*
1826 	 * Configure Tx/Rx MACs.
1827 	 *  - Auto-padding for short frames.
1828 	 *  - Enable CRC generation.
1829 	 *  Actual reconfiguration of MAC for resolved speed/duplex
1830 	 *  is followed after detection of link establishment.
1831 	 *  AR81xx always does checksum computation regardless of
1832 	 *  MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will
1833 	 *  cause Rx handling issue for fragmented IP datagrams due
1834 	 *  to silicon bug.
1835 	 */
1836 	reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
1837 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1838 	    MAC_CFG_PREAMBLE_MASK);
1839 	if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0)
1840 		reg |= MAC_CFG_SPEED_10_100;
1841 	else
1842 		reg |= MAC_CFG_SPEED_1000;
1843 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1844 
1845 	/* Set up the receive filter. */
1846 	ale_iff(sc);
1847 
1848 	ale_rxvlan(sc);
1849 
1850 	/* Acknowledge all pending interrupts and clear it. */
1851 	CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS);
1852 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1853 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0);
1854 
1855 	sc->ale_flags &= ~ALE_FLAG_LINK;
1856 
1857 	/* Switch to the current media. */
1858 	mii = &sc->sc_miibus;
1859 	mii_mediachg(mii);
1860 
1861 	timeout_add_sec(&sc->ale_tick_ch, 1);
1862 
1863 	ifp->if_flags |= IFF_RUNNING;
1864 	ifp->if_flags &= ~IFF_OACTIVE;
1865 
1866 	return 0;
1867 }
1868 
1869 void
1870 ale_stop(struct ale_softc *sc)
1871 {
1872 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1873 	struct ale_txdesc *txd;
1874 	uint32_t reg;
1875 	int i;
1876 
1877 	/*
1878 	 * Mark the interface down and cancel the watchdog timer.
1879 	 */
1880 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1881 	ifp->if_timer = 0;
1882 
1883 	timeout_del(&sc->ale_tick_ch);
1884 	sc->ale_flags &= ~ALE_FLAG_LINK;
1885 
1886 	ale_stats_update(sc);
1887 
1888 	/* Disable interrupts. */
1889 	CSR_WRITE_4(sc, ALE_INTR_MASK, 0);
1890 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1891 
1892 	/* Disable queue processing and DMA. */
1893 	reg = CSR_READ_4(sc, ALE_TXQ_CFG);
1894 	reg &= ~TXQ_CFG_ENB;
1895 	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg);
1896 	reg = CSR_READ_4(sc, ALE_RXQ_CFG);
1897 	reg &= ~RXQ_CFG_ENB;
1898 	CSR_WRITE_4(sc, ALE_RXQ_CFG, reg);
1899 	reg = CSR_READ_4(sc, ALE_DMA_CFG);
1900 	reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB);
1901 	CSR_WRITE_4(sc, ALE_DMA_CFG, reg);
1902 	DELAY(1000);
1903 
1904 	/* Stop Rx/Tx MACs. */
1905 	ale_stop_mac(sc);
1906 
1907 	/* Disable interrupts again? XXX */
1908 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1909 
1910 	/*
1911 	 * Free TX mbufs still in the queues.
1912 	 */
1913 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
1914 		txd = &sc->ale_cdata.ale_txdesc[i];
1915 		if (txd->tx_m != NULL) {
1916 			bus_dmamap_sync(sc->sc_dmat, txd->tx_dmamap, 0,
1917 			    txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1918 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1919 			m_freem(txd->tx_m);
1920 			txd->tx_m = NULL;
1921 		}
1922         }
1923 }
1924 
1925 void
1926 ale_stop_mac(struct ale_softc *sc)
1927 {
1928 	uint32_t reg;
1929 	int i;
1930 
1931 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
1932 	if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
1933 		reg &= ~MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
1934 		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1935 	}
1936 
1937 	for (i = ALE_TIMEOUT; i > 0; i--) {
1938 		reg = CSR_READ_4(sc, ALE_IDLE_STATUS);
1939 		if (reg == 0)
1940 			break;
1941 		DELAY(10);
1942 	}
1943 	if (i == 0)
1944 		printf("%s: could not disable Tx/Rx MAC(0x%08x)!\n",
1945 		    sc->sc_dev.dv_xname, reg);
1946 }
1947 
1948 void
1949 ale_init_tx_ring(struct ale_softc *sc)
1950 {
1951 	struct ale_txdesc *txd;
1952 	int i;
1953 
1954 	sc->ale_cdata.ale_tx_prod = 0;
1955 	sc->ale_cdata.ale_tx_cons = 0;
1956 	sc->ale_cdata.ale_tx_cnt = 0;
1957 
1958 	bzero(sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ);
1959 	bzero(sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ);
1960 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
1961 		txd = &sc->ale_cdata.ale_txdesc[i];
1962 		txd->tx_m = NULL;
1963 	}
1964 	*sc->ale_cdata.ale_tx_cmb = 0;
1965 	bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0,
1966 	    sc->ale_cdata.ale_tx_cmb_map->dm_mapsize,
1967 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1968 	bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1969 	    sc->ale_cdata.ale_tx_ring_map->dm_mapsize,
1970 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1971 }
1972 
1973 void
1974 ale_init_rx_pages(struct ale_softc *sc)
1975 {
1976 	struct ale_rx_page *rx_page;
1977 	int i;
1978 
1979 	sc->ale_cdata.ale_rx_seqno = 0;
1980 	sc->ale_cdata.ale_rx_curp = 0;
1981 
1982 	for (i = 0; i < ALE_RX_PAGES; i++) {
1983 		rx_page = &sc->ale_cdata.ale_rx_page[i];
1984 		bzero(rx_page->page_addr, sc->ale_pagesize);
1985 		bzero(rx_page->cmb_addr, ALE_RX_CMB_SZ);
1986 		rx_page->cons = 0;
1987 		*rx_page->cmb_addr = 0;
1988 		bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1989 		    rx_page->page_map->dm_mapsize,
1990 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1991 		bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1992 		    rx_page->cmb_map->dm_mapsize,
1993 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1994 	}
1995 }
1996 
1997 void
1998 ale_rxvlan(struct ale_softc *sc)
1999 {
2000 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
2001 	uint32_t reg;
2002 
2003 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
2004 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2005 	if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)
2006 		reg |= MAC_CFG_VLAN_TAG_STRIP;
2007 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2008 }
2009 
2010 void
2011 ale_iff(struct ale_softc *sc)
2012 {
2013 	struct arpcom *ac = &sc->sc_arpcom;
2014 	struct ifnet *ifp = &ac->ac_if;
2015 	struct ether_multi *enm;
2016 	struct ether_multistep step;
2017 	uint32_t crc;
2018 	uint32_t mchash[2];
2019 	uint32_t rxcfg;
2020 
2021 	rxcfg = CSR_READ_4(sc, ALE_MAC_CFG);
2022 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2023 	ifp->if_flags &= ~IFF_ALLMULTI;
2024 
2025 	/*
2026 	 * Always accept broadcast frames.
2027 	 */
2028 	rxcfg |= MAC_CFG_BCAST;
2029 
2030 	if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
2031 		ifp->if_flags |= IFF_ALLMULTI;
2032 		if (ifp->if_flags & IFF_PROMISC)
2033 			rxcfg |= MAC_CFG_PROMISC;
2034 		else
2035 			rxcfg |= MAC_CFG_ALLMULTI;
2036 		mchash[0] = mchash[1] = 0xFFFFFFFF;
2037 	} else {
2038 		/* Program new filter. */
2039 		bzero(mchash, sizeof(mchash));
2040 
2041 		ETHER_FIRST_MULTI(step, ac, enm);
2042 		while (enm != NULL) {
2043 			crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2044 
2045 			mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2046 
2047 			ETHER_NEXT_MULTI(step, enm);
2048 		}
2049 	}
2050 
2051 	CSR_WRITE_4(sc, ALE_MAR0, mchash[0]);
2052 	CSR_WRITE_4(sc, ALE_MAR1, mchash[1]);
2053 	CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
2054 }
2055