1 /* $OpenBSD: if_bnx.c,v 1.133 2023/11/10 15:51:20 bluhm Exp $ */ 2 3 /*- 4 * Copyright (c) 2006 Broadcom Corporation 5 * David Christensen <davidch@broadcom.com>. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of Broadcom Corporation nor the name of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written consent. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS' 21 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 30 * THE POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 /* 34 * The following controllers are supported by this driver: 35 * BCM5706C A2, A3 36 * BCM5706S A2, A3 37 * BCM5708C B1, B2 38 * BCM5708S B1, B2 39 * BCM5709C A1, C0 40 * BCM5709S A1, C0 41 * BCM5716 C0 42 * 43 * The following controllers are not supported by this driver: 44 * BCM5706C A0, A1 45 * BCM5706S A0, A1 46 * BCM5708C A0, B0 47 * BCM5708S A0, B0 48 * BCM5709C A0 B0, B1, B2 (pre-production) 49 * BCM5709S A0, B0, B1, B2 (pre-production) 50 */ 51 52 #include <dev/pci/if_bnxreg.h> 53 54 struct bnx_firmware { 55 char *filename; 56 struct bnx_firmware_header *fw; 57 58 u_int32_t *bnx_COM_FwText; 59 u_int32_t *bnx_COM_FwData; 60 u_int32_t *bnx_COM_FwRodata; 61 u_int32_t *bnx_COM_FwBss; 62 u_int32_t *bnx_COM_FwSbss; 63 64 u_int32_t *bnx_RXP_FwText; 65 u_int32_t *bnx_RXP_FwData; 66 u_int32_t *bnx_RXP_FwRodata; 67 u_int32_t *bnx_RXP_FwBss; 68 u_int32_t *bnx_RXP_FwSbss; 69 70 u_int32_t *bnx_TPAT_FwText; 71 u_int32_t *bnx_TPAT_FwData; 72 u_int32_t *bnx_TPAT_FwRodata; 73 u_int32_t *bnx_TPAT_FwBss; 74 u_int32_t *bnx_TPAT_FwSbss; 75 76 u_int32_t *bnx_TXP_FwText; 77 u_int32_t *bnx_TXP_FwData; 78 u_int32_t *bnx_TXP_FwRodata; 79 u_int32_t *bnx_TXP_FwBss; 80 u_int32_t *bnx_TXP_FwSbss; 81 }; 82 83 struct bnx_firmware bnx_firmwares[] = { 84 { "bnx-b06", NULL }, 85 { "bnx-b09", NULL } 86 }; 87 #define BNX_FW_B06 0 88 #define BNX_FW_B09 1 89 90 struct bnx_rv2p { 91 char *filename; 92 struct bnx_rv2p_header *fw; 93 94 u_int32_t *bnx_rv2p_proc1; 95 u_int32_t *bnx_rv2p_proc2; 96 }; 97 98 struct bnx_rv2p bnx_rv2ps[] = { 99 { "bnx-rv2p", NULL }, 100 { "bnx-xi-rv2p", NULL }, 101 { "bnx-xi90-rv2p", NULL } 102 }; 103 #define BNX_RV2P 0 104 #define BNX_XI_RV2P 1 105 #define BNX_XI90_RV2P 2 106 107 void nswaph(u_int32_t *p, int wcount); 108 109 /****************************************************************************/ 110 /* BNX Driver Version */ 111 /****************************************************************************/ 112 113 #define BNX_DRIVER_VERSION "v0.9.6" 114 115 /****************************************************************************/ 116 /* BNX Debug Options */ 117 /****************************************************************************/ 118 #ifdef BNX_DEBUG 119 u_int32_t bnx_debug = BNX_WARN; 120 121 /* 0 = Never */ 122 /* 1 = 1 in 2,147,483,648 */ 123 /* 256 = 1 in 8,388,608 */ 124 /* 2048 = 1 in 1,048,576 */ 125 /* 65536 = 1 in 32,768 */ 126 /* 1048576 = 1 in 2,048 */ 127 /* 268435456 = 1 in 8 */ 128 /* 536870912 = 1 in 4 */ 129 /* 1073741824 = 1 in 2 */ 130 131 /* Controls how often the l2_fhdr frame error check will fail. */ 132 int bnx_debug_l2fhdr_status_check = 0; 133 134 /* Controls how often the unexpected attention check will fail. */ 135 int bnx_debug_unexpected_attention = 0; 136 137 /* Controls how often to simulate an mbuf allocation failure. */ 138 int bnx_debug_mbuf_allocation_failure = 0; 139 140 /* Controls how often to simulate a DMA mapping failure. */ 141 int bnx_debug_dma_map_addr_failure = 0; 142 143 /* Controls how often to simulate a bootcode failure. */ 144 int bnx_debug_bootcode_running_failure = 0; 145 #endif 146 147 /****************************************************************************/ 148 /* PCI Device ID Table */ 149 /* */ 150 /* Used by bnx_probe() to identify the devices supported by this driver. */ 151 /****************************************************************************/ 152 const struct pci_matchid bnx_devices[] = { 153 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706 }, 154 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S }, 155 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708 }, 156 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S }, 157 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709 }, 158 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S }, 159 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716 }, 160 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S } 161 }; 162 163 /****************************************************************************/ 164 /* Supported Flash NVRAM device data. */ 165 /****************************************************************************/ 166 static struct flash_spec flash_table[] = 167 { 168 #define BUFFERED_FLAGS (BNX_NV_BUFFERED | BNX_NV_TRANSLATE) 169 #define NONBUFFERED_FLAGS (BNX_NV_WREN) 170 171 /* Slow EEPROM */ 172 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400, 173 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE, 174 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE, 175 "EEPROM - slow"}, 176 /* Expansion entry 0001 */ 177 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406, 178 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 179 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 180 "Entry 0001"}, 181 /* Saifun SA25F010 (non-buffered flash) */ 182 /* strap, cfg1, & write1 need updates */ 183 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406, 184 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 185 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2, 186 "Non-buffered flash (128kB)"}, 187 /* Saifun SA25F020 (non-buffered flash) */ 188 /* strap, cfg1, & write1 need updates */ 189 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406, 190 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 191 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4, 192 "Non-buffered flash (256kB)"}, 193 /* Expansion entry 0100 */ 194 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406, 195 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 196 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 197 "Entry 0100"}, 198 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */ 199 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406, 200 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE, 201 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2, 202 "Entry 0101: ST M45PE10 (128kB non-buffered)"}, 203 /* Entry 0110: ST M45PE20 (non-buffered flash)*/ 204 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406, 205 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE, 206 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4, 207 "Entry 0110: ST M45PE20 (256kB non-buffered)"}, 208 /* Saifun SA25F005 (non-buffered flash) */ 209 /* strap, cfg1, & write1 need updates */ 210 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406, 211 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 212 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE, 213 "Non-buffered flash (64kB)"}, 214 /* Fast EEPROM */ 215 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400, 216 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE, 217 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE, 218 "EEPROM - fast"}, 219 /* Expansion entry 1001 */ 220 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406, 221 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 222 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 223 "Entry 1001"}, 224 /* Expansion entry 1010 */ 225 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406, 226 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 227 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 228 "Entry 1010"}, 229 /* ATMEL AT45DB011B (buffered flash) */ 230 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400, 231 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, 232 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE, 233 "Buffered flash (128kB)"}, 234 /* Expansion entry 1100 */ 235 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406, 236 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 237 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 238 "Entry 1100"}, 239 /* Expansion entry 1101 */ 240 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406, 241 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 242 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 243 "Entry 1101"}, 244 /* Ateml Expansion entry 1110 */ 245 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400, 246 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, 247 BUFFERED_FLASH_BYTE_ADDR_MASK, 0, 248 "Entry 1110 (Atmel)"}, 249 /* ATMEL AT45DB021B (buffered flash) */ 250 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400, 251 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, 252 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2, 253 "Buffered flash (256kB)"}, 254 }; 255 256 /* 257 * The BCM5709 controllers transparently handle the 258 * differences between Atmel 264 byte pages and all 259 * flash devices which use 256 byte pages, so no 260 * logical-to-physical mapping is required in the 261 * driver. 262 */ 263 static struct flash_spec flash_5709 = { 264 .flags = BNX_NV_BUFFERED, 265 .page_bits = BCM5709_FLASH_PAGE_BITS, 266 .page_size = BCM5709_FLASH_PAGE_SIZE, 267 .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK, 268 .total_size = BUFFERED_FLASH_TOTAL_SIZE * 2, 269 .name = "5709 buffered flash (256kB)", 270 }; 271 272 /****************************************************************************/ 273 /* OpenBSD device entry points. */ 274 /****************************************************************************/ 275 int bnx_probe(struct device *, void *, void *); 276 void bnx_attach(struct device *, struct device *, void *); 277 void bnx_attachhook(struct device *); 278 int bnx_read_firmware(struct bnx_softc *sc, int); 279 int bnx_read_rv2p(struct bnx_softc *sc, int); 280 #if 0 281 void bnx_detach(void *); 282 #endif 283 284 /****************************************************************************/ 285 /* BNX Debug Data Structure Dump Routines */ 286 /****************************************************************************/ 287 #ifdef BNX_DEBUG 288 void bnx_dump_mbuf(struct bnx_softc *, struct mbuf *); 289 void bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int); 290 void bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int); 291 void bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *); 292 void bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *); 293 void bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *); 294 void bnx_dump_tx_chain(struct bnx_softc *, int, int); 295 void bnx_dump_rx_chain(struct bnx_softc *, int, int); 296 void bnx_dump_status_block(struct bnx_softc *); 297 void bnx_dump_stats_block(struct bnx_softc *); 298 void bnx_dump_driver_state(struct bnx_softc *); 299 void bnx_dump_hw_state(struct bnx_softc *); 300 void bnx_breakpoint(struct bnx_softc *); 301 #endif 302 303 /****************************************************************************/ 304 /* BNX Register/Memory Access Routines */ 305 /****************************************************************************/ 306 u_int32_t bnx_reg_rd_ind(struct bnx_softc *, u_int32_t); 307 void bnx_reg_wr_ind(struct bnx_softc *, u_int32_t, u_int32_t); 308 void bnx_ctx_wr(struct bnx_softc *, u_int32_t, u_int32_t, u_int32_t); 309 int bnx_miibus_read_reg(struct device *, int, int); 310 void bnx_miibus_write_reg(struct device *, int, int, int); 311 void bnx_miibus_statchg(struct device *); 312 313 /****************************************************************************/ 314 /* BNX NVRAM Access Routines */ 315 /****************************************************************************/ 316 int bnx_acquire_nvram_lock(struct bnx_softc *); 317 int bnx_release_nvram_lock(struct bnx_softc *); 318 void bnx_enable_nvram_access(struct bnx_softc *); 319 void bnx_disable_nvram_access(struct bnx_softc *); 320 int bnx_nvram_read_dword(struct bnx_softc *, u_int32_t, u_int8_t *, 321 u_int32_t); 322 int bnx_init_nvram(struct bnx_softc *); 323 int bnx_nvram_read(struct bnx_softc *, u_int32_t, u_int8_t *, int); 324 int bnx_nvram_test(struct bnx_softc *); 325 #ifdef BNX_NVRAM_WRITE_SUPPORT 326 int bnx_enable_nvram_write(struct bnx_softc *); 327 void bnx_disable_nvram_write(struct bnx_softc *); 328 int bnx_nvram_erase_page(struct bnx_softc *, u_int32_t); 329 int bnx_nvram_write_dword(struct bnx_softc *, u_int32_t, u_int8_t *, 330 u_int32_t); 331 int bnx_nvram_write(struct bnx_softc *, u_int32_t, u_int8_t *, int); 332 #endif 333 334 /****************************************************************************/ 335 /* */ 336 /****************************************************************************/ 337 void bnx_get_media(struct bnx_softc *); 338 void bnx_init_media(struct bnx_softc *); 339 int bnx_dma_alloc(struct bnx_softc *); 340 void bnx_dma_free(struct bnx_softc *); 341 void bnx_release_resources(struct bnx_softc *); 342 343 /****************************************************************************/ 344 /* BNX Firmware Synchronization and Load */ 345 /****************************************************************************/ 346 int bnx_fw_sync(struct bnx_softc *, u_int32_t); 347 void bnx_load_rv2p_fw(struct bnx_softc *, u_int32_t *, u_int32_t, 348 u_int32_t); 349 void bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *, 350 struct fw_info *); 351 void bnx_init_cpus(struct bnx_softc *); 352 353 void bnx_stop(struct bnx_softc *); 354 int bnx_reset(struct bnx_softc *, u_int32_t); 355 int bnx_chipinit(struct bnx_softc *); 356 int bnx_blockinit(struct bnx_softc *); 357 int bnx_get_buf(struct bnx_softc *, u_int16_t *, u_int16_t *, u_int32_t *); 358 359 int bnx_init_tx_chain(struct bnx_softc *); 360 void bnx_init_tx_context(struct bnx_softc *); 361 int bnx_fill_rx_chain(struct bnx_softc *); 362 void bnx_init_rx_context(struct bnx_softc *); 363 int bnx_init_rx_chain(struct bnx_softc *); 364 void bnx_free_rx_chain(struct bnx_softc *); 365 void bnx_free_tx_chain(struct bnx_softc *); 366 void bnx_rxrefill(void *); 367 368 int bnx_tx_encap(struct bnx_softc *, struct mbuf *, int *); 369 void bnx_start(struct ifqueue *); 370 int bnx_ioctl(struct ifnet *, u_long, caddr_t); 371 void bnx_watchdog(struct ifnet *); 372 int bnx_ifmedia_upd(struct ifnet *); 373 void bnx_ifmedia_sts(struct ifnet *, struct ifmediareq *); 374 void bnx_init(void *); 375 void bnx_mgmt_init(struct bnx_softc *sc); 376 377 void bnx_init_context(struct bnx_softc *); 378 void bnx_get_mac_addr(struct bnx_softc *); 379 void bnx_set_mac_addr(struct bnx_softc *); 380 void bnx_phy_intr(struct bnx_softc *); 381 void bnx_rx_intr(struct bnx_softc *); 382 void bnx_tx_intr(struct bnx_softc *); 383 void bnx_disable_intr(struct bnx_softc *); 384 void bnx_enable_intr(struct bnx_softc *); 385 386 int bnx_intr(void *); 387 void bnx_iff(struct bnx_softc *); 388 void bnx_stats_update(struct bnx_softc *); 389 void bnx_tick(void *); 390 391 /****************************************************************************/ 392 /* OpenBSD device dispatch table. */ 393 /****************************************************************************/ 394 const struct cfattach bnx_ca = { 395 sizeof(struct bnx_softc), bnx_probe, bnx_attach 396 }; 397 398 struct cfdriver bnx_cd = { 399 NULL, "bnx", DV_IFNET 400 }; 401 402 /****************************************************************************/ 403 /* Device probe function. */ 404 /* */ 405 /* Compares the device to the driver's list of supported devices and */ 406 /* reports back to the OS whether this is the right driver for the device. */ 407 /* */ 408 /* Returns: */ 409 /* BUS_PROBE_DEFAULT on success, positive value on failure. */ 410 /****************************************************************************/ 411 int 412 bnx_probe(struct device *parent, void *match, void *aux) 413 { 414 return (pci_matchbyid((struct pci_attach_args *)aux, bnx_devices, 415 nitems(bnx_devices))); 416 } 417 418 void 419 nswaph(u_int32_t *p, int wcount) 420 { 421 for (; wcount; wcount -=4) { 422 *p = ntohl(*p); 423 p++; 424 } 425 } 426 427 int 428 bnx_read_firmware(struct bnx_softc *sc, int idx) 429 { 430 struct bnx_firmware *bfw = &bnx_firmwares[idx]; 431 struct bnx_firmware_header *hdr = bfw->fw; 432 u_char *p, *q; 433 size_t size; 434 int error; 435 436 if (hdr != NULL) 437 return (0); 438 439 if ((error = loadfirmware(bfw->filename, &p, &size)) != 0) 440 return (error); 441 442 if (size < sizeof(struct bnx_firmware_header)) { 443 free(p, M_DEVBUF, size); 444 return (EINVAL); 445 } 446 447 hdr = (struct bnx_firmware_header *)p; 448 449 hdr->bnx_COM_FwReleaseMajor = ntohl(hdr->bnx_COM_FwReleaseMajor); 450 hdr->bnx_COM_FwReleaseMinor = ntohl(hdr->bnx_COM_FwReleaseMinor); 451 hdr->bnx_COM_FwReleaseFix = ntohl(hdr->bnx_COM_FwReleaseFix); 452 hdr->bnx_COM_FwStartAddr = ntohl(hdr->bnx_COM_FwStartAddr); 453 hdr->bnx_COM_FwTextAddr = ntohl(hdr->bnx_COM_FwTextAddr); 454 hdr->bnx_COM_FwTextLen = ntohl(hdr->bnx_COM_FwTextLen); 455 hdr->bnx_COM_FwDataAddr = ntohl(hdr->bnx_COM_FwDataAddr); 456 hdr->bnx_COM_FwDataLen = ntohl(hdr->bnx_COM_FwDataLen); 457 hdr->bnx_COM_FwRodataAddr = ntohl(hdr->bnx_COM_FwRodataAddr); 458 hdr->bnx_COM_FwRodataLen = ntohl(hdr->bnx_COM_FwRodataLen); 459 hdr->bnx_COM_FwBssAddr = ntohl(hdr->bnx_COM_FwBssAddr); 460 hdr->bnx_COM_FwBssLen = ntohl(hdr->bnx_COM_FwBssLen); 461 hdr->bnx_COM_FwSbssAddr = ntohl(hdr->bnx_COM_FwSbssAddr); 462 hdr->bnx_COM_FwSbssLen = ntohl(hdr->bnx_COM_FwSbssLen); 463 464 hdr->bnx_RXP_FwReleaseMajor = ntohl(hdr->bnx_RXP_FwReleaseMajor); 465 hdr->bnx_RXP_FwReleaseMinor = ntohl(hdr->bnx_RXP_FwReleaseMinor); 466 hdr->bnx_RXP_FwReleaseFix = ntohl(hdr->bnx_RXP_FwReleaseFix); 467 hdr->bnx_RXP_FwStartAddr = ntohl(hdr->bnx_RXP_FwStartAddr); 468 hdr->bnx_RXP_FwTextAddr = ntohl(hdr->bnx_RXP_FwTextAddr); 469 hdr->bnx_RXP_FwTextLen = ntohl(hdr->bnx_RXP_FwTextLen); 470 hdr->bnx_RXP_FwDataAddr = ntohl(hdr->bnx_RXP_FwDataAddr); 471 hdr->bnx_RXP_FwDataLen = ntohl(hdr->bnx_RXP_FwDataLen); 472 hdr->bnx_RXP_FwRodataAddr = ntohl(hdr->bnx_RXP_FwRodataAddr); 473 hdr->bnx_RXP_FwRodataLen = ntohl(hdr->bnx_RXP_FwRodataLen); 474 hdr->bnx_RXP_FwBssAddr = ntohl(hdr->bnx_RXP_FwBssAddr); 475 hdr->bnx_RXP_FwBssLen = ntohl(hdr->bnx_RXP_FwBssLen); 476 hdr->bnx_RXP_FwSbssAddr = ntohl(hdr->bnx_RXP_FwSbssAddr); 477 hdr->bnx_RXP_FwSbssLen = ntohl(hdr->bnx_RXP_FwSbssLen); 478 479 hdr->bnx_TPAT_FwReleaseMajor = ntohl(hdr->bnx_TPAT_FwReleaseMajor); 480 hdr->bnx_TPAT_FwReleaseMinor = ntohl(hdr->bnx_TPAT_FwReleaseMinor); 481 hdr->bnx_TPAT_FwReleaseFix = ntohl(hdr->bnx_TPAT_FwReleaseFix); 482 hdr->bnx_TPAT_FwStartAddr = ntohl(hdr->bnx_TPAT_FwStartAddr); 483 hdr->bnx_TPAT_FwTextAddr = ntohl(hdr->bnx_TPAT_FwTextAddr); 484 hdr->bnx_TPAT_FwTextLen = ntohl(hdr->bnx_TPAT_FwTextLen); 485 hdr->bnx_TPAT_FwDataAddr = ntohl(hdr->bnx_TPAT_FwDataAddr); 486 hdr->bnx_TPAT_FwDataLen = ntohl(hdr->bnx_TPAT_FwDataLen); 487 hdr->bnx_TPAT_FwRodataAddr = ntohl(hdr->bnx_TPAT_FwRodataAddr); 488 hdr->bnx_TPAT_FwRodataLen = ntohl(hdr->bnx_TPAT_FwRodataLen); 489 hdr->bnx_TPAT_FwBssAddr = ntohl(hdr->bnx_TPAT_FwBssAddr); 490 hdr->bnx_TPAT_FwBssLen = ntohl(hdr->bnx_TPAT_FwBssLen); 491 hdr->bnx_TPAT_FwSbssAddr = ntohl(hdr->bnx_TPAT_FwSbssAddr); 492 hdr->bnx_TPAT_FwSbssLen = ntohl(hdr->bnx_TPAT_FwSbssLen); 493 494 hdr->bnx_TXP_FwReleaseMajor = ntohl(hdr->bnx_TXP_FwReleaseMajor); 495 hdr->bnx_TXP_FwReleaseMinor = ntohl(hdr->bnx_TXP_FwReleaseMinor); 496 hdr->bnx_TXP_FwReleaseFix = ntohl(hdr->bnx_TXP_FwReleaseFix); 497 hdr->bnx_TXP_FwStartAddr = ntohl(hdr->bnx_TXP_FwStartAddr); 498 hdr->bnx_TXP_FwTextAddr = ntohl(hdr->bnx_TXP_FwTextAddr); 499 hdr->bnx_TXP_FwTextLen = ntohl(hdr->bnx_TXP_FwTextLen); 500 hdr->bnx_TXP_FwDataAddr = ntohl(hdr->bnx_TXP_FwDataAddr); 501 hdr->bnx_TXP_FwDataLen = ntohl(hdr->bnx_TXP_FwDataLen); 502 hdr->bnx_TXP_FwRodataAddr = ntohl(hdr->bnx_TXP_FwRodataAddr); 503 hdr->bnx_TXP_FwRodataLen = ntohl(hdr->bnx_TXP_FwRodataLen); 504 hdr->bnx_TXP_FwBssAddr = ntohl(hdr->bnx_TXP_FwBssAddr); 505 hdr->bnx_TXP_FwBssLen = ntohl(hdr->bnx_TXP_FwBssLen); 506 hdr->bnx_TXP_FwSbssAddr = ntohl(hdr->bnx_TXP_FwSbssAddr); 507 hdr->bnx_TXP_FwSbssLen = ntohl(hdr->bnx_TXP_FwSbssLen); 508 509 q = p + sizeof(*hdr); 510 511 bfw->bnx_COM_FwText = (u_int32_t *)q; 512 q += hdr->bnx_COM_FwTextLen; 513 nswaph(bfw->bnx_COM_FwText, hdr->bnx_COM_FwTextLen); 514 bfw->bnx_COM_FwData = (u_int32_t *)q; 515 q += hdr->bnx_COM_FwDataLen; 516 nswaph(bfw->bnx_COM_FwData, hdr->bnx_COM_FwDataLen); 517 bfw->bnx_COM_FwRodata = (u_int32_t *)q; 518 q += hdr->bnx_COM_FwRodataLen; 519 nswaph(bfw->bnx_COM_FwRodata, hdr->bnx_COM_FwRodataLen); 520 bfw->bnx_COM_FwBss = (u_int32_t *)q; 521 q += hdr->bnx_COM_FwBssLen; 522 nswaph(bfw->bnx_COM_FwBss, hdr->bnx_COM_FwBssLen); 523 bfw->bnx_COM_FwSbss = (u_int32_t *)q; 524 q += hdr->bnx_COM_FwSbssLen; 525 nswaph(bfw->bnx_COM_FwSbss, hdr->bnx_COM_FwSbssLen); 526 527 bfw->bnx_RXP_FwText = (u_int32_t *)q; 528 q += hdr->bnx_RXP_FwTextLen; 529 nswaph(bfw->bnx_RXP_FwText, hdr->bnx_RXP_FwTextLen); 530 bfw->bnx_RXP_FwData = (u_int32_t *)q; 531 q += hdr->bnx_RXP_FwDataLen; 532 nswaph(bfw->bnx_RXP_FwData, hdr->bnx_RXP_FwDataLen); 533 bfw->bnx_RXP_FwRodata = (u_int32_t *)q; 534 q += hdr->bnx_RXP_FwRodataLen; 535 nswaph(bfw->bnx_RXP_FwRodata, hdr->bnx_RXP_FwRodataLen); 536 bfw->bnx_RXP_FwBss = (u_int32_t *)q; 537 q += hdr->bnx_RXP_FwBssLen; 538 nswaph(bfw->bnx_RXP_FwBss, hdr->bnx_RXP_FwBssLen); 539 bfw->bnx_RXP_FwSbss = (u_int32_t *)q; 540 q += hdr->bnx_RXP_FwSbssLen; 541 nswaph(bfw->bnx_RXP_FwSbss, hdr->bnx_RXP_FwSbssLen); 542 543 bfw->bnx_TPAT_FwText = (u_int32_t *)q; 544 q += hdr->bnx_TPAT_FwTextLen; 545 nswaph(bfw->bnx_TPAT_FwText, hdr->bnx_TPAT_FwTextLen); 546 bfw->bnx_TPAT_FwData = (u_int32_t *)q; 547 q += hdr->bnx_TPAT_FwDataLen; 548 nswaph(bfw->bnx_TPAT_FwData, hdr->bnx_TPAT_FwDataLen); 549 bfw->bnx_TPAT_FwRodata = (u_int32_t *)q; 550 q += hdr->bnx_TPAT_FwRodataLen; 551 nswaph(bfw->bnx_TPAT_FwRodata, hdr->bnx_TPAT_FwRodataLen); 552 bfw->bnx_TPAT_FwBss = (u_int32_t *)q; 553 q += hdr->bnx_TPAT_FwBssLen; 554 nswaph(bfw->bnx_TPAT_FwBss, hdr->bnx_TPAT_FwBssLen); 555 bfw->bnx_TPAT_FwSbss = (u_int32_t *)q; 556 q += hdr->bnx_TPAT_FwSbssLen; 557 nswaph(bfw->bnx_TPAT_FwSbss, hdr->bnx_TPAT_FwSbssLen); 558 559 bfw->bnx_TXP_FwText = (u_int32_t *)q; 560 q += hdr->bnx_TXP_FwTextLen; 561 nswaph(bfw->bnx_TXP_FwText, hdr->bnx_TXP_FwTextLen); 562 bfw->bnx_TXP_FwData = (u_int32_t *)q; 563 q += hdr->bnx_TXP_FwDataLen; 564 nswaph(bfw->bnx_TXP_FwData, hdr->bnx_TXP_FwDataLen); 565 bfw->bnx_TXP_FwRodata = (u_int32_t *)q; 566 q += hdr->bnx_TXP_FwRodataLen; 567 nswaph(bfw->bnx_TXP_FwRodata, hdr->bnx_TXP_FwRodataLen); 568 bfw->bnx_TXP_FwBss = (u_int32_t *)q; 569 q += hdr->bnx_TXP_FwBssLen; 570 nswaph(bfw->bnx_TXP_FwBss, hdr->bnx_TXP_FwBssLen); 571 bfw->bnx_TXP_FwSbss = (u_int32_t *)q; 572 q += hdr->bnx_TXP_FwSbssLen; 573 nswaph(bfw->bnx_TXP_FwSbss, hdr->bnx_TXP_FwSbssLen); 574 575 if (q - p != size) { 576 free(p, M_DEVBUF, size); 577 hdr = NULL; 578 return EINVAL; 579 } 580 581 bfw->fw = hdr; 582 583 return (0); 584 } 585 586 int 587 bnx_read_rv2p(struct bnx_softc *sc, int idx) 588 { 589 struct bnx_rv2p *rv2p = &bnx_rv2ps[idx]; 590 struct bnx_rv2p_header *hdr = rv2p->fw; 591 u_char *p, *q; 592 size_t size; 593 int error; 594 595 if (hdr != NULL) 596 return (0); 597 598 if ((error = loadfirmware(rv2p->filename, &p, &size)) != 0) 599 return (error); 600 601 if (size < sizeof(struct bnx_rv2p_header)) { 602 free(p, M_DEVBUF, size); 603 return (EINVAL); 604 } 605 606 hdr = (struct bnx_rv2p_header *)p; 607 608 hdr->bnx_rv2p_proc1len = ntohl(hdr->bnx_rv2p_proc1len); 609 hdr->bnx_rv2p_proc2len = ntohl(hdr->bnx_rv2p_proc2len); 610 611 q = p + sizeof(*hdr); 612 613 rv2p->bnx_rv2p_proc1 = (u_int32_t *)q; 614 q += hdr->bnx_rv2p_proc1len; 615 nswaph(rv2p->bnx_rv2p_proc1, hdr->bnx_rv2p_proc1len); 616 rv2p->bnx_rv2p_proc2 = (u_int32_t *)q; 617 q += hdr->bnx_rv2p_proc2len; 618 nswaph(rv2p->bnx_rv2p_proc2, hdr->bnx_rv2p_proc2len); 619 620 if (q - p != size) { 621 free(p, M_DEVBUF, size); 622 return EINVAL; 623 } 624 625 rv2p->fw = hdr; 626 627 return (0); 628 } 629 630 631 /****************************************************************************/ 632 /* Device attach function. */ 633 /* */ 634 /* Allocates device resources, performs secondary chip identification, */ 635 /* resets and initializes the hardware, and initializes driver instance */ 636 /* variables. */ 637 /* */ 638 /* Returns: */ 639 /* 0 on success, positive value on failure. */ 640 /****************************************************************************/ 641 void 642 bnx_attach(struct device *parent, struct device *self, void *aux) 643 { 644 struct bnx_softc *sc = (struct bnx_softc *)self; 645 struct pci_attach_args *pa = aux; 646 pci_chipset_tag_t pc = pa->pa_pc; 647 u_int32_t val; 648 pcireg_t memtype; 649 const char *intrstr = NULL; 650 651 sc->bnx_pa = *pa; 652 653 /* 654 * Map control/status registers. 655 */ 656 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0); 657 if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag, 658 &sc->bnx_bhandle, NULL, &sc->bnx_size, 0)) { 659 printf(": can't find mem space\n"); 660 return; 661 } 662 663 if (pci_intr_map(pa, &sc->bnx_ih)) { 664 printf(": couldn't map interrupt\n"); 665 goto bnx_attach_fail; 666 } 667 intrstr = pci_intr_string(pc, sc->bnx_ih); 668 669 /* 670 * Configure byte swap and enable indirect register access. 671 * Rely on CPU to do target byte swapping on big endian systems. 672 * Access to registers outside of PCI configuration space are not 673 * valid until this is done. 674 */ 675 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG, 676 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA | 677 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP); 678 679 /* Save ASIC revision info. */ 680 sc->bnx_chipid = REG_RD(sc, BNX_MISC_ID); 681 682 /* 683 * Find the base address for shared memory access. 684 * Newer versions of bootcode use a signature and offset 685 * while older versions use a fixed address. 686 */ 687 val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE); 688 if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG) 689 sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 + 690 (sc->bnx_pa.pa_function << 2)); 691 else 692 sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE; 693 694 DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base); 695 696 /* Set initial device and PHY flags */ 697 sc->bnx_flags = 0; 698 sc->bnx_phy_flags = 0; 699 700 /* Get PCI bus information (speed and type). */ 701 val = REG_RD(sc, BNX_PCICFG_MISC_STATUS); 702 if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) { 703 u_int32_t clkreg; 704 705 sc->bnx_flags |= BNX_PCIX_FLAG; 706 707 clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS); 708 709 clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET; 710 switch (clkreg) { 711 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ: 712 sc->bus_speed_mhz = 133; 713 break; 714 715 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ: 716 sc->bus_speed_mhz = 100; 717 break; 718 719 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ: 720 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ: 721 sc->bus_speed_mhz = 66; 722 break; 723 724 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ: 725 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ: 726 sc->bus_speed_mhz = 50; 727 break; 728 729 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW: 730 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ: 731 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ: 732 sc->bus_speed_mhz = 33; 733 break; 734 } 735 } else if (val & BNX_PCICFG_MISC_STATUS_M66EN) 736 sc->bus_speed_mhz = 66; 737 else 738 sc->bus_speed_mhz = 33; 739 740 if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET) 741 sc->bnx_flags |= BNX_PCI_32BIT_FLAG; 742 743 /* Hookup IRQ last. */ 744 sc->bnx_intrhand = pci_intr_establish(pc, sc->bnx_ih, 745 IPL_NET | IPL_MPSAFE, bnx_intr, sc, sc->bnx_dev.dv_xname); 746 if (sc->bnx_intrhand == NULL) { 747 printf(": couldn't establish interrupt"); 748 if (intrstr != NULL) 749 printf(" at %s", intrstr); 750 printf("\n"); 751 goto bnx_attach_fail; 752 } 753 754 printf(": %s\n", intrstr); 755 756 config_mountroot(self, bnx_attachhook); 757 return; 758 759 bnx_attach_fail: 760 bnx_release_resources(sc); 761 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); 762 } 763 764 void 765 bnx_attachhook(struct device *self) 766 { 767 struct bnx_softc *sc = (struct bnx_softc *)self; 768 struct pci_attach_args *pa = &sc->bnx_pa; 769 struct ifnet *ifp; 770 int error, mii_flags = 0; 771 int fw = BNX_FW_B06; 772 int rv2p = BNX_RV2P; 773 774 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) { 775 fw = BNX_FW_B09; 776 if ((BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax)) 777 rv2p = BNX_XI90_RV2P; 778 else 779 rv2p = BNX_XI_RV2P; 780 } 781 782 if ((error = bnx_read_firmware(sc, fw)) != 0) { 783 printf("%s: error %d, could not read firmware\n", 784 sc->bnx_dev.dv_xname, error); 785 return; 786 } 787 788 if ((error = bnx_read_rv2p(sc, rv2p)) != 0) { 789 printf("%s: error %d, could not read rv2p\n", 790 sc->bnx_dev.dv_xname, error); 791 return; 792 } 793 794 /* Reset the controller. */ 795 if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) 796 goto bnx_attach_fail; 797 798 /* Initialize the controller. */ 799 if (bnx_chipinit(sc)) { 800 printf("%s: Controller initialization failed!\n", 801 sc->bnx_dev.dv_xname); 802 goto bnx_attach_fail; 803 } 804 805 /* Perform NVRAM test. */ 806 if (bnx_nvram_test(sc)) { 807 printf("%s: NVRAM test failed!\n", 808 sc->bnx_dev.dv_xname); 809 goto bnx_attach_fail; 810 } 811 812 /* Fetch the permanent Ethernet MAC address. */ 813 bnx_get_mac_addr(sc); 814 815 /* 816 * Trip points control how many BDs 817 * should be ready before generating an 818 * interrupt while ticks control how long 819 * a BD can sit in the chain before 820 * generating an interrupt. Set the default 821 * values for the RX and TX rings. 822 */ 823 824 #ifdef BNX_DEBUG 825 /* Force more frequent interrupts. */ 826 sc->bnx_tx_quick_cons_trip_int = 1; 827 sc->bnx_tx_quick_cons_trip = 1; 828 sc->bnx_tx_ticks_int = 0; 829 sc->bnx_tx_ticks = 0; 830 831 sc->bnx_rx_quick_cons_trip_int = 1; 832 sc->bnx_rx_quick_cons_trip = 1; 833 sc->bnx_rx_ticks_int = 0; 834 sc->bnx_rx_ticks = 0; 835 #else 836 sc->bnx_tx_quick_cons_trip_int = 20; 837 sc->bnx_tx_quick_cons_trip = 20; 838 sc->bnx_tx_ticks_int = 80; 839 sc->bnx_tx_ticks = 80; 840 841 sc->bnx_rx_quick_cons_trip_int = 6; 842 sc->bnx_rx_quick_cons_trip = 6; 843 sc->bnx_rx_ticks_int = 18; 844 sc->bnx_rx_ticks = 18; 845 #endif 846 847 /* Update statistics once every second. */ 848 sc->bnx_stats_ticks = 1000000 & 0xffff00; 849 850 /* Find the media type for the adapter. */ 851 bnx_get_media(sc); 852 853 /* 854 * Store config data needed by the PHY driver for 855 * backplane applications 856 */ 857 sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base + 858 BNX_SHARED_HW_CFG_CONFIG); 859 sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base + 860 BNX_PORT_HW_CFG_CONFIG); 861 862 /* Allocate DMA memory resources. */ 863 sc->bnx_dmatag = pa->pa_dmat; 864 if (bnx_dma_alloc(sc)) { 865 printf("%s: DMA resource allocation failed!\n", 866 sc->bnx_dev.dv_xname); 867 goto bnx_attach_fail; 868 } 869 870 /* Initialize the ifnet interface. */ 871 ifp = &sc->arpcom.ac_if; 872 ifp->if_softc = sc; 873 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 874 ifp->if_xflags = IFXF_MPSAFE; 875 ifp->if_ioctl = bnx_ioctl; 876 ifp->if_qstart = bnx_start; 877 ifp->if_watchdog = bnx_watchdog; 878 ifp->if_hardmtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN - 879 sizeof(struct ether_header); 880 ifq_init_maxlen(&ifp->if_snd, USABLE_TX_BD - 1); 881 bcopy(sc->eaddr, sc->arpcom.ac_enaddr, ETHER_ADDR_LEN); 882 bcopy(sc->bnx_dev.dv_xname, ifp->if_xname, IFNAMSIZ); 883 884 ifp->if_capabilities = IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4; 885 886 #if NVLAN > 0 887 ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING; 888 #endif 889 890 sc->mbuf_alloc_size = BNX_MAX_MRU; 891 892 printf("%s: address %s\n", sc->bnx_dev.dv_xname, 893 ether_sprintf(sc->arpcom.ac_enaddr)); 894 895 sc->bnx_mii.mii_ifp = ifp; 896 sc->bnx_mii.mii_readreg = bnx_miibus_read_reg; 897 sc->bnx_mii.mii_writereg = bnx_miibus_write_reg; 898 sc->bnx_mii.mii_statchg = bnx_miibus_statchg; 899 900 /* Handle any special PHY initialization for SerDes PHYs. */ 901 bnx_init_media(sc); 902 903 /* Look for our PHY. */ 904 ifmedia_init(&sc->bnx_mii.mii_media, 0, bnx_ifmedia_upd, 905 bnx_ifmedia_sts); 906 mii_flags |= MIIF_DOPAUSE; 907 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) 908 mii_flags |= MIIF_HAVEFIBER; 909 mii_attach(&sc->bnx_dev, &sc->bnx_mii, 0xffffffff, 910 sc->bnx_phy_addr, MII_OFFSET_ANY, mii_flags); 911 912 if (LIST_FIRST(&sc->bnx_mii.mii_phys) == NULL) { 913 printf("%s: no PHY found!\n", sc->bnx_dev.dv_xname); 914 ifmedia_add(&sc->bnx_mii.mii_media, 915 IFM_ETHER|IFM_MANUAL, 0, NULL); 916 ifmedia_set(&sc->bnx_mii.mii_media, 917 IFM_ETHER|IFM_MANUAL); 918 } else { 919 ifmedia_set(&sc->bnx_mii.mii_media, 920 IFM_ETHER|IFM_AUTO); 921 } 922 923 /* Attach to the Ethernet interface list. */ 924 if_attach(ifp); 925 ether_ifattach(ifp); 926 927 timeout_set(&sc->bnx_timeout, bnx_tick, sc); 928 timeout_set(&sc->bnx_rxrefill, bnx_rxrefill, sc); 929 930 /* Print some important debugging info. */ 931 DBRUN(BNX_INFO, bnx_dump_driver_state(sc)); 932 933 /* Get the firmware running so ASF still works. */ 934 bnx_mgmt_init(sc); 935 936 /* Handle interrupts */ 937 sc->bnx_flags |= BNX_ACTIVE_FLAG; 938 939 goto bnx_attach_exit; 940 941 bnx_attach_fail: 942 bnx_release_resources(sc); 943 944 bnx_attach_exit: 945 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); 946 } 947 948 /****************************************************************************/ 949 /* Device detach function. */ 950 /* */ 951 /* Stops the controller, resets the controller, and releases resources. */ 952 /* */ 953 /* Returns: */ 954 /* 0 on success, positive value on failure. */ 955 /****************************************************************************/ 956 #if 0 957 void 958 bnx_detach(void *xsc) 959 { 960 struct bnx_softc *sc; 961 struct ifnet *ifp = &sc->arpcom.ac_if; 962 963 sc = device_get_softc(dev); 964 965 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); 966 967 /* Stop and reset the controller. */ 968 bnx_stop(sc); 969 bnx_reset(sc, BNX_DRV_MSG_CODE_RESET); 970 971 ether_ifdetach(ifp); 972 973 /* If we have a child device on the MII bus remove it too. */ 974 bus_generic_detach(dev); 975 device_delete_child(dev, sc->bnx_mii); 976 977 /* Release all remaining resources. */ 978 bnx_release_resources(sc); 979 980 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); 981 982 return(0); 983 } 984 #endif 985 986 /****************************************************************************/ 987 /* Indirect register read. */ 988 /* */ 989 /* Reads NetXtreme II registers using an index/data register pair in PCI */ 990 /* configuration space. Using this mechanism avoids issues with posted */ 991 /* reads but is much slower than memory-mapped I/O. */ 992 /* */ 993 /* Returns: */ 994 /* The value of the register. */ 995 /****************************************************************************/ 996 u_int32_t 997 bnx_reg_rd_ind(struct bnx_softc *sc, u_int32_t offset) 998 { 999 struct pci_attach_args *pa = &(sc->bnx_pa); 1000 1001 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS, 1002 offset); 1003 #ifdef BNX_DEBUG 1004 { 1005 u_int32_t val; 1006 val = pci_conf_read(pa->pa_pc, pa->pa_tag, 1007 BNX_PCICFG_REG_WINDOW); 1008 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, " 1009 "val = 0x%08X\n", __FUNCTION__, offset, val); 1010 return (val); 1011 } 1012 #else 1013 return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW); 1014 #endif 1015 } 1016 1017 /****************************************************************************/ 1018 /* Indirect register write. */ 1019 /* */ 1020 /* Writes NetXtreme II registers using an index/data register pair in PCI */ 1021 /* configuration space. Using this mechanism avoids issues with posted */ 1022 /* writes but is muchh slower than memory-mapped I/O. */ 1023 /* */ 1024 /* Returns: */ 1025 /* Nothing. */ 1026 /****************************************************************************/ 1027 void 1028 bnx_reg_wr_ind(struct bnx_softc *sc, u_int32_t offset, u_int32_t val) 1029 { 1030 struct pci_attach_args *pa = &(sc->bnx_pa); 1031 1032 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n", 1033 __FUNCTION__, offset, val); 1034 1035 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS, 1036 offset); 1037 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val); 1038 } 1039 1040 /****************************************************************************/ 1041 /* Context memory write. */ 1042 /* */ 1043 /* The NetXtreme II controller uses context memory to track connection */ 1044 /* information for L2 and higher network protocols. */ 1045 /* */ 1046 /* Returns: */ 1047 /* Nothing. */ 1048 /****************************************************************************/ 1049 void 1050 bnx_ctx_wr(struct bnx_softc *sc, u_int32_t cid_addr, u_int32_t ctx_offset, 1051 u_int32_t ctx_val) 1052 { 1053 u_int32_t idx, offset = ctx_offset + cid_addr; 1054 u_int32_t val, retry_cnt = 5; 1055 1056 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) { 1057 REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val); 1058 REG_WR(sc, BNX_CTX_CTX_CTRL, 1059 (offset | BNX_CTX_CTX_CTRL_WRITE_REQ)); 1060 1061 for (idx = 0; idx < retry_cnt; idx++) { 1062 val = REG_RD(sc, BNX_CTX_CTX_CTRL); 1063 if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0) 1064 break; 1065 DELAY(5); 1066 } 1067 1068 #if 0 1069 if (val & BNX_CTX_CTX_CTRL_WRITE_REQ) 1070 BNX_PRINTF("%s(%d); Unable to write CTX memory: " 1071 "cid_addr = 0x%08X, offset = 0x%08X!\n", 1072 __FILE__, __LINE__, cid_addr, ctx_offset); 1073 #endif 1074 1075 } else { 1076 REG_WR(sc, BNX_CTX_DATA_ADR, offset); 1077 REG_WR(sc, BNX_CTX_DATA, ctx_val); 1078 } 1079 } 1080 1081 /****************************************************************************/ 1082 /* PHY register read. */ 1083 /* */ 1084 /* Implements register reads on the MII bus. */ 1085 /* */ 1086 /* Returns: */ 1087 /* The value of the register. */ 1088 /****************************************************************************/ 1089 int 1090 bnx_miibus_read_reg(struct device *dev, int phy, int reg) 1091 { 1092 struct bnx_softc *sc = (struct bnx_softc *)dev; 1093 u_int32_t val; 1094 int i; 1095 1096 /* 1097 * The BCM5709S PHY is an IEEE Clause 45 PHY 1098 * with special mappings to work with IEEE 1099 * Clause 22 register accesses. 1100 */ 1101 if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) { 1102 if (reg >= MII_BMCR && reg <= MII_ANLPRNP) 1103 reg += 0x10; 1104 } 1105 1106 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) { 1107 val = REG_RD(sc, BNX_EMAC_MDIO_MODE); 1108 val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL; 1109 1110 REG_WR(sc, BNX_EMAC_MDIO_MODE, val); 1111 REG_RD(sc, BNX_EMAC_MDIO_MODE); 1112 1113 DELAY(40); 1114 } 1115 1116 val = BNX_MIPHY(phy) | BNX_MIREG(reg) | 1117 BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT | 1118 BNX_EMAC_MDIO_COMM_START_BUSY; 1119 REG_WR(sc, BNX_EMAC_MDIO_COMM, val); 1120 1121 for (i = 0; i < BNX_PHY_TIMEOUT; i++) { 1122 DELAY(10); 1123 1124 val = REG_RD(sc, BNX_EMAC_MDIO_COMM); 1125 if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) { 1126 DELAY(5); 1127 1128 val = REG_RD(sc, BNX_EMAC_MDIO_COMM); 1129 val &= BNX_EMAC_MDIO_COMM_DATA; 1130 1131 break; 1132 } 1133 } 1134 1135 if (val & BNX_EMAC_MDIO_COMM_START_BUSY) { 1136 BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, " 1137 "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg); 1138 val = 0x0; 1139 } else 1140 val = REG_RD(sc, BNX_EMAC_MDIO_COMM); 1141 1142 DBPRINT(sc, BNX_EXCESSIVE, 1143 "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __FUNCTION__, phy, 1144 (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff); 1145 1146 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) { 1147 val = REG_RD(sc, BNX_EMAC_MDIO_MODE); 1148 val |= BNX_EMAC_MDIO_MODE_AUTO_POLL; 1149 1150 REG_WR(sc, BNX_EMAC_MDIO_MODE, val); 1151 REG_RD(sc, BNX_EMAC_MDIO_MODE); 1152 1153 DELAY(40); 1154 } 1155 1156 return (val & 0xffff); 1157 } 1158 1159 /****************************************************************************/ 1160 /* PHY register write. */ 1161 /* */ 1162 /* Implements register writes on the MII bus. */ 1163 /* */ 1164 /* Returns: */ 1165 /* The value of the register. */ 1166 /****************************************************************************/ 1167 void 1168 bnx_miibus_write_reg(struct device *dev, int phy, int reg, int val) 1169 { 1170 struct bnx_softc *sc = (struct bnx_softc *)dev; 1171 u_int32_t val1; 1172 int i; 1173 1174 DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, " 1175 "val = 0x%04X\n", __FUNCTION__, 1176 phy, (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff); 1177 1178 /* 1179 * The BCM5709S PHY is an IEEE Clause 45 PHY 1180 * with special mappings to work with IEEE 1181 * Clause 22 register accesses. 1182 */ 1183 if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) { 1184 if (reg >= MII_BMCR && reg <= MII_ANLPRNP) 1185 reg += 0x10; 1186 } 1187 1188 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) { 1189 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE); 1190 val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL; 1191 1192 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1); 1193 REG_RD(sc, BNX_EMAC_MDIO_MODE); 1194 1195 DELAY(40); 1196 } 1197 1198 val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val | 1199 BNX_EMAC_MDIO_COMM_COMMAND_WRITE | 1200 BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT; 1201 REG_WR(sc, BNX_EMAC_MDIO_COMM, val1); 1202 1203 for (i = 0; i < BNX_PHY_TIMEOUT; i++) { 1204 DELAY(10); 1205 1206 val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM); 1207 if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) { 1208 DELAY(5); 1209 break; 1210 } 1211 } 1212 1213 if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) { 1214 BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__, 1215 __LINE__); 1216 } 1217 1218 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) { 1219 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE); 1220 val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL; 1221 1222 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1); 1223 REG_RD(sc, BNX_EMAC_MDIO_MODE); 1224 1225 DELAY(40); 1226 } 1227 } 1228 1229 /****************************************************************************/ 1230 /* MII bus status change. */ 1231 /* */ 1232 /* Called by the MII bus driver when the PHY establishes link to set the */ 1233 /* MAC interface registers. */ 1234 /* */ 1235 /* Returns: */ 1236 /* Nothing. */ 1237 /****************************************************************************/ 1238 void 1239 bnx_miibus_statchg(struct device *dev) 1240 { 1241 struct bnx_softc *sc = (struct bnx_softc *)dev; 1242 struct mii_data *mii = &sc->bnx_mii; 1243 u_int32_t rx_mode = sc->rx_mode; 1244 int val; 1245 1246 val = REG_RD(sc, BNX_EMAC_MODE); 1247 val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX | 1248 BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK | 1249 BNX_EMAC_MODE_25G); 1250 1251 /* 1252 * Get flow control negotiation result. 1253 */ 1254 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO && 1255 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bnx_flowflags) { 1256 sc->bnx_flowflags = mii->mii_media_active & IFM_ETH_FMASK; 1257 mii->mii_media_active &= ~IFM_ETH_FMASK; 1258 } 1259 1260 /* Set MII or GMII interface based on the speed 1261 * negotiated by the PHY. 1262 */ 1263 switch (IFM_SUBTYPE(mii->mii_media_active)) { 1264 case IFM_10_T: 1265 if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) { 1266 DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n"); 1267 val |= BNX_EMAC_MODE_PORT_MII_10; 1268 break; 1269 } 1270 /* FALLTHROUGH */ 1271 case IFM_100_TX: 1272 DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n"); 1273 val |= BNX_EMAC_MODE_PORT_MII; 1274 break; 1275 case IFM_2500_SX: 1276 DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n"); 1277 val |= BNX_EMAC_MODE_25G; 1278 /* FALLTHROUGH */ 1279 case IFM_1000_T: 1280 case IFM_1000_SX: 1281 DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n"); 1282 val |= BNX_EMAC_MODE_PORT_GMII; 1283 break; 1284 default: 1285 val |= BNX_EMAC_MODE_PORT_GMII; 1286 break; 1287 } 1288 1289 /* Set half or full duplex based on the duplicity 1290 * negotiated by the PHY. 1291 */ 1292 if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) { 1293 DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n"); 1294 val |= BNX_EMAC_MODE_HALF_DUPLEX; 1295 } else 1296 DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n"); 1297 1298 REG_WR(sc, BNX_EMAC_MODE, val); 1299 1300 /* 1301 * 802.3x flow control 1302 */ 1303 if (sc->bnx_flowflags & IFM_ETH_RXPAUSE) { 1304 DBPRINT(sc, BNX_INFO, "Enabling RX mode flow control.\n"); 1305 rx_mode |= BNX_EMAC_RX_MODE_FLOW_EN; 1306 } else { 1307 DBPRINT(sc, BNX_INFO, "Disabling RX mode flow control.\n"); 1308 rx_mode &= ~BNX_EMAC_RX_MODE_FLOW_EN; 1309 } 1310 1311 if (sc->bnx_flowflags & IFM_ETH_TXPAUSE) { 1312 DBPRINT(sc, BNX_INFO, "Enabling TX mode flow control.\n"); 1313 BNX_SETBIT(sc, BNX_EMAC_TX_MODE, BNX_EMAC_TX_MODE_FLOW_EN); 1314 } else { 1315 DBPRINT(sc, BNX_INFO, "Disabling TX mode flow control.\n"); 1316 BNX_CLRBIT(sc, BNX_EMAC_TX_MODE, BNX_EMAC_TX_MODE_FLOW_EN); 1317 } 1318 1319 /* Only make changes if the receive mode has actually changed. */ 1320 if (rx_mode != sc->rx_mode) { 1321 DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n", 1322 rx_mode); 1323 1324 sc->rx_mode = rx_mode; 1325 REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode); 1326 } 1327 } 1328 1329 /****************************************************************************/ 1330 /* Acquire NVRAM lock. */ 1331 /* */ 1332 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock. */ 1333 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */ 1334 /* for use by the driver. */ 1335 /* */ 1336 /* Returns: */ 1337 /* 0 on success, positive value on failure. */ 1338 /****************************************************************************/ 1339 int 1340 bnx_acquire_nvram_lock(struct bnx_softc *sc) 1341 { 1342 u_int32_t val; 1343 int j; 1344 1345 DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n"); 1346 1347 /* Request access to the flash interface. */ 1348 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2); 1349 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 1350 val = REG_RD(sc, BNX_NVM_SW_ARB); 1351 if (val & BNX_NVM_SW_ARB_ARB_ARB2) 1352 break; 1353 1354 DELAY(5); 1355 } 1356 1357 if (j >= NVRAM_TIMEOUT_COUNT) { 1358 DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n"); 1359 return (EBUSY); 1360 } 1361 1362 return (0); 1363 } 1364 1365 /****************************************************************************/ 1366 /* Release NVRAM lock. */ 1367 /* */ 1368 /* When the caller is finished accessing NVRAM the lock must be released. */ 1369 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */ 1370 /* for use by the driver. */ 1371 /* */ 1372 /* Returns: */ 1373 /* 0 on success, positive value on failure. */ 1374 /****************************************************************************/ 1375 int 1376 bnx_release_nvram_lock(struct bnx_softc *sc) 1377 { 1378 int j; 1379 u_int32_t val; 1380 1381 DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n"); 1382 1383 /* Relinquish nvram interface. */ 1384 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2); 1385 1386 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 1387 val = REG_RD(sc, BNX_NVM_SW_ARB); 1388 if (!(val & BNX_NVM_SW_ARB_ARB_ARB2)) 1389 break; 1390 1391 DELAY(5); 1392 } 1393 1394 if (j >= NVRAM_TIMEOUT_COUNT) { 1395 DBPRINT(sc, BNX_WARN, "Timeout releasing NVRAM lock!\n"); 1396 return (EBUSY); 1397 } 1398 1399 return (0); 1400 } 1401 1402 #ifdef BNX_NVRAM_WRITE_SUPPORT 1403 /****************************************************************************/ 1404 /* Enable NVRAM write access. */ 1405 /* */ 1406 /* Before writing to NVRAM the caller must enable NVRAM writes. */ 1407 /* */ 1408 /* Returns: */ 1409 /* 0 on success, positive value on failure. */ 1410 /****************************************************************************/ 1411 int 1412 bnx_enable_nvram_write(struct bnx_softc *sc) 1413 { 1414 u_int32_t val; 1415 1416 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n"); 1417 1418 val = REG_RD(sc, BNX_MISC_CFG); 1419 REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI); 1420 1421 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) { 1422 int j; 1423 1424 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE); 1425 REG_WR(sc, BNX_NVM_COMMAND, 1426 BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT); 1427 1428 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 1429 DELAY(5); 1430 1431 val = REG_RD(sc, BNX_NVM_COMMAND); 1432 if (val & BNX_NVM_COMMAND_DONE) 1433 break; 1434 } 1435 1436 if (j >= NVRAM_TIMEOUT_COUNT) { 1437 DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n"); 1438 return (EBUSY); 1439 } 1440 } 1441 1442 return (0); 1443 } 1444 1445 /****************************************************************************/ 1446 /* Disable NVRAM write access. */ 1447 /* */ 1448 /* When the caller is finished writing to NVRAM write access must be */ 1449 /* disabled. */ 1450 /* */ 1451 /* Returns: */ 1452 /* Nothing. */ 1453 /****************************************************************************/ 1454 void 1455 bnx_disable_nvram_write(struct bnx_softc *sc) 1456 { 1457 u_int32_t val; 1458 1459 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM write.\n"); 1460 1461 val = REG_RD(sc, BNX_MISC_CFG); 1462 REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN); 1463 } 1464 #endif 1465 1466 /****************************************************************************/ 1467 /* Enable NVRAM access. */ 1468 /* */ 1469 /* Before accessing NVRAM for read or write operations the caller must */ 1470 /* enabled NVRAM access. */ 1471 /* */ 1472 /* Returns: */ 1473 /* Nothing. */ 1474 /****************************************************************************/ 1475 void 1476 bnx_enable_nvram_access(struct bnx_softc *sc) 1477 { 1478 u_int32_t val; 1479 1480 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n"); 1481 1482 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE); 1483 /* Enable both bits, even on read. */ 1484 REG_WR(sc, BNX_NVM_ACCESS_ENABLE, 1485 val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN); 1486 } 1487 1488 /****************************************************************************/ 1489 /* Disable NVRAM access. */ 1490 /* */ 1491 /* When the caller is finished accessing NVRAM access must be disabled. */ 1492 /* */ 1493 /* Returns: */ 1494 /* Nothing. */ 1495 /****************************************************************************/ 1496 void 1497 bnx_disable_nvram_access(struct bnx_softc *sc) 1498 { 1499 u_int32_t val; 1500 1501 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n"); 1502 1503 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE); 1504 1505 /* Disable both bits, even after read. */ 1506 REG_WR(sc, BNX_NVM_ACCESS_ENABLE, 1507 val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN)); 1508 } 1509 1510 #ifdef BNX_NVRAM_WRITE_SUPPORT 1511 /****************************************************************************/ 1512 /* Erase NVRAM page before writing. */ 1513 /* */ 1514 /* Non-buffered flash parts require that a page be erased before it is */ 1515 /* written. */ 1516 /* */ 1517 /* Returns: */ 1518 /* 0 on success, positive value on failure. */ 1519 /****************************************************************************/ 1520 int 1521 bnx_nvram_erase_page(struct bnx_softc *sc, u_int32_t offset) 1522 { 1523 u_int32_t cmd; 1524 int j; 1525 1526 /* Buffered flash doesn't require an erase. */ 1527 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) 1528 return (0); 1529 1530 DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n"); 1531 1532 /* Build an erase command. */ 1533 cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR | 1534 BNX_NVM_COMMAND_DOIT; 1535 1536 /* 1537 * Clear the DONE bit separately, set the NVRAM address to erase, 1538 * and issue the erase command. 1539 */ 1540 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE); 1541 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE); 1542 REG_WR(sc, BNX_NVM_COMMAND, cmd); 1543 1544 /* Wait for completion. */ 1545 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 1546 u_int32_t val; 1547 1548 DELAY(5); 1549 1550 val = REG_RD(sc, BNX_NVM_COMMAND); 1551 if (val & BNX_NVM_COMMAND_DONE) 1552 break; 1553 } 1554 1555 if (j >= NVRAM_TIMEOUT_COUNT) { 1556 DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n"); 1557 return (EBUSY); 1558 } 1559 1560 return (0); 1561 } 1562 #endif /* BNX_NVRAM_WRITE_SUPPORT */ 1563 1564 /****************************************************************************/ 1565 /* Read a dword (32 bits) from NVRAM. */ 1566 /* */ 1567 /* Read a 32 bit word from NVRAM. The caller is assumed to have already */ 1568 /* obtained the NVRAM lock and enabled the controller for NVRAM access. */ 1569 /* */ 1570 /* Returns: */ 1571 /* 0 on success and the 32 bit value read, positive value on failure. */ 1572 /****************************************************************************/ 1573 int 1574 bnx_nvram_read_dword(struct bnx_softc *sc, u_int32_t offset, 1575 u_int8_t *ret_val, u_int32_t cmd_flags) 1576 { 1577 u_int32_t cmd; 1578 int i, rc = 0; 1579 1580 /* Build the command word. */ 1581 cmd = BNX_NVM_COMMAND_DOIT | cmd_flags; 1582 1583 /* Calculate the offset for buffered flash if translation is used. */ 1584 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) { 1585 offset = ((offset / sc->bnx_flash_info->page_size) << 1586 sc->bnx_flash_info->page_bits) + 1587 (offset % sc->bnx_flash_info->page_size); 1588 } 1589 1590 /* 1591 * Clear the DONE bit separately, set the address to read, 1592 * and issue the read. 1593 */ 1594 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE); 1595 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE); 1596 REG_WR(sc, BNX_NVM_COMMAND, cmd); 1597 1598 /* Wait for completion. */ 1599 for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) { 1600 u_int32_t val; 1601 1602 DELAY(5); 1603 1604 val = REG_RD(sc, BNX_NVM_COMMAND); 1605 if (val & BNX_NVM_COMMAND_DONE) { 1606 val = REG_RD(sc, BNX_NVM_READ); 1607 1608 val = bnx_be32toh(val); 1609 memcpy(ret_val, &val, 4); 1610 break; 1611 } 1612 } 1613 1614 /* Check for errors. */ 1615 if (i >= NVRAM_TIMEOUT_COUNT) { 1616 BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at " 1617 "offset 0x%08X!\n", __FILE__, __LINE__, offset); 1618 rc = EBUSY; 1619 } 1620 1621 return(rc); 1622 } 1623 1624 #ifdef BNX_NVRAM_WRITE_SUPPORT 1625 /****************************************************************************/ 1626 /* Write a dword (32 bits) to NVRAM. */ 1627 /* */ 1628 /* Write a 32 bit word to NVRAM. The caller is assumed to have already */ 1629 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and */ 1630 /* enabled NVRAM write access. */ 1631 /* */ 1632 /* Returns: */ 1633 /* 0 on success, positive value on failure. */ 1634 /****************************************************************************/ 1635 int 1636 bnx_nvram_write_dword(struct bnx_softc *sc, u_int32_t offset, u_int8_t *val, 1637 u_int32_t cmd_flags) 1638 { 1639 u_int32_t cmd, val32; 1640 int j; 1641 1642 /* Build the command word. */ 1643 cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags; 1644 1645 /* Calculate the offset for buffered flash if translation is used. */ 1646 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) { 1647 offset = ((offset / sc->bnx_flash_info->page_size) << 1648 sc->bnx_flash_info->page_bits) + 1649 (offset % sc->bnx_flash_info->page_size); 1650 } 1651 1652 /* 1653 * Clear the DONE bit separately, convert NVRAM data to big-endian, 1654 * set the NVRAM address to write, and issue the write command 1655 */ 1656 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE); 1657 memcpy(&val32, val, 4); 1658 val32 = htobe32(val32); 1659 REG_WR(sc, BNX_NVM_WRITE, val32); 1660 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE); 1661 REG_WR(sc, BNX_NVM_COMMAND, cmd); 1662 1663 /* Wait for completion. */ 1664 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 1665 DELAY(5); 1666 1667 if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE) 1668 break; 1669 } 1670 if (j >= NVRAM_TIMEOUT_COUNT) { 1671 BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at " 1672 "offset 0x%08X\n", __FILE__, __LINE__, offset); 1673 return (EBUSY); 1674 } 1675 1676 return (0); 1677 } 1678 #endif /* BNX_NVRAM_WRITE_SUPPORT */ 1679 1680 /****************************************************************************/ 1681 /* Initialize NVRAM access. */ 1682 /* */ 1683 /* Identify the NVRAM device in use and prepare the NVRAM interface to */ 1684 /* access that device. */ 1685 /* */ 1686 /* Returns: */ 1687 /* 0 on success, positive value on failure. */ 1688 /****************************************************************************/ 1689 int 1690 bnx_init_nvram(struct bnx_softc *sc) 1691 { 1692 u_int32_t val; 1693 int j, entry_count, rc = 0; 1694 struct flash_spec *flash; 1695 1696 DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); 1697 1698 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) { 1699 sc->bnx_flash_info = &flash_5709; 1700 goto bnx_init_nvram_get_flash_size; 1701 } 1702 1703 /* Determine the selected interface. */ 1704 val = REG_RD(sc, BNX_NVM_CFG1); 1705 1706 entry_count = sizeof(flash_table) / sizeof(struct flash_spec); 1707 1708 /* 1709 * Flash reconfiguration is required to support additional 1710 * NVRAM devices not directly supported in hardware. 1711 * Check if the flash interface was reconfigured 1712 * by the bootcode. 1713 */ 1714 1715 if (val & 0x40000000) { 1716 /* Flash interface reconfigured by bootcode. */ 1717 1718 DBPRINT(sc,BNX_INFO_LOAD, 1719 "bnx_init_nvram(): Flash WAS reconfigured.\n"); 1720 1721 for (j = 0, flash = &flash_table[0]; j < entry_count; 1722 j++, flash++) { 1723 if ((val & FLASH_BACKUP_STRAP_MASK) == 1724 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) { 1725 sc->bnx_flash_info = flash; 1726 break; 1727 } 1728 } 1729 } else { 1730 /* Flash interface not yet reconfigured. */ 1731 u_int32_t mask; 1732 1733 DBPRINT(sc,BNX_INFO_LOAD, 1734 "bnx_init_nvram(): Flash was NOT reconfigured.\n"); 1735 1736 if (val & (1 << 23)) 1737 mask = FLASH_BACKUP_STRAP_MASK; 1738 else 1739 mask = FLASH_STRAP_MASK; 1740 1741 /* Look for the matching NVRAM device configuration data. */ 1742 for (j = 0, flash = &flash_table[0]; j < entry_count; 1743 j++, flash++) { 1744 /* Check if the dev matches any of the known devices. */ 1745 if ((val & mask) == (flash->strapping & mask)) { 1746 /* Found a device match. */ 1747 sc->bnx_flash_info = flash; 1748 1749 /* Request access to the flash interface. */ 1750 if ((rc = bnx_acquire_nvram_lock(sc)) != 0) 1751 return (rc); 1752 1753 /* Reconfigure the flash interface. */ 1754 bnx_enable_nvram_access(sc); 1755 REG_WR(sc, BNX_NVM_CFG1, flash->config1); 1756 REG_WR(sc, BNX_NVM_CFG2, flash->config2); 1757 REG_WR(sc, BNX_NVM_CFG3, flash->config3); 1758 REG_WR(sc, BNX_NVM_WRITE1, flash->write1); 1759 bnx_disable_nvram_access(sc); 1760 bnx_release_nvram_lock(sc); 1761 1762 break; 1763 } 1764 } 1765 } 1766 1767 /* Check if a matching device was found. */ 1768 if (j == entry_count) { 1769 sc->bnx_flash_info = NULL; 1770 BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n", 1771 __FILE__, __LINE__); 1772 rc = ENODEV; 1773 } 1774 1775 bnx_init_nvram_get_flash_size: 1776 /* Write the flash config data to the shared memory interface. */ 1777 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2); 1778 val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK; 1779 if (val) 1780 sc->bnx_flash_size = val; 1781 else 1782 sc->bnx_flash_size = sc->bnx_flash_info->total_size; 1783 1784 DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = " 1785 "0x%08X\n", sc->bnx_flash_info->total_size); 1786 1787 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); 1788 1789 return (rc); 1790 } 1791 1792 /****************************************************************************/ 1793 /* Read an arbitrary range of data from NVRAM. */ 1794 /* */ 1795 /* Prepares the NVRAM interface for access and reads the requested data */ 1796 /* into the supplied buffer. */ 1797 /* */ 1798 /* Returns: */ 1799 /* 0 on success and the data read, positive value on failure. */ 1800 /****************************************************************************/ 1801 int 1802 bnx_nvram_read(struct bnx_softc *sc, u_int32_t offset, u_int8_t *ret_buf, 1803 int buf_size) 1804 { 1805 int rc = 0; 1806 u_int32_t cmd_flags, offset32, len32, extra; 1807 1808 if (buf_size == 0) 1809 return (0); 1810 1811 /* Request access to the flash interface. */ 1812 if ((rc = bnx_acquire_nvram_lock(sc)) != 0) 1813 return (rc); 1814 1815 /* Enable access to flash interface */ 1816 bnx_enable_nvram_access(sc); 1817 1818 len32 = buf_size; 1819 offset32 = offset; 1820 extra = 0; 1821 1822 cmd_flags = 0; 1823 1824 if (offset32 & 3) { 1825 u_int8_t buf[4]; 1826 u_int32_t pre_len; 1827 1828 offset32 &= ~3; 1829 pre_len = 4 - (offset & 3); 1830 1831 if (pre_len >= len32) { 1832 pre_len = len32; 1833 cmd_flags = 1834 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST; 1835 } else 1836 cmd_flags = BNX_NVM_COMMAND_FIRST; 1837 1838 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags); 1839 1840 if (rc) 1841 return (rc); 1842 1843 memcpy(ret_buf, buf + (offset & 3), pre_len); 1844 1845 offset32 += 4; 1846 ret_buf += pre_len; 1847 len32 -= pre_len; 1848 } 1849 1850 if (len32 & 3) { 1851 extra = 4 - (len32 & 3); 1852 len32 = (len32 + 4) & ~3; 1853 } 1854 1855 if (len32 == 4) { 1856 u_int8_t buf[4]; 1857 1858 if (cmd_flags) 1859 cmd_flags = BNX_NVM_COMMAND_LAST; 1860 else 1861 cmd_flags = 1862 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST; 1863 1864 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags); 1865 1866 memcpy(ret_buf, buf, 4 - extra); 1867 } else if (len32 > 0) { 1868 u_int8_t buf[4]; 1869 1870 /* Read the first word. */ 1871 if (cmd_flags) 1872 cmd_flags = 0; 1873 else 1874 cmd_flags = BNX_NVM_COMMAND_FIRST; 1875 1876 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags); 1877 1878 /* Advance to the next dword. */ 1879 offset32 += 4; 1880 ret_buf += 4; 1881 len32 -= 4; 1882 1883 while (len32 > 4 && rc == 0) { 1884 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0); 1885 1886 /* Advance to the next dword. */ 1887 offset32 += 4; 1888 ret_buf += 4; 1889 len32 -= 4; 1890 } 1891 1892 if (rc) 1893 return (rc); 1894 1895 cmd_flags = BNX_NVM_COMMAND_LAST; 1896 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags); 1897 1898 memcpy(ret_buf, buf, 4 - extra); 1899 } 1900 1901 /* Disable access to flash interface and release the lock. */ 1902 bnx_disable_nvram_access(sc); 1903 bnx_release_nvram_lock(sc); 1904 1905 return (rc); 1906 } 1907 1908 #ifdef BNX_NVRAM_WRITE_SUPPORT 1909 /****************************************************************************/ 1910 /* Write an arbitrary range of data from NVRAM. */ 1911 /* */ 1912 /* Prepares the NVRAM interface for write access and writes the requested */ 1913 /* data from the supplied buffer. The caller is responsible for */ 1914 /* calculating any appropriate CRCs. */ 1915 /* */ 1916 /* Returns: */ 1917 /* 0 on success, positive value on failure. */ 1918 /****************************************************************************/ 1919 int 1920 bnx_nvram_write(struct bnx_softc *sc, u_int32_t offset, u_int8_t *data_buf, 1921 int buf_size) 1922 { 1923 u_int32_t written, offset32, len32; 1924 u_int8_t *buf, start[4], end[4]; 1925 int rc = 0; 1926 int align_start, align_end; 1927 1928 buf = data_buf; 1929 offset32 = offset; 1930 len32 = buf_size; 1931 align_start = align_end = 0; 1932 1933 if ((align_start = (offset32 & 3))) { 1934 offset32 &= ~3; 1935 len32 += align_start; 1936 if ((rc = bnx_nvram_read(sc, offset32, start, 4))) 1937 return (rc); 1938 } 1939 1940 if (len32 & 3) { 1941 if ((len32 > 4) || !align_start) { 1942 align_end = 4 - (len32 & 3); 1943 len32 += align_end; 1944 if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4, 1945 end, 4))) { 1946 return (rc); 1947 } 1948 } 1949 } 1950 1951 if (align_start || align_end) { 1952 buf = malloc(len32, M_DEVBUF, M_NOWAIT); 1953 if (buf == 0) 1954 return (ENOMEM); 1955 1956 if (align_start) 1957 memcpy(buf, start, 4); 1958 1959 if (align_end) 1960 memcpy(buf + len32 - 4, end, 4); 1961 1962 memcpy(buf + align_start, data_buf, buf_size); 1963 } 1964 1965 written = 0; 1966 while ((written < len32) && (rc == 0)) { 1967 u_int32_t page_start, page_end, data_start, data_end; 1968 u_int32_t addr, cmd_flags; 1969 int i; 1970 u_int8_t flash_buffer[264]; 1971 1972 /* Find the page_start addr */ 1973 page_start = offset32 + written; 1974 page_start -= (page_start % sc->bnx_flash_info->page_size); 1975 /* Find the page_end addr */ 1976 page_end = page_start + sc->bnx_flash_info->page_size; 1977 /* Find the data_start addr */ 1978 data_start = (written == 0) ? offset32 : page_start; 1979 /* Find the data_end addr */ 1980 data_end = (page_end > offset32 + len32) ? 1981 (offset32 + len32) : page_end; 1982 1983 /* Request access to the flash interface. */ 1984 if ((rc = bnx_acquire_nvram_lock(sc)) != 0) 1985 goto nvram_write_end; 1986 1987 /* Enable access to flash interface */ 1988 bnx_enable_nvram_access(sc); 1989 1990 cmd_flags = BNX_NVM_COMMAND_FIRST; 1991 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) { 1992 int j; 1993 1994 /* Read the whole page into the buffer 1995 * (non-buffer flash only) */ 1996 for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) { 1997 if (j == (sc->bnx_flash_info->page_size - 4)) 1998 cmd_flags |= BNX_NVM_COMMAND_LAST; 1999 2000 rc = bnx_nvram_read_dword(sc, 2001 page_start + j, 2002 &flash_buffer[j], 2003 cmd_flags); 2004 2005 if (rc) 2006 goto nvram_write_end; 2007 2008 cmd_flags = 0; 2009 } 2010 } 2011 2012 /* Enable writes to flash interface (unlock write-protect) */ 2013 if ((rc = bnx_enable_nvram_write(sc)) != 0) 2014 goto nvram_write_end; 2015 2016 /* Erase the page */ 2017 if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0) 2018 goto nvram_write_end; 2019 2020 /* Re-enable the write again for the actual write */ 2021 bnx_enable_nvram_write(sc); 2022 2023 /* Loop to write back the buffer data from page_start to 2024 * data_start */ 2025 i = 0; 2026 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) { 2027 for (addr = page_start; addr < data_start; 2028 addr += 4, i += 4) { 2029 2030 rc = bnx_nvram_write_dword(sc, addr, 2031 &flash_buffer[i], cmd_flags); 2032 2033 if (rc != 0) 2034 goto nvram_write_end; 2035 2036 cmd_flags = 0; 2037 } 2038 } 2039 2040 /* Loop to write the new data from data_start to data_end */ 2041 for (addr = data_start; addr < data_end; addr += 4, i++) { 2042 if ((addr == page_end - 4) || 2043 (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED) 2044 && (addr == data_end - 4))) { 2045 2046 cmd_flags |= BNX_NVM_COMMAND_LAST; 2047 } 2048 2049 rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags); 2050 2051 if (rc != 0) 2052 goto nvram_write_end; 2053 2054 cmd_flags = 0; 2055 buf += 4; 2056 } 2057 2058 /* Loop to write back the buffer data from data_end 2059 * to page_end */ 2060 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) { 2061 for (addr = data_end; addr < page_end; 2062 addr += 4, i += 4) { 2063 2064 if (addr == page_end-4) 2065 cmd_flags = BNX_NVM_COMMAND_LAST; 2066 2067 rc = bnx_nvram_write_dword(sc, addr, 2068 &flash_buffer[i], cmd_flags); 2069 2070 if (rc != 0) 2071 goto nvram_write_end; 2072 2073 cmd_flags = 0; 2074 } 2075 } 2076 2077 /* Disable writes to flash interface (lock write-protect) */ 2078 bnx_disable_nvram_write(sc); 2079 2080 /* Disable access to flash interface */ 2081 bnx_disable_nvram_access(sc); 2082 bnx_release_nvram_lock(sc); 2083 2084 /* Increment written */ 2085 written += data_end - data_start; 2086 } 2087 2088 nvram_write_end: 2089 if (align_start || align_end) 2090 free(buf, M_DEVBUF, len32); 2091 2092 return (rc); 2093 } 2094 #endif /* BNX_NVRAM_WRITE_SUPPORT */ 2095 2096 /****************************************************************************/ 2097 /* Verifies that NVRAM is accessible and contains valid data. */ 2098 /* */ 2099 /* Reads the configuration data from NVRAM and verifies that the CRC is */ 2100 /* correct. */ 2101 /* */ 2102 /* Returns: */ 2103 /* 0 on success, positive value on failure. */ 2104 /****************************************************************************/ 2105 int 2106 bnx_nvram_test(struct bnx_softc *sc) 2107 { 2108 u_int32_t buf[BNX_NVRAM_SIZE / 4]; 2109 u_int8_t *data = (u_int8_t *) buf; 2110 int rc = 0; 2111 u_int32_t magic, csum; 2112 2113 /* 2114 * Check that the device NVRAM is valid by reading 2115 * the magic value at offset 0. 2116 */ 2117 if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0) 2118 goto bnx_nvram_test_done; 2119 2120 magic = bnx_be32toh(buf[0]); 2121 if (magic != BNX_NVRAM_MAGIC) { 2122 rc = ENODEV; 2123 BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! " 2124 "Expected: 0x%08X, Found: 0x%08X\n", 2125 __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic); 2126 goto bnx_nvram_test_done; 2127 } 2128 2129 /* 2130 * Verify that the device NVRAM includes valid 2131 * configuration data. 2132 */ 2133 if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0) 2134 goto bnx_nvram_test_done; 2135 2136 csum = ether_crc32_le(data, 0x100); 2137 if (csum != BNX_CRC32_RESIDUAL) { 2138 rc = ENODEV; 2139 BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information " 2140 "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n", 2141 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum); 2142 goto bnx_nvram_test_done; 2143 } 2144 2145 csum = ether_crc32_le(data + 0x100, 0x100); 2146 if (csum != BNX_CRC32_RESIDUAL) { 2147 BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration " 2148 "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n", 2149 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum); 2150 rc = ENODEV; 2151 } 2152 2153 bnx_nvram_test_done: 2154 return (rc); 2155 } 2156 2157 /****************************************************************************/ 2158 /* Identifies the current media type of the controller and sets the PHY */ 2159 /* address. */ 2160 /* */ 2161 /* Returns: */ 2162 /* Nothing. */ 2163 /****************************************************************************/ 2164 void 2165 bnx_get_media(struct bnx_softc *sc) 2166 { 2167 u_int32_t val; 2168 2169 sc->bnx_phy_addr = 1; 2170 2171 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) { 2172 u_int32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL); 2173 u_int32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID; 2174 u_int32_t strap; 2175 2176 /* 2177 * The BCM5709S is software configurable 2178 * for Copper or SerDes operation. 2179 */ 2180 if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) { 2181 DBPRINT(sc, BNX_INFO_LOAD, 2182 "5709 bonded for copper.\n"); 2183 goto bnx_get_media_exit; 2184 } else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) { 2185 DBPRINT(sc, BNX_INFO_LOAD, 2186 "5709 bonded for dual media.\n"); 2187 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG; 2188 goto bnx_get_media_exit; 2189 } 2190 2191 if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE) 2192 strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21; 2193 else { 2194 strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) 2195 >> 8; 2196 } 2197 2198 if (sc->bnx_pa.pa_function == 0) { 2199 switch (strap) { 2200 case 0x4: 2201 case 0x5: 2202 case 0x6: 2203 DBPRINT(sc, BNX_INFO_LOAD, 2204 "BCM5709 s/w configured for SerDes.\n"); 2205 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG; 2206 break; 2207 default: 2208 DBPRINT(sc, BNX_INFO_LOAD, 2209 "BCM5709 s/w configured for Copper.\n"); 2210 } 2211 } else { 2212 switch (strap) { 2213 case 0x1: 2214 case 0x2: 2215 case 0x4: 2216 DBPRINT(sc, BNX_INFO_LOAD, 2217 "BCM5709 s/w configured for SerDes.\n"); 2218 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG; 2219 break; 2220 default: 2221 DBPRINT(sc, BNX_INFO_LOAD, 2222 "BCM5709 s/w configured for Copper.\n"); 2223 } 2224 } 2225 2226 } else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT) 2227 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG; 2228 2229 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) { 2230 sc->bnx_flags |= BNX_NO_WOL_FLAG; 2231 2232 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) 2233 sc->bnx_phy_flags |= BNX_PHY_IEEE_CLAUSE_45_FLAG; 2234 2235 /* 2236 * The BCM5708S, BCM5709S, and BCM5716S controllers use a 2237 * separate PHY for SerDes. 2238 */ 2239 if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) { 2240 sc->bnx_phy_addr = 2; 2241 val = REG_RD_IND(sc, sc->bnx_shmem_base + 2242 BNX_SHARED_HW_CFG_CONFIG); 2243 if (val & BNX_SHARED_HW_CFG_PHY_2_5G) { 2244 sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG; 2245 DBPRINT(sc, BNX_INFO_LOAD, 2246 "Found 2.5Gb capable adapter\n"); 2247 } 2248 } 2249 } else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) || 2250 (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708)) 2251 sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG; 2252 2253 bnx_get_media_exit: 2254 DBPRINT(sc, (BNX_INFO_LOAD | BNX_INFO_PHY), 2255 "Using PHY address %d.\n", sc->bnx_phy_addr); 2256 } 2257 2258 /****************************************************************************/ 2259 /* Performs PHY initialization required before MII drivers access the */ 2260 /* device. */ 2261 /* */ 2262 /* Returns: */ 2263 /* Nothing. */ 2264 /****************************************************************************/ 2265 void 2266 bnx_init_media(struct bnx_softc *sc) 2267 { 2268 if (sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) { 2269 /* 2270 * Configure the BCM5709S / BCM5716S PHYs to use traditional 2271 * IEEE Clause 22 method. Otherwise we have no way to attach 2272 * the PHY to the mii(4) layer. PHY specific configuration 2273 * is done by the mii(4) layer. 2274 */ 2275 2276 /* Select auto-negotiation MMD of the PHY. */ 2277 bnx_miibus_write_reg(&sc->bnx_dev, sc->bnx_phy_addr, 2278 BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT); 2279 2280 bnx_miibus_write_reg(&sc->bnx_dev, sc->bnx_phy_addr, 2281 BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD); 2282 2283 bnx_miibus_write_reg(&sc->bnx_dev, sc->bnx_phy_addr, 2284 BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0); 2285 } 2286 } 2287 2288 /****************************************************************************/ 2289 /* Free any DMA memory owned by the driver. */ 2290 /* */ 2291 /* Scans through each data structure that requires DMA memory and frees */ 2292 /* the memory if allocated. */ 2293 /* */ 2294 /* Returns: */ 2295 /* Nothing. */ 2296 /****************************************************************************/ 2297 void 2298 bnx_dma_free(struct bnx_softc *sc) 2299 { 2300 int i; 2301 2302 DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); 2303 2304 /* Destroy the status block. */ 2305 if (sc->status_block != NULL && sc->status_map != NULL) { 2306 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, 2307 sc->status_map->dm_mapsize, BUS_DMASYNC_POSTREAD); 2308 bus_dmamap_unload(sc->bnx_dmatag, sc->status_map); 2309 bus_dmamem_unmap(sc->bnx_dmatag, (caddr_t)sc->status_block, 2310 BNX_STATUS_BLK_SZ); 2311 bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg, 2312 sc->status_rseg); 2313 bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map); 2314 sc->status_block = NULL; 2315 sc->status_map = NULL; 2316 } 2317 2318 /* Destroy the statistics block. */ 2319 if (sc->stats_block != NULL && sc->stats_map != NULL) { 2320 bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map); 2321 bus_dmamem_unmap(sc->bnx_dmatag, (caddr_t)sc->stats_block, 2322 BNX_STATS_BLK_SZ); 2323 bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg, 2324 sc->stats_rseg); 2325 bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map); 2326 sc->stats_block = NULL; 2327 sc->stats_map = NULL; 2328 } 2329 2330 /* Free, unmap and destroy all context memory pages. */ 2331 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) { 2332 for (i = 0; i < sc->ctx_pages; i++) { 2333 if (sc->ctx_block[i] != NULL) { 2334 bus_dmamap_unload(sc->bnx_dmatag, 2335 sc->ctx_map[i]); 2336 bus_dmamem_unmap(sc->bnx_dmatag, 2337 (caddr_t)sc->ctx_block[i], 2338 BCM_PAGE_SIZE); 2339 bus_dmamem_free(sc->bnx_dmatag, 2340 &sc->ctx_segs[i], sc->ctx_rsegs[i]); 2341 bus_dmamap_destroy(sc->bnx_dmatag, 2342 sc->ctx_map[i]); 2343 sc->ctx_block[i] = NULL; 2344 } 2345 } 2346 } 2347 2348 /* Free, unmap and destroy all TX buffer descriptor chain pages. */ 2349 for (i = 0; i < TX_PAGES; i++ ) { 2350 if (sc->tx_bd_chain[i] != NULL && 2351 sc->tx_bd_chain_map[i] != NULL) { 2352 bus_dmamap_unload(sc->bnx_dmatag, 2353 sc->tx_bd_chain_map[i]); 2354 bus_dmamem_unmap(sc->bnx_dmatag, 2355 (caddr_t)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ); 2356 bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i], 2357 sc->tx_bd_chain_rseg[i]); 2358 bus_dmamap_destroy(sc->bnx_dmatag, 2359 sc->tx_bd_chain_map[i]); 2360 sc->tx_bd_chain[i] = NULL; 2361 sc->tx_bd_chain_map[i] = NULL; 2362 } 2363 } 2364 2365 /* Unload and destroy the TX mbuf maps. */ 2366 for (i = 0; i < TOTAL_TX_BD; i++) { 2367 bus_dmamap_unload(sc->bnx_dmatag, sc->tx_mbuf_map[i]); 2368 bus_dmamap_destroy(sc->bnx_dmatag, sc->tx_mbuf_map[i]); 2369 } 2370 2371 /* Free, unmap and destroy all RX buffer descriptor chain pages. */ 2372 for (i = 0; i < RX_PAGES; i++ ) { 2373 if (sc->rx_bd_chain[i] != NULL && 2374 sc->rx_bd_chain_map[i] != NULL) { 2375 bus_dmamap_unload(sc->bnx_dmatag, 2376 sc->rx_bd_chain_map[i]); 2377 bus_dmamem_unmap(sc->bnx_dmatag, 2378 (caddr_t)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ); 2379 bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i], 2380 sc->rx_bd_chain_rseg[i]); 2381 2382 bus_dmamap_destroy(sc->bnx_dmatag, 2383 sc->rx_bd_chain_map[i]); 2384 sc->rx_bd_chain[i] = NULL; 2385 sc->rx_bd_chain_map[i] = NULL; 2386 } 2387 } 2388 2389 /* Unload and destroy the RX mbuf maps. */ 2390 for (i = 0; i < TOTAL_RX_BD; i++) { 2391 if (sc->rx_mbuf_map[i] != NULL) { 2392 bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]); 2393 bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]); 2394 } 2395 } 2396 2397 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); 2398 } 2399 2400 /****************************************************************************/ 2401 /* Allocate any DMA memory needed by the driver. */ 2402 /* */ 2403 /* Allocates DMA memory needed for the various global structures needed by */ 2404 /* hardware. */ 2405 /* */ 2406 /* Returns: */ 2407 /* 0 for success, positive value for failure. */ 2408 /****************************************************************************/ 2409 int 2410 bnx_dma_alloc(struct bnx_softc *sc) 2411 { 2412 int i, rc = 0; 2413 2414 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); 2415 2416 /* 2417 * Create DMA maps for the TX buffer mbufs. 2418 */ 2419 for (i = 0; i < TOTAL_TX_BD; i++) { 2420 if (bus_dmamap_create(sc->bnx_dmatag, 2421 BNX_MAX_JUMBO_ETHER_MTU_VLAN, BNX_MAX_SEGMENTS, 2422 MCLBYTES, 0, BUS_DMA_NOWAIT, &sc->tx_mbuf_map[i])) { 2423 printf(": Could not create Tx mbuf %d DMA map!\n", 1); 2424 rc = ENOMEM; 2425 goto bnx_dma_alloc_exit; 2426 } 2427 } 2428 2429 /* 2430 * Allocate DMA memory for the status block, map the memory into DMA 2431 * space, and fetch the physical address of the block. 2432 */ 2433 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1, 2434 BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) { 2435 printf(": Could not create status block DMA map!\n"); 2436 rc = ENOMEM; 2437 goto bnx_dma_alloc_exit; 2438 } 2439 2440 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 2441 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1, 2442 &sc->status_rseg, BUS_DMA_NOWAIT | BUS_DMA_ZERO)) { 2443 printf(": Could not allocate status block DMA memory!\n"); 2444 rc = ENOMEM; 2445 goto bnx_dma_alloc_exit; 2446 } 2447 2448 if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg, 2449 BNX_STATUS_BLK_SZ, (caddr_t *)&sc->status_block, BUS_DMA_NOWAIT)) { 2450 printf(": Could not map status block DMA memory!\n"); 2451 rc = ENOMEM; 2452 goto bnx_dma_alloc_exit; 2453 } 2454 2455 if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map, 2456 sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) { 2457 printf(": Could not load status block DMA memory!\n"); 2458 rc = ENOMEM; 2459 goto bnx_dma_alloc_exit; 2460 } 2461 2462 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, 2463 sc->status_map->dm_mapsize, BUS_DMASYNC_PREREAD); 2464 2465 sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr; 2466 2467 /* DRC - Fix for 64 bit addresses. */ 2468 DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n", 2469 (u_int32_t) sc->status_block_paddr); 2470 2471 /* BCM5709 uses host memory as cache for context memory. */ 2472 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) { 2473 sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE; 2474 if (sc->ctx_pages == 0) 2475 sc->ctx_pages = 1; 2476 if (sc->ctx_pages > 4) /* XXX */ 2477 sc->ctx_pages = 4; 2478 2479 DBRUNIF((sc->ctx_pages > 512), 2480 BCE_PRINTF("%s(%d): Too many CTX pages! %d > 512\n", 2481 __FILE__, __LINE__, sc->ctx_pages)); 2482 2483 2484 for (i = 0; i < sc->ctx_pages; i++) { 2485 if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE, 2486 1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, 2487 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, 2488 &sc->ctx_map[i]) != 0) { 2489 rc = ENOMEM; 2490 goto bnx_dma_alloc_exit; 2491 } 2492 2493 if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE, 2494 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i], 2495 1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) { 2496 rc = ENOMEM; 2497 goto bnx_dma_alloc_exit; 2498 } 2499 2500 if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i], 2501 sc->ctx_rsegs[i], BCM_PAGE_SIZE, 2502 (caddr_t *)&sc->ctx_block[i], 2503 BUS_DMA_NOWAIT) != 0) { 2504 rc = ENOMEM; 2505 goto bnx_dma_alloc_exit; 2506 } 2507 2508 if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i], 2509 sc->ctx_block[i], BCM_PAGE_SIZE, NULL, 2510 BUS_DMA_NOWAIT) != 0) { 2511 rc = ENOMEM; 2512 goto bnx_dma_alloc_exit; 2513 } 2514 2515 bzero(sc->ctx_block[i], BCM_PAGE_SIZE); 2516 } 2517 } 2518 2519 /* 2520 * Allocate DMA memory for the statistics block, map the memory into 2521 * DMA space, and fetch the physical address of the block. 2522 */ 2523 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1, 2524 BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) { 2525 printf(": Could not create stats block DMA map!\n"); 2526 rc = ENOMEM; 2527 goto bnx_dma_alloc_exit; 2528 } 2529 2530 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 2531 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1, 2532 &sc->stats_rseg, BUS_DMA_NOWAIT | BUS_DMA_ZERO)) { 2533 printf(": Could not allocate stats block DMA memory!\n"); 2534 rc = ENOMEM; 2535 goto bnx_dma_alloc_exit; 2536 } 2537 2538 if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg, 2539 BNX_STATS_BLK_SZ, (caddr_t *)&sc->stats_block, BUS_DMA_NOWAIT)) { 2540 printf(": Could not map stats block DMA memory!\n"); 2541 rc = ENOMEM; 2542 goto bnx_dma_alloc_exit; 2543 } 2544 2545 if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map, 2546 sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) { 2547 printf(": Could not load status block DMA memory!\n"); 2548 rc = ENOMEM; 2549 goto bnx_dma_alloc_exit; 2550 } 2551 2552 sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr; 2553 2554 /* DRC - Fix for 64 bit address. */ 2555 DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n", 2556 (u_int32_t) sc->stats_block_paddr); 2557 2558 /* 2559 * Allocate DMA memory for the TX buffer descriptor chain, 2560 * and fetch the physical address of the block. 2561 */ 2562 for (i = 0; i < TX_PAGES; i++) { 2563 if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1, 2564 BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT, 2565 &sc->tx_bd_chain_map[i])) { 2566 printf(": Could not create Tx desc %d DMA map!\n", i); 2567 rc = ENOMEM; 2568 goto bnx_dma_alloc_exit; 2569 } 2570 2571 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 2572 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1, 2573 &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) { 2574 printf(": Could not allocate TX desc %d DMA memory!\n", 2575 i); 2576 rc = ENOMEM; 2577 goto bnx_dma_alloc_exit; 2578 } 2579 2580 if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i], 2581 sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ, 2582 (caddr_t *)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) { 2583 printf(": Could not map TX desc %d DMA memory!\n", i); 2584 rc = ENOMEM; 2585 goto bnx_dma_alloc_exit; 2586 } 2587 2588 if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 2589 (caddr_t)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL, 2590 BUS_DMA_NOWAIT)) { 2591 printf(": Could not load TX desc %d DMA memory!\n", i); 2592 rc = ENOMEM; 2593 goto bnx_dma_alloc_exit; 2594 } 2595 2596 sc->tx_bd_chain_paddr[i] = 2597 sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr; 2598 2599 /* DRC - Fix for 64 bit systems. */ 2600 DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n", 2601 i, (u_int32_t) sc->tx_bd_chain_paddr[i]); 2602 } 2603 2604 /* 2605 * Allocate DMA memory for the Rx buffer descriptor chain, 2606 * and fetch the physical address of the block. 2607 */ 2608 for (i = 0; i < RX_PAGES; i++) { 2609 if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1, 2610 BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT, 2611 &sc->rx_bd_chain_map[i])) { 2612 printf(": Could not create Rx desc %d DMA map!\n", i); 2613 rc = ENOMEM; 2614 goto bnx_dma_alloc_exit; 2615 } 2616 2617 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 2618 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1, 2619 &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT | BUS_DMA_ZERO)) { 2620 printf(": Could not allocate Rx desc %d DMA memory!\n", 2621 i); 2622 rc = ENOMEM; 2623 goto bnx_dma_alloc_exit; 2624 } 2625 2626 if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i], 2627 sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ, 2628 (caddr_t *)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) { 2629 printf(": Could not map Rx desc %d DMA memory!\n", i); 2630 rc = ENOMEM; 2631 goto bnx_dma_alloc_exit; 2632 } 2633 2634 if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 2635 (caddr_t)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL, 2636 BUS_DMA_NOWAIT)) { 2637 printf(": Could not load Rx desc %d DMA memory!\n", i); 2638 rc = ENOMEM; 2639 goto bnx_dma_alloc_exit; 2640 } 2641 2642 sc->rx_bd_chain_paddr[i] = 2643 sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr; 2644 2645 /* DRC - Fix for 64 bit systems. */ 2646 DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n", 2647 i, (u_int32_t) sc->rx_bd_chain_paddr[i]); 2648 } 2649 2650 /* 2651 * Create DMA maps for the Rx buffer mbufs. 2652 */ 2653 for (i = 0; i < TOTAL_RX_BD; i++) { 2654 if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_JUMBO_MRU, 2655 1, BNX_MAX_JUMBO_MRU, 0, BUS_DMA_NOWAIT, 2656 &sc->rx_mbuf_map[i])) { 2657 printf(": Could not create Rx mbuf %d DMA map!\n", i); 2658 rc = ENOMEM; 2659 goto bnx_dma_alloc_exit; 2660 } 2661 } 2662 2663 bnx_dma_alloc_exit: 2664 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); 2665 2666 return(rc); 2667 } 2668 2669 /****************************************************************************/ 2670 /* Release all resources used by the driver. */ 2671 /* */ 2672 /* Releases all resources acquired by the driver including interrupts, */ 2673 /* interrupt handler, interfaces, mutexes, and DMA memory. */ 2674 /* */ 2675 /* Returns: */ 2676 /* Nothing. */ 2677 /****************************************************************************/ 2678 void 2679 bnx_release_resources(struct bnx_softc *sc) 2680 { 2681 struct pci_attach_args *pa = &(sc->bnx_pa); 2682 2683 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); 2684 2685 bnx_dma_free(sc); 2686 2687 if (sc->bnx_intrhand != NULL) 2688 pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand); 2689 2690 if (sc->bnx_size) 2691 bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size); 2692 2693 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); 2694 } 2695 2696 /****************************************************************************/ 2697 /* Firmware synchronization. */ 2698 /* */ 2699 /* Before performing certain events such as a chip reset, synchronize with */ 2700 /* the firmware first. */ 2701 /* */ 2702 /* Returns: */ 2703 /* 0 for success, positive value for failure. */ 2704 /****************************************************************************/ 2705 int 2706 bnx_fw_sync(struct bnx_softc *sc, u_int32_t msg_data) 2707 { 2708 int i, rc = 0; 2709 u_int32_t val; 2710 2711 /* Don't waste any time if we've timed out before. */ 2712 if (sc->bnx_fw_timed_out) { 2713 rc = EBUSY; 2714 goto bnx_fw_sync_exit; 2715 } 2716 2717 /* Increment the message sequence number. */ 2718 sc->bnx_fw_wr_seq++; 2719 msg_data |= sc->bnx_fw_wr_seq; 2720 2721 DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n", 2722 msg_data); 2723 2724 /* Send the message to the bootcode driver mailbox. */ 2725 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data); 2726 2727 /* Wait for the bootcode to acknowledge the message. */ 2728 for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) { 2729 /* Check for a response in the bootcode firmware mailbox. */ 2730 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB); 2731 if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ)) 2732 break; 2733 DELAY(1000); 2734 } 2735 2736 /* If we've timed out, tell the bootcode that we've stopped waiting. */ 2737 if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) && 2738 ((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) { 2739 BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! " 2740 "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data); 2741 2742 msg_data &= ~BNX_DRV_MSG_CODE; 2743 msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT; 2744 2745 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data); 2746 2747 sc->bnx_fw_timed_out = 1; 2748 rc = EBUSY; 2749 } 2750 2751 bnx_fw_sync_exit: 2752 return (rc); 2753 } 2754 2755 /****************************************************************************/ 2756 /* Load Receive Virtual 2 Physical (RV2P) processor firmware. */ 2757 /* */ 2758 /* Returns: */ 2759 /* Nothing. */ 2760 /****************************************************************************/ 2761 void 2762 bnx_load_rv2p_fw(struct bnx_softc *sc, u_int32_t *rv2p_code, 2763 u_int32_t rv2p_code_len, u_int32_t rv2p_proc) 2764 { 2765 int i; 2766 u_int32_t val; 2767 2768 /* Set the page size used by RV2P. */ 2769 if (rv2p_proc == RV2P_PROC2) { 2770 BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code, 2771 USABLE_RX_BD_PER_PAGE); 2772 } 2773 2774 for (i = 0; i < rv2p_code_len; i += 8) { 2775 REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code); 2776 rv2p_code++; 2777 REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code); 2778 rv2p_code++; 2779 2780 if (rv2p_proc == RV2P_PROC1) { 2781 val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR; 2782 REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val); 2783 } else { 2784 val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR; 2785 REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val); 2786 } 2787 } 2788 2789 /* Reset the processor, un-stall is done later. */ 2790 if (rv2p_proc == RV2P_PROC1) 2791 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET); 2792 else 2793 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET); 2794 } 2795 2796 /****************************************************************************/ 2797 /* Load RISC processor firmware. */ 2798 /* */ 2799 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory */ 2800 /* associated with a particular processor. */ 2801 /* */ 2802 /* Returns: */ 2803 /* Nothing. */ 2804 /****************************************************************************/ 2805 void 2806 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg, 2807 struct fw_info *fw) 2808 { 2809 u_int32_t offset; 2810 u_int32_t val; 2811 2812 /* Halt the CPU. */ 2813 val = REG_RD_IND(sc, cpu_reg->mode); 2814 val |= cpu_reg->mode_value_halt; 2815 REG_WR_IND(sc, cpu_reg->mode, val); 2816 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear); 2817 2818 /* Load the Text area. */ 2819 offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base); 2820 if (fw->text) { 2821 int j; 2822 2823 for (j = 0; j < (fw->text_len / 4); j++, offset += 4) 2824 REG_WR_IND(sc, offset, fw->text[j]); 2825 } 2826 2827 /* Load the Data area. */ 2828 offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base); 2829 if (fw->data) { 2830 int j; 2831 2832 for (j = 0; j < (fw->data_len / 4); j++, offset += 4) 2833 REG_WR_IND(sc, offset, fw->data[j]); 2834 } 2835 2836 /* Load the SBSS area. */ 2837 offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base); 2838 if (fw->sbss) { 2839 int j; 2840 2841 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) 2842 REG_WR_IND(sc, offset, fw->sbss[j]); 2843 } 2844 2845 /* Load the BSS area. */ 2846 offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base); 2847 if (fw->bss) { 2848 int j; 2849 2850 for (j = 0; j < (fw->bss_len/4); j++, offset += 4) 2851 REG_WR_IND(sc, offset, fw->bss[j]); 2852 } 2853 2854 /* Load the Read-Only area. */ 2855 offset = cpu_reg->spad_base + 2856 (fw->rodata_addr - cpu_reg->mips_view_base); 2857 if (fw->rodata) { 2858 int j; 2859 2860 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) 2861 REG_WR_IND(sc, offset, fw->rodata[j]); 2862 } 2863 2864 /* Clear the pre-fetch instruction. */ 2865 REG_WR_IND(sc, cpu_reg->inst, 0); 2866 REG_WR_IND(sc, cpu_reg->pc, fw->start_addr); 2867 2868 /* Start the CPU. */ 2869 val = REG_RD_IND(sc, cpu_reg->mode); 2870 val &= ~cpu_reg->mode_value_halt; 2871 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear); 2872 REG_WR_IND(sc, cpu_reg->mode, val); 2873 } 2874 2875 /****************************************************************************/ 2876 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs. */ 2877 /* */ 2878 /* Loads the firmware for each CPU and starts the CPU. */ 2879 /* */ 2880 /* Returns: */ 2881 /* Nothing. */ 2882 /****************************************************************************/ 2883 void 2884 bnx_init_cpus(struct bnx_softc *sc) 2885 { 2886 struct bnx_firmware *bfw = &bnx_firmwares[BNX_FW_B06]; 2887 struct bnx_rv2p *rv2p = &bnx_rv2ps[BNX_RV2P]; 2888 struct cpu_reg cpu_reg; 2889 struct fw_info fw; 2890 2891 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) { 2892 bfw = &bnx_firmwares[BNX_FW_B09]; 2893 if ((BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax)) 2894 rv2p = &bnx_rv2ps[BNX_XI90_RV2P]; 2895 else 2896 rv2p = &bnx_rv2ps[BNX_XI_RV2P]; 2897 } 2898 2899 /* Initialize the RV2P processor. */ 2900 bnx_load_rv2p_fw(sc, rv2p->bnx_rv2p_proc1, 2901 rv2p->fw->bnx_rv2p_proc1len, RV2P_PROC1); 2902 bnx_load_rv2p_fw(sc, rv2p->bnx_rv2p_proc2, 2903 rv2p->fw->bnx_rv2p_proc2len, RV2P_PROC2); 2904 2905 /* Initialize the RX Processor. */ 2906 cpu_reg.mode = BNX_RXP_CPU_MODE; 2907 cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT; 2908 cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA; 2909 cpu_reg.state = BNX_RXP_CPU_STATE; 2910 cpu_reg.state_value_clear = 0xffffff; 2911 cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE; 2912 cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK; 2913 cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER; 2914 cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION; 2915 cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT; 2916 cpu_reg.spad_base = BNX_RXP_SCRATCH; 2917 cpu_reg.mips_view_base = 0x8000000; 2918 2919 fw.ver_major = bfw->fw->bnx_RXP_FwReleaseMajor; 2920 fw.ver_minor = bfw->fw->bnx_RXP_FwReleaseMinor; 2921 fw.ver_fix = bfw->fw->bnx_RXP_FwReleaseFix; 2922 fw.start_addr = bfw->fw->bnx_RXP_FwStartAddr; 2923 2924 fw.text_addr = bfw->fw->bnx_RXP_FwTextAddr; 2925 fw.text_len = bfw->fw->bnx_RXP_FwTextLen; 2926 fw.text_index = 0; 2927 fw.text = bfw->bnx_RXP_FwText; 2928 2929 fw.data_addr = bfw->fw->bnx_RXP_FwDataAddr; 2930 fw.data_len = bfw->fw->bnx_RXP_FwDataLen; 2931 fw.data_index = 0; 2932 fw.data = bfw->bnx_RXP_FwData; 2933 2934 fw.sbss_addr = bfw->fw->bnx_RXP_FwSbssAddr; 2935 fw.sbss_len = bfw->fw->bnx_RXP_FwSbssLen; 2936 fw.sbss_index = 0; 2937 fw.sbss = bfw->bnx_RXP_FwSbss; 2938 2939 fw.bss_addr = bfw->fw->bnx_RXP_FwBssAddr; 2940 fw.bss_len = bfw->fw->bnx_RXP_FwBssLen; 2941 fw.bss_index = 0; 2942 fw.bss = bfw->bnx_RXP_FwBss; 2943 2944 fw.rodata_addr = bfw->fw->bnx_RXP_FwRodataAddr; 2945 fw.rodata_len = bfw->fw->bnx_RXP_FwRodataLen; 2946 fw.rodata_index = 0; 2947 fw.rodata = bfw->bnx_RXP_FwRodata; 2948 2949 DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n"); 2950 bnx_load_cpu_fw(sc, &cpu_reg, &fw); 2951 2952 /* Initialize the TX Processor. */ 2953 cpu_reg.mode = BNX_TXP_CPU_MODE; 2954 cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT; 2955 cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA; 2956 cpu_reg.state = BNX_TXP_CPU_STATE; 2957 cpu_reg.state_value_clear = 0xffffff; 2958 cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE; 2959 cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK; 2960 cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER; 2961 cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION; 2962 cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT; 2963 cpu_reg.spad_base = BNX_TXP_SCRATCH; 2964 cpu_reg.mips_view_base = 0x8000000; 2965 2966 fw.ver_major = bfw->fw->bnx_TXP_FwReleaseMajor; 2967 fw.ver_minor = bfw->fw->bnx_TXP_FwReleaseMinor; 2968 fw.ver_fix = bfw->fw->bnx_TXP_FwReleaseFix; 2969 fw.start_addr = bfw->fw->bnx_TXP_FwStartAddr; 2970 2971 fw.text_addr = bfw->fw->bnx_TXP_FwTextAddr; 2972 fw.text_len = bfw->fw->bnx_TXP_FwTextLen; 2973 fw.text_index = 0; 2974 fw.text = bfw->bnx_TXP_FwText; 2975 2976 fw.data_addr = bfw->fw->bnx_TXP_FwDataAddr; 2977 fw.data_len = bfw->fw->bnx_TXP_FwDataLen; 2978 fw.data_index = 0; 2979 fw.data = bfw->bnx_TXP_FwData; 2980 2981 fw.sbss_addr = bfw->fw->bnx_TXP_FwSbssAddr; 2982 fw.sbss_len = bfw->fw->bnx_TXP_FwSbssLen; 2983 fw.sbss_index = 0; 2984 fw.sbss = bfw->bnx_TXP_FwSbss; 2985 2986 fw.bss_addr = bfw->fw->bnx_TXP_FwBssAddr; 2987 fw.bss_len = bfw->fw->bnx_TXP_FwBssLen; 2988 fw.bss_index = 0; 2989 fw.bss = bfw->bnx_TXP_FwBss; 2990 2991 fw.rodata_addr = bfw->fw->bnx_TXP_FwRodataAddr; 2992 fw.rodata_len = bfw->fw->bnx_TXP_FwRodataLen; 2993 fw.rodata_index = 0; 2994 fw.rodata = bfw->bnx_TXP_FwRodata; 2995 2996 DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n"); 2997 bnx_load_cpu_fw(sc, &cpu_reg, &fw); 2998 2999 /* Initialize the TX Patch-up Processor. */ 3000 cpu_reg.mode = BNX_TPAT_CPU_MODE; 3001 cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT; 3002 cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA; 3003 cpu_reg.state = BNX_TPAT_CPU_STATE; 3004 cpu_reg.state_value_clear = 0xffffff; 3005 cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE; 3006 cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK; 3007 cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER; 3008 cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION; 3009 cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT; 3010 cpu_reg.spad_base = BNX_TPAT_SCRATCH; 3011 cpu_reg.mips_view_base = 0x8000000; 3012 3013 fw.ver_major = bfw->fw->bnx_TPAT_FwReleaseMajor; 3014 fw.ver_minor = bfw->fw->bnx_TPAT_FwReleaseMinor; 3015 fw.ver_fix = bfw->fw->bnx_TPAT_FwReleaseFix; 3016 fw.start_addr = bfw->fw->bnx_TPAT_FwStartAddr; 3017 3018 fw.text_addr = bfw->fw->bnx_TPAT_FwTextAddr; 3019 fw.text_len = bfw->fw->bnx_TPAT_FwTextLen; 3020 fw.text_index = 0; 3021 fw.text = bfw->bnx_TPAT_FwText; 3022 3023 fw.data_addr = bfw->fw->bnx_TPAT_FwDataAddr; 3024 fw.data_len = bfw->fw->bnx_TPAT_FwDataLen; 3025 fw.data_index = 0; 3026 fw.data = bfw->bnx_TPAT_FwData; 3027 3028 fw.sbss_addr = bfw->fw->bnx_TPAT_FwSbssAddr; 3029 fw.sbss_len = bfw->fw->bnx_TPAT_FwSbssLen; 3030 fw.sbss_index = 0; 3031 fw.sbss = bfw->bnx_TPAT_FwSbss; 3032 3033 fw.bss_addr = bfw->fw->bnx_TPAT_FwBssAddr; 3034 fw.bss_len = bfw->fw->bnx_TPAT_FwBssLen; 3035 fw.bss_index = 0; 3036 fw.bss = bfw->bnx_TPAT_FwBss; 3037 3038 fw.rodata_addr = bfw->fw->bnx_TPAT_FwRodataAddr; 3039 fw.rodata_len = bfw->fw->bnx_TPAT_FwRodataLen; 3040 fw.rodata_index = 0; 3041 fw.rodata = bfw->bnx_TPAT_FwRodata; 3042 3043 DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n"); 3044 bnx_load_cpu_fw(sc, &cpu_reg, &fw); 3045 3046 /* Initialize the Completion Processor. */ 3047 cpu_reg.mode = BNX_COM_CPU_MODE; 3048 cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT; 3049 cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA; 3050 cpu_reg.state = BNX_COM_CPU_STATE; 3051 cpu_reg.state_value_clear = 0xffffff; 3052 cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE; 3053 cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK; 3054 cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER; 3055 cpu_reg.inst = BNX_COM_CPU_INSTRUCTION; 3056 cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT; 3057 cpu_reg.spad_base = BNX_COM_SCRATCH; 3058 cpu_reg.mips_view_base = 0x8000000; 3059 3060 fw.ver_major = bfw->fw->bnx_COM_FwReleaseMajor; 3061 fw.ver_minor = bfw->fw->bnx_COM_FwReleaseMinor; 3062 fw.ver_fix = bfw->fw->bnx_COM_FwReleaseFix; 3063 fw.start_addr = bfw->fw->bnx_COM_FwStartAddr; 3064 3065 fw.text_addr = bfw->fw->bnx_COM_FwTextAddr; 3066 fw.text_len = bfw->fw->bnx_COM_FwTextLen; 3067 fw.text_index = 0; 3068 fw.text = bfw->bnx_COM_FwText; 3069 3070 fw.data_addr = bfw->fw->bnx_COM_FwDataAddr; 3071 fw.data_len = bfw->fw->bnx_COM_FwDataLen; 3072 fw.data_index = 0; 3073 fw.data = bfw->bnx_COM_FwData; 3074 3075 fw.sbss_addr = bfw->fw->bnx_COM_FwSbssAddr; 3076 fw.sbss_len = bfw->fw->bnx_COM_FwSbssLen; 3077 fw.sbss_index = 0; 3078 fw.sbss = bfw->bnx_COM_FwSbss; 3079 3080 fw.bss_addr = bfw->fw->bnx_COM_FwBssAddr; 3081 fw.bss_len = bfw->fw->bnx_COM_FwBssLen; 3082 fw.bss_index = 0; 3083 fw.bss = bfw->bnx_COM_FwBss; 3084 3085 fw.rodata_addr = bfw->fw->bnx_COM_FwRodataAddr; 3086 fw.rodata_len = bfw->fw->bnx_COM_FwRodataLen; 3087 fw.rodata_index = 0; 3088 fw.rodata = bfw->bnx_COM_FwRodata; 3089 3090 DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n"); 3091 bnx_load_cpu_fw(sc, &cpu_reg, &fw); 3092 } 3093 3094 /****************************************************************************/ 3095 /* Initialize context memory. */ 3096 /* */ 3097 /* Clears the memory associated with each Context ID (CID). */ 3098 /* */ 3099 /* Returns: */ 3100 /* Nothing. */ 3101 /****************************************************************************/ 3102 void 3103 bnx_init_context(struct bnx_softc *sc) 3104 { 3105 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) { 3106 /* DRC: Replace this constant value with a #define. */ 3107 int i, retry_cnt = 10; 3108 u_int32_t val; 3109 3110 /* 3111 * BCM5709 context memory may be cached 3112 * in host memory so prepare the host memory 3113 * for access. 3114 */ 3115 val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT 3116 | (1 << 12); 3117 val |= (BCM_PAGE_BITS - 8) << 16; 3118 REG_WR(sc, BNX_CTX_COMMAND, val); 3119 3120 /* Wait for mem init command to complete. */ 3121 for (i = 0; i < retry_cnt; i++) { 3122 val = REG_RD(sc, BNX_CTX_COMMAND); 3123 if (!(val & BNX_CTX_COMMAND_MEM_INIT)) 3124 break; 3125 DELAY(2); 3126 } 3127 3128 /* ToDo: Consider returning an error here. */ 3129 3130 for (i = 0; i < sc->ctx_pages; i++) { 3131 int j; 3132 3133 /* Set the physaddr of the context memory cache. */ 3134 val = (u_int32_t)(sc->ctx_segs[i].ds_addr); 3135 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val | 3136 BNX_CTX_HOST_PAGE_TBL_DATA0_VALID); 3137 val = (u_int32_t) 3138 ((u_int64_t)sc->ctx_segs[i].ds_addr >> 32); 3139 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val); 3140 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i | 3141 BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ); 3142 3143 /* Verify that the context memory write was successful. */ 3144 for (j = 0; j < retry_cnt; j++) { 3145 val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL); 3146 if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0) 3147 break; 3148 DELAY(5); 3149 } 3150 3151 /* ToDo: Consider returning an error here. */ 3152 } 3153 } else { 3154 u_int32_t vcid_addr, offset; 3155 3156 /* 3157 * For the 5706/5708, context memory is local to 3158 * the controller, so initialize the controller 3159 * context memory. 3160 */ 3161 3162 vcid_addr = GET_CID_ADDR(96); 3163 while (vcid_addr) { 3164 3165 vcid_addr -= PHY_CTX_SIZE; 3166 3167 REG_WR(sc, BNX_CTX_VIRT_ADDR, 0); 3168 REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr); 3169 3170 for(offset = 0; offset < PHY_CTX_SIZE; offset += 4) { 3171 CTX_WR(sc, 0x00, offset, 0); 3172 } 3173 3174 REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr); 3175 REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr); 3176 } 3177 } 3178 } 3179 3180 /****************************************************************************/ 3181 /* Fetch the permanent MAC address of the controller. */ 3182 /* */ 3183 /* Returns: */ 3184 /* Nothing. */ 3185 /****************************************************************************/ 3186 void 3187 bnx_get_mac_addr(struct bnx_softc *sc) 3188 { 3189 u_int32_t mac_lo = 0, mac_hi = 0; 3190 3191 /* 3192 * The NetXtreme II bootcode populates various NIC 3193 * power-on and runtime configuration items in a 3194 * shared memory area. The factory configured MAC 3195 * address is available from both NVRAM and the 3196 * shared memory area so we'll read the value from 3197 * shared memory for speed. 3198 */ 3199 3200 mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER); 3201 mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER); 3202 3203 if ((mac_lo == 0) && (mac_hi == 0)) { 3204 BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n", 3205 __FILE__, __LINE__); 3206 } else { 3207 sc->eaddr[0] = (u_char)(mac_hi >> 8); 3208 sc->eaddr[1] = (u_char)(mac_hi >> 0); 3209 sc->eaddr[2] = (u_char)(mac_lo >> 24); 3210 sc->eaddr[3] = (u_char)(mac_lo >> 16); 3211 sc->eaddr[4] = (u_char)(mac_lo >> 8); 3212 sc->eaddr[5] = (u_char)(mac_lo >> 0); 3213 } 3214 3215 DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = " 3216 "%6D\n", sc->eaddr, ":"); 3217 } 3218 3219 /****************************************************************************/ 3220 /* Program the MAC address. */ 3221 /* */ 3222 /* Returns: */ 3223 /* Nothing. */ 3224 /****************************************************************************/ 3225 void 3226 bnx_set_mac_addr(struct bnx_softc *sc) 3227 { 3228 u_int32_t val; 3229 u_int8_t *mac_addr = sc->eaddr; 3230 3231 DBPRINT(sc, BNX_INFO, "Setting Ethernet address = " 3232 "%6D\n", sc->eaddr, ":"); 3233 3234 val = (mac_addr[0] << 8) | mac_addr[1]; 3235 3236 REG_WR(sc, BNX_EMAC_MAC_MATCH0, val); 3237 3238 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) | 3239 (mac_addr[4] << 8) | mac_addr[5]; 3240 3241 REG_WR(sc, BNX_EMAC_MAC_MATCH1, val); 3242 } 3243 3244 /****************************************************************************/ 3245 /* Stop the controller. */ 3246 /* */ 3247 /* Returns: */ 3248 /* Nothing. */ 3249 /****************************************************************************/ 3250 void 3251 bnx_stop(struct bnx_softc *sc) 3252 { 3253 struct ifnet *ifp = &sc->arpcom.ac_if; 3254 struct ifmedia_entry *ifm; 3255 struct mii_data *mii; 3256 int mtmp, itmp; 3257 3258 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); 3259 3260 timeout_del(&sc->bnx_timeout); 3261 timeout_del(&sc->bnx_rxrefill); 3262 3263 ifp->if_flags &= ~IFF_RUNNING; 3264 ifq_clr_oactive(&ifp->if_snd); 3265 3266 /* Disable the transmit/receive blocks. */ 3267 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff); 3268 REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS); 3269 DELAY(20); 3270 3271 bnx_disable_intr(sc); 3272 3273 intr_barrier(sc->bnx_intrhand); 3274 KASSERT((ifp->if_flags & IFF_RUNNING) == 0); 3275 3276 /* Tell firmware that the driver is going away. */ 3277 bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL); 3278 3279 /* Free RX buffers. */ 3280 bnx_free_rx_chain(sc); 3281 3282 /* Free TX buffers. */ 3283 bnx_free_tx_chain(sc); 3284 3285 /* 3286 * Isolate/power down the PHY, but leave the media selection 3287 * unchanged so that things will be put back to normal when 3288 * we bring the interface back up. 3289 */ 3290 mii = &sc->bnx_mii; 3291 itmp = ifp->if_flags; 3292 ifp->if_flags |= IFF_UP; 3293 ifm = mii->mii_media.ifm_cur; 3294 mtmp = ifm->ifm_media; 3295 ifm->ifm_media = IFM_ETHER|IFM_NONE; 3296 mii_mediachg(mii); 3297 ifm->ifm_media = mtmp; 3298 ifp->if_flags = itmp; 3299 3300 ifp->if_timer = 0; 3301 3302 sc->bnx_link = 0; 3303 3304 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); 3305 3306 bnx_mgmt_init(sc); 3307 } 3308 3309 int 3310 bnx_reset(struct bnx_softc *sc, u_int32_t reset_code) 3311 { 3312 struct pci_attach_args *pa = &(sc->bnx_pa); 3313 u_int32_t val; 3314 int i, rc = 0; 3315 3316 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); 3317 3318 /* Wait for pending PCI transactions to complete. */ 3319 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 3320 BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE | 3321 BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE | 3322 BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE | 3323 BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE); 3324 val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS); 3325 DELAY(5); 3326 3327 /* Disable DMA */ 3328 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) { 3329 val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL); 3330 val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE; 3331 REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val); 3332 } 3333 3334 /* Assume bootcode is running. */ 3335 sc->bnx_fw_timed_out = 0; 3336 3337 /* Give the firmware a chance to prepare for the reset. */ 3338 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code); 3339 if (rc) 3340 goto bnx_reset_exit; 3341 3342 /* Set a firmware reminder that this is a soft reset. */ 3343 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE, 3344 BNX_DRV_RESET_SIGNATURE_MAGIC); 3345 3346 /* Dummy read to force the chip to complete all current transactions. */ 3347 val = REG_RD(sc, BNX_MISC_ID); 3348 3349 /* Chip reset. */ 3350 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) { 3351 REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET); 3352 REG_RD(sc, BNX_MISC_COMMAND); 3353 DELAY(5); 3354 3355 val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA | 3356 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP; 3357 3358 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG, 3359 val); 3360 } else { 3361 val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ | 3362 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA | 3363 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP; 3364 REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val); 3365 3366 /* Allow up to 30us for reset to complete. */ 3367 for (i = 0; i < 10; i++) { 3368 val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG); 3369 if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ | 3370 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) { 3371 break; 3372 } 3373 DELAY(10); 3374 } 3375 3376 /* Check that reset completed successfully. */ 3377 if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ | 3378 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) { 3379 BNX_PRINTF(sc, "%s(%d): Reset failed!\n", 3380 __FILE__, __LINE__); 3381 rc = EBUSY; 3382 goto bnx_reset_exit; 3383 } 3384 } 3385 3386 /* Make sure byte swapping is properly configured. */ 3387 val = REG_RD(sc, BNX_PCI_SWAP_DIAG0); 3388 if (val != 0x01020304) { 3389 BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n", 3390 __FILE__, __LINE__); 3391 rc = ENODEV; 3392 goto bnx_reset_exit; 3393 } 3394 3395 /* Just completed a reset, assume that firmware is running again. */ 3396 sc->bnx_fw_timed_out = 0; 3397 3398 /* Wait for the firmware to finish its initialization. */ 3399 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code); 3400 if (rc) 3401 BNX_PRINTF(sc, "%s(%d): Firmware did not complete " 3402 "initialization!\n", __FILE__, __LINE__); 3403 3404 bnx_reset_exit: 3405 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); 3406 3407 return (rc); 3408 } 3409 3410 int 3411 bnx_chipinit(struct bnx_softc *sc) 3412 { 3413 struct pci_attach_args *pa = &(sc->bnx_pa); 3414 u_int32_t val; 3415 int rc = 0; 3416 3417 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); 3418 3419 /* Make sure the interrupt is not active. */ 3420 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT); 3421 3422 /* Initialize DMA byte/word swapping, configure the number of DMA */ 3423 /* channels and PCI clock compensation delay. */ 3424 val = BNX_DMA_CONFIG_DATA_BYTE_SWAP | 3425 BNX_DMA_CONFIG_DATA_WORD_SWAP | 3426 #if BYTE_ORDER == BIG_ENDIAN 3427 BNX_DMA_CONFIG_CNTL_BYTE_SWAP | 3428 #endif 3429 BNX_DMA_CONFIG_CNTL_WORD_SWAP | 3430 DMA_READ_CHANS << 12 | 3431 DMA_WRITE_CHANS << 16; 3432 3433 val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY; 3434 3435 if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133)) 3436 val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP; 3437 3438 /* 3439 * This setting resolves a problem observed on certain Intel PCI 3440 * chipsets that cannot handle multiple outstanding DMA operations. 3441 * See errata E9_5706A1_65. 3442 */ 3443 if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) && 3444 (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) && 3445 !(sc->bnx_flags & BNX_PCIX_FLAG)) 3446 val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA; 3447 3448 REG_WR(sc, BNX_DMA_CONFIG, val); 3449 3450 #if 1 3451 /* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */ 3452 if (sc->bnx_flags & BNX_PCIX_FLAG) { 3453 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD); 3454 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD, 3455 val & ~0x20000); 3456 } 3457 #endif 3458 3459 /* Enable the RX_V2P and Context state machines before access. */ 3460 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 3461 BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE | 3462 BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE | 3463 BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE); 3464 3465 /* Initialize context mapping and zero out the quick contexts. */ 3466 bnx_init_context(sc); 3467 3468 /* Initialize the on-boards CPUs */ 3469 bnx_init_cpus(sc); 3470 3471 /* Prepare NVRAM for access. */ 3472 if (bnx_init_nvram(sc)) { 3473 rc = ENODEV; 3474 goto bnx_chipinit_exit; 3475 } 3476 3477 /* Set the kernel bypass block size */ 3478 val = REG_RD(sc, BNX_MQ_CONFIG); 3479 val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE; 3480 val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256; 3481 3482 /* Enable bins used on the 5709. */ 3483 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) { 3484 val |= BNX_MQ_CONFIG_BIN_MQ_MODE; 3485 if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1) 3486 val |= BNX_MQ_CONFIG_HALT_DIS; 3487 } 3488 3489 REG_WR(sc, BNX_MQ_CONFIG, val); 3490 3491 val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE); 3492 REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val); 3493 REG_WR(sc, BNX_MQ_KNL_WIND_END, val); 3494 3495 val = (BCM_PAGE_BITS - 8) << 24; 3496 REG_WR(sc, BNX_RV2P_CONFIG, val); 3497 3498 /* Configure page size. */ 3499 val = REG_RD(sc, BNX_TBDR_CONFIG); 3500 val &= ~BNX_TBDR_CONFIG_PAGE_SIZE; 3501 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40; 3502 REG_WR(sc, BNX_TBDR_CONFIG, val); 3503 3504 #if 0 3505 /* Set the perfect match control register to default. */ 3506 REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0); 3507 #endif 3508 3509 bnx_chipinit_exit: 3510 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); 3511 3512 return(rc); 3513 } 3514 3515 /****************************************************************************/ 3516 /* Initialize the controller in preparation to send/receive traffic. */ 3517 /* */ 3518 /* Returns: */ 3519 /* 0 for success, positive value for failure. */ 3520 /****************************************************************************/ 3521 int 3522 bnx_blockinit(struct bnx_softc *sc) 3523 { 3524 u_int32_t reg, val; 3525 int rc = 0; 3526 3527 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); 3528 3529 /* Load the hardware default MAC address. */ 3530 bnx_set_mac_addr(sc); 3531 3532 /* Set the Ethernet backoff seed value */ 3533 val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) + 3534 (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16); 3535 REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val); 3536 3537 sc->last_status_idx = 0; 3538 sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE; 3539 3540 /* Set up link change interrupt generation. */ 3541 REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK); 3542 REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE); 3543 3544 /* Program the physical address of the status block. */ 3545 REG_WR(sc, BNX_HC_STATUS_ADDR_L, (u_int32_t)(sc->status_block_paddr)); 3546 REG_WR(sc, BNX_HC_STATUS_ADDR_H, 3547 (u_int32_t)((u_int64_t)sc->status_block_paddr >> 32)); 3548 3549 /* Program the physical address of the statistics block. */ 3550 REG_WR(sc, BNX_HC_STATISTICS_ADDR_L, 3551 (u_int32_t)(sc->stats_block_paddr)); 3552 REG_WR(sc, BNX_HC_STATISTICS_ADDR_H, 3553 (u_int32_t)((u_int64_t)sc->stats_block_paddr >> 32)); 3554 3555 /* Program various host coalescing parameters. */ 3556 REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int 3557 << 16) | sc->bnx_tx_quick_cons_trip); 3558 REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int 3559 << 16) | sc->bnx_rx_quick_cons_trip); 3560 REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) | 3561 sc->bnx_comp_prod_trip); 3562 REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) | 3563 sc->bnx_tx_ticks); 3564 REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) | 3565 sc->bnx_rx_ticks); 3566 REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) | 3567 sc->bnx_com_ticks); 3568 REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) | 3569 sc->bnx_cmd_ticks); 3570 REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00)); 3571 REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */ 3572 REG_WR(sc, BNX_HC_CONFIG, 3573 (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE | 3574 BNX_HC_CONFIG_COLLECT_STATS)); 3575 3576 /* Clear the internal statistics counters. */ 3577 REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW); 3578 3579 /* Verify that bootcode is running. */ 3580 reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE); 3581 3582 DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure), 3583 BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n", 3584 __FILE__, __LINE__); reg = 0); 3585 3586 if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) != 3587 BNX_DEV_INFO_SIGNATURE_MAGIC) { 3588 BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, " 3589 "Expected: 08%08X\n", __FILE__, __LINE__, 3590 (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK), 3591 BNX_DEV_INFO_SIGNATURE_MAGIC); 3592 rc = ENODEV; 3593 goto bnx_blockinit_exit; 3594 } 3595 3596 /* Check if any management firmware is running. */ 3597 reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE); 3598 if (reg & (BNX_PORT_FEATURE_ASF_ENABLED | 3599 BNX_PORT_FEATURE_IMD_ENABLED)) { 3600 DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n"); 3601 sc->bnx_flags |= BNX_MFW_ENABLE_FLAG; 3602 } 3603 3604 sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base + 3605 BNX_DEV_INFO_BC_REV); 3606 3607 DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver); 3608 3609 /* Enable DMA */ 3610 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) { 3611 val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL); 3612 val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE; 3613 REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val); 3614 } 3615 3616 /* Allow bootcode to apply any additional fixes before enabling MAC. */ 3617 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET); 3618 3619 /* Enable link state change interrupt generation. */ 3620 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) { 3621 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 3622 BNX_MISC_ENABLE_DEFAULT_XI); 3623 } else 3624 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT); 3625 3626 /* Enable all remaining blocks in the MAC. */ 3627 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff); 3628 REG_RD(sc, BNX_MISC_ENABLE_SET_BITS); 3629 DELAY(20); 3630 3631 bnx_blockinit_exit: 3632 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); 3633 3634 return (rc); 3635 } 3636 3637 /****************************************************************************/ 3638 /* Encapsulate an mbuf cluster into the rx_bd chain. */ 3639 /* */ 3640 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's. */ 3641 /* This routine will map an mbuf cluster into 1 or more rx_bd's as */ 3642 /* necessary. */ 3643 /* */ 3644 /* Returns: */ 3645 /* 0 for success, positive value for failure. */ 3646 /****************************************************************************/ 3647 int 3648 bnx_get_buf(struct bnx_softc *sc, u_int16_t *prod, 3649 u_int16_t *chain_prod, u_int32_t *prod_bseq) 3650 { 3651 bus_dmamap_t map; 3652 struct mbuf *m; 3653 struct rx_bd *rxbd; 3654 int i; 3655 u_int32_t addr; 3656 #ifdef BNX_DEBUG 3657 u_int16_t debug_chain_prod = *chain_prod; 3658 #endif 3659 u_int16_t first_chain_prod; 3660 3661 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n", 3662 __FUNCTION__); 3663 3664 /* Make sure the inputs are valid. */ 3665 DBRUNIF((*chain_prod > MAX_RX_BD), 3666 printf("%s: RX producer out of range: 0x%04X > 0x%04X\n", 3667 *chain_prod, (u_int16_t) MAX_RX_BD)); 3668 3669 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = " 3670 "0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__, *prod, *chain_prod, 3671 *prod_bseq); 3672 3673 /* This is a new mbuf allocation. */ 3674 m = MCLGETL(NULL, M_DONTWAIT, BNX_MAX_JUMBO_MRU); 3675 if (!m) 3676 return (0); 3677 m->m_len = m->m_pkthdr.len = BNX_MAX_JUMBO_MRU; 3678 /* the chip aligns the ip header for us, no need to m_adj */ 3679 3680 /* Map the mbuf cluster into device memory. */ 3681 map = sc->rx_mbuf_map[*chain_prod]; 3682 if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT)) { 3683 m_freem(m); 3684 return (0); 3685 } 3686 first_chain_prod = *chain_prod; 3687 3688 #ifdef BNX_DEBUG 3689 /* Track the distribution of buffer segments. */ 3690 sc->rx_mbuf_segs[map->dm_nsegs]++; 3691 #endif 3692 3693 /* Setup the rx_bd for the first segment. */ 3694 rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)]; 3695 3696 addr = (u_int32_t)map->dm_segs[0].ds_addr; 3697 rxbd->rx_bd_haddr_lo = addr; 3698 addr = (u_int32_t)((u_int64_t)map->dm_segs[0].ds_addr >> 32); 3699 rxbd->rx_bd_haddr_hi = addr; 3700 rxbd->rx_bd_len = map->dm_segs[0].ds_len; 3701 rxbd->rx_bd_flags = RX_BD_FLAGS_START; 3702 *prod_bseq += map->dm_segs[0].ds_len; 3703 3704 for (i = 1; i < map->dm_nsegs; i++) { 3705 *prod = NEXT_RX_BD(*prod); 3706 *chain_prod = RX_CHAIN_IDX(*prod); 3707 3708 rxbd = 3709 &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)]; 3710 3711 addr = (u_int32_t)map->dm_segs[i].ds_addr; 3712 rxbd->rx_bd_haddr_lo = addr; 3713 addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32); 3714 rxbd->rx_bd_haddr_hi = addr; 3715 rxbd->rx_bd_len = map->dm_segs[i].ds_len; 3716 rxbd->rx_bd_flags = 0; 3717 *prod_bseq += map->dm_segs[i].ds_len; 3718 } 3719 3720 rxbd->rx_bd_flags |= RX_BD_FLAGS_END; 3721 3722 /* 3723 * Save the mbuf, adjust the map pointer (swap map for first and 3724 * last rx_bd entry so that rx_mbuf_ptr and rx_mbuf_map matches) 3725 * and update our counter. 3726 */ 3727 sc->rx_mbuf_ptr[*chain_prod] = m; 3728 sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod]; 3729 sc->rx_mbuf_map[*chain_prod] = map; 3730 3731 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod, 3732 map->dm_nsegs)); 3733 3734 return (map->dm_nsegs); 3735 } 3736 3737 3738 /****************************************************************************/ 3739 /* Initialize the TX context memory. */ 3740 /* */ 3741 /* Returns: */ 3742 /* Nothing */ 3743 /****************************************************************************/ 3744 void 3745 bnx_init_tx_context(struct bnx_softc *sc) 3746 { 3747 u_int32_t val; 3748 3749 /* Initialize the context ID for an L2 TX chain. */ 3750 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) { 3751 /* Set the CID type to support an L2 connection. */ 3752 val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2; 3753 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val); 3754 val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16); 3755 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val); 3756 3757 /* Point the hardware to the first page in the chain. */ 3758 val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32); 3759 CTX_WR(sc, GET_CID_ADDR(TX_CID), 3760 BNX_L2CTX_TBDR_BHADDR_HI_XI, val); 3761 val = (u_int32_t)(sc->tx_bd_chain_paddr[0]); 3762 CTX_WR(sc, GET_CID_ADDR(TX_CID), 3763 BNX_L2CTX_TBDR_BHADDR_LO_XI, val); 3764 } else { 3765 /* Set the CID type to support an L2 connection. */ 3766 val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2; 3767 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val); 3768 val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16); 3769 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val); 3770 3771 /* Point the hardware to the first page in the chain. */ 3772 val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32); 3773 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val); 3774 val = (u_int32_t)(sc->tx_bd_chain_paddr[0]); 3775 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val); 3776 } 3777 } 3778 3779 /****************************************************************************/ 3780 /* Allocate memory and initialize the TX data structures. */ 3781 /* */ 3782 /* Returns: */ 3783 /* 0 for success, positive value for failure. */ 3784 /****************************************************************************/ 3785 int 3786 bnx_init_tx_chain(struct bnx_softc *sc) 3787 { 3788 struct tx_bd *txbd; 3789 u_int32_t addr; 3790 int i, rc = 0; 3791 3792 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); 3793 3794 /* Set the initial TX producer/consumer indices. */ 3795 sc->tx_prod = 0; 3796 sc->tx_cons = 0; 3797 sc->tx_prod_bseq = 0; 3798 sc->used_tx_bd = 0; 3799 sc->max_tx_bd = USABLE_TX_BD; 3800 DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD); 3801 DBRUNIF(1, sc->tx_full_count = 0); 3802 3803 /* 3804 * The NetXtreme II supports a linked-list structure called 3805 * a Buffer Descriptor Chain (or BD chain). A BD chain 3806 * consists of a series of 1 or more chain pages, each of which 3807 * consists of a fixed number of BD entries. 3808 * The last BD entry on each page is a pointer to the next page 3809 * in the chain, and the last pointer in the BD chain 3810 * points back to the beginning of the chain. 3811 */ 3812 3813 /* Set the TX next pointer chain entries. */ 3814 for (i = 0; i < TX_PAGES; i++) { 3815 int j; 3816 3817 txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE]; 3818 3819 /* Check if we've reached the last page. */ 3820 if (i == (TX_PAGES - 1)) 3821 j = 0; 3822 else 3823 j = i + 1; 3824 3825 addr = (u_int32_t)sc->tx_bd_chain_paddr[j]; 3826 txbd->tx_bd_haddr_lo = addr; 3827 addr = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[j] >> 32); 3828 txbd->tx_bd_haddr_hi = addr; 3829 } 3830 3831 /* 3832 * Initialize the context ID for an L2 TX chain. 3833 */ 3834 bnx_init_tx_context(sc); 3835 3836 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); 3837 3838 return(rc); 3839 } 3840 3841 /****************************************************************************/ 3842 /* Free memory and clear the TX data structures. */ 3843 /* */ 3844 /* Returns: */ 3845 /* Nothing. */ 3846 /****************************************************************************/ 3847 void 3848 bnx_free_tx_chain(struct bnx_softc *sc) 3849 { 3850 int i; 3851 3852 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); 3853 3854 /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */ 3855 for (i = 0; i < TOTAL_TX_BD; i++) { 3856 if (sc->tx_mbuf_ptr[i] != NULL) { 3857 if (sc->tx_mbuf_map[i] != NULL) { 3858 bus_dmamap_sync(sc->bnx_dmatag, 3859 sc->tx_mbuf_map[i], 0, 3860 sc->tx_mbuf_map[i]->dm_mapsize, 3861 BUS_DMASYNC_POSTWRITE); 3862 bus_dmamap_unload(sc->bnx_dmatag, 3863 sc->tx_mbuf_map[i]); 3864 } 3865 m_freem(sc->tx_mbuf_ptr[i]); 3866 sc->tx_mbuf_ptr[i] = NULL; 3867 DBRUNIF(1, sc->tx_mbuf_alloc--); 3868 } 3869 } 3870 3871 /* Clear each TX chain page. */ 3872 for (i = 0; i < TX_PAGES; i++) 3873 bzero(sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ); 3874 3875 sc->used_tx_bd = 0; 3876 3877 /* Check if we lost any mbufs in the process. */ 3878 DBRUNIF((sc->tx_mbuf_alloc), 3879 printf("%s: Memory leak! Lost %d mbufs from tx chain!\n", 3880 sc->tx_mbuf_alloc)); 3881 3882 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); 3883 } 3884 3885 /****************************************************************************/ 3886 /* Initialize the RX context memory. */ 3887 /* */ 3888 /* Returns: */ 3889 /* Nothing */ 3890 /****************************************************************************/ 3891 void 3892 bnx_init_rx_context(struct bnx_softc *sc) 3893 { 3894 u_int32_t val; 3895 3896 /* Initialize the context ID for an L2 RX chain. */ 3897 val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE | 3898 BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8); 3899 3900 /* 3901 * Set the level for generating pause frames 3902 * when the number of available rx_bd's gets 3903 * too low (the low watermark) and the level 3904 * when pause frames can be stopped (the high 3905 * watermark). 3906 */ 3907 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) { 3908 u_int32_t lo_water, hi_water; 3909 3910 lo_water = BNX_L2CTX_RX_LO_WATER_MARK_DEFAULT; 3911 hi_water = USABLE_RX_BD / 4; 3912 3913 lo_water /= BNX_L2CTX_RX_LO_WATER_MARK_SCALE; 3914 hi_water /= BNX_L2CTX_RX_HI_WATER_MARK_SCALE; 3915 3916 if (hi_water > 0xf) 3917 hi_water = 0xf; 3918 else if (hi_water == 0) 3919 lo_water = 0; 3920 3921 val |= (lo_water << BNX_L2CTX_RX_LO_WATER_MARK_SHIFT) | 3922 (hi_water << BNX_L2CTX_RX_HI_WATER_MARK_SHIFT); 3923 } 3924 3925 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val); 3926 3927 /* Setup the MQ BIN mapping for l2_ctx_host_bseq. */ 3928 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) { 3929 val = REG_RD(sc, BNX_MQ_MAP_L2_5); 3930 REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM); 3931 } 3932 3933 /* Point the hardware to the first page in the chain. */ 3934 val = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[0] >> 32); 3935 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val); 3936 val = (u_int32_t)(sc->rx_bd_chain_paddr[0]); 3937 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val); 3938 } 3939 3940 /****************************************************************************/ 3941 /* Add mbufs to the RX chain until its full or an mbuf allocation error */ 3942 /* occurs. */ 3943 /* */ 3944 /* Returns: */ 3945 /* Nothing */ 3946 /****************************************************************************/ 3947 int 3948 bnx_fill_rx_chain(struct bnx_softc *sc) 3949 { 3950 u_int16_t prod, chain_prod; 3951 u_int32_t prod_bseq; 3952 u_int slots, used; 3953 int ndesc = 0; 3954 #ifdef BNX_DEBUG 3955 int rx_mbuf_alloc_before; 3956 #endif 3957 3958 DBPRINT(sc, BNX_EXCESSIVE_RECV, "Entering %s()\n", __FUNCTION__); 3959 3960 prod = sc->rx_prod; 3961 prod_bseq = sc->rx_prod_bseq; 3962 3963 #ifdef BNX_DEBUG 3964 rx_mbuf_alloc_before = sc->rx_mbuf_alloc; 3965 #endif 3966 3967 /* Keep filling the RX chain until it's full. */ 3968 slots = if_rxr_get(&sc->rx_ring, sc->max_rx_bd); 3969 while (slots > 0) { 3970 chain_prod = RX_CHAIN_IDX(prod); 3971 3972 used = bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq); 3973 if (used == 0) { 3974 /* Bail out if we can't add an mbuf to the chain. */ 3975 break; 3976 } 3977 slots -= used; 3978 3979 prod = NEXT_RX_BD(prod); 3980 ndesc++; 3981 } 3982 if_rxr_put(&sc->rx_ring, slots); 3983 3984 /* Save the RX chain producer index. */ 3985 sc->rx_prod = prod; 3986 sc->rx_prod_bseq = prod_bseq; 3987 3988 /* Tell the chip about the waiting rx_bd's. */ 3989 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod); 3990 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq); 3991 3992 DBPRINT(sc, BNX_EXCESSIVE_RECV, "Exiting %s()\n", __FUNCTION__); 3993 3994 return (ndesc); 3995 } 3996 3997 /****************************************************************************/ 3998 /* Allocate memory and initialize the RX data structures. */ 3999 /* */ 4000 /* Returns: */ 4001 /* 0 for success, positive value for failure. */ 4002 /****************************************************************************/ 4003 int 4004 bnx_init_rx_chain(struct bnx_softc *sc) 4005 { 4006 struct rx_bd *rxbd; 4007 int i, rc = 0; 4008 u_int32_t addr; 4009 4010 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); 4011 4012 /* Initialize the RX producer and consumer indices. */ 4013 sc->rx_prod = 0; 4014 sc->rx_cons = 0; 4015 sc->rx_prod_bseq = 0; 4016 sc->max_rx_bd = USABLE_RX_BD; 4017 DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD); 4018 DBRUNIF(1, sc->rx_empty_count = 0); 4019 4020 /* Initialize the RX next pointer chain entries. */ 4021 for (i = 0; i < RX_PAGES; i++) { 4022 int j; 4023 4024 rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE]; 4025 4026 /* Check if we've reached the last page. */ 4027 if (i == (RX_PAGES - 1)) 4028 j = 0; 4029 else 4030 j = i + 1; 4031 4032 /* Setup the chain page pointers. */ 4033 addr = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[j] >> 32); 4034 rxbd->rx_bd_haddr_hi = addr; 4035 addr = (u_int32_t)sc->rx_bd_chain_paddr[j]; 4036 rxbd->rx_bd_haddr_lo = addr; 4037 } 4038 4039 if_rxr_init(&sc->rx_ring, 16, sc->max_rx_bd); 4040 4041 /* Fill up the RX chain. */ 4042 bnx_fill_rx_chain(sc); 4043 4044 for (i = 0; i < RX_PAGES; i++) 4045 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0, 4046 sc->rx_bd_chain_map[i]->dm_mapsize, 4047 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 4048 4049 bnx_init_rx_context(sc); 4050 4051 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD)); 4052 4053 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); 4054 4055 return(rc); 4056 } 4057 4058 /****************************************************************************/ 4059 /* Free memory and clear the RX data structures. */ 4060 /* */ 4061 /* Returns: */ 4062 /* Nothing. */ 4063 /****************************************************************************/ 4064 void 4065 bnx_free_rx_chain(struct bnx_softc *sc) 4066 { 4067 int i; 4068 #ifdef BNX_DEBUG 4069 int rx_mbuf_alloc_before; 4070 #endif 4071 4072 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); 4073 4074 #ifdef BNX_DEBUG 4075 rx_mbuf_alloc_before = sc->rx_mbuf_alloc; 4076 #endif 4077 4078 /* Free any mbufs still in the RX mbuf chain. */ 4079 for (i = 0; i < TOTAL_RX_BD; i++) { 4080 if (sc->rx_mbuf_ptr[i] != NULL) { 4081 if (sc->rx_mbuf_map[i] != NULL) { 4082 bus_dmamap_sync(sc->bnx_dmatag, 4083 sc->rx_mbuf_map[i], 0, 4084 sc->rx_mbuf_map[i]->dm_mapsize, 4085 BUS_DMASYNC_POSTREAD); 4086 bus_dmamap_unload(sc->bnx_dmatag, 4087 sc->rx_mbuf_map[i]); 4088 } 4089 m_freem(sc->rx_mbuf_ptr[i]); 4090 sc->rx_mbuf_ptr[i] = NULL; 4091 DBRUNIF(1, sc->rx_mbuf_alloc--); 4092 } 4093 } 4094 4095 DBRUNIF((rx_mbuf_alloc_before - sc->rx_mbuf_alloc), 4096 BNX_PRINTF(sc, "%s(): Released %d mbufs.\n", 4097 __FUNCTION__, (rx_mbuf_alloc_before - sc->rx_mbuf_alloc))); 4098 4099 /* Clear each RX chain page. */ 4100 for (i = 0; i < RX_PAGES; i++) 4101 bzero(sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ); 4102 4103 /* Check if we lost any mbufs in the process. */ 4104 DBRUNIF((sc->rx_mbuf_alloc), 4105 printf("%s: Memory leak! Lost %d mbufs from rx chain!\n", 4106 sc->rx_mbuf_alloc)); 4107 4108 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); 4109 } 4110 4111 void 4112 bnx_rxrefill(void *xsc) 4113 { 4114 struct bnx_softc *sc = xsc; 4115 int s; 4116 4117 s = splnet(); 4118 if (!bnx_fill_rx_chain(sc)) 4119 timeout_add(&sc->bnx_rxrefill, 1); 4120 splx(s); 4121 } 4122 4123 /****************************************************************************/ 4124 /* Set media options. */ 4125 /* */ 4126 /* Returns: */ 4127 /* 0 for success, positive value for failure. */ 4128 /****************************************************************************/ 4129 int 4130 bnx_ifmedia_upd(struct ifnet *ifp) 4131 { 4132 struct bnx_softc *sc; 4133 struct mii_data *mii; 4134 int rc = 0; 4135 4136 sc = ifp->if_softc; 4137 4138 mii = &sc->bnx_mii; 4139 sc->bnx_link = 0; 4140 if (mii->mii_instance) { 4141 struct mii_softc *miisc; 4142 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 4143 mii_phy_reset(miisc); 4144 } 4145 mii_mediachg(mii); 4146 4147 return(rc); 4148 } 4149 4150 /****************************************************************************/ 4151 /* Reports current media status. */ 4152 /* */ 4153 /* Returns: */ 4154 /* Nothing. */ 4155 /****************************************************************************/ 4156 void 4157 bnx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 4158 { 4159 struct bnx_softc *sc; 4160 struct mii_data *mii; 4161 int s; 4162 4163 sc = ifp->if_softc; 4164 4165 s = splnet(); 4166 4167 mii = &sc->bnx_mii; 4168 4169 mii_pollstat(mii); 4170 ifmr->ifm_status = mii->mii_media_status; 4171 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) | 4172 sc->bnx_flowflags; 4173 4174 splx(s); 4175 } 4176 4177 /****************************************************************************/ 4178 /* Handles PHY generated interrupt events. */ 4179 /* */ 4180 /* Returns: */ 4181 /* Nothing. */ 4182 /****************************************************************************/ 4183 void 4184 bnx_phy_intr(struct bnx_softc *sc) 4185 { 4186 u_int32_t new_link_state, old_link_state; 4187 4188 new_link_state = sc->status_block->status_attn_bits & 4189 STATUS_ATTN_BITS_LINK_STATE; 4190 old_link_state = sc->status_block->status_attn_bits_ack & 4191 STATUS_ATTN_BITS_LINK_STATE; 4192 4193 /* Handle any changes if the link state has changed. */ 4194 if (new_link_state != old_link_state) { 4195 DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc)); 4196 4197 sc->bnx_link = 0; 4198 timeout_del(&sc->bnx_timeout); 4199 bnx_tick(sc); 4200 4201 /* Update the status_attn_bits_ack field in the status block. */ 4202 if (new_link_state) { 4203 REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD, 4204 STATUS_ATTN_BITS_LINK_STATE); 4205 DBPRINT(sc, BNX_INFO, "Link is now UP.\n"); 4206 } else { 4207 REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD, 4208 STATUS_ATTN_BITS_LINK_STATE); 4209 DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n"); 4210 } 4211 } 4212 4213 /* Acknowledge the link change interrupt. */ 4214 REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE); 4215 } 4216 4217 /****************************************************************************/ 4218 /* Handles received frame interrupt events. */ 4219 /* */ 4220 /* Returns: */ 4221 /* Nothing. */ 4222 /****************************************************************************/ 4223 void 4224 bnx_rx_intr(struct bnx_softc *sc) 4225 { 4226 struct status_block *sblk = sc->status_block; 4227 struct ifnet *ifp = &sc->arpcom.ac_if; 4228 struct mbuf_list ml = MBUF_LIST_INITIALIZER(); 4229 u_int16_t hw_cons, sw_cons, sw_chain_cons; 4230 u_int16_t sw_prod, sw_chain_prod; 4231 u_int32_t sw_prod_bseq; 4232 struct l2_fhdr *l2fhdr; 4233 int i; 4234 4235 DBRUNIF(1, sc->rx_interrupts++); 4236 4237 if (if_rxr_inuse(&sc->rx_ring) == 0) 4238 return; 4239 4240 /* Prepare the RX chain pages to be accessed by the host CPU. */ 4241 for (i = 0; i < RX_PAGES; i++) 4242 bus_dmamap_sync(sc->bnx_dmatag, 4243 sc->rx_bd_chain_map[i], 0, 4244 sc->rx_bd_chain_map[i]->dm_mapsize, 4245 BUS_DMASYNC_POSTWRITE); 4246 4247 /* Get the hardware's view of the RX consumer index. */ 4248 hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0; 4249 if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE) 4250 hw_cons++; 4251 4252 /* Get working copies of the driver's view of the RX indices. */ 4253 sw_cons = sc->rx_cons; 4254 sw_prod = sc->rx_prod; 4255 sw_prod_bseq = sc->rx_prod_bseq; 4256 4257 DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, " 4258 "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n", 4259 __FUNCTION__, sw_prod, sw_cons, sw_prod_bseq); 4260 4261 /* Prevent speculative reads from getting ahead of the status block. */ 4262 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0, 4263 BUS_SPACE_BARRIER_READ); 4264 4265 /* 4266 * Scan through the receive chain as long 4267 * as there is work to do. 4268 */ 4269 while (sw_cons != hw_cons) { 4270 struct mbuf *m; 4271 struct rx_bd *rxbd; 4272 unsigned int len; 4273 u_int32_t status; 4274 4275 /* Clear the mbuf pointer. */ 4276 m = NULL; 4277 4278 /* Convert the producer/consumer indices to an actual 4279 * rx_bd index. 4280 */ 4281 sw_chain_cons = RX_CHAIN_IDX(sw_cons); 4282 sw_chain_prod = RX_CHAIN_IDX(sw_prod); 4283 4284 /* Get the used rx_bd. */ 4285 rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)]; 4286 if_rxr_put(&sc->rx_ring, 1); 4287 4288 DBRUN(BNX_VERBOSE_RECV, printf("%s(): ", __FUNCTION__); 4289 bnx_dump_rxbd(sc, sw_chain_cons, rxbd)); 4290 4291 /* The mbuf is stored with the last rx_bd entry of a packet. */ 4292 if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) { 4293 /* Validate that this is the last rx_bd. */ 4294 DBRUNIF((!(rxbd->rx_bd_flags & RX_BD_FLAGS_END)), 4295 printf("%s: Unexpected mbuf found in " 4296 "rx_bd[0x%04X]!\n", sw_chain_cons); 4297 bnx_breakpoint(sc)); 4298 4299 /* DRC - ToDo: If the received packet is small, say less 4300 * than 128 bytes, allocate a new mbuf here, 4301 * copy the data to that mbuf, and recycle 4302 * the mapped jumbo frame. 4303 */ 4304 4305 /* Unmap the mbuf from DMA space. */ 4306 bus_dmamap_sync(sc->bnx_dmatag, 4307 sc->rx_mbuf_map[sw_chain_cons], 0, 4308 sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize, 4309 BUS_DMASYNC_POSTREAD); 4310 bus_dmamap_unload(sc->bnx_dmatag, 4311 sc->rx_mbuf_map[sw_chain_cons]); 4312 4313 /* Remove the mbuf from RX chain. */ 4314 m = sc->rx_mbuf_ptr[sw_chain_cons]; 4315 sc->rx_mbuf_ptr[sw_chain_cons] = NULL; 4316 4317 /* 4318 * Frames received on the NetXteme II are prepended 4319 * with the l2_fhdr structure which provides status 4320 * information about the received frame (including 4321 * VLAN tags and checksum info) and are also 4322 * automatically adjusted to align the IP header 4323 * (i.e. two null bytes are inserted before the 4324 * Ethernet header). 4325 */ 4326 l2fhdr = mtod(m, struct l2_fhdr *); 4327 4328 len = l2fhdr->l2_fhdr_pkt_len; 4329 status = l2fhdr->l2_fhdr_status; 4330 4331 DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check), 4332 printf("Simulating l2_fhdr status error.\n"); 4333 status = status | L2_FHDR_ERRORS_PHY_DECODE); 4334 4335 /* Watch for unusual sized frames. */ 4336 DBRUNIF(((len < BNX_MIN_MTU) || 4337 (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)), 4338 printf("%s: Unusual frame size found. " 4339 "Min(%d), Actual(%d), Max(%d)\n", (int)BNX_MIN_MTU, 4340 len, (int) BNX_MAX_JUMBO_ETHER_MTU_VLAN); 4341 4342 bnx_dump_mbuf(sc, m); 4343 bnx_breakpoint(sc)); 4344 4345 len -= ETHER_CRC_LEN; 4346 4347 /* Check the received frame for errors. */ 4348 if (status & (L2_FHDR_ERRORS_BAD_CRC | 4349 L2_FHDR_ERRORS_PHY_DECODE | 4350 L2_FHDR_ERRORS_ALIGNMENT | 4351 L2_FHDR_ERRORS_TOO_SHORT | 4352 L2_FHDR_ERRORS_GIANT_FRAME)) { 4353 /* Log the error and release the mbuf. */ 4354 ifp->if_ierrors++; 4355 DBRUNIF(1, sc->l2fhdr_status_errors++); 4356 4357 m_freem(m); 4358 m = NULL; 4359 goto bnx_rx_int_next_rx; 4360 } 4361 4362 /* Skip over the l2_fhdr when passing the data up 4363 * the stack. 4364 */ 4365 m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN); 4366 4367 /* Adjust the pckt length to match the received data. */ 4368 m->m_pkthdr.len = m->m_len = len; 4369 4370 DBRUN(BNX_VERBOSE_RECV, 4371 struct ether_header *eh; 4372 eh = mtod(m, struct ether_header *); 4373 printf("%s: to: %6D, from: %6D, type: 0x%04X\n", 4374 __FUNCTION__, eh->ether_dhost, ":", 4375 eh->ether_shost, ":", htons(eh->ether_type))); 4376 4377 /* Validate the checksum. */ 4378 4379 /* Check for an IP datagram. */ 4380 if (status & L2_FHDR_STATUS_IP_DATAGRAM) { 4381 /* Check if the IP checksum is valid. */ 4382 if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) 4383 == 0) 4384 m->m_pkthdr.csum_flags |= 4385 M_IPV4_CSUM_IN_OK; 4386 else 4387 DBPRINT(sc, BNX_WARN_SEND, 4388 "%s(): Invalid IP checksum " 4389 "= 0x%04X!\n", 4390 __FUNCTION__, 4391 l2fhdr->l2_fhdr_ip_xsum 4392 ); 4393 } 4394 4395 /* Check for a valid TCP/UDP frame. */ 4396 if (status & (L2_FHDR_STATUS_TCP_SEGMENT | 4397 L2_FHDR_STATUS_UDP_DATAGRAM)) { 4398 /* Check for a good TCP/UDP checksum. */ 4399 if ((status & 4400 (L2_FHDR_ERRORS_TCP_XSUM | 4401 L2_FHDR_ERRORS_UDP_XSUM)) == 0) { 4402 m->m_pkthdr.csum_flags |= 4403 M_TCP_CSUM_IN_OK | 4404 M_UDP_CSUM_IN_OK; 4405 } else { 4406 DBPRINT(sc, BNX_WARN_SEND, 4407 "%s(): Invalid TCP/UDP " 4408 "checksum = 0x%04X!\n", 4409 __FUNCTION__, 4410 l2fhdr->l2_fhdr_tcp_udp_xsum); 4411 } 4412 } 4413 4414 /* 4415 * If we received a packet with a vlan tag, 4416 * attach that information to the packet. 4417 */ 4418 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) && 4419 !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) { 4420 #if NVLAN > 0 4421 DBPRINT(sc, BNX_VERBOSE_SEND, 4422 "%s(): VLAN tag = 0x%04X\n", 4423 __FUNCTION__, 4424 l2fhdr->l2_fhdr_vlan_tag); 4425 4426 m->m_pkthdr.ether_vtag = 4427 l2fhdr->l2_fhdr_vlan_tag; 4428 m->m_flags |= M_VLANTAG; 4429 #else 4430 m_freem(m); 4431 m = NULL; 4432 goto bnx_rx_int_next_rx; 4433 #endif 4434 } 4435 4436 bnx_rx_int_next_rx: 4437 sw_prod = NEXT_RX_BD(sw_prod); 4438 } 4439 4440 sw_cons = NEXT_RX_BD(sw_cons); 4441 4442 /* If we have a packet, pass it up the stack */ 4443 if (m) { 4444 sc->rx_cons = sw_cons; 4445 4446 DBPRINT(sc, BNX_VERBOSE_RECV, 4447 "%s(): Passing received frame up.\n", __FUNCTION__); 4448 ml_enqueue(&ml, m); 4449 DBRUNIF(1, sc->rx_mbuf_alloc--); 4450 4451 sw_cons = sc->rx_cons; 4452 } 4453 4454 /* Refresh hw_cons to see if there's new work */ 4455 if (sw_cons == hw_cons) { 4456 hw_cons = sc->hw_rx_cons = 4457 sblk->status_rx_quick_consumer_index0; 4458 if ((hw_cons & USABLE_RX_BD_PER_PAGE) == 4459 USABLE_RX_BD_PER_PAGE) 4460 hw_cons++; 4461 } 4462 4463 /* Prevent speculative reads from getting ahead of 4464 * the status block. 4465 */ 4466 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0, 4467 BUS_SPACE_BARRIER_READ); 4468 } 4469 4470 if (ifiq_input(&ifp->if_rcv, &ml)) 4471 if_rxr_livelocked(&sc->rx_ring); 4472 4473 /* No new packets to process. Refill the RX chain and exit. */ 4474 sc->rx_cons = sw_cons; 4475 if (!bnx_fill_rx_chain(sc)) 4476 timeout_add(&sc->bnx_rxrefill, 1); 4477 4478 for (i = 0; i < RX_PAGES; i++) 4479 bus_dmamap_sync(sc->bnx_dmatag, 4480 sc->rx_bd_chain_map[i], 0, 4481 sc->rx_bd_chain_map[i]->dm_mapsize, 4482 BUS_DMASYNC_PREWRITE); 4483 4484 DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, " 4485 "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n", 4486 __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq); 4487 } 4488 4489 /****************************************************************************/ 4490 /* Handles transmit completion interrupt events. */ 4491 /* */ 4492 /* Returns: */ 4493 /* Nothing. */ 4494 /****************************************************************************/ 4495 void 4496 bnx_tx_intr(struct bnx_softc *sc) 4497 { 4498 struct status_block *sblk = sc->status_block; 4499 struct ifnet *ifp = &sc->arpcom.ac_if; 4500 bus_dmamap_t map; 4501 u_int16_t hw_tx_cons, sw_tx_cons, sw_tx_chain_cons; 4502 int freed, used; 4503 4504 DBRUNIF(1, sc->tx_interrupts++); 4505 4506 /* Get the hardware's view of the TX consumer index. */ 4507 hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0; 4508 4509 /* Skip to the next entry if this is a chain page pointer. */ 4510 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE) 4511 hw_tx_cons++; 4512 4513 sw_tx_cons = sc->tx_cons; 4514 4515 /* Prevent speculative reads from getting ahead of the status block. */ 4516 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0, 4517 BUS_SPACE_BARRIER_READ); 4518 4519 /* Cycle through any completed TX chain page entries. */ 4520 freed = 0; 4521 while (sw_tx_cons != hw_tx_cons) { 4522 #ifdef BNX_DEBUG 4523 struct tx_bd *txbd = NULL; 4524 #endif 4525 sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons); 4526 4527 DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, " 4528 "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n", 4529 __FUNCTION__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons); 4530 4531 DBRUNIF((sw_tx_chain_cons > MAX_TX_BD), 4532 printf("%s: TX chain consumer out of range! " 4533 " 0x%04X > 0x%04X\n", sw_tx_chain_cons, (int)MAX_TX_BD); 4534 bnx_breakpoint(sc)); 4535 4536 DBRUNIF(1, txbd = &sc->tx_bd_chain 4537 [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]); 4538 4539 DBRUNIF((txbd == NULL), 4540 printf("%s: Unexpected NULL tx_bd[0x%04X]!\n", 4541 sw_tx_chain_cons); 4542 bnx_breakpoint(sc)); 4543 4544 DBRUN(BNX_INFO_SEND, printf("%s: ", __FUNCTION__); 4545 bnx_dump_txbd(sc, sw_tx_chain_cons, txbd)); 4546 4547 map = sc->tx_mbuf_map[sw_tx_chain_cons]; 4548 if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) { 4549 /* Validate that this is the last tx_bd. */ 4550 DBRUNIF((!(txbd->tx_bd_flags & TX_BD_FLAGS_END)), 4551 printf("%s: tx_bd END flag not set but " 4552 "txmbuf == NULL!\n"); 4553 bnx_breakpoint(sc)); 4554 4555 DBRUN(BNX_INFO_SEND, 4556 printf("%s: Unloading map/freeing mbuf " 4557 "from tx_bd[0x%04X]\n", 4558 __FUNCTION__, sw_tx_chain_cons)); 4559 4560 /* Unmap the mbuf. */ 4561 bus_dmamap_sync(sc->bnx_dmatag, map, 0, 4562 map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 4563 bus_dmamap_unload(sc->bnx_dmatag, map); 4564 4565 /* Free the mbuf. */ 4566 m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]); 4567 sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL; 4568 } 4569 4570 freed++; 4571 sw_tx_cons = NEXT_TX_BD(sw_tx_cons); 4572 } 4573 4574 used = atomic_sub_int_nv(&sc->used_tx_bd, freed); 4575 4576 sc->tx_cons = sw_tx_cons; 4577 4578 /* Clear the TX timeout timer. */ 4579 if (used == 0) 4580 ifp->if_timer = 0; 4581 4582 if (ifq_is_oactive(&ifp->if_snd)) 4583 ifq_restart(&ifp->if_snd); 4584 } 4585 4586 /****************************************************************************/ 4587 /* Disables interrupt generation. */ 4588 /* */ 4589 /* Returns: */ 4590 /* Nothing. */ 4591 /****************************************************************************/ 4592 void 4593 bnx_disable_intr(struct bnx_softc *sc) 4594 { 4595 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT); 4596 REG_RD(sc, BNX_PCICFG_INT_ACK_CMD); 4597 } 4598 4599 /****************************************************************************/ 4600 /* Enables interrupt generation. */ 4601 /* */ 4602 /* Returns: */ 4603 /* Nothing. */ 4604 /****************************************************************************/ 4605 void 4606 bnx_enable_intr(struct bnx_softc *sc) 4607 { 4608 u_int32_t val; 4609 4610 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | 4611 BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx); 4612 4613 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | 4614 sc->last_status_idx); 4615 4616 val = REG_RD(sc, BNX_HC_COMMAND); 4617 REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW); 4618 } 4619 4620 /****************************************************************************/ 4621 /* Handles controller initialization. */ 4622 /* */ 4623 /* Returns: */ 4624 /* Nothing. */ 4625 /****************************************************************************/ 4626 void 4627 bnx_init(void *xsc) 4628 { 4629 struct bnx_softc *sc = (struct bnx_softc *)xsc; 4630 struct ifnet *ifp = &sc->arpcom.ac_if; 4631 u_int32_t ether_mtu; 4632 int s; 4633 4634 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); 4635 4636 s = splnet(); 4637 4638 bnx_stop(sc); 4639 4640 if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) { 4641 BNX_PRINTF(sc, "Controller reset failed!\n"); 4642 goto bnx_init_exit; 4643 } 4644 4645 if (bnx_chipinit(sc)) { 4646 BNX_PRINTF(sc, "Controller initialization failed!\n"); 4647 goto bnx_init_exit; 4648 } 4649 4650 if (bnx_blockinit(sc)) { 4651 BNX_PRINTF(sc, "Block initialization failed!\n"); 4652 goto bnx_init_exit; 4653 } 4654 4655 /* Load our MAC address. */ 4656 bcopy(sc->arpcom.ac_enaddr, sc->eaddr, ETHER_ADDR_LEN); 4657 bnx_set_mac_addr(sc); 4658 4659 /* Calculate and program the Ethernet MRU size. */ 4660 ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN; 4661 4662 DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n", 4663 __FUNCTION__, ether_mtu); 4664 4665 /* 4666 * Program the MRU and enable Jumbo frame 4667 * support. 4668 */ 4669 REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu | 4670 BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA); 4671 4672 /* Calculate the RX Ethernet frame size for rx_bd's. */ 4673 sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8; 4674 4675 DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, " 4676 "max_frame_size = %d\n", __FUNCTION__, (int)MCLBYTES, 4677 sc->mbuf_alloc_size, sc->max_frame_size); 4678 4679 /* Program appropriate promiscuous/multicast filtering. */ 4680 bnx_iff(sc); 4681 4682 /* Init RX buffer descriptor chain. */ 4683 bnx_init_rx_chain(sc); 4684 4685 /* Init TX buffer descriptor chain. */ 4686 bnx_init_tx_chain(sc); 4687 4688 /* Enable host interrupts. */ 4689 bnx_enable_intr(sc); 4690 4691 bnx_ifmedia_upd(ifp); 4692 4693 ifp->if_flags |= IFF_RUNNING; 4694 ifq_clr_oactive(&ifp->if_snd); 4695 4696 timeout_add_sec(&sc->bnx_timeout, 1); 4697 4698 bnx_init_exit: 4699 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); 4700 4701 splx(s); 4702 4703 return; 4704 } 4705 4706 void 4707 bnx_mgmt_init(struct bnx_softc *sc) 4708 { 4709 struct ifnet *ifp = &sc->arpcom.ac_if; 4710 u_int32_t val; 4711 4712 /* Check if the driver is still running and bail out if it is. */ 4713 if (ifp->if_flags & IFF_RUNNING) 4714 goto bnx_mgmt_init_exit; 4715 4716 /* Initialize the on-boards CPUs */ 4717 bnx_init_cpus(sc); 4718 4719 val = (BCM_PAGE_BITS - 8) << 24; 4720 REG_WR(sc, BNX_RV2P_CONFIG, val); 4721 4722 /* Enable all critical blocks in the MAC. */ 4723 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 4724 BNX_MISC_ENABLE_SET_BITS_RX_V2P_ENABLE | 4725 BNX_MISC_ENABLE_SET_BITS_RX_DMA_ENABLE | 4726 BNX_MISC_ENABLE_SET_BITS_COMPLETION_ENABLE); 4727 REG_RD(sc, BNX_MISC_ENABLE_SET_BITS); 4728 DELAY(20); 4729 4730 bnx_ifmedia_upd(ifp); 4731 4732 bnx_mgmt_init_exit: 4733 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); 4734 } 4735 4736 /*****************************************************************************/ 4737 /* Encapsulates an mbuf cluster into the tx_bd chain structure and makes the */ 4738 /* memory visible to the controller. */ 4739 /* */ 4740 /* Returns: */ 4741 /* 0 for success, positive value for failure. */ 4742 /*****************************************************************************/ 4743 int 4744 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m, int *used) 4745 { 4746 bus_dmamap_t map; 4747 struct tx_bd *txbd = NULL; 4748 u_int16_t vlan_tag = 0, flags = 0; 4749 u_int16_t chain_prod, chain_head, prod; 4750 #ifdef BNX_DEBUG 4751 u_int16_t debug_prod; 4752 #endif 4753 u_int32_t addr, prod_bseq; 4754 int i, error; 4755 4756 /* Transfer any checksum offload flags to the bd. */ 4757 if (m->m_pkthdr.csum_flags) { 4758 if (m->m_pkthdr.csum_flags & M_IPV4_CSUM_OUT) 4759 flags |= TX_BD_FLAGS_IP_CKSUM; 4760 if (m->m_pkthdr.csum_flags & 4761 (M_TCP_CSUM_OUT | M_UDP_CSUM_OUT)) 4762 flags |= TX_BD_FLAGS_TCP_UDP_CKSUM; 4763 } 4764 4765 #if NVLAN > 0 4766 /* Transfer any VLAN tags to the bd. */ 4767 if (m->m_flags & M_VLANTAG) { 4768 flags |= TX_BD_FLAGS_VLAN_TAG; 4769 vlan_tag = m->m_pkthdr.ether_vtag; 4770 } 4771 #endif 4772 4773 /* Map the mbuf into DMAable memory. */ 4774 prod = sc->tx_prod; 4775 chain_head = chain_prod = TX_CHAIN_IDX(prod); 4776 map = sc->tx_mbuf_map[chain_head]; 4777 4778 /* Map the mbuf into our DMA address space. */ 4779 error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, 4780 BUS_DMA_NOWAIT); 4781 switch (error) { 4782 case 0: 4783 break; 4784 4785 case EFBIG: 4786 if ((error = m_defrag(m, M_DONTWAIT)) == 0 && 4787 (error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, 4788 BUS_DMA_NOWAIT)) == 0) 4789 break; 4790 4791 /* FALLTHROUGH */ 4792 default: 4793 sc->tx_dma_map_failures++; 4794 return (ENOBUFS); 4795 } 4796 4797 /* prod points to an empty tx_bd at this point. */ 4798 prod_bseq = sc->tx_prod_bseq; 4799 #ifdef BNX_DEBUG 4800 debug_prod = chain_prod; 4801 #endif 4802 4803 DBPRINT(sc, BNX_INFO_SEND, 4804 "%s(): Start: prod = 0x%04X, chain_prod = %04X, " 4805 "prod_bseq = 0x%08X\n", 4806 __FUNCTION__, prod, chain_prod, prod_bseq); 4807 4808 /* 4809 * Cycle through each mbuf segment that makes up 4810 * the outgoing frame, gathering the mapping info 4811 * for that segment and creating a tx_bd for the 4812 * mbuf. 4813 */ 4814 for (i = 0; i < map->dm_nsegs ; i++) { 4815 chain_prod = TX_CHAIN_IDX(prod); 4816 txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)]; 4817 4818 addr = (u_int32_t)map->dm_segs[i].ds_addr; 4819 txbd->tx_bd_haddr_lo = addr; 4820 addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32); 4821 txbd->tx_bd_haddr_hi = addr; 4822 txbd->tx_bd_mss_nbytes = map->dm_segs[i].ds_len; 4823 txbd->tx_bd_vlan_tag = vlan_tag; 4824 txbd->tx_bd_flags = flags; 4825 prod_bseq += map->dm_segs[i].ds_len; 4826 if (i == 0) 4827 txbd->tx_bd_flags |= TX_BD_FLAGS_START; 4828 prod = NEXT_TX_BD(prod); 4829 } 4830 4831 /* Set the END flag on the last TX buffer descriptor. */ 4832 txbd->tx_bd_flags |= TX_BD_FLAGS_END; 4833 4834 DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, 4835 map->dm_nsegs)); 4836 4837 DBPRINT(sc, BNX_INFO_SEND, 4838 "%s(): End: prod = 0x%04X, chain_prod = %04X, " 4839 "prod_bseq = 0x%08X\n", 4840 __FUNCTION__, prod, chain_prod, prod_bseq); 4841 4842 sc->tx_mbuf_ptr[chain_prod] = m; 4843 sc->tx_mbuf_map[chain_head] = sc->tx_mbuf_map[chain_prod]; 4844 sc->tx_mbuf_map[chain_prod] = map; 4845 4846 *used += map->dm_nsegs; 4847 4848 DBRUNIF(1, sc->tx_mbuf_alloc++); 4849 4850 DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod, 4851 map->dm_nsegs)); 4852 4853 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize, 4854 BUS_DMASYNC_PREWRITE); 4855 4856 /* prod points to the next free tx_bd at this point. */ 4857 sc->tx_prod = prod; 4858 sc->tx_prod_bseq = prod_bseq; 4859 4860 return (0); 4861 } 4862 4863 /****************************************************************************/ 4864 /* Main transmit routine. */ 4865 /* */ 4866 /* Returns: */ 4867 /* Nothing. */ 4868 /****************************************************************************/ 4869 void 4870 bnx_start(struct ifqueue *ifq) 4871 { 4872 struct ifnet *ifp = ifq->ifq_if; 4873 struct bnx_softc *sc = ifp->if_softc; 4874 struct mbuf *m_head = NULL; 4875 int used; 4876 u_int16_t tx_prod, tx_chain_prod; 4877 4878 if (!sc->bnx_link) { 4879 ifq_purge(ifq); 4880 goto bnx_start_exit; 4881 } 4882 4883 /* prod points to the next free tx_bd. */ 4884 tx_prod = sc->tx_prod; 4885 tx_chain_prod = TX_CHAIN_IDX(tx_prod); 4886 4887 DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, " 4888 "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X\n", 4889 __FUNCTION__, tx_prod, tx_chain_prod, sc->tx_prod_bseq); 4890 4891 /* 4892 * Keep adding entries while there is space in the ring. 4893 */ 4894 used = 0; 4895 while (1) { 4896 if (sc->used_tx_bd + used + BNX_MAX_SEGMENTS + 1 >= 4897 sc->max_tx_bd) { 4898 DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for " 4899 "business! Total tx_bd used = %d\n", 4900 sc->used_tx_bd + used); 4901 ifq_set_oactive(ifq); 4902 break; 4903 } 4904 4905 m_head = ifq_dequeue(ifq); 4906 if (m_head == NULL) 4907 break; 4908 4909 if (bnx_tx_encap(sc, m_head, &used)) { 4910 m_freem(m_head); 4911 continue; 4912 } 4913 4914 #if NBPFILTER > 0 4915 if (ifp->if_bpf) 4916 bpf_mtap_ether(ifp->if_bpf, m_head, BPF_DIRECTION_OUT); 4917 #endif 4918 } 4919 4920 if (used == 0) { 4921 /* no packets were dequeued */ 4922 DBPRINT(sc, BNX_VERBOSE_SEND, 4923 "%s(): No packets were dequeued\n", __FUNCTION__); 4924 goto bnx_start_exit; 4925 } 4926 4927 /* Update the driver's counters. */ 4928 used = atomic_add_int_nv(&sc->used_tx_bd, used); 4929 4930 /* Update some debug statistics counters */ 4931 DBRUNIF((used > sc->tx_hi_watermark), 4932 sc->tx_hi_watermark = used); 4933 DBRUNIF(used == sc->max_tx_bd, sc->tx_full_count++); 4934 4935 tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod); 4936 DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, tx_chain_prod " 4937 "= 0x%04X, tx_prod_bseq = 0x%08X\n", __FUNCTION__, tx_prod, 4938 tx_chain_prod, sc->tx_prod_bseq); 4939 4940 /* Start the transmit. */ 4941 REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod); 4942 REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq); 4943 4944 /* Set the tx timeout. */ 4945 ifp->if_timer = BNX_TX_TIMEOUT; 4946 4947 bnx_start_exit: 4948 return; 4949 } 4950 4951 /****************************************************************************/ 4952 /* Handles any IOCTL calls from the operating system. */ 4953 /* */ 4954 /* Returns: */ 4955 /* 0 for success, positive value for failure. */ 4956 /****************************************************************************/ 4957 int 4958 bnx_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 4959 { 4960 struct bnx_softc *sc = ifp->if_softc; 4961 struct ifreq *ifr = (struct ifreq *) data; 4962 struct mii_data *mii = &sc->bnx_mii; 4963 int s, error = 0; 4964 4965 s = splnet(); 4966 4967 switch (command) { 4968 case SIOCSIFADDR: 4969 ifp->if_flags |= IFF_UP; 4970 if (!(ifp->if_flags & IFF_RUNNING)) 4971 bnx_init(sc); 4972 break; 4973 4974 case SIOCSIFFLAGS: 4975 if (ifp->if_flags & IFF_UP) { 4976 if (ifp->if_flags & IFF_RUNNING) 4977 error = ENETRESET; 4978 else 4979 bnx_init(sc); 4980 } else { 4981 if (ifp->if_flags & IFF_RUNNING) 4982 bnx_stop(sc); 4983 } 4984 break; 4985 4986 case SIOCSIFMEDIA: 4987 /* Flow control requires full-duplex mode. */ 4988 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO || 4989 (ifr->ifr_media & IFM_FDX) == 0) 4990 ifr->ifr_media &= ~IFM_ETH_FMASK; 4991 4992 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) { 4993 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) { 4994 /* We can do both TXPAUSE and RXPAUSE. */ 4995 ifr->ifr_media |= 4996 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE; 4997 } 4998 sc->bnx_flowflags = ifr->ifr_media & IFM_ETH_FMASK; 4999 } 5000 /* FALLTHROUGH */ 5001 case SIOCGIFMEDIA: 5002 DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n", 5003 sc->bnx_phy_flags); 5004 5005 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); 5006 break; 5007 5008 case SIOCGIFRXR: 5009 error = if_rxr_ioctl((struct if_rxrinfo *)ifr->ifr_data, 5010 NULL, BNX_MAX_JUMBO_MRU, &sc->rx_ring); 5011 break; 5012 5013 default: 5014 error = ether_ioctl(ifp, &sc->arpcom, command, data); 5015 } 5016 5017 if (error == ENETRESET) { 5018 if (ifp->if_flags & IFF_RUNNING) 5019 bnx_iff(sc); 5020 error = 0; 5021 } 5022 5023 splx(s); 5024 return (error); 5025 } 5026 5027 /****************************************************************************/ 5028 /* Transmit timeout handler. */ 5029 /* */ 5030 /* Returns: */ 5031 /* Nothing. */ 5032 /****************************************************************************/ 5033 void 5034 bnx_watchdog(struct ifnet *ifp) 5035 { 5036 struct bnx_softc *sc = ifp->if_softc; 5037 5038 DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc); 5039 bnx_dump_status_block(sc)); 5040 5041 /* 5042 * If we are in this routine because of pause frames, then 5043 * don't reset the hardware. 5044 */ 5045 if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED) 5046 return; 5047 5048 printf("%s: Watchdog timeout occurred, resetting!\n", 5049 ifp->if_xname); 5050 5051 /* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */ 5052 5053 bnx_init(sc); 5054 5055 ifp->if_oerrors++; 5056 } 5057 5058 /* 5059 * Interrupt handler. 5060 */ 5061 /****************************************************************************/ 5062 /* Main interrupt entry point. Verifies that the controller generated the */ 5063 /* interrupt and then calls a separate routine for handle the various */ 5064 /* interrupt causes (PHY, TX, RX). */ 5065 /* */ 5066 /* Returns: */ 5067 /* 0 for success, positive value for failure. */ 5068 /****************************************************************************/ 5069 int 5070 bnx_intr(void *xsc) 5071 { 5072 struct bnx_softc *sc = xsc; 5073 struct ifnet *ifp = &sc->arpcom.ac_if; 5074 u_int32_t status_attn_bits; 5075 u_int16_t status_idx; 5076 int rv = 0; 5077 5078 if ((sc->bnx_flags & BNX_ACTIVE_FLAG) == 0) 5079 return (0); 5080 5081 DBRUNIF(1, sc->interrupts_generated++); 5082 5083 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, 5084 sc->status_map->dm_mapsize, BUS_DMASYNC_POSTREAD); 5085 5086 /* 5087 * If the hardware status block index 5088 * matches the last value read by the 5089 * driver and we haven't asserted our 5090 * interrupt then there's nothing to do. 5091 */ 5092 status_idx = sc->status_block->status_idx; 5093 if (status_idx != sc->last_status_idx || 5094 !ISSET(REG_RD(sc, BNX_PCICFG_MISC_STATUS), 5095 BNX_PCICFG_MISC_STATUS_INTA_VALUE)) { 5096 rv = 1; 5097 5098 /* Ack the interrupt */ 5099 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, 5100 BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | status_idx); 5101 5102 status_attn_bits = sc->status_block->status_attn_bits; 5103 5104 DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention), 5105 printf("Simulating unexpected status attention bit set."); 5106 status_attn_bits = status_attn_bits | 5107 STATUS_ATTN_BITS_PARITY_ERROR); 5108 5109 /* Was it a link change interrupt? */ 5110 if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) != 5111 (sc->status_block->status_attn_bits_ack & 5112 STATUS_ATTN_BITS_LINK_STATE)) { 5113 KERNEL_LOCK(); 5114 bnx_phy_intr(sc); 5115 KERNEL_UNLOCK(); 5116 } 5117 5118 /* If any other attention is asserted then the chip is toast. */ 5119 if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) != 5120 (sc->status_block->status_attn_bits_ack & 5121 ~STATUS_ATTN_BITS_LINK_STATE))) { 5122 KERNEL_LOCK(); 5123 DBRUN(1, sc->unexpected_attentions++); 5124 5125 BNX_PRINTF(sc, "Fatal attention detected: 0x%08X\n", 5126 sc->status_block->status_attn_bits); 5127 5128 DBRUN(BNX_FATAL, 5129 if (bnx_debug_unexpected_attention == 0) 5130 bnx_breakpoint(sc)); 5131 5132 bnx_init(sc); 5133 KERNEL_UNLOCK(); 5134 goto out; 5135 } 5136 5137 /* Check for any completed RX frames. */ 5138 if (sc->status_block->status_rx_quick_consumer_index0 != 5139 sc->hw_rx_cons) 5140 bnx_rx_intr(sc); 5141 5142 /* Check for any completed TX frames. */ 5143 if (sc->status_block->status_tx_quick_consumer_index0 != 5144 sc->hw_tx_cons) 5145 bnx_tx_intr(sc); 5146 5147 /* 5148 * Save the status block index value for use during the 5149 * next interrupt. 5150 */ 5151 sc->last_status_idx = status_idx; 5152 5153 /* Start moving packets again */ 5154 if (ifp->if_flags & IFF_RUNNING && 5155 !ifq_empty(&ifp->if_snd)) 5156 ifq_start(&ifp->if_snd); 5157 } 5158 5159 out: 5160 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, 5161 sc->status_map->dm_mapsize, BUS_DMASYNC_PREREAD); 5162 5163 return (rv); 5164 } 5165 5166 /****************************************************************************/ 5167 /* Programs the various packet receive modes (broadcast and multicast). */ 5168 /* */ 5169 /* Returns: */ 5170 /* Nothing. */ 5171 /****************************************************************************/ 5172 void 5173 bnx_iff(struct bnx_softc *sc) 5174 { 5175 struct arpcom *ac = &sc->arpcom; 5176 struct ifnet *ifp = &ac->ac_if; 5177 struct ether_multi *enm; 5178 struct ether_multistep step; 5179 u_int32_t hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 }; 5180 u_int32_t rx_mode, sort_mode; 5181 int h, i; 5182 5183 /* Initialize receive mode default settings. */ 5184 rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS | 5185 BNX_EMAC_RX_MODE_KEEP_VLAN_TAG); 5186 sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN; 5187 ifp->if_flags &= ~IFF_ALLMULTI; 5188 5189 /* 5190 * ASF/IPMI/UMP firmware requires that VLAN tag stripping 5191 * be enabled. 5192 */ 5193 if (!(ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) && 5194 (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))) 5195 rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG; 5196 5197 /* 5198 * Check for promiscuous, all multicast, or selected 5199 * multicast address filtering. 5200 */ 5201 if (ifp->if_flags & IFF_PROMISC) { 5202 DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n"); 5203 5204 ifp->if_flags |= IFF_ALLMULTI; 5205 /* Enable promiscuous mode. */ 5206 rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS; 5207 sort_mode |= BNX_RPM_SORT_USER0_PROM_EN; 5208 } else if (ac->ac_multirangecnt > 0) { 5209 DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n"); 5210 5211 ifp->if_flags |= IFF_ALLMULTI; 5212 /* Enable all multicast addresses. */ 5213 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) 5214 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4), 5215 0xffffffff); 5216 sort_mode |= BNX_RPM_SORT_USER0_MC_EN; 5217 } else { 5218 /* Accept one or more multicast(s). */ 5219 DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n"); 5220 5221 ETHER_FIRST_MULTI(step, ac, enm); 5222 while (enm != NULL) { 5223 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) & 5224 0xFF; 5225 5226 hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F); 5227 5228 ETHER_NEXT_MULTI(step, enm); 5229 } 5230 5231 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) 5232 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4), 5233 hashes[i]); 5234 5235 sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN; 5236 } 5237 5238 /* Only make changes if the receive mode has actually changed. */ 5239 if (rx_mode != sc->rx_mode) { 5240 DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n", 5241 rx_mode); 5242 5243 sc->rx_mode = rx_mode; 5244 REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode); 5245 } 5246 5247 /* Disable and clear the existing sort before enabling a new sort. */ 5248 REG_WR(sc, BNX_RPM_SORT_USER0, 0x0); 5249 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode); 5250 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA); 5251 } 5252 5253 /****************************************************************************/ 5254 /* Called periodically to updates statistics from the controllers */ 5255 /* statistics block. */ 5256 /* */ 5257 /* Returns: */ 5258 /* Nothing. */ 5259 /****************************************************************************/ 5260 void 5261 bnx_stats_update(struct bnx_softc *sc) 5262 { 5263 struct ifnet *ifp = &sc->arpcom.ac_if; 5264 struct statistics_block *stats; 5265 5266 DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __FUNCTION__); 5267 5268 stats = (struct statistics_block *)sc->stats_block; 5269 5270 /* 5271 * Update the interface statistics from the 5272 * hardware statistics. 5273 */ 5274 ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions; 5275 5276 ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts + 5277 (u_long)stats->stat_EtherStatsOverrsizePkts + 5278 (u_long)stats->stat_IfInMBUFDiscards + 5279 (u_long)stats->stat_Dot3StatsAlignmentErrors + 5280 (u_long)stats->stat_Dot3StatsFCSErrors; 5281 5282 ifp->if_oerrors = (u_long) 5283 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors + 5284 (u_long)stats->stat_Dot3StatsExcessiveCollisions + 5285 (u_long)stats->stat_Dot3StatsLateCollisions; 5286 5287 /* 5288 * Certain controllers don't report 5289 * carrier sense errors correctly. 5290 * See errata E11_5708CA0_1165. 5291 */ 5292 if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) && 5293 !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0)) 5294 ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors; 5295 5296 /* 5297 * Update the sysctl statistics from the 5298 * hardware statistics. 5299 */ 5300 sc->stat_IfHCInOctets = ((u_int64_t)stats->stat_IfHCInOctets_hi << 32) + 5301 (u_int64_t) stats->stat_IfHCInOctets_lo; 5302 5303 sc->stat_IfHCInBadOctets = 5304 ((u_int64_t) stats->stat_IfHCInBadOctets_hi << 32) + 5305 (u_int64_t) stats->stat_IfHCInBadOctets_lo; 5306 5307 sc->stat_IfHCOutOctets = 5308 ((u_int64_t) stats->stat_IfHCOutOctets_hi << 32) + 5309 (u_int64_t) stats->stat_IfHCOutOctets_lo; 5310 5311 sc->stat_IfHCOutBadOctets = 5312 ((u_int64_t) stats->stat_IfHCOutBadOctets_hi << 32) + 5313 (u_int64_t) stats->stat_IfHCOutBadOctets_lo; 5314 5315 sc->stat_IfHCInUcastPkts = 5316 ((u_int64_t) stats->stat_IfHCInUcastPkts_hi << 32) + 5317 (u_int64_t) stats->stat_IfHCInUcastPkts_lo; 5318 5319 sc->stat_IfHCInMulticastPkts = 5320 ((u_int64_t) stats->stat_IfHCInMulticastPkts_hi << 32) + 5321 (u_int64_t) stats->stat_IfHCInMulticastPkts_lo; 5322 5323 sc->stat_IfHCInBroadcastPkts = 5324 ((u_int64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) + 5325 (u_int64_t) stats->stat_IfHCInBroadcastPkts_lo; 5326 5327 sc->stat_IfHCOutUcastPkts = 5328 ((u_int64_t) stats->stat_IfHCOutUcastPkts_hi << 32) + 5329 (u_int64_t) stats->stat_IfHCOutUcastPkts_lo; 5330 5331 sc->stat_IfHCOutMulticastPkts = 5332 ((u_int64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) + 5333 (u_int64_t) stats->stat_IfHCOutMulticastPkts_lo; 5334 5335 sc->stat_IfHCOutBroadcastPkts = 5336 ((u_int64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) + 5337 (u_int64_t) stats->stat_IfHCOutBroadcastPkts_lo; 5338 5339 sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors = 5340 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors; 5341 5342 sc->stat_Dot3StatsCarrierSenseErrors = 5343 stats->stat_Dot3StatsCarrierSenseErrors; 5344 5345 sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors; 5346 5347 sc->stat_Dot3StatsAlignmentErrors = 5348 stats->stat_Dot3StatsAlignmentErrors; 5349 5350 sc->stat_Dot3StatsSingleCollisionFrames = 5351 stats->stat_Dot3StatsSingleCollisionFrames; 5352 5353 sc->stat_Dot3StatsMultipleCollisionFrames = 5354 stats->stat_Dot3StatsMultipleCollisionFrames; 5355 5356 sc->stat_Dot3StatsDeferredTransmissions = 5357 stats->stat_Dot3StatsDeferredTransmissions; 5358 5359 sc->stat_Dot3StatsExcessiveCollisions = 5360 stats->stat_Dot3StatsExcessiveCollisions; 5361 5362 sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions; 5363 5364 sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions; 5365 5366 sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments; 5367 5368 sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers; 5369 5370 sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts; 5371 5372 sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts; 5373 5374 sc->stat_EtherStatsPktsRx64Octets = 5375 stats->stat_EtherStatsPktsRx64Octets; 5376 5377 sc->stat_EtherStatsPktsRx65Octetsto127Octets = 5378 stats->stat_EtherStatsPktsRx65Octetsto127Octets; 5379 5380 sc->stat_EtherStatsPktsRx128Octetsto255Octets = 5381 stats->stat_EtherStatsPktsRx128Octetsto255Octets; 5382 5383 sc->stat_EtherStatsPktsRx256Octetsto511Octets = 5384 stats->stat_EtherStatsPktsRx256Octetsto511Octets; 5385 5386 sc->stat_EtherStatsPktsRx512Octetsto1023Octets = 5387 stats->stat_EtherStatsPktsRx512Octetsto1023Octets; 5388 5389 sc->stat_EtherStatsPktsRx1024Octetsto1522Octets = 5390 stats->stat_EtherStatsPktsRx1024Octetsto1522Octets; 5391 5392 sc->stat_EtherStatsPktsRx1523Octetsto9022Octets = 5393 stats->stat_EtherStatsPktsRx1523Octetsto9022Octets; 5394 5395 sc->stat_EtherStatsPktsTx64Octets = 5396 stats->stat_EtherStatsPktsTx64Octets; 5397 5398 sc->stat_EtherStatsPktsTx65Octetsto127Octets = 5399 stats->stat_EtherStatsPktsTx65Octetsto127Octets; 5400 5401 sc->stat_EtherStatsPktsTx128Octetsto255Octets = 5402 stats->stat_EtherStatsPktsTx128Octetsto255Octets; 5403 5404 sc->stat_EtherStatsPktsTx256Octetsto511Octets = 5405 stats->stat_EtherStatsPktsTx256Octetsto511Octets; 5406 5407 sc->stat_EtherStatsPktsTx512Octetsto1023Octets = 5408 stats->stat_EtherStatsPktsTx512Octetsto1023Octets; 5409 5410 sc->stat_EtherStatsPktsTx1024Octetsto1522Octets = 5411 stats->stat_EtherStatsPktsTx1024Octetsto1522Octets; 5412 5413 sc->stat_EtherStatsPktsTx1523Octetsto9022Octets = 5414 stats->stat_EtherStatsPktsTx1523Octetsto9022Octets; 5415 5416 sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived; 5417 5418 sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived; 5419 5420 sc->stat_OutXonSent = stats->stat_OutXonSent; 5421 5422 sc->stat_OutXoffSent = stats->stat_OutXoffSent; 5423 5424 sc->stat_FlowControlDone = stats->stat_FlowControlDone; 5425 5426 sc->stat_MacControlFramesReceived = 5427 stats->stat_MacControlFramesReceived; 5428 5429 sc->stat_XoffStateEntered = stats->stat_XoffStateEntered; 5430 5431 sc->stat_IfInFramesL2FilterDiscards = 5432 stats->stat_IfInFramesL2FilterDiscards; 5433 5434 sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards; 5435 5436 sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards; 5437 5438 sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards; 5439 5440 sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit; 5441 5442 sc->stat_CatchupInRuleCheckerDiscards = 5443 stats->stat_CatchupInRuleCheckerDiscards; 5444 5445 sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards; 5446 5447 sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards; 5448 5449 sc->stat_CatchupInRuleCheckerP4Hit = 5450 stats->stat_CatchupInRuleCheckerP4Hit; 5451 5452 DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __FUNCTION__); 5453 } 5454 5455 void 5456 bnx_tick(void *xsc) 5457 { 5458 struct bnx_softc *sc = xsc; 5459 struct ifnet *ifp = &sc->arpcom.ac_if; 5460 struct mii_data *mii = NULL; 5461 u_int32_t msg; 5462 5463 /* Tell the firmware that the driver is still running. */ 5464 #ifdef BNX_DEBUG 5465 msg = (u_int32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE; 5466 #else 5467 msg = (u_int32_t)++sc->bnx_fw_drv_pulse_wr_seq; 5468 #endif 5469 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg); 5470 5471 /* Update the statistics from the hardware statistics block. */ 5472 bnx_stats_update(sc); 5473 5474 /* Schedule the next tick. */ 5475 timeout_add_sec(&sc->bnx_timeout, 1); 5476 5477 /* If link is up already up then we're done. */ 5478 if (sc->bnx_link) 5479 goto bnx_tick_exit; 5480 5481 mii = &sc->bnx_mii; 5482 mii_tick(mii); 5483 5484 /* Check if the link has come up. */ 5485 if (!sc->bnx_link && mii->mii_media_status & IFM_ACTIVE && 5486 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { 5487 sc->bnx_link++; 5488 /* Now that link is up, handle any outstanding TX traffic. */ 5489 if (!ifq_empty(&ifp->if_snd)) 5490 ifq_start(&ifp->if_snd); 5491 } 5492 5493 bnx_tick_exit: 5494 return; 5495 } 5496 5497 /****************************************************************************/ 5498 /* BNX Debug Routines */ 5499 /****************************************************************************/ 5500 #ifdef BNX_DEBUG 5501 5502 /****************************************************************************/ 5503 /* Prints out information about an mbuf. */ 5504 /* */ 5505 /* Returns: */ 5506 /* Nothing. */ 5507 /****************************************************************************/ 5508 void 5509 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m) 5510 { 5511 struct mbuf *mp = m; 5512 5513 if (m == NULL) { 5514 /* Index out of range. */ 5515 printf("mbuf ptr is null!\n"); 5516 return; 5517 } 5518 5519 while (mp) { 5520 printf("mbuf: vaddr = %p, m_len = %d, m_flags = ", 5521 mp, mp->m_len); 5522 5523 if (mp->m_flags & M_EXT) 5524 printf("M_EXT "); 5525 if (mp->m_flags & M_PKTHDR) 5526 printf("M_PKTHDR "); 5527 printf("\n"); 5528 5529 if (mp->m_flags & M_EXT) 5530 printf("- m_ext: vaddr = %p, ext_size = 0x%04X\n", 5531 mp, mp->m_ext.ext_size); 5532 5533 mp = mp->m_next; 5534 } 5535 } 5536 5537 /****************************************************************************/ 5538 /* Prints out the mbufs in the TX mbuf chain. */ 5539 /* */ 5540 /* Returns: */ 5541 /* Nothing. */ 5542 /****************************************************************************/ 5543 void 5544 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count) 5545 { 5546 struct mbuf *m; 5547 int i; 5548 5549 BNX_PRINTF(sc, 5550 "----------------------------" 5551 " tx mbuf data " 5552 "----------------------------\n"); 5553 5554 for (i = 0; i < count; i++) { 5555 m = sc->tx_mbuf_ptr[chain_prod]; 5556 BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod); 5557 bnx_dump_mbuf(sc, m); 5558 chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod)); 5559 } 5560 5561 BNX_PRINTF(sc, 5562 "--------------------------------------------" 5563 "----------------------------\n"); 5564 } 5565 5566 /* 5567 * This routine prints the RX mbuf chain. 5568 */ 5569 void 5570 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count) 5571 { 5572 struct mbuf *m; 5573 int i; 5574 5575 BNX_PRINTF(sc, 5576 "----------------------------" 5577 " rx mbuf data " 5578 "----------------------------\n"); 5579 5580 for (i = 0; i < count; i++) { 5581 m = sc->rx_mbuf_ptr[chain_prod]; 5582 BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod); 5583 bnx_dump_mbuf(sc, m); 5584 chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod)); 5585 } 5586 5587 5588 BNX_PRINTF(sc, 5589 "--------------------------------------------" 5590 "----------------------------\n"); 5591 } 5592 5593 void 5594 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd) 5595 { 5596 if (idx > MAX_TX_BD) 5597 /* Index out of range. */ 5598 BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx); 5599 else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE) 5600 /* TX Chain page pointer. */ 5601 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain " 5602 "page pointer\n", idx, txbd->tx_bd_haddr_hi, 5603 txbd->tx_bd_haddr_lo); 5604 else 5605 /* Normal tx_bd entry. */ 5606 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = " 5607 "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx, 5608 txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo, 5609 txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag, 5610 txbd->tx_bd_flags); 5611 } 5612 5613 void 5614 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd) 5615 { 5616 if (idx > MAX_RX_BD) 5617 /* Index out of range. */ 5618 BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx); 5619 else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE) 5620 /* TX Chain page pointer. */ 5621 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page " 5622 "pointer\n", idx, rxbd->rx_bd_haddr_hi, 5623 rxbd->rx_bd_haddr_lo); 5624 else 5625 /* Normal tx_bd entry. */ 5626 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = " 5627 "0x%08X, flags = 0x%08X\n", idx, 5628 rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo, 5629 rxbd->rx_bd_len, rxbd->rx_bd_flags); 5630 } 5631 5632 void 5633 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr) 5634 { 5635 BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, " 5636 "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, " 5637 "tcp_udp_xsum = 0x%04X\n", idx, 5638 l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len, 5639 l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum, 5640 l2fhdr->l2_fhdr_tcp_udp_xsum); 5641 } 5642 5643 /* 5644 * This routine prints the TX chain. 5645 */ 5646 void 5647 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count) 5648 { 5649 struct tx_bd *txbd; 5650 int i; 5651 5652 /* First some info about the tx_bd chain structure. */ 5653 BNX_PRINTF(sc, 5654 "----------------------------" 5655 " tx_bd chain " 5656 "----------------------------\n"); 5657 5658 BNX_PRINTF(sc, 5659 "page size = 0x%08X, tx chain pages = 0x%08X\n", 5660 (u_int32_t)BCM_PAGE_SIZE, (u_int32_t) TX_PAGES); 5661 5662 BNX_PRINTF(sc, 5663 "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n", 5664 (u_int32_t)TOTAL_TX_BD_PER_PAGE, (u_int32_t)USABLE_TX_BD_PER_PAGE); 5665 5666 BNX_PRINTF(sc, "total tx_bd = 0x%08X\n", (u_int32_t)TOTAL_TX_BD); 5667 5668 BNX_PRINTF(sc, "" 5669 "-----------------------------" 5670 " tx_bd data " 5671 "-----------------------------\n"); 5672 5673 /* Now print out the tx_bd's themselves. */ 5674 for (i = 0; i < count; i++) { 5675 txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)]; 5676 bnx_dump_txbd(sc, tx_prod, txbd); 5677 tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod)); 5678 } 5679 5680 BNX_PRINTF(sc, 5681 "-----------------------------" 5682 "--------------" 5683 "-----------------------------\n"); 5684 } 5685 5686 /* 5687 * This routine prints the RX chain. 5688 */ 5689 void 5690 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count) 5691 { 5692 struct rx_bd *rxbd; 5693 int i; 5694 5695 /* First some info about the tx_bd chain structure. */ 5696 BNX_PRINTF(sc, 5697 "----------------------------" 5698 " rx_bd chain " 5699 "----------------------------\n"); 5700 5701 BNX_PRINTF(sc, "----- RX_BD Chain -----\n"); 5702 5703 BNX_PRINTF(sc, 5704 "page size = 0x%08X, rx chain pages = 0x%08X\n", 5705 (u_int32_t)BCM_PAGE_SIZE, (u_int32_t)RX_PAGES); 5706 5707 BNX_PRINTF(sc, 5708 "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n", 5709 (u_int32_t)TOTAL_RX_BD_PER_PAGE, (u_int32_t)USABLE_RX_BD_PER_PAGE); 5710 5711 BNX_PRINTF(sc, "total rx_bd = 0x%08X\n", (u_int32_t)TOTAL_RX_BD); 5712 5713 BNX_PRINTF(sc, 5714 "----------------------------" 5715 " rx_bd data " 5716 "----------------------------\n"); 5717 5718 /* Now print out the rx_bd's themselves. */ 5719 for (i = 0; i < count; i++) { 5720 rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)]; 5721 bnx_dump_rxbd(sc, rx_prod, rxbd); 5722 rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod)); 5723 } 5724 5725 BNX_PRINTF(sc, 5726 "----------------------------" 5727 "--------------" 5728 "----------------------------\n"); 5729 } 5730 5731 /* 5732 * This routine prints the status block. 5733 */ 5734 void 5735 bnx_dump_status_block(struct bnx_softc *sc) 5736 { 5737 struct status_block *sblk; 5738 5739 sblk = sc->status_block; 5740 5741 BNX_PRINTF(sc, "----------------------------- Status Block " 5742 "-----------------------------\n"); 5743 5744 BNX_PRINTF(sc, 5745 "attn_bits = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n", 5746 sblk->status_attn_bits, sblk->status_attn_bits_ack, 5747 sblk->status_idx); 5748 5749 BNX_PRINTF(sc, "rx_cons0 = 0x%08X, tx_cons0 = 0x%08X\n", 5750 sblk->status_rx_quick_consumer_index0, 5751 sblk->status_tx_quick_consumer_index0); 5752 5753 BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx); 5754 5755 /* Theses indices are not used for normal L2 drivers. */ 5756 if (sblk->status_rx_quick_consumer_index1 || 5757 sblk->status_tx_quick_consumer_index1) 5758 BNX_PRINTF(sc, "rx_cons1 = 0x%08X, tx_cons1 = 0x%08X\n", 5759 sblk->status_rx_quick_consumer_index1, 5760 sblk->status_tx_quick_consumer_index1); 5761 5762 if (sblk->status_rx_quick_consumer_index2 || 5763 sblk->status_tx_quick_consumer_index2) 5764 BNX_PRINTF(sc, "rx_cons2 = 0x%08X, tx_cons2 = 0x%08X\n", 5765 sblk->status_rx_quick_consumer_index2, 5766 sblk->status_tx_quick_consumer_index2); 5767 5768 if (sblk->status_rx_quick_consumer_index3 || 5769 sblk->status_tx_quick_consumer_index3) 5770 BNX_PRINTF(sc, "rx_cons3 = 0x%08X, tx_cons3 = 0x%08X\n", 5771 sblk->status_rx_quick_consumer_index3, 5772 sblk->status_tx_quick_consumer_index3); 5773 5774 if (sblk->status_rx_quick_consumer_index4 || 5775 sblk->status_rx_quick_consumer_index5) 5776 BNX_PRINTF(sc, "rx_cons4 = 0x%08X, rx_cons5 = 0x%08X\n", 5777 sblk->status_rx_quick_consumer_index4, 5778 sblk->status_rx_quick_consumer_index5); 5779 5780 if (sblk->status_rx_quick_consumer_index6 || 5781 sblk->status_rx_quick_consumer_index7) 5782 BNX_PRINTF(sc, "rx_cons6 = 0x%08X, rx_cons7 = 0x%08X\n", 5783 sblk->status_rx_quick_consumer_index6, 5784 sblk->status_rx_quick_consumer_index7); 5785 5786 if (sblk->status_rx_quick_consumer_index8 || 5787 sblk->status_rx_quick_consumer_index9) 5788 BNX_PRINTF(sc, "rx_cons8 = 0x%08X, rx_cons9 = 0x%08X\n", 5789 sblk->status_rx_quick_consumer_index8, 5790 sblk->status_rx_quick_consumer_index9); 5791 5792 if (sblk->status_rx_quick_consumer_index10 || 5793 sblk->status_rx_quick_consumer_index11) 5794 BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11 = 0x%08X\n", 5795 sblk->status_rx_quick_consumer_index10, 5796 sblk->status_rx_quick_consumer_index11); 5797 5798 if (sblk->status_rx_quick_consumer_index12 || 5799 sblk->status_rx_quick_consumer_index13) 5800 BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13 = 0x%08X\n", 5801 sblk->status_rx_quick_consumer_index12, 5802 sblk->status_rx_quick_consumer_index13); 5803 5804 if (sblk->status_rx_quick_consumer_index14 || 5805 sblk->status_rx_quick_consumer_index15) 5806 BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15 = 0x%08X\n", 5807 sblk->status_rx_quick_consumer_index14, 5808 sblk->status_rx_quick_consumer_index15); 5809 5810 if (sblk->status_completion_producer_index || 5811 sblk->status_cmd_consumer_index) 5812 BNX_PRINTF(sc, "com_prod = 0x%08X, cmd_cons = 0x%08X\n", 5813 sblk->status_completion_producer_index, 5814 sblk->status_cmd_consumer_index); 5815 5816 BNX_PRINTF(sc, "-------------------------------------------" 5817 "-----------------------------\n"); 5818 } 5819 5820 /* 5821 * This routine prints the statistics block. 5822 */ 5823 void 5824 bnx_dump_stats_block(struct bnx_softc *sc) 5825 { 5826 struct statistics_block *sblk; 5827 5828 sblk = sc->stats_block; 5829 5830 BNX_PRINTF(sc, "" 5831 "-----------------------------" 5832 " Stats Block " 5833 "-----------------------------\n"); 5834 5835 BNX_PRINTF(sc, "IfHcInOctets = 0x%08X:%08X, " 5836 "IfHcInBadOctets = 0x%08X:%08X\n", 5837 sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo, 5838 sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo); 5839 5840 BNX_PRINTF(sc, "IfHcOutOctets = 0x%08X:%08X, " 5841 "IfHcOutBadOctets = 0x%08X:%08X\n", 5842 sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo, 5843 sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo); 5844 5845 BNX_PRINTF(sc, "IfHcInUcastPkts = 0x%08X:%08X, " 5846 "IfHcInMulticastPkts = 0x%08X:%08X\n", 5847 sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo, 5848 sblk->stat_IfHCInMulticastPkts_hi, 5849 sblk->stat_IfHCInMulticastPkts_lo); 5850 5851 BNX_PRINTF(sc, "IfHcInBroadcastPkts = 0x%08X:%08X, " 5852 "IfHcOutUcastPkts = 0x%08X:%08X\n", 5853 sblk->stat_IfHCInBroadcastPkts_hi, 5854 sblk->stat_IfHCInBroadcastPkts_lo, 5855 sblk->stat_IfHCOutUcastPkts_hi, 5856 sblk->stat_IfHCOutUcastPkts_lo); 5857 5858 BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, " 5859 "IfHcOutBroadcastPkts = 0x%08X:%08X\n", 5860 sblk->stat_IfHCOutMulticastPkts_hi, 5861 sblk->stat_IfHCOutMulticastPkts_lo, 5862 sblk->stat_IfHCOutBroadcastPkts_hi, 5863 sblk->stat_IfHCOutBroadcastPkts_lo); 5864 5865 if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors) 5866 BNX_PRINTF(sc, "0x%08X : " 5867 "emac_tx_stat_dot3statsinternalmactransmiterrors\n", 5868 sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors); 5869 5870 if (sblk->stat_Dot3StatsCarrierSenseErrors) 5871 BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n", 5872 sblk->stat_Dot3StatsCarrierSenseErrors); 5873 5874 if (sblk->stat_Dot3StatsFCSErrors) 5875 BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n", 5876 sblk->stat_Dot3StatsFCSErrors); 5877 5878 if (sblk->stat_Dot3StatsAlignmentErrors) 5879 BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n", 5880 sblk->stat_Dot3StatsAlignmentErrors); 5881 5882 if (sblk->stat_Dot3StatsSingleCollisionFrames) 5883 BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n", 5884 sblk->stat_Dot3StatsSingleCollisionFrames); 5885 5886 if (sblk->stat_Dot3StatsMultipleCollisionFrames) 5887 BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n", 5888 sblk->stat_Dot3StatsMultipleCollisionFrames); 5889 5890 if (sblk->stat_Dot3StatsDeferredTransmissions) 5891 BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n", 5892 sblk->stat_Dot3StatsDeferredTransmissions); 5893 5894 if (sblk->stat_Dot3StatsExcessiveCollisions) 5895 BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n", 5896 sblk->stat_Dot3StatsExcessiveCollisions); 5897 5898 if (sblk->stat_Dot3StatsLateCollisions) 5899 BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n", 5900 sblk->stat_Dot3StatsLateCollisions); 5901 5902 if (sblk->stat_EtherStatsCollisions) 5903 BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n", 5904 sblk->stat_EtherStatsCollisions); 5905 5906 if (sblk->stat_EtherStatsFragments) 5907 BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n", 5908 sblk->stat_EtherStatsFragments); 5909 5910 if (sblk->stat_EtherStatsJabbers) 5911 BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n", 5912 sblk->stat_EtherStatsJabbers); 5913 5914 if (sblk->stat_EtherStatsUndersizePkts) 5915 BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n", 5916 sblk->stat_EtherStatsUndersizePkts); 5917 5918 if (sblk->stat_EtherStatsOverrsizePkts) 5919 BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n", 5920 sblk->stat_EtherStatsOverrsizePkts); 5921 5922 if (sblk->stat_EtherStatsPktsRx64Octets) 5923 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n", 5924 sblk->stat_EtherStatsPktsRx64Octets); 5925 5926 if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets) 5927 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n", 5928 sblk->stat_EtherStatsPktsRx65Octetsto127Octets); 5929 5930 if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets) 5931 BNX_PRINTF(sc, "0x%08X : " 5932 "EtherStatsPktsRx128Octetsto255Octets\n", 5933 sblk->stat_EtherStatsPktsRx128Octetsto255Octets); 5934 5935 if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets) 5936 BNX_PRINTF(sc, "0x%08X : " 5937 "EtherStatsPktsRx256Octetsto511Octets\n", 5938 sblk->stat_EtherStatsPktsRx256Octetsto511Octets); 5939 5940 if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets) 5941 BNX_PRINTF(sc, "0x%08X : " 5942 "EtherStatsPktsRx512Octetsto1023Octets\n", 5943 sblk->stat_EtherStatsPktsRx512Octetsto1023Octets); 5944 5945 if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets) 5946 BNX_PRINTF(sc, "0x%08X : " 5947 "EtherStatsPktsRx1024Octetsto1522Octets\n", 5948 sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets); 5949 5950 if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets) 5951 BNX_PRINTF(sc, "0x%08X : " 5952 "EtherStatsPktsRx1523Octetsto9022Octets\n", 5953 sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets); 5954 5955 if (sblk->stat_EtherStatsPktsTx64Octets) 5956 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n", 5957 sblk->stat_EtherStatsPktsTx64Octets); 5958 5959 if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets) 5960 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n", 5961 sblk->stat_EtherStatsPktsTx65Octetsto127Octets); 5962 5963 if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets) 5964 BNX_PRINTF(sc, "0x%08X : " 5965 "EtherStatsPktsTx128Octetsto255Octets\n", 5966 sblk->stat_EtherStatsPktsTx128Octetsto255Octets); 5967 5968 if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets) 5969 BNX_PRINTF(sc, "0x%08X : " 5970 "EtherStatsPktsTx256Octetsto511Octets\n", 5971 sblk->stat_EtherStatsPktsTx256Octetsto511Octets); 5972 5973 if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets) 5974 BNX_PRINTF(sc, "0x%08X : " 5975 "EtherStatsPktsTx512Octetsto1023Octets\n", 5976 sblk->stat_EtherStatsPktsTx512Octetsto1023Octets); 5977 5978 if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets) 5979 BNX_PRINTF(sc, "0x%08X : " 5980 "EtherStatsPktsTx1024Octetsto1522Octets\n", 5981 sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets); 5982 5983 if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets) 5984 BNX_PRINTF(sc, "0x%08X : " 5985 "EtherStatsPktsTx1523Octetsto9022Octets\n", 5986 sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets); 5987 5988 if (sblk->stat_XonPauseFramesReceived) 5989 BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n", 5990 sblk->stat_XonPauseFramesReceived); 5991 5992 if (sblk->stat_XoffPauseFramesReceived) 5993 BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n", 5994 sblk->stat_XoffPauseFramesReceived); 5995 5996 if (sblk->stat_OutXonSent) 5997 BNX_PRINTF(sc, "0x%08X : OutXonSent\n", 5998 sblk->stat_OutXonSent); 5999 6000 if (sblk->stat_OutXoffSent) 6001 BNX_PRINTF(sc, "0x%08X : OutXoffSent\n", 6002 sblk->stat_OutXoffSent); 6003 6004 if (sblk->stat_FlowControlDone) 6005 BNX_PRINTF(sc, "0x%08X : FlowControlDone\n", 6006 sblk->stat_FlowControlDone); 6007 6008 if (sblk->stat_MacControlFramesReceived) 6009 BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n", 6010 sblk->stat_MacControlFramesReceived); 6011 6012 if (sblk->stat_XoffStateEntered) 6013 BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n", 6014 sblk->stat_XoffStateEntered); 6015 6016 if (sblk->stat_IfInFramesL2FilterDiscards) 6017 BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n", 6018 sblk->stat_IfInFramesL2FilterDiscards); 6019 6020 if (sblk->stat_IfInRuleCheckerDiscards) 6021 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n", 6022 sblk->stat_IfInRuleCheckerDiscards); 6023 6024 if (sblk->stat_IfInFTQDiscards) 6025 BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n", 6026 sblk->stat_IfInFTQDiscards); 6027 6028 if (sblk->stat_IfInMBUFDiscards) 6029 BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n", 6030 sblk->stat_IfInMBUFDiscards); 6031 6032 if (sblk->stat_IfInRuleCheckerP4Hit) 6033 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n", 6034 sblk->stat_IfInRuleCheckerP4Hit); 6035 6036 if (sblk->stat_CatchupInRuleCheckerDiscards) 6037 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n", 6038 sblk->stat_CatchupInRuleCheckerDiscards); 6039 6040 if (sblk->stat_CatchupInFTQDiscards) 6041 BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n", 6042 sblk->stat_CatchupInFTQDiscards); 6043 6044 if (sblk->stat_CatchupInMBUFDiscards) 6045 BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n", 6046 sblk->stat_CatchupInMBUFDiscards); 6047 6048 if (sblk->stat_CatchupInRuleCheckerP4Hit) 6049 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n", 6050 sblk->stat_CatchupInRuleCheckerP4Hit); 6051 6052 BNX_PRINTF(sc, 6053 "-----------------------------" 6054 "--------------" 6055 "-----------------------------\n"); 6056 } 6057 6058 void 6059 bnx_dump_driver_state(struct bnx_softc *sc) 6060 { 6061 BNX_PRINTF(sc, 6062 "-----------------------------" 6063 " Driver State " 6064 "-----------------------------\n"); 6065 6066 BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual " 6067 "address\n", sc); 6068 6069 BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n", 6070 sc->status_block); 6071 6072 BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual " 6073 "address\n", sc->stats_block); 6074 6075 BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual " 6076 "address\n", sc->tx_bd_chain); 6077 6078 BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n", 6079 sc->rx_bd_chain); 6080 6081 BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n", 6082 sc->tx_mbuf_ptr); 6083 6084 BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n", 6085 sc->rx_mbuf_ptr); 6086 6087 BNX_PRINTF(sc, 6088 " 0x%08X - (sc->interrupts_generated) h/w intrs\n", 6089 sc->interrupts_generated); 6090 6091 BNX_PRINTF(sc, 6092 " 0x%08X - (sc->rx_interrupts) rx interrupts handled\n", 6093 sc->rx_interrupts); 6094 6095 BNX_PRINTF(sc, 6096 " 0x%08X - (sc->tx_interrupts) tx interrupts handled\n", 6097 sc->tx_interrupts); 6098 6099 BNX_PRINTF(sc, 6100 " 0x%08X - (sc->last_status_idx) status block index\n", 6101 sc->last_status_idx); 6102 6103 BNX_PRINTF(sc, " 0x%08X - (sc->tx_prod) tx producer index\n", 6104 sc->tx_prod); 6105 6106 BNX_PRINTF(sc, " 0x%08X - (sc->tx_cons) tx consumer index\n", 6107 sc->tx_cons); 6108 6109 BNX_PRINTF(sc, 6110 " 0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n", 6111 sc->tx_prod_bseq); 6112 6113 BNX_PRINTF(sc, 6114 " 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n", 6115 sc->tx_mbuf_alloc); 6116 6117 BNX_PRINTF(sc, 6118 " 0x%08X - (sc->used_tx_bd) used tx_bd's\n", 6119 sc->used_tx_bd); 6120 6121 BNX_PRINTF(sc, 6122 " 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n", 6123 sc->tx_hi_watermark, sc->max_tx_bd); 6124 6125 BNX_PRINTF(sc, " 0x%08X - (sc->rx_prod) rx producer index\n", 6126 sc->rx_prod); 6127 6128 BNX_PRINTF(sc, " 0x%08X - (sc->rx_cons) rx consumer index\n", 6129 sc->rx_cons); 6130 6131 BNX_PRINTF(sc, 6132 " 0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n", 6133 sc->rx_prod_bseq); 6134 6135 BNX_PRINTF(sc, 6136 " 0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n", 6137 sc->rx_mbuf_alloc); 6138 6139 BNX_PRINTF(sc, 6140 "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n", 6141 sc->rx_low_watermark, sc->max_rx_bd); 6142 6143 BNX_PRINTF(sc, 6144 " 0x%08X - (sc->mbuf_alloc_failed) " 6145 "mbuf alloc failures\n", 6146 sc->mbuf_alloc_failed); 6147 6148 BNX_PRINTF(sc, 6149 " 0x%0X - (sc->mbuf_sim_allocated_failed) " 6150 "simulated mbuf alloc failures\n", 6151 sc->mbuf_sim_alloc_failed); 6152 6153 BNX_PRINTF(sc, "-------------------------------------------" 6154 "-----------------------------\n"); 6155 } 6156 6157 void 6158 bnx_dump_hw_state(struct bnx_softc *sc) 6159 { 6160 u_int32_t val1; 6161 int i; 6162 6163 BNX_PRINTF(sc, 6164 "----------------------------" 6165 " Hardware State " 6166 "----------------------------\n"); 6167 6168 BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver); 6169 6170 val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS); 6171 BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n", 6172 val1, BNX_MISC_ENABLE_STATUS_BITS); 6173 6174 val1 = REG_RD(sc, BNX_DMA_STATUS); 6175 BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS); 6176 6177 val1 = REG_RD(sc, BNX_CTX_STATUS); 6178 BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS); 6179 6180 val1 = REG_RD(sc, BNX_EMAC_STATUS); 6181 BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1, 6182 BNX_EMAC_STATUS); 6183 6184 val1 = REG_RD(sc, BNX_RPM_STATUS); 6185 BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS); 6186 6187 val1 = REG_RD(sc, BNX_TBDR_STATUS); 6188 BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1, 6189 BNX_TBDR_STATUS); 6190 6191 val1 = REG_RD(sc, BNX_TDMA_STATUS); 6192 BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1, 6193 BNX_TDMA_STATUS); 6194 6195 val1 = REG_RD(sc, BNX_HC_STATUS); 6196 BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS); 6197 6198 BNX_PRINTF(sc, 6199 "----------------------------" 6200 "----------------" 6201 "----------------------------\n"); 6202 6203 BNX_PRINTF(sc, 6204 "----------------------------" 6205 " Register Dump " 6206 "----------------------------\n"); 6207 6208 for (i = 0x400; i < 0x8000; i += 0x10) 6209 BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", 6210 i, REG_RD(sc, i), REG_RD(sc, i + 0x4), 6211 REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC)); 6212 6213 BNX_PRINTF(sc, 6214 "----------------------------" 6215 "----------------" 6216 "----------------------------\n"); 6217 } 6218 6219 void 6220 bnx_breakpoint(struct bnx_softc *sc) 6221 { 6222 /* Unreachable code to shut the compiler up about unused functions. */ 6223 if (0) { 6224 bnx_dump_txbd(sc, 0, NULL); 6225 bnx_dump_rxbd(sc, 0, NULL); 6226 bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD); 6227 bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd); 6228 bnx_dump_l2fhdr(sc, 0, NULL); 6229 bnx_dump_tx_chain(sc, 0, USABLE_TX_BD); 6230 bnx_dump_rx_chain(sc, 0, sc->max_rx_bd); 6231 bnx_dump_status_block(sc); 6232 bnx_dump_stats_block(sc); 6233 bnx_dump_driver_state(sc); 6234 bnx_dump_hw_state(sc); 6235 } 6236 6237 bnx_dump_driver_state(sc); 6238 /* Print the important status block fields. */ 6239 bnx_dump_status_block(sc); 6240 6241 #if 0 6242 /* Call the debugger. */ 6243 breakpoint(); 6244 #endif 6245 6246 return; 6247 } 6248 #endif 6249