xref: /openbsd/sys/dev/pci/if_ale.c (revision 91f110e0)
1 /*	$OpenBSD: if_ale.c,v 1.30 2013/12/28 03:34:54 deraadt Exp $	*/
2 /*-
3  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD: src/sys/dev/ale/if_ale.c,v 1.3 2008/12/03 09:01:12 yongari Exp $
29  */
30 
31 /* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */
32 
33 #include "bpfilter.h"
34 #include "vlan.h"
35 
36 #include <sys/param.h>
37 #include <sys/endian.h>
38 #include <sys/systm.h>
39 #include <sys/types.h>
40 #include <sys/sockio.h>
41 #include <sys/mbuf.h>
42 #include <sys/queue.h>
43 #include <sys/kernel.h>
44 #include <sys/device.h>
45 #include <sys/timeout.h>
46 #include <sys/socket.h>
47 
48 #include <machine/bus.h>
49 
50 #include <net/if.h>
51 #include <net/if_dl.h>
52 #include <net/if_llc.h>
53 #include <net/if_media.h>
54 
55 #ifdef INET
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/ip.h>
59 #include <netinet/if_ether.h>
60 #endif
61 
62 #include <net/if_types.h>
63 #include <net/if_vlan_var.h>
64 
65 #if NBPFILTER > 0
66 #include <net/bpf.h>
67 #endif
68 
69 #include <dev/rndvar.h>
70 
71 #include <dev/mii/mii.h>
72 #include <dev/mii/miivar.h>
73 
74 #include <dev/pci/pcireg.h>
75 #include <dev/pci/pcivar.h>
76 #include <dev/pci/pcidevs.h>
77 
78 #include <dev/pci/if_alereg.h>
79 
80 int	ale_match(struct device *, void *, void *);
81 void	ale_attach(struct device *, struct device *, void *);
82 int	ale_detach(struct device *, int);
83 int	ale_activate(struct device *, int);
84 
85 int	ale_miibus_readreg(struct device *, int, int);
86 void	ale_miibus_writereg(struct device *, int, int, int);
87 void	ale_miibus_statchg(struct device *);
88 
89 int	ale_init(struct ifnet *);
90 void	ale_start(struct ifnet *);
91 int	ale_ioctl(struct ifnet *, u_long, caddr_t);
92 void	ale_watchdog(struct ifnet *);
93 int	ale_mediachange(struct ifnet *);
94 void	ale_mediastatus(struct ifnet *, struct ifmediareq *);
95 
96 int	ale_intr(void *);
97 int	ale_rxeof(struct ale_softc *sc);
98 void	ale_rx_update_page(struct ale_softc *, struct ale_rx_page **,
99 	    uint32_t, uint32_t *);
100 void	ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t);
101 void	ale_txeof(struct ale_softc *);
102 
103 int	ale_dma_alloc(struct ale_softc *);
104 void	ale_dma_free(struct ale_softc *);
105 int	ale_encap(struct ale_softc *, struct mbuf **);
106 void	ale_init_rx_pages(struct ale_softc *);
107 void	ale_init_tx_ring(struct ale_softc *);
108 
109 void	ale_stop(struct ale_softc *);
110 void	ale_tick(void *);
111 void	ale_get_macaddr(struct ale_softc *);
112 void	ale_mac_config(struct ale_softc *);
113 void	ale_phy_reset(struct ale_softc *);
114 void	ale_reset(struct ale_softc *);
115 void	ale_iff(struct ale_softc *);
116 void	ale_rxvlan(struct ale_softc *);
117 void	ale_stats_clear(struct ale_softc *);
118 void	ale_stats_update(struct ale_softc *);
119 void	ale_stop_mac(struct ale_softc *);
120 
121 const struct pci_matchid ale_devices[] = {
122 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_L1E }
123 };
124 
125 struct cfattach ale_ca = {
126 	sizeof (struct ale_softc), ale_match, ale_attach, NULL,
127 	ale_activate
128 };
129 
130 struct cfdriver ale_cd = {
131 	NULL, "ale", DV_IFNET
132 };
133 
134 int aledebug = 0;
135 #define DPRINTF(x)	do { if (aledebug) printf x; } while (0)
136 
137 #define ALE_CSUM_FEATURES	(M_TCP_CSUM_OUT | M_UDP_CSUM_OUT)
138 
139 int
140 ale_miibus_readreg(struct device *dev, int phy, int reg)
141 {
142 	struct ale_softc *sc = (struct ale_softc *)dev;
143 	uint32_t v;
144 	int i;
145 
146 	if (phy != sc->ale_phyaddr)
147 		return (0);
148 
149 	if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0 &&
150 	    reg == MII_EXTSR)
151 		return (0);
152 
153 	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
154 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
155 	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
156 		DELAY(5);
157 		v = CSR_READ_4(sc, ALE_MDIO);
158 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
159 			break;
160 	}
161 
162 	if (i == 0) {
163 		printf("%s: phy read timeout: phy %d, reg %d\n",
164 		    sc->sc_dev.dv_xname, phy, reg);
165 		return (0);
166 	}
167 
168 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
169 }
170 
171 void
172 ale_miibus_writereg(struct device *dev, int phy, int reg, int val)
173 {
174 	struct ale_softc *sc = (struct ale_softc *)dev;
175 	uint32_t v;
176 	int i;
177 
178 	if (phy != sc->ale_phyaddr)
179 		return;
180 
181 	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
182 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
183 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
184 	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
185 		DELAY(5);
186 		v = CSR_READ_4(sc, ALE_MDIO);
187 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
188 			break;
189 	}
190 
191 	if (i == 0)
192 		printf("%s: phy write timeout: phy %d, reg %d\n",
193 		    sc->sc_dev.dv_xname, phy, reg);
194 }
195 
196 void
197 ale_miibus_statchg(struct device *dev)
198 {
199 	struct ale_softc *sc = (struct ale_softc *)dev;
200 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
201 	struct mii_data *mii = &sc->sc_miibus;
202 	uint32_t reg;
203 
204 	if ((ifp->if_flags & IFF_RUNNING) == 0)
205 		return;
206 
207 	sc->ale_flags &= ~ALE_FLAG_LINK;
208 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
209 	    (IFM_ACTIVE | IFM_AVALID)) {
210 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
211 		case IFM_10_T:
212 		case IFM_100_TX:
213 			sc->ale_flags |= ALE_FLAG_LINK;
214 			break;
215 
216 		case IFM_1000_T:
217 			if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
218 				sc->ale_flags |= ALE_FLAG_LINK;
219 			break;
220 
221 		default:
222 			break;
223 		}
224 	}
225 
226 	/* Stop Rx/Tx MACs. */
227 	ale_stop_mac(sc);
228 
229 	/* Program MACs with resolved speed/duplex/flow-control. */
230 	if ((sc->ale_flags & ALE_FLAG_LINK) != 0) {
231 		ale_mac_config(sc);
232 		/* Reenable Tx/Rx MACs. */
233 		reg = CSR_READ_4(sc, ALE_MAC_CFG);
234 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
235 		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
236 	}
237 }
238 
239 void
240 ale_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
241 {
242 	struct ale_softc *sc = ifp->if_softc;
243 	struct mii_data *mii = &sc->sc_miibus;
244 
245 	if ((ifp->if_flags & IFF_UP) == 0)
246 		return;
247 
248 	mii_pollstat(mii);
249 	ifmr->ifm_status = mii->mii_media_status;
250 	ifmr->ifm_active = mii->mii_media_active;
251 }
252 
253 int
254 ale_mediachange(struct ifnet *ifp)
255 {
256 	struct ale_softc *sc = ifp->if_softc;
257 	struct mii_data *mii = &sc->sc_miibus;
258 	int error;
259 
260 	if (mii->mii_instance != 0) {
261 		struct mii_softc *miisc;
262 
263 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
264 			mii_phy_reset(miisc);
265 	}
266 	error = mii_mediachg(mii);
267 
268 	return (error);
269 }
270 
271 int
272 ale_match(struct device *dev, void *match, void *aux)
273 {
274 	return pci_matchbyid((struct pci_attach_args *)aux, ale_devices,
275 	    sizeof (ale_devices) / sizeof (ale_devices[0]));
276 }
277 
278 void
279 ale_get_macaddr(struct ale_softc *sc)
280 {
281 	uint32_t ea[2], reg;
282 	int i, vpdc;
283 
284 	reg = CSR_READ_4(sc, ALE_SPI_CTRL);
285 	if ((reg & SPI_VPD_ENB) != 0) {
286 		reg &= ~SPI_VPD_ENB;
287 		CSR_WRITE_4(sc, ALE_SPI_CTRL, reg);
288 	}
289 
290 	if (pci_get_capability(sc->sc_pct, sc->sc_pcitag, PCI_CAP_VPD,
291 	    &vpdc, NULL)) {
292 		/*
293 		 * PCI VPD capability found, let TWSI reload EEPROM.
294 		 * This will set ethernet address of controller.
295 		 */
296 		CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) |
297 		    TWSI_CTRL_SW_LD_START);
298 		for (i = 100; i > 0; i--) {
299 			DELAY(1000);
300 			reg = CSR_READ_4(sc, ALE_TWSI_CTRL);
301 			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
302 				break;
303 		}
304 		if (i == 0)
305 			printf("%s: reloading EEPROM timeout!\n",
306 			    sc->sc_dev.dv_xname);
307 	} else {
308 		if (aledebug)
309 			printf("%s: PCI VPD capability not found!\n",
310 			    sc->sc_dev.dv_xname);
311 	}
312 
313 	ea[0] = CSR_READ_4(sc, ALE_PAR0);
314 	ea[1] = CSR_READ_4(sc, ALE_PAR1);
315 	sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF;
316 	sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF;
317 	sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF;
318 	sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF;
319 	sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF;
320 	sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF;
321 }
322 
323 void
324 ale_phy_reset(struct ale_softc *sc)
325 {
326 	/* Reset magic from Linux. */
327 	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
328 	    GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
329 	    GPHY_CTRL_PHY_PLL_ON);
330 	DELAY(1000);
331 	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
332 	    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE |
333 	    GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON);
334 	DELAY(1000);
335 
336 #define	ATPHY_DBG_ADDR		0x1D
337 #define	ATPHY_DBG_DATA		0x1E
338 
339 	/* Enable hibernation mode. */
340 	ale_miibus_writereg(&sc->sc_dev, sc->ale_phyaddr,
341 	    ATPHY_DBG_ADDR, 0x0B);
342 	ale_miibus_writereg(&sc->sc_dev, sc->ale_phyaddr,
343 	    ATPHY_DBG_DATA, 0xBC00);
344 	/* Set Class A/B for all modes. */
345 	ale_miibus_writereg(&sc->sc_dev, sc->ale_phyaddr,
346 	    ATPHY_DBG_ADDR, 0x00);
347 	ale_miibus_writereg(&sc->sc_dev, sc->ale_phyaddr,
348 	    ATPHY_DBG_DATA, 0x02EF);
349 	/* Enable 10BT power saving. */
350 	ale_miibus_writereg(&sc->sc_dev, sc->ale_phyaddr,
351 	    ATPHY_DBG_ADDR, 0x12);
352 	ale_miibus_writereg(&sc->sc_dev, sc->ale_phyaddr,
353 	    ATPHY_DBG_DATA, 0x4C04);
354 	/* Adjust 1000T power. */
355 	ale_miibus_writereg(&sc->sc_dev, sc->ale_phyaddr,
356 	    ATPHY_DBG_ADDR, 0x04);
357 	ale_miibus_writereg(&sc->sc_dev, sc->ale_phyaddr,
358 	    ATPHY_DBG_ADDR, 0x8BBB);
359 	/* 10BT center tap voltage. */
360 	ale_miibus_writereg(&sc->sc_dev, sc->ale_phyaddr,
361 	    ATPHY_DBG_ADDR, 0x05);
362 	ale_miibus_writereg(&sc->sc_dev, sc->ale_phyaddr,
363 	    ATPHY_DBG_ADDR, 0x2C46);
364 
365 #undef	ATPHY_DBG_ADDR
366 #undef	ATPHY_DBG_DATA
367 	DELAY(1000);
368 }
369 
370 void
371 ale_attach(struct device *parent, struct device *self, void *aux)
372 {
373 	struct ale_softc *sc = (struct ale_softc *)self;
374 	struct pci_attach_args *pa = aux;
375 	pci_chipset_tag_t pc = pa->pa_pc;
376 	pci_intr_handle_t ih;
377 	const char *intrstr;
378 	struct ifnet *ifp;
379 	pcireg_t memtype;
380 	int mii_flags, error = 0;
381 	uint32_t rxf_len, txf_len;
382 	const char *chipname;
383 
384 	/*
385 	 * Allocate IO memory
386 	 */
387 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, ALE_PCIR_BAR);
388 	if (pci_mapreg_map(pa, ALE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
389 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size, 0)) {
390 		printf(": can't map mem space\n");
391 		return;
392 	}
393 
394 	if (pci_intr_map_msi(pa, &ih) != 0 && pci_intr_map(pa, &ih) != 0) {
395 		printf(": can't map interrupt\n");
396 		goto fail;
397 	}
398 
399 	/*
400 	 * Allocate IRQ
401 	 */
402 	intrstr = pci_intr_string(pc, ih);
403 	sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, ale_intr, sc,
404 	    sc->sc_dev.dv_xname);
405 	if (sc->sc_irq_handle == NULL) {
406 		printf(": could not establish interrupt");
407 		if (intrstr != NULL)
408 			printf(" at %s", intrstr);
409 		printf("\n");
410 		goto fail;
411 	}
412 
413 	sc->sc_dmat = pa->pa_dmat;
414 	sc->sc_pct = pa->pa_pc;
415 	sc->sc_pcitag = pa->pa_tag;
416 
417 	/* Set PHY address. */
418 	sc->ale_phyaddr = ALE_PHY_ADDR;
419 
420 	/* Reset PHY. */
421 	ale_phy_reset(sc);
422 
423 	/* Reset the ethernet controller. */
424 	ale_reset(sc);
425 
426 	/* Get PCI and chip id/revision. */
427 	sc->ale_rev = PCI_REVISION(pa->pa_class);
428 	if (sc->ale_rev >= 0xF0) {
429 		/* L2E Rev. B. AR8114 */
430 		sc->ale_flags |= ALE_FLAG_FASTETHER;
431 		chipname = "AR8114";
432 	} else {
433 		if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) {
434 			/* L1E AR8121 */
435 			sc->ale_flags |= ALE_FLAG_JUMBO;
436 			chipname = "AR8121";
437 		} else {
438 			/* L2E Rev. A. AR8113 */
439 			sc->ale_flags |= ALE_FLAG_FASTETHER;
440 			chipname = "AR8113";
441 		}
442 	}
443 
444 	printf(": %s, %s", chipname, intrstr);
445 
446 	/*
447 	 * All known controllers seems to require 4 bytes alignment
448 	 * of Tx buffers to make Tx checksum offload with custom
449 	 * checksum generation method work.
450 	 */
451 	sc->ale_flags |= ALE_FLAG_TXCSUM_BUG;
452 
453 	/*
454 	 * All known controllers seems to have issues on Rx checksum
455 	 * offload for fragmented IP datagrams.
456 	 */
457 	sc->ale_flags |= ALE_FLAG_RXCSUM_BUG;
458 
459 	/*
460 	 * Don't use Tx CMB. It is known to cause RRS update failure
461 	 * under certain circumstances. Typical phenomenon of the
462 	 * issue would be unexpected sequence number encountered in
463 	 * Rx handler.
464 	 */
465 	sc->ale_flags |= ALE_FLAG_TXCMB_BUG;
466 	sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >>
467 	    MASTER_CHIP_REV_SHIFT;
468 	if (aledebug) {
469 		printf("%s: PCI device revision : 0x%04x\n",
470 		    sc->sc_dev.dv_xname, sc->ale_rev);
471 		printf("%s: Chip id/revision : 0x%04x\n",
472 		    sc->sc_dev.dv_xname, sc->ale_chip_rev);
473 	}
474 
475 	/*
476 	 * Uninitialized hardware returns an invalid chip id/revision
477 	 * as well as 0xFFFFFFFF for Tx/Rx fifo length.
478 	 */
479 	txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN);
480 	rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
481 	if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF ||
482 	    rxf_len == 0xFFFFFFF) {
483 		printf("%s: chip revision : 0x%04x, %u Tx FIFO "
484 		    "%u Rx FIFO -- not initialized?\n", sc->sc_dev.dv_xname,
485 		    sc->ale_chip_rev, txf_len, rxf_len);
486 		goto fail;
487 	}
488 
489 	if (aledebug) {
490 		printf("%s: %u Tx FIFO, %u Rx FIFO\n", sc->sc_dev.dv_xname,
491 		    txf_len, rxf_len);
492 	}
493 
494 	/* Set max allowable DMA size. */
495 	sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128;
496 	sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128;
497 
498 	error = ale_dma_alloc(sc);
499 	if (error)
500 		goto fail;
501 
502 	/* Load station address. */
503 	ale_get_macaddr(sc);
504 
505 	ifp = &sc->sc_arpcom.ac_if;
506 	ifp->if_softc = sc;
507 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
508 	ifp->if_ioctl = ale_ioctl;
509 	ifp->if_start = ale_start;
510 	ifp->if_watchdog = ale_watchdog;
511 	IFQ_SET_MAXLEN(&ifp->if_snd, ALE_TX_RING_CNT - 1);
512 	IFQ_SET_READY(&ifp->if_snd);
513 	bcopy(sc->ale_eaddr, sc->sc_arpcom.ac_enaddr, ETHER_ADDR_LEN);
514 	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
515 
516 	ifp->if_capabilities = IFCAP_VLAN_MTU;
517 
518 #ifdef ALE_CHECKSUM
519 	ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
520 	    IFCAP_CSUM_UDPv4;
521 #endif
522 
523 #if NVLAN > 0
524 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
525 #endif
526 
527 	printf(", address %s\n", ether_sprintf(sc->sc_arpcom.ac_enaddr));
528 
529 	/* Set up MII bus. */
530 	sc->sc_miibus.mii_ifp = ifp;
531 	sc->sc_miibus.mii_readreg = ale_miibus_readreg;
532 	sc->sc_miibus.mii_writereg = ale_miibus_writereg;
533 	sc->sc_miibus.mii_statchg = ale_miibus_statchg;
534 
535 	ifmedia_init(&sc->sc_miibus.mii_media, 0, ale_mediachange,
536 	    ale_mediastatus);
537 	mii_flags = 0;
538 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
539 		mii_flags |= MIIF_DOPAUSE;
540 	mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
541 	    MII_OFFSET_ANY, mii_flags);
542 
543 	if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
544 		printf("%s: no PHY found!\n", sc->sc_dev.dv_xname);
545 		ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
546 		    0, NULL);
547 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
548 	} else
549 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
550 
551 	if_attach(ifp);
552 	ether_ifattach(ifp);
553 
554 	timeout_set(&sc->ale_tick_ch, ale_tick, sc);
555 
556 	return;
557 fail:
558 	ale_dma_free(sc);
559 	if (sc->sc_irq_handle != NULL)
560 		pci_intr_disestablish(pc, sc->sc_irq_handle);
561 	if (sc->sc_mem_size)
562 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
563 }
564 
565 int
566 ale_detach(struct device *self, int flags)
567 {
568 	struct ale_softc *sc = (struct ale_softc *)self;
569 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
570 	int s;
571 
572 	s = splnet();
573 	ale_stop(sc);
574 	splx(s);
575 
576 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
577 
578 	/* Delete all remaining media. */
579 	ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
580 
581 	ether_ifdetach(ifp);
582 	if_detach(ifp);
583 	ale_dma_free(sc);
584 
585 	if (sc->sc_irq_handle != NULL) {
586 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
587 		sc->sc_irq_handle = NULL;
588 	}
589 
590 	return (0);
591 }
592 
593 int
594 ale_activate(struct device *self, int act)
595 {
596 	struct ale_softc *sc = (struct ale_softc *)self;
597 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
598 	int rv = 0;
599 
600 	switch (act) {
601 	case DVACT_SUSPEND:
602 		if (ifp->if_flags & IFF_RUNNING)
603 			ale_stop(sc);
604 		rv = config_activate_children(self, act);
605 		break;
606 	case DVACT_RESUME:
607 		if (ifp->if_flags & IFF_UP)
608 			ale_init(ifp);
609 		break;
610 	default:
611 		rv = config_activate_children(self, act);
612 		break;
613 	}
614 	return (rv);
615 }
616 
617 int
618 ale_dma_alloc(struct ale_softc *sc)
619 {
620 	struct ale_txdesc *txd;
621 	int nsegs, error, guard_size, i;
622 
623 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
624 		guard_size = ALE_JUMBO_FRAMELEN;
625 	else
626 		guard_size = ALE_MAX_FRAMELEN;
627 	sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ,
628 	    ALE_RX_PAGE_ALIGN);
629 
630 	/*
631 	 * Create DMA stuffs for TX ring
632 	 */
633 	error = bus_dmamap_create(sc->sc_dmat, ALE_TX_RING_SZ, 1,
634 	    ALE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_ring_map);
635 	if (error)
636 		return (ENOBUFS);
637 
638 	/* Allocate DMA'able memory for TX ring */
639 	error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_RING_SZ,
640 	    ETHER_ALIGN, 0, &sc->ale_cdata.ale_tx_ring_seg, 1,
641 	    &nsegs, BUS_DMA_WAITOK | BUS_DMA_ZERO);
642 	if (error) {
643 		printf("%s: could not allocate DMA'able memory for Tx ring.\n",
644 		    sc->sc_dev.dv_xname);
645 		return error;
646 	}
647 
648 	error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_ring_seg,
649 	    nsegs, ALE_TX_RING_SZ, (caddr_t *)&sc->ale_cdata.ale_tx_ring,
650 	    BUS_DMA_NOWAIT);
651 	if (error)
652 		return (ENOBUFS);
653 
654 	/* Load the DMA map for Tx ring. */
655 	error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map,
656 	    sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
657 	if (error) {
658 		printf("%s: could not load DMA'able memory for Tx ring.\n",
659 		    sc->sc_dev.dv_xname);
660 		bus_dmamem_free(sc->sc_dmat,
661 		    (bus_dma_segment_t *)&sc->ale_cdata.ale_tx_ring, 1);
662 		return error;
663 	}
664 	sc->ale_cdata.ale_tx_ring_paddr =
665 	    sc->ale_cdata.ale_tx_ring_map->dm_segs[0].ds_addr;
666 
667 	for (i = 0; i < ALE_RX_PAGES; i++) {
668 		/*
669 		 * Create DMA stuffs for RX pages
670 		 */
671 		error = bus_dmamap_create(sc->sc_dmat, sc->ale_pagesize, 1,
672 		    sc->ale_pagesize, 0, BUS_DMA_NOWAIT,
673 		    &sc->ale_cdata.ale_rx_page[i].page_map);
674 		if (error)
675 			return (ENOBUFS);
676 
677 		/* Allocate DMA'able memory for RX pages */
678 		error = bus_dmamem_alloc(sc->sc_dmat, sc->ale_pagesize,
679 		    ETHER_ALIGN, 0, &sc->ale_cdata.ale_rx_page[i].page_seg,
680 		    1, &nsegs, BUS_DMA_WAITOK | BUS_DMA_ZERO);
681 		if (error) {
682 			printf("%s: could not allocate DMA'able memory for "
683 			    "Rx ring.\n", sc->sc_dev.dv_xname);
684 			return error;
685 		}
686 		error = bus_dmamem_map(sc->sc_dmat,
687 		    &sc->ale_cdata.ale_rx_page[i].page_seg, nsegs,
688 		    sc->ale_pagesize,
689 		    (caddr_t *)&sc->ale_cdata.ale_rx_page[i].page_addr,
690 		    BUS_DMA_NOWAIT);
691 		if (error)
692 			return (ENOBUFS);
693 
694 		/* Load the DMA map for Rx pages. */
695 		error = bus_dmamap_load(sc->sc_dmat,
696 		    sc->ale_cdata.ale_rx_page[i].page_map,
697 		    sc->ale_cdata.ale_rx_page[i].page_addr,
698 		    sc->ale_pagesize, NULL, BUS_DMA_WAITOK);
699 		if (error) {
700 			printf("%s: could not load DMA'able memory for "
701 			    "Rx pages.\n", sc->sc_dev.dv_xname);
702 			bus_dmamem_free(sc->sc_dmat,
703 			    (bus_dma_segment_t *)sc->ale_cdata.ale_rx_page[i].page_addr, 1);
704 			return error;
705 		}
706 		sc->ale_cdata.ale_rx_page[i].page_paddr =
707 		    sc->ale_cdata.ale_rx_page[i].page_map->dm_segs[0].ds_addr;
708 	}
709 
710 	/*
711 	 * Create DMA stuffs for Tx CMB.
712 	 */
713 	error = bus_dmamap_create(sc->sc_dmat, ALE_TX_CMB_SZ, 1,
714 	    ALE_TX_CMB_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_cmb_map);
715 	if (error)
716 		return (ENOBUFS);
717 
718 	/* Allocate DMA'able memory for Tx CMB. */
719 	error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_CMB_SZ, ETHER_ALIGN, 0,
720 	    &sc->ale_cdata.ale_tx_cmb_seg, 1, &nsegs,
721 	    BUS_DMA_WAITOK |BUS_DMA_ZERO);
722 
723 	if (error) {
724 		printf("%s: could not allocate DMA'able memory for Tx CMB.\n",
725 		    sc->sc_dev.dv_xname);
726 		return error;
727 	}
728 
729 	error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_cmb_seg,
730 	    nsegs, ALE_TX_CMB_SZ, (caddr_t *)&sc->ale_cdata.ale_tx_cmb,
731 	    BUS_DMA_NOWAIT);
732 	if (error)
733 		return (ENOBUFS);
734 
735 	/* Load the DMA map for Tx CMB. */
736 	error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map,
737 	    sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ, NULL, BUS_DMA_WAITOK);
738 	if (error) {
739 		printf("%s: could not load DMA'able memory for Tx CMB.\n",
740 		    sc->sc_dev.dv_xname);
741 		bus_dmamem_free(sc->sc_dmat,
742 		    (bus_dma_segment_t *)&sc->ale_cdata.ale_tx_cmb, 1);
743 		return error;
744 	}
745 
746 	sc->ale_cdata.ale_tx_cmb_paddr =
747 	    sc->ale_cdata.ale_tx_cmb_map->dm_segs[0].ds_addr;
748 
749 	for (i = 0; i < ALE_RX_PAGES; i++) {
750 		/*
751 		 * Create DMA stuffs for Rx CMB.
752 		 */
753 		error = bus_dmamap_create(sc->sc_dmat, ALE_RX_CMB_SZ, 1,
754 		    ALE_RX_CMB_SZ, 0, BUS_DMA_NOWAIT,
755 		    &sc->ale_cdata.ale_rx_page[i].cmb_map);
756 		if (error)
757 			return (ENOBUFS);
758 
759 		/* Allocate DMA'able memory for Rx CMB */
760 		error = bus_dmamem_alloc(sc->sc_dmat, ALE_RX_CMB_SZ,
761 		    ETHER_ALIGN, 0, &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1,
762 		    &nsegs, BUS_DMA_WAITOK | BUS_DMA_ZERO);
763 		if (error) {
764 			printf("%s: could not allocate DMA'able memory for "
765 			    "Rx CMB\n", sc->sc_dev.dv_xname);
766 			return error;
767 		}
768 		error = bus_dmamem_map(sc->sc_dmat,
769 		    &sc->ale_cdata.ale_rx_page[i].cmb_seg, nsegs,
770 		    ALE_RX_CMB_SZ,
771 		    (caddr_t *)&sc->ale_cdata.ale_rx_page[i].cmb_addr,
772 		    BUS_DMA_NOWAIT);
773 		if (error)
774 			return (ENOBUFS);
775 
776 		/* Load the DMA map for Rx CMB */
777 		error = bus_dmamap_load(sc->sc_dmat,
778 		    sc->ale_cdata.ale_rx_page[i].cmb_map,
779 		    sc->ale_cdata.ale_rx_page[i].cmb_addr,
780 		    ALE_RX_CMB_SZ, NULL, BUS_DMA_WAITOK);
781 		if (error) {
782 			printf("%s: could not load DMA'able memory for Rx CMB"
783 			    "\n", sc->sc_dev.dv_xname);
784 			bus_dmamem_free(sc->sc_dmat,
785 			    (bus_dma_segment_t *)&sc->ale_cdata.ale_rx_page[i].cmb_addr, 1);
786 			return error;
787 		}
788 		sc->ale_cdata.ale_rx_page[i].cmb_paddr =
789 		    sc->ale_cdata.ale_rx_page[i].cmb_map->dm_segs[0].ds_addr;
790 	}
791 
792 
793 	/* Create DMA maps for Tx buffers. */
794 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
795 		txd = &sc->ale_cdata.ale_txdesc[i];
796 		txd->tx_m = NULL;
797 		txd->tx_dmamap = NULL;
798 		error = bus_dmamap_create(sc->sc_dmat, ALE_TSO_MAXSIZE,
799 		    ALE_MAXTXSEGS, ALE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
800 		    &txd->tx_dmamap);
801 		if (error) {
802 			printf("%s: could not create Tx dmamap.\n",
803 			    sc->sc_dev.dv_xname);
804 			return error;
805 		}
806 	}
807 
808 	return (0);
809 }
810 
811 void
812 ale_dma_free(struct ale_softc *sc)
813 {
814 	struct ale_txdesc *txd;
815 	int i;
816 
817 	/* Tx buffers. */
818 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
819 		txd = &sc->ale_cdata.ale_txdesc[i];
820 		if (txd->tx_dmamap != NULL) {
821 			bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
822 			txd->tx_dmamap = NULL;
823 		}
824 	}
825 
826 	/* Tx descriptor ring. */
827 	if (sc->ale_cdata.ale_tx_ring_map != NULL)
828 		bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map);
829 	if (sc->ale_cdata.ale_tx_ring_map != NULL &&
830 	    sc->ale_cdata.ale_tx_ring != NULL)
831 		bus_dmamem_free(sc->sc_dmat,
832 		    (bus_dma_segment_t *)sc->ale_cdata.ale_tx_ring, 1);
833 	sc->ale_cdata.ale_tx_ring = NULL;
834 	sc->ale_cdata.ale_tx_ring_map = NULL;
835 
836 	/* Rx page block. */
837 	for (i = 0; i < ALE_RX_PAGES; i++) {
838 		if (sc->ale_cdata.ale_rx_page[i].page_map != NULL)
839 			bus_dmamap_unload(sc->sc_dmat,
840 			    sc->ale_cdata.ale_rx_page[i].page_map);
841 		if (sc->ale_cdata.ale_rx_page[i].page_map != NULL &&
842 		    sc->ale_cdata.ale_rx_page[i].page_addr != NULL)
843 			bus_dmamem_free(sc->sc_dmat,
844 			    (bus_dma_segment_t *)sc->ale_cdata.ale_rx_page[i].page_addr, 1);
845 		sc->ale_cdata.ale_rx_page[i].page_addr = NULL;
846 		sc->ale_cdata.ale_rx_page[i].page_map = NULL;
847 	}
848 
849 	/* Rx CMB. */
850 	for (i = 0; i < ALE_RX_PAGES; i++) {
851 		if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL)
852 			bus_dmamap_unload(sc->sc_dmat,
853 			    sc->ale_cdata.ale_rx_page[i].cmb_map);
854 		if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL &&
855 		    sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL)
856 			bus_dmamem_free(sc->sc_dmat,
857 			    (bus_dma_segment_t *)sc->ale_cdata.ale_rx_page[i].cmb_addr, 1);
858 		sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL;
859 		sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
860 	}
861 
862 	/* Tx CMB. */
863 	if (sc->ale_cdata.ale_tx_cmb_map != NULL)
864 		bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map);
865 	if (sc->ale_cdata.ale_tx_cmb_map != NULL &&
866 	    sc->ale_cdata.ale_tx_cmb != NULL)
867 		bus_dmamem_free(sc->sc_dmat,
868 		    (bus_dma_segment_t *)sc->ale_cdata.ale_tx_cmb, 1);
869 	sc->ale_cdata.ale_tx_cmb = NULL;
870 	sc->ale_cdata.ale_tx_cmb_map = NULL;
871 
872 }
873 
874 int
875 ale_encap(struct ale_softc *sc, struct mbuf **m_head)
876 {
877 	struct ale_txdesc *txd, *txd_last;
878 	struct tx_desc *desc;
879 	struct mbuf *m;
880 	bus_dmamap_t map;
881 	uint32_t cflags, poff, vtag;
882 	int error, i, prod;
883 
884 	m = *m_head;
885 	cflags = vtag = 0;
886 	poff = 0;
887 
888 	prod = sc->ale_cdata.ale_tx_prod;
889 	txd = &sc->ale_cdata.ale_txdesc[prod];
890 	txd_last = txd;
891 	map = txd->tx_dmamap;
892 
893 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
894 	if (error != 0 && error != EFBIG)
895 		goto drop;
896 	if (error != 0) {
897 		if (m_defrag(*m_head, M_DONTWAIT)) {
898 			error = ENOBUFS;
899 			goto drop;
900 		}
901 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
902 		    BUS_DMA_NOWAIT);
903 		if (error != 0)
904 			goto drop;
905 	}
906 
907 	/* Check descriptor overrun. */
908 	if (sc->ale_cdata.ale_tx_cnt + map->dm_nsegs >= ALE_TX_RING_CNT - 2) {
909 		bus_dmamap_unload(sc->sc_dmat, map);
910 		return (ENOBUFS);
911 	}
912 
913 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
914 	    BUS_DMASYNC_PREWRITE);
915 
916 	m = *m_head;
917 	/* Configure Tx checksum offload. */
918 	if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) {
919 		/*
920 		 * AR81xx supports Tx custom checksum offload feature
921 		 * that offloads single 16bit checksum computation.
922 		 * So you can choose one among IP, TCP and UDP.
923 		 * Normally driver sets checksum start/insertion
924 		 * position from the information of TCP/UDP frame as
925 		 * TCP/UDP checksum takes more time than that of IP.
926 		 * However it seems that custom checksum offload
927 		 * requires 4 bytes aligned Tx buffers due to hardware
928 		 * bug.
929 		 * AR81xx also supports explicit Tx checksum computation
930 		 * if it is told that the size of IP header and TCP
931 		 * header(for UDP, the header size does not matter
932 		 * because it's fixed length). However with this scheme
933 		 * TSO does not work so you have to choose one either
934 		 * TSO or explicit Tx checksum offload. I chosen TSO
935 		 * plus custom checksum offload with work-around which
936 		 * will cover most common usage for this consumer
937 		 * ethernet controller. The work-around takes a lot of
938 		 * CPU cycles if Tx buffer is not aligned on 4 bytes
939 		 * boundary, though.
940 		 */
941 		cflags |= ALE_TD_CXSUM;
942 		/* Set checksum start offset. */
943 		cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT);
944 	}
945 
946 #if NVLAN > 0
947 	/* Configure VLAN hardware tag insertion. */
948 	if (m->m_flags & M_VLANTAG) {
949 		vtag = ALE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
950 		vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK);
951 		cflags |= ALE_TD_INSERT_VLAN_TAG;
952 	}
953 #endif
954 
955 	desc = NULL;
956 	for (i = 0; i < map->dm_nsegs; i++) {
957 		desc = &sc->ale_cdata.ale_tx_ring[prod];
958 		desc->addr = htole64(map->dm_segs[i].ds_addr);
959 		desc->len =
960 		    htole32(ALE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
961 		desc->flags = htole32(cflags);
962 		sc->ale_cdata.ale_tx_cnt++;
963 		ALE_DESC_INC(prod, ALE_TX_RING_CNT);
964 	}
965 
966 	/* Update producer index. */
967 	sc->ale_cdata.ale_tx_prod = prod;
968 
969 	/* Finally set EOP on the last descriptor. */
970 	prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT;
971 	desc = &sc->ale_cdata.ale_tx_ring[prod];
972 	desc->flags |= htole32(ALE_TD_EOP);
973 
974 	/* Swap dmamap of the first and the last. */
975 	txd = &sc->ale_cdata.ale_txdesc[prod];
976 	map = txd_last->tx_dmamap;
977 	txd_last->tx_dmamap = txd->tx_dmamap;
978 	txd->tx_dmamap = map;
979 	txd->tx_m = m;
980 
981 	/* Sync descriptors. */
982 	bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
983 	    sc->ale_cdata.ale_tx_ring_map->dm_mapsize,
984 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
985 
986 	return (0);
987 
988  drop:
989 	m_freem(*m_head);
990 	*m_head = NULL;
991 	return (error);
992 }
993 
994 void
995 ale_start(struct ifnet *ifp)
996 {
997         struct ale_softc *sc = ifp->if_softc;
998 	struct mbuf *m_head;
999 	int enq;
1000 
1001 	/* Reclaim transmitted frames. */
1002 	if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT)
1003 		ale_txeof(sc);
1004 
1005 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1006 		return;
1007 	if ((sc->ale_flags & ALE_FLAG_LINK) == 0)
1008 		return;
1009 	if (IFQ_IS_EMPTY(&ifp->if_snd))
1010 		return;
1011 
1012 	enq = 0;
1013 	for (;;) {
1014 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1015 		if (m_head == NULL)
1016 			break;
1017 
1018 		/*
1019 		 * Pack the data into the transmit ring. If we
1020 		 * don't have room, set the OACTIVE flag and wait
1021 		 * for the NIC to drain the ring.
1022 		 */
1023 		if (ale_encap(sc, &m_head)) {
1024 			if (m_head == NULL)
1025 				ifp->if_oerrors++;
1026 			else {
1027 				IF_PREPEND(&ifp->if_snd, m_head);
1028 				ifp->if_flags |= IFF_OACTIVE;
1029 			}
1030 			break;
1031 		}
1032 
1033 		enq = 1;
1034 
1035 #if NBPFILTER > 0
1036 		/*
1037 		 * If there's a BPF listener, bounce a copy of this frame
1038 		 * to him.
1039 		 */
1040 		if (ifp->if_bpf != NULL)
1041 			bpf_mtap_ether(ifp->if_bpf, m_head, BPF_DIRECTION_OUT);
1042 #endif
1043 	}
1044 
1045 	if (enq) {
1046 		/* Kick. */
1047 		CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX,
1048 		    sc->ale_cdata.ale_tx_prod);
1049 
1050 		/* Set a timeout in case the chip goes out to lunch. */
1051 		ifp->if_timer = ALE_TX_TIMEOUT;
1052 	}
1053 }
1054 
1055 void
1056 ale_watchdog(struct ifnet *ifp)
1057 {
1058 	struct ale_softc *sc = ifp->if_softc;
1059 
1060 	if ((sc->ale_flags & ALE_FLAG_LINK) == 0) {
1061 		printf("%s: watchdog timeout (missed link)\n",
1062 		    sc->sc_dev.dv_xname);
1063 		ifp->if_oerrors++;
1064 		ale_init(ifp);
1065 		return;
1066 	}
1067 
1068 	printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
1069 	ifp->if_oerrors++;
1070 	ale_init(ifp);
1071 	ale_start(ifp);
1072 }
1073 
1074 int
1075 ale_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1076 {
1077 	struct ale_softc *sc = ifp->if_softc;
1078 	struct mii_data *mii = &sc->sc_miibus;
1079 	struct ifaddr *ifa = (struct ifaddr *)data;
1080 	struct ifreq *ifr = (struct ifreq *)data;
1081 	int s, error = 0;
1082 
1083 	s = splnet();
1084 
1085 	switch (cmd) {
1086 	case SIOCSIFADDR:
1087 		ifp->if_flags |= IFF_UP;
1088 		if (!(ifp->if_flags & IFF_RUNNING))
1089 			ale_init(ifp);
1090 #ifdef INET
1091 		if (ifa->ifa_addr->sa_family == AF_INET)
1092 			arp_ifinit(&sc->sc_arpcom, ifa);
1093 #endif
1094 		break;
1095 
1096 	case SIOCSIFFLAGS:
1097 		if (ifp->if_flags & IFF_UP) {
1098 			if (ifp->if_flags & IFF_RUNNING)
1099 				error = ENETRESET;
1100 			else
1101 				ale_init(ifp);
1102 		} else {
1103 			if (ifp->if_flags & IFF_RUNNING)
1104 				ale_stop(sc);
1105 		}
1106 		break;
1107 
1108 	case SIOCSIFMEDIA:
1109 	case SIOCGIFMEDIA:
1110 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1111 		break;
1112 
1113 	default:
1114 		error = ether_ioctl(ifp, &sc->sc_arpcom, cmd, data);
1115 		break;
1116 	}
1117 
1118 	if (error == ENETRESET) {
1119 		if (ifp->if_flags & IFF_RUNNING)
1120 			ale_iff(sc);
1121 		error = 0;
1122 	}
1123 
1124 	splx(s);
1125 	return (error);
1126 }
1127 
1128 void
1129 ale_mac_config(struct ale_softc *sc)
1130 {
1131 	struct mii_data *mii;
1132 	uint32_t reg;
1133 
1134 	mii = &sc->sc_miibus;
1135 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
1136 	reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
1137 	    MAC_CFG_SPEED_MASK);
1138 	/* Reprogram MAC with resolved speed/duplex. */
1139 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1140 	case IFM_10_T:
1141 	case IFM_100_TX:
1142 		reg |= MAC_CFG_SPEED_10_100;
1143 		break;
1144 	case IFM_1000_T:
1145 		reg |= MAC_CFG_SPEED_1000;
1146 		break;
1147 	}
1148 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1149 		reg |= MAC_CFG_FULL_DUPLEX;
1150 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1151 			reg |= MAC_CFG_TX_FC;
1152 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1153 			reg |= MAC_CFG_RX_FC;
1154 	}
1155 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1156 }
1157 
1158 void
1159 ale_stats_clear(struct ale_softc *sc)
1160 {
1161 	struct smb sb;
1162 	uint32_t *reg;
1163 	int i;
1164 
1165 	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
1166 		CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
1167 		i += sizeof(uint32_t);
1168 	}
1169 	/* Read Tx statistics. */
1170 	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
1171 		CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
1172 		i += sizeof(uint32_t);
1173 	}
1174 }
1175 
1176 void
1177 ale_stats_update(struct ale_softc *sc)
1178 {
1179 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1180 	struct ale_hw_stats *stat;
1181 	struct smb sb, *smb;
1182 	uint32_t *reg;
1183 	int i;
1184 
1185 	stat = &sc->ale_stats;
1186 	smb = &sb;
1187 
1188 	/* Read Rx statistics. */
1189 	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
1190 		*reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
1191 		i += sizeof(uint32_t);
1192 	}
1193 	/* Read Tx statistics. */
1194 	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
1195 		*reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
1196 		i += sizeof(uint32_t);
1197 	}
1198 
1199 	/* Rx stats. */
1200 	stat->rx_frames += smb->rx_frames;
1201 	stat->rx_bcast_frames += smb->rx_bcast_frames;
1202 	stat->rx_mcast_frames += smb->rx_mcast_frames;
1203 	stat->rx_pause_frames += smb->rx_pause_frames;
1204 	stat->rx_control_frames += smb->rx_control_frames;
1205 	stat->rx_crcerrs += smb->rx_crcerrs;
1206 	stat->rx_lenerrs += smb->rx_lenerrs;
1207 	stat->rx_bytes += smb->rx_bytes;
1208 	stat->rx_runts += smb->rx_runts;
1209 	stat->rx_fragments += smb->rx_fragments;
1210 	stat->rx_pkts_64 += smb->rx_pkts_64;
1211 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
1212 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
1213 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
1214 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
1215 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
1216 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
1217 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
1218 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
1219 	stat->rx_rrs_errs += smb->rx_rrs_errs;
1220 	stat->rx_alignerrs += smb->rx_alignerrs;
1221 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
1222 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
1223 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
1224 
1225 	/* Tx stats. */
1226 	stat->tx_frames += smb->tx_frames;
1227 	stat->tx_bcast_frames += smb->tx_bcast_frames;
1228 	stat->tx_mcast_frames += smb->tx_mcast_frames;
1229 	stat->tx_pause_frames += smb->tx_pause_frames;
1230 	stat->tx_excess_defer += smb->tx_excess_defer;
1231 	stat->tx_control_frames += smb->tx_control_frames;
1232 	stat->tx_deferred += smb->tx_deferred;
1233 	stat->tx_bytes += smb->tx_bytes;
1234 	stat->tx_pkts_64 += smb->tx_pkts_64;
1235 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
1236 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
1237 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
1238 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
1239 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
1240 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
1241 	stat->tx_single_colls += smb->tx_single_colls;
1242 	stat->tx_multi_colls += smb->tx_multi_colls;
1243 	stat->tx_late_colls += smb->tx_late_colls;
1244 	stat->tx_excess_colls += smb->tx_excess_colls;
1245 	stat->tx_abort += smb->tx_abort;
1246 	stat->tx_underrun += smb->tx_underrun;
1247 	stat->tx_desc_underrun += smb->tx_desc_underrun;
1248 	stat->tx_lenerrs += smb->tx_lenerrs;
1249 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
1250 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
1251 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
1252 
1253 	/* Update counters in ifnet. */
1254 	ifp->if_opackets += smb->tx_frames;
1255 
1256 	ifp->if_collisions += smb->tx_single_colls +
1257 	    smb->tx_multi_colls * 2 + smb->tx_late_colls +
1258 	    smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;
1259 
1260 	/*
1261 	 * XXX
1262 	 * tx_pkts_truncated counter looks suspicious. It constantly
1263 	 * increments with no sign of Tx errors. This may indicate
1264 	 * the counter name is not correct one so I've removed the
1265 	 * counter in output errors.
1266 	 */
1267 	ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
1268 	    smb->tx_underrun;
1269 
1270 	ifp->if_ipackets += smb->rx_frames;
1271 
1272 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
1273 	    smb->rx_runts + smb->rx_pkts_truncated +
1274 	    smb->rx_fifo_oflows + smb->rx_rrs_errs +
1275 	    smb->rx_alignerrs;
1276 }
1277 
1278 int
1279 ale_intr(void *xsc)
1280 {
1281 	struct ale_softc *sc = xsc;
1282 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1283 	uint32_t status;
1284 
1285 	status = CSR_READ_4(sc, ALE_INTR_STATUS);
1286 	if ((status & ALE_INTRS) == 0)
1287 		return (0);
1288 
1289 	/* Acknowledge and disable interrupts. */
1290 	CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT);
1291 
1292 	if (ifp->if_flags & IFF_RUNNING) {
1293 		int error;
1294 
1295 		error = ale_rxeof(sc);
1296 		if (error) {
1297 			sc->ale_stats.reset_brk_seq++;
1298 			ale_init(ifp);
1299 			return (0);
1300 		}
1301 
1302 		if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
1303 			if (status & INTR_DMA_RD_TO_RST)
1304 				printf("%s: DMA read error! -- resetting\n",
1305 				    sc->sc_dev.dv_xname);
1306 			if (status & INTR_DMA_WR_TO_RST)
1307 				printf("%s: DMA write error! -- resetting\n",
1308 				    sc->sc_dev.dv_xname);
1309 			ale_init(ifp);
1310 			return (0);
1311 		}
1312 
1313 		ale_txeof(sc);
1314 		ale_start(ifp);
1315 	}
1316 
1317 	/* Re-enable interrupts. */
1318 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF);
1319 	return (1);
1320 }
1321 
1322 void
1323 ale_txeof(struct ale_softc *sc)
1324 {
1325 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1326 	struct ale_txdesc *txd;
1327 	uint32_t cons, prod;
1328 	int prog;
1329 
1330 	if (sc->ale_cdata.ale_tx_cnt == 0)
1331 		return;
1332 
1333 	bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1334 	    sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1335 	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) {
1336 		bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0,
1337 		    sc->ale_cdata.ale_tx_cmb_map->dm_mapsize,
1338 		    BUS_DMASYNC_POSTREAD);
1339 		prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK;
1340 	} else
1341 		prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX);
1342 	cons = sc->ale_cdata.ale_tx_cons;
1343 	/*
1344 	 * Go through our Tx list and free mbufs for those
1345 	 * frames which have been transmitted.
1346 	 */
1347 	for (prog = 0; cons != prod; prog++,
1348 	     ALE_DESC_INC(cons, ALE_TX_RING_CNT)) {
1349 		if (sc->ale_cdata.ale_tx_cnt <= 0)
1350 			break;
1351 		prog++;
1352 		ifp->if_flags &= ~IFF_OACTIVE;
1353 		sc->ale_cdata.ale_tx_cnt--;
1354 		txd = &sc->ale_cdata.ale_txdesc[cons];
1355 		if (txd->tx_m != NULL) {
1356 			/* Reclaim transmitted mbufs. */
1357 			bus_dmamap_sync(sc->sc_dmat, txd->tx_dmamap, 0,
1358 			    txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1359 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1360 			m_freem(txd->tx_m);
1361 			txd->tx_m = NULL;
1362 		}
1363 	}
1364 
1365 	if (prog > 0) {
1366 		sc->ale_cdata.ale_tx_cons = cons;
1367 		/*
1368 		 * Unarm watchdog timer only when there is no pending
1369 		 * Tx descriptors in queue.
1370 		 */
1371 		if (sc->ale_cdata.ale_tx_cnt == 0)
1372 			ifp->if_timer = 0;
1373 	}
1374 }
1375 
1376 void
1377 ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page,
1378     uint32_t length, uint32_t *prod)
1379 {
1380 	struct ale_rx_page *rx_page;
1381 
1382 	rx_page = *page;
1383 	/* Update consumer position. */
1384 	rx_page->cons += roundup(length + sizeof(struct rx_rs),
1385 	    ALE_RX_PAGE_ALIGN);
1386 	if (rx_page->cons >= ALE_RX_PAGE_SZ) {
1387 		/*
1388 		 * End of Rx page reached, let hardware reuse
1389 		 * this page.
1390 		 */
1391 		rx_page->cons = 0;
1392 		*rx_page->cmb_addr = 0;
1393 		bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1394 		    rx_page->cmb_map->dm_mapsize,
1395 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1396 		CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp,
1397 		    RXF_VALID);
1398 		/* Switch to alternate Rx page. */
1399 		sc->ale_cdata.ale_rx_curp ^= 1;
1400 		rx_page = *page =
1401 		    &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
1402 		/* Page flipped, sync CMB and Rx page. */
1403 		bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1404 		    rx_page->page_map->dm_mapsize,
1405 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1406 		bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1407 		    rx_page->cmb_map->dm_mapsize,
1408 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1409 		/* Sync completed, cache updated producer index. */
1410 		*prod = *rx_page->cmb_addr;
1411 	}
1412 }
1413 
1414 
1415 /*
1416  * It seems that AR81xx controller can compute partial checksum.
1417  * The partial checksum value can be used to accelerate checksum
1418  * computation for fragmented TCP/UDP packets. Upper network stack
1419  * already takes advantage of the partial checksum value in IP
1420  * reassembly stage. But I'm not sure the correctness of the
1421  * partial hardware checksum assistance due to lack of data sheet.
1422  * In addition, the Rx feature of controller that requires copying
1423  * for every frames effectively nullifies one of most nice offload
1424  * capability of controller.
1425  */
1426 void
1427 ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status)
1428 {
1429 	struct ip *ip;
1430 	char *p;
1431 
1432 	if ((status & ALE_RD_IPCSUM_NOK) == 0)
1433 		m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
1434 
1435 	if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) {
1436 		if (((status & ALE_RD_IPV4_FRAG) == 0) &&
1437 		    ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) &&
1438 		    ((status & ALE_RD_TCP_UDPCSUM_NOK) == 0)) {
1439 			m->m_pkthdr.csum_flags |=
1440 			    M_TCP_CSUM_IN_OK | M_UDP_CSUM_IN_OK;
1441 		}
1442 	} else {
1443 		if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0 &&
1444 		    (status & ALE_RD_TCP_UDPCSUM_NOK) == 0) {
1445 			p = mtod(m, char *);
1446 			p += ETHER_HDR_LEN;
1447 			if ((status & ALE_RD_802_3) != 0)
1448 				p += LLC_SNAPFRAMELEN;
1449 #if NVLAN > 0
1450 			if (status & ALE_RD_VLAN)
1451 				p += EVL_ENCAPLEN;
1452 #endif
1453 			ip = (struct ip *)p;
1454 			if (ip->ip_off != 0 && (status & ALE_RD_IPV4_DF) == 0)
1455 				return;
1456 			m->m_pkthdr.csum_flags |=
1457 			    M_TCP_CSUM_IN_OK | M_UDP_CSUM_IN_OK;
1458 		}
1459 	}
1460 	/*
1461 	 * Don't mark bad checksum for TCP/UDP frames
1462 	 * as fragmented frames may always have set
1463 	 * bad checksummed bit of frame status.
1464 	 */
1465 }
1466 
1467 /* Process received frames. */
1468 int
1469 ale_rxeof(struct ale_softc *sc)
1470 {
1471 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1472 	struct ale_rx_page *rx_page;
1473 	struct rx_rs *rs;
1474 	struct mbuf *m;
1475 	uint32_t length, prod, seqno, status;
1476 	int prog;
1477 
1478 	rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
1479 	bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1480 	    rx_page->cmb_map->dm_mapsize,
1481 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1482 	bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1483 	    rx_page->page_map->dm_mapsize,
1484 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1485 	/*
1486 	 * Don't directly access producer index as hardware may
1487 	 * update it while Rx handler is in progress. It would
1488 	 * be even better if there is a way to let hardware
1489 	 * know how far driver processed its received frames.
1490 	 * Alternatively, hardware could provide a way to disable
1491 	 * CMB updates until driver acknowledges the end of CMB
1492 	 * access.
1493 	 */
1494 	prod = *rx_page->cmb_addr;
1495 	for (prog = 0; ; prog++) {
1496 		if (rx_page->cons >= prod)
1497 			break;
1498 		rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons);
1499 		seqno = ALE_RX_SEQNO(letoh32(rs->seqno));
1500 		if (sc->ale_cdata.ale_rx_seqno != seqno) {
1501 			/*
1502 			 * Normally I believe this should not happen unless
1503 			 * severe driver bug or corrupted memory. However
1504 			 * it seems to happen under certain conditions which
1505 			 * is triggered by abrupt Rx events such as initiation
1506 			 * of bulk transfer of remote host. It's not easy to
1507 			 * reproduce this and I doubt it could be related
1508 			 * with FIFO overflow of hardware or activity of Tx
1509 			 * CMB updates. I also remember similar behaviour
1510 			 * seen on RealTek 8139 which uses resembling Rx
1511 			 * scheme.
1512 			 */
1513 			if (aledebug)
1514 				printf("%s: garbled seq: %u, expected: %u -- "
1515 				    "resetting!\n", sc->sc_dev.dv_xname,
1516 				    seqno, sc->ale_cdata.ale_rx_seqno);
1517 			return (EIO);
1518 		}
1519 		/* Frame received. */
1520 		sc->ale_cdata.ale_rx_seqno++;
1521 		length = ALE_RX_BYTES(letoh32(rs->length));
1522 		status = letoh32(rs->flags);
1523 		if (status & ALE_RD_ERROR) {
1524 			/*
1525 			 * We want to pass the following frames to upper
1526 			 * layer regardless of error status of Rx return
1527 			 * status.
1528 			 *
1529 			 *  o IP/TCP/UDP checksum is bad.
1530 			 *  o frame length and protocol specific length
1531 			 *     does not match.
1532 			 */
1533 			if (status & (ALE_RD_CRC | ALE_RD_CODE |
1534 			    ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW |
1535 			    ALE_RD_TRUNC)) {
1536 				ale_rx_update_page(sc, &rx_page, length, &prod);
1537 				continue;
1538 			}
1539 		}
1540 		/*
1541 		 * m_devget(9) is major bottle-neck of ale(4)(It comes
1542 		 * from hardware limitation). For jumbo frames we could
1543 		 * get a slightly better performance if driver use
1544 		 * m_getjcl(9) with proper buffer size argument. However
1545 		 * that would make code more complicated and I don't
1546 		 * think users would expect good Rx performance numbers
1547 		 * on these low-end consumer ethernet controller.
1548 		 */
1549 		m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN,
1550 		    ETHER_ALIGN, ifp);
1551 		if (m == NULL) {
1552 			ifp->if_iqdrops++;
1553 			ale_rx_update_page(sc, &rx_page, length, &prod);
1554 			continue;
1555 		}
1556 		if (status & ALE_RD_IPV4)
1557 			ale_rxcsum(sc, m, status);
1558 #if NVLAN > 0
1559 		if (status & ALE_RD_VLAN) {
1560 			uint32_t vtags = ALE_RX_VLAN(letoh32(rs->vtags));
1561 			m->m_pkthdr.ether_vtag = ALE_RX_VLAN_TAG(vtags);
1562 			m->m_flags |= M_VLANTAG;
1563 		}
1564 #endif
1565 
1566 
1567 #if NBPFILTER > 0
1568 		if (ifp->if_bpf)
1569 			bpf_mtap_ether(ifp->if_bpf, m, BPF_DIRECTION_IN);
1570 #endif
1571 
1572 		/* Pass it to upper layer. */
1573 		ether_input_mbuf(ifp, m);
1574 
1575 		ale_rx_update_page(sc, &rx_page, length, &prod);
1576 	}
1577 
1578 	return 0;
1579 }
1580 
1581 void
1582 ale_tick(void *xsc)
1583 {
1584 	struct ale_softc *sc = xsc;
1585 	struct mii_data *mii = &sc->sc_miibus;
1586 	int s;
1587 
1588 	s = splnet();
1589 	mii_tick(mii);
1590 	ale_stats_update(sc);
1591 
1592 	timeout_add_sec(&sc->ale_tick_ch, 1);
1593 	splx(s);
1594 }
1595 
1596 void
1597 ale_reset(struct ale_softc *sc)
1598 {
1599 	uint32_t reg;
1600 	int i;
1601 
1602 	/* Initialize PCIe module. From Linux. */
1603 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1604 
1605 	CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET);
1606 	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
1607 		DELAY(10);
1608 		if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0)
1609 			break;
1610 	}
1611 	if (i == 0)
1612 		printf("%s: master reset timeout!\n", sc->sc_dev.dv_xname);
1613 
1614 	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
1615 		if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0)
1616 			break;
1617 		DELAY(10);
1618 	}
1619 
1620 	if (i == 0)
1621 		printf("%s: reset timeout(0x%08x)!\n", sc->sc_dev.dv_xname,
1622 		    reg);
1623 }
1624 
1625 int
1626 ale_init(struct ifnet *ifp)
1627 {
1628 	struct ale_softc *sc = ifp->if_softc;
1629 	struct mii_data *mii;
1630 	uint8_t eaddr[ETHER_ADDR_LEN];
1631 	bus_addr_t paddr;
1632 	uint32_t reg, rxf_hi, rxf_lo;
1633 
1634 	/*
1635 	 * Cancel any pending I/O.
1636 	 */
1637 	ale_stop(sc);
1638 
1639 	/*
1640 	 * Reset the chip to a known state.
1641 	 */
1642 	ale_reset(sc);
1643 
1644 	/* Initialize Tx descriptors, DMA memory blocks. */
1645 	ale_init_rx_pages(sc);
1646 	ale_init_tx_ring(sc);
1647 
1648 	/* Reprogram the station address. */
1649 	bcopy(LLADDR(ifp->if_sadl), eaddr, ETHER_ADDR_LEN);
1650 	CSR_WRITE_4(sc, ALE_PAR0,
1651 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1652 	CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]);
1653 
1654 	/*
1655 	 * Clear WOL status and disable all WOL feature as WOL
1656 	 * would interfere Rx operation under normal environments.
1657 	 */
1658 	CSR_READ_4(sc, ALE_WOL_CFG);
1659 	CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
1660 
1661 	/*
1662 	 * Set Tx descriptor/RXF0/CMB base addresses. They share
1663 	 * the same high address part of DMAable region.
1664 	 */
1665 	paddr = sc->ale_cdata.ale_tx_ring_paddr;
1666 	CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr));
1667 	CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr));
1668 	CSR_WRITE_4(sc, ALE_TPD_CNT,
1669 	    (ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK);
1670 
1671 	/* Set Rx page base address, note we use single queue. */
1672 	paddr = sc->ale_cdata.ale_rx_page[0].page_paddr;
1673 	CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr));
1674 	paddr = sc->ale_cdata.ale_rx_page[1].page_paddr;
1675 	CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr));
1676 
1677 	/* Set Tx/Rx CMB addresses. */
1678 	paddr = sc->ale_cdata.ale_tx_cmb_paddr;
1679 	CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr));
1680 	paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr;
1681 	CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr));
1682 	paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr;
1683 	CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr));
1684 
1685 	/* Mark RXF0 is valid. */
1686 	CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID);
1687 	CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID);
1688 	/*
1689 	 * No need to initialize RFX1/RXF2/RXF3. We don't use
1690 	 * multi-queue yet.
1691 	 */
1692 
1693 	/* Set Rx page size, excluding guard frame size. */
1694 	CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ);
1695 
1696 	/* Tell hardware that we're ready to load DMA blocks. */
1697 	CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD);
1698 
1699 	/* Set Rx/Tx interrupt trigger threshold. */
1700 	CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) |
1701 	    (4 << INT_TRIG_TX_THRESH_SHIFT));
1702 	/*
1703 	 * XXX
1704 	 * Set interrupt trigger timer, its purpose and relation
1705 	 * with interrupt moderation mechanism is not clear yet.
1706 	 */
1707 	CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER,
1708 	    ((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) |
1709 	    (ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT)));
1710 
1711 	/* Configure interrupt moderation timer. */
1712 	sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
1713 	sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
1714 	reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT;
1715 	reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT;
1716 	CSR_WRITE_4(sc, ALE_IM_TIMER, reg);
1717 	reg = CSR_READ_4(sc, ALE_MASTER_CFG);
1718 	reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK);
1719 	reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
1720 	if (ALE_USECS(sc->ale_int_rx_mod) != 0)
1721 		reg |= MASTER_IM_RX_TIMER_ENB;
1722 	if (ALE_USECS(sc->ale_int_tx_mod) != 0)
1723 		reg |= MASTER_IM_TX_TIMER_ENB;
1724 	CSR_WRITE_4(sc, ALE_MASTER_CFG, reg);
1725 	CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000));
1726 
1727 	/* Set Maximum frame size of controller. */
1728 	if (ifp->if_mtu < ETHERMTU)
1729 		sc->ale_max_frame_size = ETHERMTU;
1730 	else
1731 		sc->ale_max_frame_size = ifp->if_mtu;
1732 	sc->ale_max_frame_size += ETHER_HDR_LEN + EVL_ENCAPLEN + ETHER_CRC_LEN;
1733 	CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size);
1734 
1735 	/* Configure IPG/IFG parameters. */
1736 	CSR_WRITE_4(sc, ALE_IPG_IFG_CFG,
1737 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
1738 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1739 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1740 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
1741 
1742 	/* Set parameters for half-duplex media. */
1743 	CSR_WRITE_4(sc, ALE_HDPX_CFG,
1744 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1745 	    HDPX_CFG_LCOL_MASK) |
1746 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1747 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1748 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1749 	    HDPX_CFG_ABEBT_MASK) |
1750 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1751 	    HDPX_CFG_JAMIPG_MASK));
1752 
1753 	/* Configure Tx jumbo frame parameters. */
1754 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
1755 		if (ifp->if_mtu < ETHERMTU)
1756 			reg = sc->ale_max_frame_size;
1757 		else if (ifp->if_mtu < 6 * 1024)
1758 			reg = (sc->ale_max_frame_size * 2) / 3;
1759 		else
1760 			reg = sc->ale_max_frame_size / 2;
1761 		CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH,
1762 		    roundup(reg, TX_JUMBO_THRESH_UNIT) >>
1763 		    TX_JUMBO_THRESH_UNIT_SHIFT);
1764 	}
1765 
1766 	/* Configure TxQ. */
1767 	reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT))
1768 	    << TXQ_CFG_TX_FIFO_BURST_SHIFT;
1769 	reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1770 	    TXQ_CFG_TPD_BURST_MASK;
1771 	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB);
1772 
1773 	/* Configure Rx jumbo frame & flow control parameters. */
1774 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
1775 		reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT);
1776 		CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH,
1777 		    (((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) <<
1778 		    RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) |
1779 		    ((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) &
1780 		    RX_JUMBO_LKAH_MASK));
1781 		reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
1782 		rxf_hi = (reg * 7) / 10;
1783 		rxf_lo = (reg * 3)/ 10;
1784 		CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH,
1785 		    ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
1786 		    RX_FIFO_PAUSE_THRESH_LO_MASK) |
1787 		    ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
1788 		     RX_FIFO_PAUSE_THRESH_HI_MASK));
1789 	}
1790 
1791 	/* Disable RSS. */
1792 	CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0);
1793 	CSR_WRITE_4(sc, ALE_RSS_CPU, 0);
1794 
1795 	/* Configure RxQ. */
1796 	CSR_WRITE_4(sc, ALE_RXQ_CFG,
1797 	    RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1798 
1799 	/* Configure DMA parameters. */
1800 	reg = 0;
1801 	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0)
1802 		reg |= DMA_CFG_TXCMB_ENB;
1803 	CSR_WRITE_4(sc, ALE_DMA_CFG,
1804 	    DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 |
1805 	    sc->ale_dma_rd_burst | reg |
1806 	    sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB |
1807 	    ((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
1808 	    DMA_CFG_RD_DELAY_CNT_MASK) |
1809 	    ((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
1810 	    DMA_CFG_WR_DELAY_CNT_MASK));
1811 
1812 	/*
1813 	 * Hardware can be configured to issue SMB interrupt based
1814 	 * on programmed interval. Since there is a callout that is
1815 	 * invoked for every hz in driver we use that instead of
1816 	 * relying on periodic SMB interrupt.
1817 	 */
1818 	CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0));
1819 
1820 	/* Clear MAC statistics. */
1821 	ale_stats_clear(sc);
1822 
1823 	/*
1824 	 * Configure Tx/Rx MACs.
1825 	 *  - Auto-padding for short frames.
1826 	 *  - Enable CRC generation.
1827 	 *  Actual reconfiguration of MAC for resolved speed/duplex
1828 	 *  is followed after detection of link establishment.
1829 	 *  AR81xx always does checksum computation regardless of
1830 	 *  MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will
1831 	 *  cause Rx handling issue for fragmented IP datagrams due
1832 	 *  to silicon bug.
1833 	 */
1834 	reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
1835 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1836 	    MAC_CFG_PREAMBLE_MASK);
1837 	if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0)
1838 		reg |= MAC_CFG_SPEED_10_100;
1839 	else
1840 		reg |= MAC_CFG_SPEED_1000;
1841 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1842 
1843 	/* Set up the receive filter. */
1844 	ale_iff(sc);
1845 
1846 	ale_rxvlan(sc);
1847 
1848 	/* Acknowledge all pending interrupts and clear it. */
1849 	CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS);
1850 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1851 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0);
1852 
1853 	sc->ale_flags &= ~ALE_FLAG_LINK;
1854 
1855 	/* Switch to the current media. */
1856 	mii = &sc->sc_miibus;
1857 	mii_mediachg(mii);
1858 
1859 	timeout_add_sec(&sc->ale_tick_ch, 1);
1860 
1861 	ifp->if_flags |= IFF_RUNNING;
1862 	ifp->if_flags &= ~IFF_OACTIVE;
1863 
1864 	return 0;
1865 }
1866 
1867 void
1868 ale_stop(struct ale_softc *sc)
1869 {
1870 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1871 	struct ale_txdesc *txd;
1872 	uint32_t reg;
1873 	int i;
1874 
1875 	/*
1876 	 * Mark the interface down and cancel the watchdog timer.
1877 	 */
1878 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1879 	ifp->if_timer = 0;
1880 
1881 	timeout_del(&sc->ale_tick_ch);
1882 	sc->ale_flags &= ~ALE_FLAG_LINK;
1883 
1884 	ale_stats_update(sc);
1885 
1886 	/* Disable interrupts. */
1887 	CSR_WRITE_4(sc, ALE_INTR_MASK, 0);
1888 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1889 
1890 	/* Disable queue processing and DMA. */
1891 	reg = CSR_READ_4(sc, ALE_TXQ_CFG);
1892 	reg &= ~TXQ_CFG_ENB;
1893 	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg);
1894 	reg = CSR_READ_4(sc, ALE_RXQ_CFG);
1895 	reg &= ~RXQ_CFG_ENB;
1896 	CSR_WRITE_4(sc, ALE_RXQ_CFG, reg);
1897 	reg = CSR_READ_4(sc, ALE_DMA_CFG);
1898 	reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB);
1899 	CSR_WRITE_4(sc, ALE_DMA_CFG, reg);
1900 	DELAY(1000);
1901 
1902 	/* Stop Rx/Tx MACs. */
1903 	ale_stop_mac(sc);
1904 
1905 	/* Disable interrupts again? XXX */
1906 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1907 
1908 	/*
1909 	 * Free TX mbufs still in the queues.
1910 	 */
1911 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
1912 		txd = &sc->ale_cdata.ale_txdesc[i];
1913 		if (txd->tx_m != NULL) {
1914 			bus_dmamap_sync(sc->sc_dmat, txd->tx_dmamap, 0,
1915 			    txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1916 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1917 			m_freem(txd->tx_m);
1918 			txd->tx_m = NULL;
1919 		}
1920         }
1921 }
1922 
1923 void
1924 ale_stop_mac(struct ale_softc *sc)
1925 {
1926 	uint32_t reg;
1927 	int i;
1928 
1929 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
1930 	if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
1931 		reg &= ~(MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
1932 		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1933 	}
1934 
1935 	for (i = ALE_TIMEOUT; i > 0; i--) {
1936 		reg = CSR_READ_4(sc, ALE_IDLE_STATUS);
1937 		if (reg == 0)
1938 			break;
1939 		DELAY(10);
1940 	}
1941 	if (i == 0)
1942 		printf("%s: could not disable Tx/Rx MAC(0x%08x)!\n",
1943 		    sc->sc_dev.dv_xname, reg);
1944 }
1945 
1946 void
1947 ale_init_tx_ring(struct ale_softc *sc)
1948 {
1949 	struct ale_txdesc *txd;
1950 	int i;
1951 
1952 	sc->ale_cdata.ale_tx_prod = 0;
1953 	sc->ale_cdata.ale_tx_cons = 0;
1954 	sc->ale_cdata.ale_tx_cnt = 0;
1955 
1956 	bzero(sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ);
1957 	bzero(sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ);
1958 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
1959 		txd = &sc->ale_cdata.ale_txdesc[i];
1960 		txd->tx_m = NULL;
1961 	}
1962 	*sc->ale_cdata.ale_tx_cmb = 0;
1963 	bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0,
1964 	    sc->ale_cdata.ale_tx_cmb_map->dm_mapsize,
1965 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1966 	bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1967 	    sc->ale_cdata.ale_tx_ring_map->dm_mapsize,
1968 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1969 }
1970 
1971 void
1972 ale_init_rx_pages(struct ale_softc *sc)
1973 {
1974 	struct ale_rx_page *rx_page;
1975 	int i;
1976 
1977 	sc->ale_cdata.ale_rx_seqno = 0;
1978 	sc->ale_cdata.ale_rx_curp = 0;
1979 
1980 	for (i = 0; i < ALE_RX_PAGES; i++) {
1981 		rx_page = &sc->ale_cdata.ale_rx_page[i];
1982 		bzero(rx_page->page_addr, sc->ale_pagesize);
1983 		bzero(rx_page->cmb_addr, ALE_RX_CMB_SZ);
1984 		rx_page->cons = 0;
1985 		*rx_page->cmb_addr = 0;
1986 		bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1987 		    rx_page->page_map->dm_mapsize,
1988 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1989 		bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1990 		    rx_page->cmb_map->dm_mapsize,
1991 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1992 	}
1993 }
1994 
1995 void
1996 ale_rxvlan(struct ale_softc *sc)
1997 {
1998 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1999 	uint32_t reg;
2000 
2001 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
2002 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2003 	if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)
2004 		reg |= MAC_CFG_VLAN_TAG_STRIP;
2005 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2006 }
2007 
2008 void
2009 ale_iff(struct ale_softc *sc)
2010 {
2011 	struct arpcom *ac = &sc->sc_arpcom;
2012 	struct ifnet *ifp = &ac->ac_if;
2013 	struct ether_multi *enm;
2014 	struct ether_multistep step;
2015 	uint32_t crc;
2016 	uint32_t mchash[2];
2017 	uint32_t rxcfg;
2018 
2019 	rxcfg = CSR_READ_4(sc, ALE_MAC_CFG);
2020 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2021 	ifp->if_flags &= ~IFF_ALLMULTI;
2022 
2023 	/*
2024 	 * Always accept broadcast frames.
2025 	 */
2026 	rxcfg |= MAC_CFG_BCAST;
2027 
2028 	if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
2029 		ifp->if_flags |= IFF_ALLMULTI;
2030 		if (ifp->if_flags & IFF_PROMISC)
2031 			rxcfg |= MAC_CFG_PROMISC;
2032 		else
2033 			rxcfg |= MAC_CFG_ALLMULTI;
2034 		mchash[0] = mchash[1] = 0xFFFFFFFF;
2035 	} else {
2036 		/* Program new filter. */
2037 		bzero(mchash, sizeof(mchash));
2038 
2039 		ETHER_FIRST_MULTI(step, ac, enm);
2040 		while (enm != NULL) {
2041 			crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2042 
2043 			mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2044 
2045 			ETHER_NEXT_MULTI(step, enm);
2046 		}
2047 	}
2048 
2049 	CSR_WRITE_4(sc, ALE_MAR0, mchash[0]);
2050 	CSR_WRITE_4(sc, ALE_MAR1, mchash[1]);
2051 	CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
2052 }
2053