xref: /openbsd/sys/dev/pci/if_msk.c (revision 8bb071cd)
1 /*	$OpenBSD: if_msk.c,v 1.145 2024/08/31 16:23:09 deraadt Exp $	*/
2 
3 /*
4  * Copyright (c) 1997, 1998, 1999, 2000
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
35  */
36 
37 /*
38  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
39  *
40  * Permission to use, copy, modify, and distribute this software for any
41  * purpose with or without fee is hereby granted, provided that the above
42  * copyright notice and this permission notice appear in all copies.
43  *
44  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
45  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
46  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
47  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
48  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
49  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
50  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
51  */
52 
53 /*
54  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
55  * the SK-984x series adapters, both single port and dual port.
56  * References:
57  * 	The XaQti XMAC II datasheet,
58  * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
59  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
60  *
61  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
62  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
63  * convenience to others until Vitesse corrects this problem:
64  *
65  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
66  *
67  * Written by Bill Paul <wpaul@ee.columbia.edu>
68  * Department of Electrical Engineering
69  * Columbia University, New York City
70  */
71 
72 /*
73  * The SysKonnect gigabit ethernet adapters consist of two main
74  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
75  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
76  * components and a PHY while the GEnesis controller provides a PCI
77  * interface with DMA support. Each card may have between 512K and
78  * 2MB of SRAM on board depending on the configuration.
79  *
80  * The SysKonnect GEnesis controller can have either one or two XMAC
81  * chips connected to it, allowing single or dual port NIC configurations.
82  * SysKonnect has the distinction of being the only vendor on the market
83  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
84  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
85  * XMAC registers. This driver takes advantage of these features to allow
86  * both XMACs to operate as independent interfaces.
87  */
88 
89 #include "bpfilter.h"
90 #include "kstat.h"
91 
92 #include <sys/param.h>
93 #include <sys/systm.h>
94 #include <sys/sockio.h>
95 #include <sys/mbuf.h>
96 #include <sys/malloc.h>
97 #include <sys/timeout.h>
98 #include <sys/device.h>
99 #include <sys/queue.h>
100 
101 #include <net/if.h>
102 
103 #include <netinet/in.h>
104 #include <netinet/if_ether.h>
105 
106 #include <net/if_media.h>
107 
108 #if NBPFILTER > 0
109 #include <net/bpf.h>
110 #endif
111 
112 #if NKSTAT > 0
113 #include <sys/kstat.h>
114 #endif
115 
116 #include <dev/mii/miivar.h>
117 
118 #include <dev/pci/pcireg.h>
119 #include <dev/pci/pcivar.h>
120 #include <dev/pci/pcidevs.h>
121 
122 #include <dev/pci/if_skreg.h>
123 #include <dev/pci/if_mskvar.h>
124 
125 #define MSK_STATUS_OWN_SHIFT		63
126 #define MSK_STATUS_OWN_MASK		0x1
127 #define MSK_STATUS_OPCODE_SHIFT		56
128 #define MSK_STATUS_OPCODE_MASK		0x7f
129 
130 #define MSK_STATUS_OWN(_d) \
131     (((_d) >> MSK_STATUS_OWN_SHIFT) & MSK_STATUS_OWN_MASK)
132 #define MSK_STATUS_OPCODE(_d) \
133     (((_d) >> MSK_STATUS_OPCODE_SHIFT) & MSK_STATUS_OPCODE_MASK)
134 
135 #define MSK_STATUS_OPCODE_RXSTAT	0x60
136 #define MSK_STATUS_OPCODE_RXTIMESTAMP	0x61
137 #define MSK_STATUS_OPCODE_RXVLAN	0x62
138 #define MSK_STATUS_OPCODE_RXCKSUM	0x64
139 #define MSK_STATUS_OPCODE_RXCKSUMVLAN	\
140     (MSK_STATUS_OPCODE_RXVLAN | MSK_STATUS_OPCODE_RXCKSUM)
141 #define MSK_STATUS_OPCODE_RXTIMEVLAN	\
142     (MSK_STATUS_OPCODE_RXVLAN | MSK_STATUS_OPCODE_RXTIMESTAMP)
143 #define MSK_STATUS_OPCODE_RSS_HASH	0x65
144 #define MSK_STATUS_OPCODE_TXIDX		0x68
145 #define MSK_STATUS_OPCODE_MACSEC	0x6c
146 #define MSK_STATUS_OPCODE_PUTIDX	0x70
147 
148 #define MSK_STATUS_RXSTAT_PORT_SHIFT	48
149 #define MSK_STATUS_RXSTAT_PORT_MASK	0x1
150 #define MSK_STATUS_RXSTAT_LEN_SHIFT	32
151 #define MSK_STATUS_RXSTAT_LEN_MASK	0xffff
152 #define MSK_STATUS_RXSTAT_STATUS_SHIFT	0
153 #define MSK_STATUS_RXSTAT_STATUS_MASK	0xffffffff
154 
155 #define MSK_STATUS_RXSTAT_PORT(_d) \
156     (((_d) >> MSK_STATUS_RXSTAT_PORT_SHIFT) & MSK_STATUS_RXSTAT_PORT_MASK)
157 #define MSK_STATUS_RXSTAT_LEN(_d) \
158     (((_d) >> MSK_STATUS_RXSTAT_LEN_SHIFT) & MSK_STATUS_RXSTAT_LEN_MASK)
159 #define MSK_STATUS_RXSTAT_STATUS(_d) \
160     (((_d) >> MSK_STATUS_RXSTAT_STATUS_SHIFT) & MSK_STATUS_RXSTAT_STATUS_MASK)
161 
162 #define MSK_STATUS_TXIDX_PORTA_SHIFT	0
163 #define MSK_STATUS_TXIDX_PORTA_MASK	0xfff
164 #define MSK_STATUS_TXIDX_PORTB_SHIFT	24
165 #define MSK_STATUS_TXIDX_PORTB_MASK	0xfff
166 
167 #define MSK_STATUS_TXIDX_PORTA(_d) \
168     (((_d) >> MSK_STATUS_TXIDX_PORTA_SHIFT) & MSK_STATUS_TXIDX_PORTA_MASK)
169 #define MSK_STATUS_TXIDX_PORTB(_d) \
170     (((_d) >> MSK_STATUS_TXIDX_PORTB_SHIFT) & MSK_STATUS_TXIDX_PORTB_MASK)
171 
172 int mskc_probe(struct device *, void *, void *);
173 void mskc_attach(struct device *, struct device *self, void *aux);
174 int mskc_detach(struct device *, int);
175 int mskc_activate(struct device *, int);
176 void mskc_reset(struct sk_softc *);
177 int msk_probe(struct device *, void *, void *);
178 void msk_attach(struct device *, struct device *self, void *aux);
179 int msk_detach(struct device *, int);
180 int msk_activate(struct device *, int);
181 void msk_reset(struct sk_if_softc *);
182 int mskcprint(void *, const char *);
183 int msk_intr(void *);
184 void msk_intr_yukon(struct sk_if_softc *);
185 static inline int msk_rxvalid(struct sk_softc *, u_int32_t, u_int32_t);
186 void msk_rxeof(struct sk_if_softc *, struct mbuf_list *, uint16_t, uint32_t);
187 void msk_txeof(struct sk_if_softc *, unsigned int);
188 static unsigned int msk_encap(struct sk_if_softc *, struct mbuf *, uint32_t);
189 void msk_start(struct ifnet *);
190 int msk_ioctl(struct ifnet *, u_long, caddr_t);
191 void msk_init(void *);
192 void msk_init_yukon(struct sk_if_softc *);
193 void msk_stop(struct sk_if_softc *, int);
194 void msk_watchdog(struct ifnet *);
195 int msk_ifmedia_upd(struct ifnet *);
196 void msk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
197 static int msk_newbuf(struct sk_if_softc *);
198 int msk_init_rx_ring(struct sk_if_softc *);
199 int msk_init_tx_ring(struct sk_if_softc *);
200 void msk_fill_rx_ring(struct sk_if_softc *);
201 
202 int msk_miibus_readreg(struct device *, int, int);
203 void msk_miibus_writereg(struct device *, int, int, int);
204 void msk_miibus_statchg(struct device *);
205 
206 void msk_iff(struct sk_if_softc *);
207 void msk_tick(void *);
208 void msk_fill_rx_tick(void *);
209 
210 #ifdef MSK_DEBUG
211 #define DPRINTF(x)	if (mskdebug) printf x
212 #define DPRINTFN(n,x)	if (mskdebug >= (n)) printf x
213 int	mskdebug = 0;
214 
215 void msk_dump_txdesc(struct msk_tx_desc *, int);
216 void msk_dump_mbuf(struct mbuf *);
217 void msk_dump_bytes(const char *, int);
218 #else
219 #define DPRINTF(x)
220 #define DPRINTFN(n,x)
221 #endif
222 
223 #if NKSTAT > 0
224 struct msk_mib {
225 	const char		*name;
226 	uint32_t		 reg;
227 	enum kstat_kv_type	 type;
228 	enum kstat_kv_unit	 unit;
229 };
230 
231 #define C32	KSTAT_KV_T_COUNTER32
232 #define C64	KSTAT_KV_T_COUNTER64
233 
234 #define PKTS	KSTAT_KV_U_PACKETS
235 #define BYTES	KSTAT_KV_U_BYTES
236 #define NONE	KSTAT_KV_U_NONE
237 
238 static const struct msk_mib msk_mib[] = {
239 	{ "InUnicasts",		0x100,	C32,	PKTS },
240 	{ "InBroadcasts",	0x108,	C32,	PKTS },
241 	{ "InPause",		0x110,	C32,	PKTS },
242 	{ "InMulticasts",	0x118,	C32,	PKTS },
243 	{ "InFCSErr",		0x120,	C32,	PKTS },
244 	{ "InGoodOctets",	0x130,	C64,	BYTES },
245 	{ "InBadOctets",	0x140,	C64,	BYTES },
246 	{ "Undersize",		0x150,	C32,	PKTS },
247 	{ "Fragments",		0x158,	C32,	PKTS },
248 	{ "In64Octets",		0x160,	C32,	PKTS },
249 	{ "In127Octets",	0x168,	C32,	PKTS },
250 	{ "In255Octets",	0x170,	C32,	PKTS },
251 	{ "In511Octets",	0x178,	C32,	PKTS },
252 	{ "In1023Octets",	0x180,	C32,	PKTS },
253 	{ "In1518Octets",	0x188,	C32,	PKTS },
254 	{ "InMaxOctets",	0x190,	C32,	PKTS },
255 	{ "OverSize",		0x198,	C32,	PKTS },
256 	{ "Jabber",		0x1a8,	C32,	PKTS },
257 	{ "Overflow",		0x1b0,	C32,	PKTS },
258 
259 	{ "OutUnicasts",	0x1c0,	C32,	PKTS },
260 	{ "OutBroadcasts",	0x1c8,	C32,	PKTS },
261 	{ "OutPause",		0x1d0,	C32,	PKTS },
262 	{ "OutMulticasts", 	0x1d8,	C32,	PKTS },
263 	{ "OutOctets",		0x1e0,	C64,	BYTES },
264 	{ "Out64Octets",	0x1f0,	C32,	PKTS },
265 	{ "Out127Octets",	0x1f8,	C32,	PKTS },
266 	{ "Out255Octets",	0x200,	C32,	PKTS },
267 	{ "Out511Octets",	0x208,	C32,	PKTS },
268 	{ "Out1023Octets",	0x210,	C32,	PKTS },
269 	{ "Out1518Octets",	0x218,	C32,	PKTS },
270 	{ "OutMaxOctets",	0x220,	C32,	PKTS },
271 	{ "Collisions",		0x230,	C32,	NONE },
272 	{ "Late",		0x238,	C32,	NONE },
273 	{ "Excessive",		0x240,	C32,	PKTS },
274 	{ "Multiple",		0x248,	C32,	PKTS },
275 	{ "Single",		0x250,	C32,	PKTS },
276 	{ "Underflow",		0x258,	C32,	PKTS },
277 };
278 
279 #undef C32
280 #undef C64
281 
282 #undef PKTS
283 #undef BYTES
284 #undef NONE
285 
286 struct msk_kstat {
287 	struct rwlock		 lock;
288 	struct kstat		*ks;
289 };
290 
291 static uint32_t		msk_mib_read32(struct sk_if_softc *, uint32_t);
292 static uint64_t		msk_mib_read64(struct sk_if_softc *, uint32_t);
293 
294 void			msk_kstat_attach(struct sk_if_softc *);
295 void			msk_kstat_detach(struct sk_if_softc *);
296 int			msk_kstat_read(struct kstat *ks);
297 #endif
298 
299 /* supported device vendors */
300 const struct pci_matchid mskc_devices[] = {
301 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DGE550SX },
302 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DGE550T_B1 },
303 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DGE560SX },
304 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DGE560T },
305 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8021CU },
306 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8021X },
307 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8022CU },
308 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8022X },
309 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8035 },
310 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8036 },
311 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8038 },
312 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8039 },
313 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8040 },
314 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8040T },
315 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8042 },
316 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8048 },
317 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8050 },
318 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8052 },
319 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8053 },
320 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8055 },
321 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8055_2 },
322 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8056 },
323 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8057 },
324 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8058 },
325 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8059 },
326 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8061CU },
327 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8061X },
328 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8062CU },
329 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8062X },
330 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8070 },
331 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8071 },
332 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8072 },
333 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8075 },
334 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8079 },
335 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C032 },
336 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C033 },
337 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C034 },
338 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C036 },
339 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C042 },
340 	{ PCI_VENDOR_SCHNEIDERKOCH,	PCI_PRODUCT_SCHNEIDERKOCH_SK9EXX },
341 	{ PCI_VENDOR_SCHNEIDERKOCH,	PCI_PRODUCT_SCHNEIDERKOCH_SK9SXX }
342 };
343 
344 static inline u_int32_t
sk_win_read_4(struct sk_softc * sc,u_int32_t reg)345 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
346 {
347 	return CSR_READ_4(sc, reg);
348 }
349 
350 static inline u_int16_t
sk_win_read_2(struct sk_softc * sc,u_int32_t reg)351 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
352 {
353 	return CSR_READ_2(sc, reg);
354 }
355 
356 static inline u_int8_t
sk_win_read_1(struct sk_softc * sc,u_int32_t reg)357 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
358 {
359 	return CSR_READ_1(sc, reg);
360 }
361 
362 static inline void
sk_win_write_4(struct sk_softc * sc,u_int32_t reg,u_int32_t x)363 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
364 {
365 	CSR_WRITE_4(sc, reg, x);
366 }
367 
368 static inline void
sk_win_write_2(struct sk_softc * sc,u_int32_t reg,u_int16_t x)369 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
370 {
371 	CSR_WRITE_2(sc, reg, x);
372 }
373 
374 static inline void
sk_win_write_1(struct sk_softc * sc,u_int32_t reg,u_int8_t x)375 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
376 {
377 	CSR_WRITE_1(sc, reg, x);
378 }
379 
380 int
msk_miibus_readreg(struct device * dev,int phy,int reg)381 msk_miibus_readreg(struct device *dev, int phy, int reg)
382 {
383 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
384 	u_int16_t val;
385 	int i;
386 
387         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
388 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
389 
390 	for (i = 0; i < SK_TIMEOUT; i++) {
391 		DELAY(1);
392 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
393 		if (val & YU_SMICR_READ_VALID)
394 			break;
395 	}
396 
397 	if (i == SK_TIMEOUT) {
398 		printf("%s: phy failed to come ready\n",
399 		       sc_if->sk_dev.dv_xname);
400 		return (0);
401 	}
402 
403  	DPRINTFN(9, ("msk_miibus_readreg: i=%d, timeout=%d\n", i,
404 		     SK_TIMEOUT));
405 
406         val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
407 
408 	DPRINTFN(9, ("msk_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
409 		     phy, reg, val));
410 
411 	return (val);
412 }
413 
414 void
msk_miibus_writereg(struct device * dev,int phy,int reg,int val)415 msk_miibus_writereg(struct device *dev, int phy, int reg, int val)
416 {
417 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
418 	int i;
419 
420 	DPRINTFN(9, ("msk_miibus_writereg phy=%d reg=%#x val=%#x\n",
421 		     phy, reg, val));
422 
423 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
424 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
425 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
426 
427 	for (i = 0; i < SK_TIMEOUT; i++) {
428 		DELAY(1);
429 		if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
430 			break;
431 	}
432 
433 	if (i == SK_TIMEOUT)
434 		printf("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
435 }
436 
437 void
msk_miibus_statchg(struct device * dev)438 msk_miibus_statchg(struct device *dev)
439 {
440 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
441 	struct mii_data *mii = &sc_if->sk_mii;
442 	struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
443 	int gpcr;
444 
445 	gpcr = SK_YU_READ_2(sc_if, YUKON_GPCR);
446 	gpcr &= (YU_GPCR_TXEN | YU_GPCR_RXEN);
447 
448 	if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO ||
449 	    sc_if->sk_softc->sk_type == SK_YUKON_FE_P) {
450 		/* Set speed. */
451 		gpcr |= YU_GPCR_SPEED_DIS;
452 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
453 		case IFM_1000_SX:
454 		case IFM_1000_LX:
455 		case IFM_1000_CX:
456 		case IFM_1000_T:
457 			gpcr |= (YU_GPCR_GIG | YU_GPCR_SPEED);
458 			break;
459 		case IFM_100_TX:
460 			gpcr |= YU_GPCR_SPEED;
461 			break;
462 		}
463 
464 		/* Set duplex. */
465 		gpcr |= YU_GPCR_DPLX_DIS;
466 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
467 			gpcr |= YU_GPCR_DUPLEX;
468 
469 		/* Disable flow control. */
470 		gpcr |= YU_GPCR_FCTL_DIS;
471 		gpcr |= (YU_GPCR_FCTL_TX_DIS | YU_GPCR_FCTL_RX_DIS);
472 	}
473 
474 	SK_YU_WRITE_2(sc_if, YUKON_GPCR, gpcr);
475 
476 	DPRINTFN(9, ("msk_miibus_statchg: gpcr=%x\n",
477 		     SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
478 }
479 
480 void
msk_iff(struct sk_if_softc * sc_if)481 msk_iff(struct sk_if_softc *sc_if)
482 {
483 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
484 	struct arpcom *ac = &sc_if->arpcom;
485 	struct ether_multi *enm;
486 	struct ether_multistep step;
487 	u_int32_t hashes[2];
488 	u_int16_t rcr;
489 	int h;
490 
491 	rcr = SK_YU_READ_2(sc_if, YUKON_RCR);
492 	rcr &= ~(YU_RCR_MUFLEN | YU_RCR_UFLEN);
493 	ifp->if_flags &= ~IFF_ALLMULTI;
494 
495 	/*
496 	 * Always accept frames destined to our station address.
497 	 */
498 	rcr |= YU_RCR_UFLEN;
499 
500 	if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
501 		ifp->if_flags |= IFF_ALLMULTI;
502 		if (ifp->if_flags & IFF_PROMISC)
503 			rcr &= ~YU_RCR_UFLEN;
504 		else
505 			rcr |= YU_RCR_MUFLEN;
506 		hashes[0] = hashes[1] = 0xFFFFFFFF;
507 	} else {
508 		rcr |= YU_RCR_MUFLEN;
509 		/* Program new filter. */
510 		bzero(hashes, sizeof(hashes));
511 
512 		ETHER_FIRST_MULTI(step, ac, enm);
513 		while (enm != NULL) {
514 			h = ether_crc32_be(enm->enm_addrlo,
515 			    ETHER_ADDR_LEN) & ((1 << SK_HASH_BITS) - 1);
516 
517 			if (h < 32)
518 				hashes[0] |= (1 << h);
519 			else
520 				hashes[1] |= (1 << (h - 32));
521 
522 			ETHER_NEXT_MULTI(step, enm);
523 		}
524 	}
525 
526 	SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
527 	SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
528 	SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
529 	SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
530 	SK_YU_WRITE_2(sc_if, YUKON_RCR, rcr);
531 }
532 
533 int
msk_init_rx_ring(struct sk_if_softc * sc_if)534 msk_init_rx_ring(struct sk_if_softc *sc_if)
535 {
536 	struct msk_ring_data	*rd = sc_if->sk_rdata;
537 	struct msk_rx_desc	*r;
538 
539 	memset(rd->sk_rx_ring, 0, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
540 
541 	r = &rd->sk_rx_ring[0];
542 	r->sk_addr = htole32(0);
543 	r->sk_opcode = SK_Y2_RXOPC_OWN | SK_Y2_RXOPC_ADDR64;
544 
545 	sc_if->sk_cdata.sk_rx_prod = 1;
546 	sc_if->sk_cdata.sk_rx_cons = 0;
547 	sc_if->sk_cdata.sk_rx_hiaddr = 0;
548 
549 	/*
550 	 * up to two ring entries per packet, so the effective ring size is
551 	 * halved
552 	 */
553 	if_rxr_init(&sc_if->sk_cdata.sk_rx_ring, 2, (MSK_RX_RING_CNT/2) - 1);
554 
555 	msk_fill_rx_ring(sc_if);
556 	return (0);
557 }
558 
559 int
msk_init_tx_ring(struct sk_if_softc * sc_if)560 msk_init_tx_ring(struct sk_if_softc *sc_if)
561 {
562 	struct sk_softc		*sc = sc_if->sk_softc;
563 	struct msk_ring_data	*rd = sc_if->sk_rdata;
564 	struct msk_tx_desc	*t;
565 	int			i;
566 
567 	memset(rd->sk_tx_ring, 0, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
568 
569 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
570 		if (bus_dmamap_create(sc->sc_dmatag, sc_if->sk_pktlen,
571 		    SK_NTXSEG, sc_if->sk_pktlen, 0,
572 		    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW | BUS_DMA_64BIT,
573 		    &sc_if->sk_cdata.sk_tx_maps[i]))
574 			return (ENOBUFS);
575 	}
576 
577 	t = &rd->sk_tx_ring[0];
578 	t->sk_addr = htole32(0);
579 	t->sk_opcode = SK_Y2_TXOPC_OWN | SK_Y2_TXOPC_ADDR64;
580 
581 	sc_if->sk_cdata.sk_tx_prod = 1;
582 	sc_if->sk_cdata.sk_tx_cons = 0;
583 	sc_if->sk_cdata.sk_tx_hiaddr = 0;
584 
585 	MSK_CDTXSYNC(sc_if, 0, MSK_TX_RING_CNT, BUS_DMASYNC_PREWRITE);
586 
587 	return (0);
588 }
589 
590 static int
msk_newbuf(struct sk_if_softc * sc_if)591 msk_newbuf(struct sk_if_softc *sc_if)
592 {
593 	struct msk_ring_data	*rd = sc_if->sk_rdata;
594 	struct msk_rx_desc	*r;
595 	struct mbuf		*m;
596 	bus_dmamap_t		map;
597 	uint64_t		addr;
598 	uint32_t		prod, head;
599 	uint32_t		hiaddr;
600 	unsigned int		pktlen = sc_if->sk_pktlen + ETHER_ALIGN;
601 
602 	m = MCLGETL(NULL, M_DONTWAIT, pktlen);
603 	if (m == NULL)
604 		return (0);
605 	m->m_len = m->m_pkthdr.len = pktlen;
606 	m_adj(m, ETHER_ALIGN);
607 
608 	prod = sc_if->sk_cdata.sk_rx_prod;
609 	map = sc_if->sk_cdata.sk_rx_maps[prod];
610 
611 	if (bus_dmamap_load_mbuf(sc_if->sk_softc->sc_dmatag, map, m,
612 	    BUS_DMA_READ|BUS_DMA_NOWAIT) != 0) {
613 		m_freem(m);
614 		return (0);
615 	}
616 
617 	bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, map, 0,
618 	    map->dm_mapsize, BUS_DMASYNC_PREREAD);
619 
620 	head = prod;
621 
622 	/* high 32 bits of address */
623 	addr = map->dm_segs[0].ds_addr;
624 	hiaddr = addr >> 32;
625 	if (sc_if->sk_cdata.sk_rx_hiaddr != hiaddr) {
626 		r = &rd->sk_rx_ring[prod];
627 		htolem32(&r->sk_addr, hiaddr);
628 		r->sk_len = htole16(0);
629 		r->sk_ctl = 0;
630 		r->sk_opcode = SK_Y2_RXOPC_OWN | SK_Y2_RXOPC_ADDR64;
631 
632 		sc_if->sk_cdata.sk_rx_hiaddr = hiaddr;
633 
634 		SK_INC(prod, MSK_RX_RING_CNT);
635 	}
636 
637 	r = &rd->sk_rx_ring[prod];
638 	htolem32(&r->sk_addr, addr);
639 	htolem16(&r->sk_len, map->dm_segs[0].ds_len);
640 	r->sk_ctl = 0;
641 	r->sk_opcode = SK_Y2_RXOPC_OWN | SK_Y2_RXOPC_PACKET;
642 
643 	sc_if->sk_cdata.sk_rx_maps[head] = sc_if->sk_cdata.sk_rx_maps[prod];
644 	sc_if->sk_cdata.sk_rx_maps[prod] = map;
645 
646 	sc_if->sk_cdata.sk_rx_mbuf[prod] = m;
647 
648 	SK_INC(prod, MSK_RX_RING_CNT);
649 	sc_if->sk_cdata.sk_rx_prod = prod;
650 
651 	return (1);
652 }
653 
654 /*
655  * Set media options.
656  */
657 int
msk_ifmedia_upd(struct ifnet * ifp)658 msk_ifmedia_upd(struct ifnet *ifp)
659 {
660 	struct sk_if_softc *sc_if = ifp->if_softc;
661 
662 	mii_mediachg(&sc_if->sk_mii);
663 	return (0);
664 }
665 
666 /*
667  * Report current media status.
668  */
669 void
msk_ifmedia_sts(struct ifnet * ifp,struct ifmediareq * ifmr)670 msk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
671 {
672 	struct sk_if_softc *sc_if = ifp->if_softc;
673 
674 	mii_pollstat(&sc_if->sk_mii);
675 	ifmr->ifm_active = sc_if->sk_mii.mii_media_active;
676 	ifmr->ifm_status = sc_if->sk_mii.mii_media_status;
677 }
678 
679 int
msk_ioctl(struct ifnet * ifp,u_long command,caddr_t data)680 msk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
681 {
682 	struct sk_if_softc *sc_if = ifp->if_softc;
683 	struct ifreq *ifr = (struct ifreq *) data;
684 	struct mii_data *mii;
685 	int s, error = 0;
686 
687 	s = splnet();
688 
689 	switch(command) {
690 	case SIOCSIFADDR:
691 		ifp->if_flags |= IFF_UP;
692 		if (!(ifp->if_flags & IFF_RUNNING))
693 			msk_init(sc_if);
694 		break;
695 
696 	case SIOCSIFFLAGS:
697 		if (ifp->if_flags & IFF_UP) {
698 			if (ifp->if_flags & IFF_RUNNING)
699 				error = ENETRESET;
700 			else
701 				msk_init(sc_if);
702 		} else {
703 			if (ifp->if_flags & IFF_RUNNING)
704 				msk_stop(sc_if, 0);
705 		}
706 		break;
707 
708 	case SIOCGIFMEDIA:
709 	case SIOCSIFMEDIA:
710 		mii = &sc_if->sk_mii;
711 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
712 		break;
713 
714 	case SIOCGIFRXR:
715 		error = if_rxr_ioctl((struct if_rxrinfo *)ifr->ifr_data,
716 		    NULL, sc_if->sk_pktlen, &sc_if->sk_cdata.sk_rx_ring);
717  		break;
718 
719 	default:
720 		error = ether_ioctl(ifp, &sc_if->arpcom, command, data);
721 	}
722 
723 	if (error == ENETRESET) {
724 		if (ifp->if_flags & IFF_RUNNING)
725 			msk_iff(sc_if);
726 		error = 0;
727 	}
728 
729 	splx(s);
730 	return (error);
731 }
732 
733 /*
734  * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
735  * IDs against our list and return a device name if we find a match.
736  */
737 int
mskc_probe(struct device * parent,void * match,void * aux)738 mskc_probe(struct device *parent, void *match, void *aux)
739 {
740 	return (pci_matchbyid((struct pci_attach_args *)aux, mskc_devices,
741 	    nitems(mskc_devices)));
742 }
743 
744 /*
745  * Force the GEnesis into reset, then bring it out of reset.
746  */
747 void
mskc_reset(struct sk_softc * sc)748 mskc_reset(struct sk_softc *sc)
749 {
750 	u_int32_t imtimer_ticks, reg1;
751 	int reg;
752 	unsigned int i;
753 
754 	DPRINTFN(2, ("mskc_reset\n"));
755 
756 	CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_RESET);
757 	CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_RESET);
758 
759 	DELAY(1000);
760 	CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_UNRESET);
761 	DELAY(2);
762 	CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
763 
764 	sk_win_write_1(sc, SK_TESTCTL1, 2);
765 
766 	if (sc->sk_type == SK_YUKON_EC_U || sc->sk_type == SK_YUKON_EX ||
767 	    sc->sk_type >= SK_YUKON_FE_P) {
768 		/* enable all clocks. */
769 		sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG3), 0);
770 		reg1 = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4));
771 		reg1 &= (SK_Y2_REG4_FORCE_ASPM_REQUEST|
772 		    SK_Y2_REG4_ASPM_GPHY_LINK_DOWN|
773 		    SK_Y2_REG4_ASPM_INT_FIFO_EMPTY|
774 		    SK_Y2_REG4_ASPM_CLKRUN_REQUEST);
775 		sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4), reg1);
776 
777 		reg1 = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG5));
778 		reg1 &= SK_Y2_REG5_TIM_VMAIN_AV_MASK;
779 		sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG5), reg1);
780 		sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_CFGREG1), 0);
781 
782 		/*
783 		 * Disable status race, workaround for Yukon EC Ultra &
784 		 * Yukon EX.
785 		 */
786 		reg1 = sk_win_read_4(sc, SK_GPIO);
787 		reg1 |= SK_Y2_GPIO_STAT_RACE_DIS;
788 		sk_win_write_4(sc, SK_GPIO, reg1);
789 		sk_win_read_4(sc, SK_GPIO);
790 	}
791 
792 	reg1 = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1));
793 	if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
794 		reg1 |= (SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
795 	else
796 		reg1 &= ~(SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
797 	sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1), reg1);
798 
799 	if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
800 		sk_win_write_1(sc, SK_Y2_CLKGATE,
801 		    SK_Y2_CLKGATE_LINK1_GATE_DIS |
802 		    SK_Y2_CLKGATE_LINK2_GATE_DIS |
803 		    SK_Y2_CLKGATE_LINK1_CORE_DIS |
804 		    SK_Y2_CLKGATE_LINK2_CORE_DIS |
805 		    SK_Y2_CLKGATE_LINK1_PCI_DIS | SK_Y2_CLKGATE_LINK2_PCI_DIS);
806 	else
807 		sk_win_write_1(sc, SK_Y2_CLKGATE, 0);
808 
809 	CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
810 	CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_SET);
811 	DELAY(1000);
812 	CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
813 	CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_CLEAR);
814 
815 	if (sc->sk_type == SK_YUKON_EX || sc->sk_type == SK_YUKON_SUPR) {
816 		CSR_WRITE_2(sc, SK_GMAC_CTRL, SK_GMAC_BYP_MACSECRX |
817 		    SK_GMAC_BYP_MACSECTX | SK_GMAC_BYP_RETR_FIFO);
818 	}
819 
820 	sk_win_write_1(sc, SK_TESTCTL1, 1);
821 
822 	DPRINTFN(2, ("mskc_reset: sk_csr=%x\n", CSR_READ_1(sc, SK_CSR)));
823 	DPRINTFN(2, ("mskc_reset: sk_link_ctrl=%x\n",
824 		     CSR_READ_2(sc, SK_LINK_CTRL)));
825 
826 	/* Disable ASF */
827 	CSR_WRITE_1(sc, SK_Y2_ASF_CSR, SK_Y2_ASF_RESET);
828 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_ASF_OFF);
829 
830 	/* Clear I2C IRQ noise */
831 	CSR_WRITE_4(sc, SK_I2CHWIRQ, 1);
832 
833 	/* Disable hardware timer */
834 	CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_STOP);
835 	CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_IRQ_CLEAR);
836 
837 	/* Disable descriptor polling */
838 	CSR_WRITE_4(sc, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
839 
840 	/* Disable time stamps */
841 	CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_STOP);
842 	CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_IRQ_CLEAR);
843 
844 	/* Enable RAM interface */
845 	sk_win_write_1(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
846 	for (reg = SK_TO0;reg <= SK_TO11; reg++)
847 		sk_win_write_1(sc, reg, 36);
848 	sk_win_write_1(sc, SK_RAMCTL + (SK_WIN_LEN / 2), SK_RAMCTL_UNRESET);
849 	for (reg = SK_TO0;reg <= SK_TO11; reg++)
850 		sk_win_write_1(sc, reg + (SK_WIN_LEN / 2), 36);
851 
852 	/*
853 	 * Configure interrupt moderation. The moderation timer
854 	 * defers interrupts specified in the interrupt moderation
855 	 * timer mask based on the timeout specified in the interrupt
856 	 * moderation timer init register. Each bit in the timer
857 	 * register represents one tick, so to specify a timeout in
858 	 * microseconds, we have to multiply by the correct number of
859 	 * ticks-per-microsecond.
860 	 */
861 	switch (sc->sk_type) {
862 	case SK_YUKON_EC:
863 	case SK_YUKON_EC_U:
864 	case SK_YUKON_EX:
865 	case SK_YUKON_SUPR:
866 	case SK_YUKON_ULTRA2:
867 	case SK_YUKON_OPTIMA:
868 	case SK_YUKON_PRM:
869 	case SK_YUKON_OPTIMA2:
870 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
871 		break;
872 	case SK_YUKON_FE:
873 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
874 		break;
875 	case SK_YUKON_FE_P:
876 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
877 		break;
878 	case SK_YUKON_XL:
879 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
880 		break;
881 	default:
882 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
883 		break;
884 	}
885 
886 	/* Reset status ring. */
887 	for (i = 0; i < MSK_STATUS_RING_CNT; i++)
888 		sc->sk_status_ring[i] = htole64(0);
889 	sc->sk_status_idx = 0;
890 
891 	sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_RESET);
892 	sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_UNRESET);
893 
894 	sk_win_write_2(sc, SK_STAT_BMU_LIDX, MSK_STATUS_RING_CNT - 1);
895 	sk_win_write_4(sc, SK_STAT_BMU_ADDRLO,
896 	    sc->sk_status_map->dm_segs[0].ds_addr);
897 	sk_win_write_4(sc, SK_STAT_BMU_ADDRHI,
898 	    (u_int64_t)sc->sk_status_map->dm_segs[0].ds_addr >> 32);
899 	sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, 10);
900 	sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 16);
901 	sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 16);
902 
903 #if 0
904 	sk_win_write_4(sc, SK_Y2_LEV_ITIMERINIT, SK_IM_USECS(100));
905 	sk_win_write_4(sc, SK_Y2_TX_ITIMERINIT, SK_IM_USECS(1000));
906 	sk_win_write_4(sc, SK_Y2_ISR_ITIMERINIT, SK_IM_USECS(20));
907 #else
908 	sk_win_write_4(sc, SK_Y2_ISR_ITIMERINIT, SK_IM_USECS(4));
909 #endif
910 
911 	sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_ON);
912 
913 	sk_win_write_1(sc, SK_Y2_LEV_ITIMERCTL, SK_IMCTL_START);
914 	sk_win_write_1(sc, SK_Y2_TX_ITIMERCTL, SK_IMCTL_START);
915 	sk_win_write_1(sc, SK_Y2_ISR_ITIMERCTL, SK_IMCTL_START);
916 }
917 
918 int
msk_probe(struct device * parent,void * match,void * aux)919 msk_probe(struct device *parent, void *match, void *aux)
920 {
921 	struct skc_attach_args *sa = aux;
922 
923 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
924 		return (0);
925 
926 	switch (sa->skc_type) {
927 	case SK_YUKON_XL:
928 	case SK_YUKON_EC_U:
929 	case SK_YUKON_EX:
930 	case SK_YUKON_EC:
931 	case SK_YUKON_FE:
932 	case SK_YUKON_FE_P:
933 	case SK_YUKON_SUPR:
934 	case SK_YUKON_ULTRA2:
935 	case SK_YUKON_OPTIMA:
936 	case SK_YUKON_PRM:
937 	case SK_YUKON_OPTIMA2:
938 		return (1);
939 	}
940 
941 	return (0);
942 }
943 
944 void
msk_reset(struct sk_if_softc * sc_if)945 msk_reset(struct sk_if_softc *sc_if)
946 {
947 	/* GMAC and GPHY Reset */
948 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
949 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
950 	DELAY(1000);
951 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_CLEAR);
952 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
953 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
954 }
955 
956 /*
957  * Each XMAC chip is attached as a separate logical IP interface.
958  * Single port cards will have only one logical interface of course.
959  */
960 void
msk_attach(struct device * parent,struct device * self,void * aux)961 msk_attach(struct device *parent, struct device *self, void *aux)
962 {
963 	struct sk_if_softc *sc_if = (struct sk_if_softc *)self;
964 	struct sk_softc *sc = (struct sk_softc *)parent;
965 	struct skc_attach_args *sa = aux;
966 	struct ifnet *ifp;
967 	caddr_t kva;
968 	int i;
969 	u_int32_t chunk;
970 	int mii_flags;
971 	int error;
972 
973 	sc_if->sk_port = sa->skc_port;
974 	sc_if->sk_softc = sc;
975 	sc->sk_if[sa->skc_port] = sc_if;
976 
977 	DPRINTFN(2, ("begin msk_attach: port=%d\n", sc_if->sk_port));
978 
979 	/*
980 	 * Get station address for this interface. Note that
981 	 * dual port cards actually come with three station
982 	 * addresses: one for each port, plus an extra. The
983 	 * extra one is used by the SysKonnect driver software
984 	 * as a 'virtual' station address for when both ports
985 	 * are operating in failover mode. Currently we don't
986 	 * use this extra address.
987 	 */
988 	for (i = 0; i < ETHER_ADDR_LEN; i++)
989 		sc_if->arpcom.ac_enaddr[i] =
990 		    sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
991 
992 	printf(": address %s\n",
993 	    ether_sprintf(sc_if->arpcom.ac_enaddr));
994 
995 	/*
996 	 * Set up RAM buffer addresses. The Yukon2 has a small amount
997 	 * of SRAM on it, somewhere between 4K and 48K.  We need to
998 	 * divide this up between the transmitter and receiver.  We
999 	 * give the receiver 2/3 of the memory (rounded down), and the
1000 	 * transmitter whatever remains.
1001 	 */
1002 	chunk = (2 * (sc->sk_ramsize / sizeof(u_int64_t)) / 3) & ~0xff;
1003 	sc_if->sk_rx_ramstart = 0;
1004 	sc_if->sk_rx_ramend = sc_if->sk_rx_ramstart + chunk - 1;
1005 	chunk = (sc->sk_ramsize / sizeof(u_int64_t)) - chunk;
1006 	sc_if->sk_tx_ramstart = sc_if->sk_rx_ramend + 1;
1007 	sc_if->sk_tx_ramend = sc_if->sk_tx_ramstart + chunk - 1;
1008 
1009 	DPRINTFN(2, ("msk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1010 		     "           tx_ramstart=%#x tx_ramend=%#x\n",
1011 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1012 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1013 
1014 	/* Allocate the descriptor queues. */
1015 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct msk_ring_data),
1016 	    PAGE_SIZE, 0, &sc_if->sk_ring_seg, 1, &sc_if->sk_ring_nseg,
1017 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO)) {
1018 		printf(": can't alloc rx buffers\n");
1019 		goto fail;
1020 	}
1021 	if (bus_dmamem_map(sc->sc_dmatag, &sc_if->sk_ring_seg,
1022 	    sc_if->sk_ring_nseg,
1023 	    sizeof(struct msk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1024 		printf(": can't map dma buffers (%lu bytes)\n",
1025 		       (ulong)sizeof(struct msk_ring_data));
1026 		goto fail_1;
1027 	}
1028 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct msk_ring_data), 1,
1029 	    sizeof(struct msk_ring_data), 0,
1030 	    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW | BUS_DMA_64BIT,
1031             &sc_if->sk_ring_map)) {
1032 		printf(": can't create dma map\n");
1033 		goto fail_2;
1034 	}
1035 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1036 	    sizeof(struct msk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1037 		printf(": can't load dma map\n");
1038 		goto fail_3;
1039 	}
1040         sc_if->sk_rdata = (struct msk_ring_data *)kva;
1041 
1042 	if (sc->sk_type != SK_YUKON_FE &&
1043 	    sc->sk_type != SK_YUKON_FE_P)
1044 		sc_if->sk_pktlen = SK_JLEN;
1045 	else
1046 		sc_if->sk_pktlen = MCLBYTES;
1047 
1048 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
1049 		if ((error = bus_dmamap_create(sc->sc_dmatag,
1050 		    sc_if->sk_pktlen, 1, sc_if->sk_pktlen, 0,
1051 		    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW | BUS_DMA_64BIT,
1052 		    &sc_if->sk_cdata.sk_rx_maps[i])) != 0) {
1053 			printf("\n%s: unable to create rx DMA map %d, "
1054 			    "error = %d\n", sc->sk_dev.dv_xname, i, error);
1055 			goto fail_4;
1056 		}
1057 	}
1058 
1059 	ifp = &sc_if->arpcom.ac_if;
1060 	ifp->if_softc = sc_if;
1061 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1062 	ifp->if_ioctl = msk_ioctl;
1063 	ifp->if_start = msk_start;
1064 	ifp->if_watchdog = msk_watchdog;
1065 	if (sc->sk_type != SK_YUKON_FE &&
1066 	    sc->sk_type != SK_YUKON_FE_P)
1067 		ifp->if_hardmtu = SK_JUMBO_MTU;
1068 	ifq_init_maxlen(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1069 	bcopy(sc_if->sk_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
1070 
1071 	ifp->if_capabilities = IFCAP_VLAN_MTU;
1072 
1073 	msk_reset(sc_if);
1074 
1075 	/*
1076 	 * Do miibus setup.
1077 	 */
1078 	msk_init_yukon(sc_if);
1079 
1080  	DPRINTFN(2, ("msk_attach: 1\n"));
1081 
1082 	sc_if->sk_mii.mii_ifp = ifp;
1083 	sc_if->sk_mii.mii_readreg = msk_miibus_readreg;
1084 	sc_if->sk_mii.mii_writereg = msk_miibus_writereg;
1085 	sc_if->sk_mii.mii_statchg = msk_miibus_statchg;
1086 
1087 	ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1088 	    msk_ifmedia_upd, msk_ifmedia_sts);
1089 	mii_flags = MIIF_DOPAUSE;
1090 	if (sc->sk_fibertype)
1091 		mii_flags |= MIIF_HAVEFIBER;
1092 	mii_attach(self, &sc_if->sk_mii, 0xffffffff, 0,
1093 	    MII_OFFSET_ANY, mii_flags);
1094 	if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
1095 		printf("%s: no PHY found!\n", sc_if->sk_dev.dv_xname);
1096 		ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1097 			    0, NULL);
1098 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1099 	} else
1100 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1101 
1102 	timeout_set(&sc_if->sk_tick_ch, msk_tick, sc_if);
1103 	timeout_set(&sc_if->sk_tick_rx, msk_fill_rx_tick, sc_if);
1104 
1105 	/*
1106 	 * Call MI attach routines.
1107 	 */
1108 	if_attach(ifp);
1109 	ether_ifattach(ifp);
1110 
1111 #if NKSTAT > 0
1112 	msk_kstat_attach(sc_if);
1113 #endif
1114 
1115 	DPRINTFN(2, ("msk_attach: end\n"));
1116 	return;
1117 
1118 fail_4:
1119 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
1120 		if (sc_if->sk_cdata.sk_rx_maps[i] != NULL)
1121 			bus_dmamap_destroy(sc->sc_dmatag,
1122 			    sc_if->sk_cdata.sk_rx_maps[i]);
1123 	}
1124 
1125 fail_3:
1126 	bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1127 fail_2:
1128 	bus_dmamem_unmap(sc->sc_dmatag, kva, sizeof(struct msk_ring_data));
1129 fail_1:
1130 	bus_dmamem_free(sc->sc_dmatag, &sc_if->sk_ring_seg, sc_if->sk_ring_nseg);
1131 fail:
1132 	sc->sk_if[sa->skc_port] = NULL;
1133 }
1134 
1135 int
msk_detach(struct device * self,int flags)1136 msk_detach(struct device *self, int flags)
1137 {
1138 	struct sk_if_softc *sc_if = (struct sk_if_softc *)self;
1139 	struct sk_softc *sc = sc_if->sk_softc;
1140 	struct ifnet *ifp= &sc_if->arpcom.ac_if;
1141 
1142 	if (sc->sk_if[sc_if->sk_port] == NULL)
1143 		return (0);
1144 
1145 	msk_stop(sc_if, 1);
1146 
1147 #if NKSTAT > 0
1148 	msk_kstat_detach(sc_if);
1149 #endif
1150 
1151 	/* Detach any PHYs we might have. */
1152 	if (LIST_FIRST(&sc_if->sk_mii.mii_phys) != NULL)
1153 		mii_detach(&sc_if->sk_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1154 
1155 	/* Delete any remaining media. */
1156 	ifmedia_delete_instance(&sc_if->sk_mii.mii_media, IFM_INST_ANY);
1157 
1158 	ether_ifdetach(ifp);
1159 	if_detach(ifp);
1160 
1161 	bus_dmamem_unmap(sc->sc_dmatag, (caddr_t)sc_if->sk_rdata,
1162 	    sizeof(struct msk_ring_data));
1163 	bus_dmamem_free(sc->sc_dmatag,
1164 	    &sc_if->sk_ring_seg, sc_if->sk_ring_nseg);
1165 	bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1166 	sc->sk_if[sc_if->sk_port] = NULL;
1167 
1168 	return (0);
1169 }
1170 
1171 int
msk_activate(struct device * self,int act)1172 msk_activate(struct device *self, int act)
1173 {
1174 	struct sk_if_softc *sc_if = (void *)self;
1175 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
1176 
1177 	switch (act) {
1178 	case DVACT_RESUME:
1179 		msk_reset(sc_if);
1180 		if (ifp->if_flags & IFF_RUNNING)
1181 			msk_init(sc_if);
1182 		break;
1183 	}
1184 	return (0);
1185 }
1186 
1187 int
mskcprint(void * aux,const char * pnp)1188 mskcprint(void *aux, const char *pnp)
1189 {
1190 	struct skc_attach_args *sa = aux;
1191 
1192 	if (pnp)
1193 		printf("msk port %c at %s",
1194 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1195 	else
1196 		printf(" port %c", (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1197 	return (UNCONF);
1198 }
1199 
1200 /*
1201  * Attach the interface. Allocate softc structures, do ifmedia
1202  * setup and ethernet/BPF attach.
1203  */
1204 void
mskc_attach(struct device * parent,struct device * self,void * aux)1205 mskc_attach(struct device *parent, struct device *self, void *aux)
1206 {
1207 	struct sk_softc *sc = (struct sk_softc *)self;
1208 	struct pci_attach_args *pa = aux;
1209 	struct skc_attach_args skca;
1210 	pci_chipset_tag_t pc = pa->pa_pc;
1211 	pcireg_t memtype;
1212 	pci_intr_handle_t ih;
1213 	const char *intrstr = NULL;
1214 	u_int8_t hw, pmd;
1215 	char *revstr = NULL;
1216 	caddr_t kva;
1217 
1218 	DPRINTFN(2, ("begin mskc_attach\n"));
1219 
1220 	pci_set_powerstate(pa->pa_pc, pa->pa_tag, PCI_PMCSR_STATE_D0);
1221 
1222 	/*
1223 	 * Map control/status registers.
1224 	 */
1225 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1226 	if (pci_mapreg_map(pa, SK_PCI_LOMEM, memtype, 0, &sc->sk_btag,
1227 	    &sc->sk_bhandle, NULL, &sc->sk_bsize, 0)) {
1228 		printf(": can't map mem space\n");
1229 		return;
1230 	}
1231 
1232 	sc->sc_dmatag = pa->pa_dmat;
1233 
1234 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1235 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1236 
1237 	/* bail out here if chip is not recognized */
1238 	if (!(SK_IS_YUKON2(sc))) {
1239 		printf(": unknown chip type: %d\n", sc->sk_type);
1240 		goto fail_1;
1241 	}
1242 	DPRINTFN(2, ("mskc_attach: allocate interrupt\n"));
1243 
1244 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_MARVELL) {
1245 		switch (PCI_PRODUCT(pa->pa_id)) {
1246 		case PCI_PRODUCT_MARVELL_YUKON_8036:
1247 		case PCI_PRODUCT_MARVELL_YUKON_8053:
1248 			pa->pa_flags &= ~PCI_FLAGS_MSI_ENABLED;
1249 		}
1250 	}
1251 
1252 	/* Allocate interrupt */
1253 	if (pci_intr_map_msi(pa, &ih) != 0 && pci_intr_map(pa, &ih) != 0) {
1254 		printf(": couldn't map interrupt\n");
1255 		goto fail_1;
1256 	}
1257 
1258 	intrstr = pci_intr_string(pc, ih);
1259 	sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, msk_intr, sc,
1260 	    self->dv_xname);
1261 	if (sc->sk_intrhand == NULL) {
1262 		printf(": couldn't establish interrupt");
1263 		if (intrstr != NULL)
1264 			printf(" at %s", intrstr);
1265 		printf("\n");
1266 		goto fail_1;
1267 	}
1268 	sc->sk_pc = pc;
1269 
1270 	if (bus_dmamem_alloc(sc->sc_dmatag,
1271 	    MSK_STATUS_RING_CNT * sizeof(uint64_t),
1272 	    MSK_STATUS_RING_CNT * sizeof(uint64_t),
1273 	    0, &sc->sk_status_seg, 1, &sc->sk_status_nseg,
1274 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO)) {
1275 		printf(": can't alloc status buffers\n");
1276 		goto fail_2;
1277 	}
1278 
1279 	if (bus_dmamem_map(sc->sc_dmatag,
1280 	    &sc->sk_status_seg, sc->sk_status_nseg,
1281 	    MSK_STATUS_RING_CNT * sizeof(uint64_t),
1282 	    &kva, BUS_DMA_NOWAIT)) {
1283 		printf(": can't map dma buffers (%zu bytes)\n",
1284 		    MSK_STATUS_RING_CNT * sizeof(uint64_t));
1285 		goto fail_3;
1286 	}
1287 	if (bus_dmamap_create(sc->sc_dmatag,
1288 	    MSK_STATUS_RING_CNT * sizeof(uint64_t), 1,
1289 	    MSK_STATUS_RING_CNT * sizeof(uint64_t), 0,
1290 	    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW | BUS_DMA_64BIT,
1291 	    &sc->sk_status_map)) {
1292 		printf(": can't create dma map\n");
1293 		goto fail_4;
1294 	}
1295 	if (bus_dmamap_load(sc->sc_dmatag, sc->sk_status_map, kva,
1296 	    MSK_STATUS_RING_CNT * sizeof(uint64_t),
1297 	    NULL, BUS_DMA_NOWAIT)) {
1298 		printf(": can't load dma map\n");
1299 		goto fail_5;
1300 	}
1301 	sc->sk_status_ring = (uint64_t *)kva;
1302 
1303 	/* Reset the adapter. */
1304 	mskc_reset(sc);
1305 
1306 	sc->sk_ramsize = sk_win_read_1(sc, SK_EPROM0) * 4096;
1307 	DPRINTFN(2, ("mskc_attach: ramsize=%dK\n", sc->sk_ramsize / 1024));
1308 
1309 	pmd = sk_win_read_1(sc, SK_PMDTYPE);
1310 	if (pmd == 'L' || pmd == 'S' || pmd == 'P')
1311 		sc->sk_fibertype = 1;
1312 
1313 	switch (sc->sk_type) {
1314 	case SK_YUKON_XL:
1315 		sc->sk_name = "Yukon-2 XL";
1316 		break;
1317 	case SK_YUKON_EC_U:
1318 		sc->sk_name = "Yukon-2 EC Ultra";
1319 		break;
1320 	case SK_YUKON_EX:
1321 		sc->sk_name = "Yukon-2 Extreme";
1322 		break;
1323 	case SK_YUKON_EC:
1324 		sc->sk_name = "Yukon-2 EC";
1325 		break;
1326 	case SK_YUKON_FE:
1327 		sc->sk_name = "Yukon-2 FE";
1328 		break;
1329 	case SK_YUKON_FE_P:
1330 		sc->sk_name = "Yukon-2 FE+";
1331 		break;
1332 	case SK_YUKON_SUPR:
1333 		sc->sk_name = "Yukon-2 Supreme";
1334 		break;
1335 	case SK_YUKON_ULTRA2:
1336 		sc->sk_name = "Yukon-2 Ultra 2";
1337 		break;
1338 	case SK_YUKON_OPTIMA:
1339 		sc->sk_name = "Yukon-2 Optima";
1340 		break;
1341 	case SK_YUKON_PRM:
1342 		sc->sk_name = "Yukon-2 Optima Prime";
1343 		break;
1344 	case SK_YUKON_OPTIMA2:
1345 		sc->sk_name = "Yukon-2 Optima 2";
1346 		break;
1347 	default:
1348 		sc->sk_name = "Yukon (Unknown)";
1349 	}
1350 
1351 	if (sc->sk_type == SK_YUKON_XL) {
1352 		switch (sc->sk_rev) {
1353 		case SK_YUKON_XL_REV_A0:
1354 			revstr = "A0";
1355 			break;
1356 		case SK_YUKON_XL_REV_A1:
1357 			revstr = "A1";
1358 			break;
1359 		case SK_YUKON_XL_REV_A2:
1360 			revstr = "A2";
1361 			break;
1362 		case SK_YUKON_XL_REV_A3:
1363 			revstr = "A3";
1364 			break;
1365 		default:
1366 			;
1367 		}
1368 	}
1369 
1370 	if (sc->sk_type == SK_YUKON_EC) {
1371 		switch (sc->sk_rev) {
1372 		case SK_YUKON_EC_REV_A1:
1373 			revstr = "A1";
1374 			break;
1375 		case SK_YUKON_EC_REV_A2:
1376 			revstr = "A2";
1377 			break;
1378 		case SK_YUKON_EC_REV_A3:
1379 			revstr = "A3";
1380 			break;
1381 		default:
1382 			;
1383 		}
1384 	}
1385 
1386 	if (sc->sk_type == SK_YUKON_EC_U) {
1387 		switch (sc->sk_rev) {
1388 		case SK_YUKON_EC_U_REV_A0:
1389 			revstr = "A0";
1390 			break;
1391 		case SK_YUKON_EC_U_REV_A1:
1392 			revstr = "A1";
1393 			break;
1394 		case SK_YUKON_EC_U_REV_B0:
1395 			revstr = "B0";
1396 			break;
1397 		case SK_YUKON_EC_U_REV_B1:
1398 			revstr = "B1";
1399 			break;
1400 		default:
1401 			;
1402 		}
1403 	}
1404 
1405 	if (sc->sk_type == SK_YUKON_FE) {
1406 		switch (sc->sk_rev) {
1407 		case SK_YUKON_FE_REV_A1:
1408 			revstr = "A1";
1409 			break;
1410 		case SK_YUKON_FE_REV_A2:
1411 			revstr = "A2";
1412 			break;
1413 		default:
1414 			;
1415 		}
1416 	}
1417 
1418 	if (sc->sk_type == SK_YUKON_FE_P && sc->sk_rev == SK_YUKON_FE_P_REV_A0)
1419 		revstr = "A0";
1420 
1421 	if (sc->sk_type == SK_YUKON_EX) {
1422 		switch (sc->sk_rev) {
1423 		case SK_YUKON_EX_REV_A0:
1424 			revstr = "A0";
1425 			break;
1426 		case SK_YUKON_EX_REV_B0:
1427 			revstr = "B0";
1428 			break;
1429 		default:
1430 			;
1431 		}
1432 	}
1433 
1434 	if (sc->sk_type == SK_YUKON_SUPR) {
1435 		switch (sc->sk_rev) {
1436 		case SK_YUKON_SUPR_REV_A0:
1437 			revstr = "A0";
1438 			break;
1439 		case SK_YUKON_SUPR_REV_B0:
1440 			revstr = "B0";
1441 			break;
1442 		case SK_YUKON_SUPR_REV_B1:
1443 			revstr = "B1";
1444 			break;
1445 		default:
1446 			;
1447 		}
1448 	}
1449 
1450 	if (sc->sk_type == SK_YUKON_PRM) {
1451 		switch (sc->sk_rev) {
1452 		case SK_YUKON_PRM_REV_Z1:
1453 			revstr = "Z1";
1454 			break;
1455 		case SK_YUKON_PRM_REV_A0:
1456 			revstr = "A0";
1457 			break;
1458 		default:
1459 			;
1460 		}
1461 	}
1462 
1463 	/* Announce the product name. */
1464 	printf(", %s", sc->sk_name);
1465 	if (revstr != NULL)
1466 		printf(" rev. %s", revstr);
1467 	printf(" (0x%x): %s\n", sc->sk_rev, intrstr);
1468 
1469 	sc->sk_macs = 1;
1470 
1471 	hw = sk_win_read_1(sc, SK_Y2_HWRES);
1472 	if ((hw & SK_Y2_HWRES_LINK_MASK) == SK_Y2_HWRES_LINK_DUAL) {
1473 		if ((sk_win_read_1(sc, SK_Y2_CLKGATE) &
1474 		    SK_Y2_CLKGATE_LINK2_INACTIVE) == 0)
1475 			sc->sk_macs++;
1476 	}
1477 
1478 	skca.skc_port = SK_PORT_A;
1479 	skca.skc_type = sc->sk_type;
1480 	skca.skc_rev = sc->sk_rev;
1481 	(void)config_found(&sc->sk_dev, &skca, mskcprint);
1482 
1483 	if (sc->sk_macs > 1) {
1484 		skca.skc_port = SK_PORT_B;
1485 		skca.skc_type = sc->sk_type;
1486 		skca.skc_rev = sc->sk_rev;
1487 		(void)config_found(&sc->sk_dev, &skca, mskcprint);
1488 	}
1489 
1490 	/* Turn on the 'driver is loaded' LED. */
1491 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1492 
1493 	return;
1494 
1495 fail_4:
1496 	bus_dmamem_unmap(sc->sc_dmatag, (caddr_t)sc->sk_status_ring,
1497 	    MSK_STATUS_RING_CNT * sizeof(uint64_t));
1498 fail_3:
1499 	bus_dmamem_free(sc->sc_dmatag,
1500 	    &sc->sk_status_seg, sc->sk_status_nseg);
1501 	sc->sk_status_nseg = 0;
1502 fail_5:
1503 	bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1504 fail_2:
1505 	pci_intr_disestablish(sc->sk_pc, sc->sk_intrhand);
1506 	sc->sk_intrhand = NULL;
1507 fail_1:
1508 	bus_space_unmap(sc->sk_btag, sc->sk_bhandle, sc->sk_bsize);
1509 	sc->sk_bsize = 0;
1510 }
1511 
1512 int
mskc_detach(struct device * self,int flags)1513 mskc_detach(struct device *self, int flags)
1514 {
1515 	struct sk_softc *sc = (struct sk_softc *)self;
1516 	int rv;
1517 
1518 	if (sc->sk_intrhand)
1519 		pci_intr_disestablish(sc->sk_pc, sc->sk_intrhand);
1520 
1521 	rv = config_detach_children(self, flags);
1522 	if (rv != 0)
1523 		return (rv);
1524 
1525 	if (sc->sk_status_nseg > 0) {
1526 		bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1527 		bus_dmamem_unmap(sc->sc_dmatag, (caddr_t)sc->sk_status_ring,
1528 		    MSK_STATUS_RING_CNT * sizeof(uint64_t));
1529 		bus_dmamem_free(sc->sc_dmatag,
1530 		    &sc->sk_status_seg, sc->sk_status_nseg);
1531 	}
1532 
1533 	if (sc->sk_bsize > 0)
1534 		bus_space_unmap(sc->sk_btag, sc->sk_bhandle, sc->sk_bsize);
1535 
1536 	return(0);
1537 }
1538 
1539 int
mskc_activate(struct device * self,int act)1540 mskc_activate(struct device *self, int act)
1541 {
1542 	struct sk_softc *sc = (void *)self;
1543 	int rv = 0;
1544 
1545 	switch (act) {
1546 	case DVACT_RESUME:
1547 		mskc_reset(sc);
1548 		rv = config_activate_children(self, act);
1549 		break;
1550 	default:
1551 		rv = config_activate_children(self, act);
1552 		break;
1553 	}
1554 	return (rv);
1555 }
1556 
1557 static unsigned int
msk_encap(struct sk_if_softc * sc_if,struct mbuf * m,uint32_t prod)1558 msk_encap(struct sk_if_softc *sc_if, struct mbuf *m, uint32_t prod)
1559 {
1560 	struct sk_softc		*sc = sc_if->sk_softc;
1561 	struct msk_ring_data	*rd = sc_if->sk_rdata;
1562 	struct msk_tx_desc	*t;
1563 	bus_dmamap_t		map;
1564 	uint64_t		addr;
1565 	uint32_t		hiaddr;
1566 	uint32_t		next, last;
1567 	uint8_t			opcode;
1568 	unsigned int		entries = 0;
1569 	int			i;
1570 
1571 	map = sc_if->sk_cdata.sk_tx_maps[prod];
1572 
1573 	switch (bus_dmamap_load_mbuf(sc->sc_dmatag, map, m,
1574 	    BUS_DMA_STREAMING | BUS_DMA_NOWAIT)) {
1575 	case 0:
1576 		break;
1577 	case EFBIG: /* mbuf chain is too fragmented */
1578 		if (m_defrag(m, M_DONTWAIT) == 0 &&
1579 		    bus_dmamap_load_mbuf(sc->sc_dmatag, map, m,
1580 		    BUS_DMA_STREAMING | BUS_DMA_NOWAIT) == 0)
1581 			break;
1582 		/* FALLTHROUGH */
1583 	default:
1584 		return (0);
1585 	}
1586 
1587 	bus_dmamap_sync(sc->sc_dmatag, map, 0, map->dm_mapsize,
1588 	    BUS_DMASYNC_PREWRITE);
1589 
1590 	opcode = SK_Y2_TXOPC_OWN | SK_Y2_TXOPC_PACKET;
1591 	next = prod;
1592 	for (i = 0; i < map->dm_nsegs; i++) {
1593 		/* high 32 bits of address */
1594 		addr = map->dm_segs[i].ds_addr;
1595 		hiaddr = addr >> 32;
1596 		if (sc_if->sk_cdata.sk_tx_hiaddr != hiaddr) {
1597 			t = &rd->sk_tx_ring[next];
1598 			htolem32(&t->sk_addr, hiaddr);
1599 			t->sk_opcode = SK_Y2_TXOPC_OWN | SK_Y2_TXOPC_ADDR64;
1600 
1601 			sc_if->sk_cdata.sk_tx_hiaddr = hiaddr;
1602 
1603 			SK_INC(next, MSK_TX_RING_CNT);
1604 			entries++;
1605 		}
1606 
1607 		/* low 32 bits of address + length */
1608 		t = &rd->sk_tx_ring[next];
1609 		htolem32(&t->sk_addr, addr);
1610 		htolem16(&t->sk_len, map->dm_segs[i].ds_len);
1611 		t->sk_ctl = 0;
1612 		t->sk_opcode = opcode;
1613 
1614 		last = next;
1615 		SK_INC(next, MSK_TX_RING_CNT);
1616 		entries++;
1617 
1618 		opcode = SK_Y2_TXOPC_OWN | SK_Y2_TXOPC_BUFFER;
1619 	}
1620 	t->sk_ctl = SK_Y2_TXCTL_LASTFRAG;
1621 
1622 	sc_if->sk_cdata.sk_tx_maps[prod] = sc_if->sk_cdata.sk_tx_maps[last];
1623 	sc_if->sk_cdata.sk_tx_maps[last] = map;
1624 	sc_if->sk_cdata.sk_tx_mbuf[last] = m;
1625 
1626 	return (entries);
1627 }
1628 
1629 void
msk_start(struct ifnet * ifp)1630 msk_start(struct ifnet *ifp)
1631 {
1632 	struct sk_if_softc	*sc_if = ifp->if_softc;
1633 	struct mbuf		*m = NULL;
1634 	uint32_t		prod, free, used;
1635 	int			post = 0;
1636 
1637 	prod = sc_if->sk_cdata.sk_tx_prod;
1638 	free = sc_if->sk_cdata.sk_tx_cons;
1639 	if (free <= prod)
1640 		free += MSK_TX_RING_CNT;
1641 	free -= prod;
1642 
1643 	MSK_CDTXSYNC(sc_if, 0, MSK_TX_RING_CNT, BUS_DMASYNC_POSTWRITE);
1644 
1645 	for (;;) {
1646 		if (free <= SK_NTXSEG * 2) {
1647 			ifq_set_oactive(&ifp->if_snd);
1648 			break;
1649 		}
1650 
1651 		m = ifq_dequeue(&ifp->if_snd);
1652 		if (m == NULL)
1653 			break;
1654 
1655 		used = msk_encap(sc_if, m, prod);
1656 		if (used == 0) {
1657 			m_freem(m);
1658 			continue;
1659 		}
1660 
1661 		free -= used;
1662 		prod += used;
1663 		prod &= MSK_TX_RING_CNT - 1;
1664 
1665 #if NBPFILTER > 0
1666 		if (ifp->if_bpf)
1667 			bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT);
1668 #endif
1669 		post = 1;
1670 	}
1671 
1672 	MSK_CDTXSYNC(sc_if, 0, MSK_TX_RING_CNT, BUS_DMASYNC_PREWRITE);
1673 
1674 	if (post == 0)
1675 		return;
1676 
1677 	/* Transmit */
1678 	sc_if->sk_cdata.sk_tx_prod = prod;
1679 	SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_PUTIDX, prod);
1680 
1681 	/* Set a timeout in case the chip goes out to lunch. */
1682 	ifp->if_timer = MSK_TX_TIMEOUT;
1683 }
1684 
1685 void
msk_watchdog(struct ifnet * ifp)1686 msk_watchdog(struct ifnet *ifp)
1687 {
1688 	struct sk_if_softc *sc_if = ifp->if_softc;
1689 
1690 	if (sc_if->sk_cdata.sk_tx_prod != sc_if->sk_cdata.sk_tx_cons) {
1691 		printf("%s: watchdog timeout\n", sc_if->sk_dev.dv_xname);
1692 
1693 		ifp->if_oerrors++;
1694 
1695 		/* XXX Resets both ports; we shouldn't do that. */
1696 		mskc_reset(sc_if->sk_softc);
1697 		msk_reset(sc_if);
1698 		msk_init(sc_if);
1699 	}
1700 }
1701 
1702 static inline int
msk_rxvalid(struct sk_softc * sc,u_int32_t stat,u_int32_t len)1703 msk_rxvalid(struct sk_softc *sc, u_int32_t stat, u_int32_t len)
1704 {
1705 	if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
1706 	    YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
1707 	    YU_RXSTAT_JABBER)) != 0 ||
1708 	    (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
1709 	    YU_RXSTAT_BYTES(stat) != len)
1710 		return (0);
1711 
1712 	return (1);
1713 }
1714 
1715 void
msk_rxeof(struct sk_if_softc * sc_if,struct mbuf_list * ml,uint16_t len,uint32_t rxstat)1716 msk_rxeof(struct sk_if_softc *sc_if, struct mbuf_list *ml,
1717     uint16_t len, uint32_t rxstat)
1718 {
1719 	struct sk_softc		*sc = sc_if->sk_softc;
1720 	struct ifnet		*ifp = &sc_if->arpcom.ac_if;
1721 	struct mbuf		*m = NULL;
1722 	int			prod, cons, tail;
1723 	bus_dmamap_t		map;
1724 
1725 	prod = sc_if->sk_cdata.sk_rx_prod;
1726 	cons = sc_if->sk_cdata.sk_rx_cons;
1727 
1728 	while (cons != prod) {
1729 		tail = cons;
1730 	  	SK_INC(cons, MSK_RX_RING_CNT);
1731 
1732 		m = sc_if->sk_cdata.sk_rx_mbuf[tail];
1733 		if (m != NULL) {
1734 			/* found it */
1735 			break;
1736 		}
1737 	}
1738 	sc_if->sk_cdata.sk_rx_cons = cons;
1739 
1740 	if (m == NULL) {
1741 		/* maybe if ADDR64 is consumed? */
1742 		return;
1743 	}
1744 
1745 	sc_if->sk_cdata.sk_rx_mbuf[tail] = NULL;
1746 
1747 	map = sc_if->sk_cdata.sk_rx_maps[tail];
1748 	if_rxr_put(&sc_if->sk_cdata.sk_rx_ring, 1);
1749 
1750 	bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, map, 0, map->dm_mapsize,
1751 	    BUS_DMASYNC_POSTREAD);
1752 	bus_dmamap_unload(sc_if->sk_softc->sc_dmatag, map);
1753 
1754 	if (len < SK_MIN_FRAMELEN || len > SK_JUMBO_FRAMELEN ||
1755 	    msk_rxvalid(sc, rxstat, len) == 0) {
1756 		ifp->if_ierrors++;
1757 		m_freem(m);
1758 		return;
1759 	}
1760 
1761 	m->m_pkthdr.len = m->m_len = len;
1762 
1763 	ml_enqueue(ml, m);
1764 }
1765 
1766 void
msk_txeof(struct sk_if_softc * sc_if,unsigned int prod)1767 msk_txeof(struct sk_if_softc *sc_if, unsigned int prod)
1768 {
1769 	struct ifnet		*ifp = &sc_if->arpcom.ac_if;
1770 	struct sk_softc		*sc = sc_if->sk_softc;
1771 	uint32_t		cons;
1772 	struct mbuf		*m;
1773 	bus_dmamap_t		map;
1774 
1775 	/*
1776 	 * Go through our tx ring and free mbufs for those
1777 	 * frames that have been sent.
1778 	 */
1779 	cons = sc_if->sk_cdata.sk_tx_cons;
1780 
1781 	if (cons == prod)
1782 		return;
1783 
1784 	while (cons != prod) {
1785 		m = sc_if->sk_cdata.sk_tx_mbuf[cons];
1786 		if (m != NULL) {
1787 			sc_if->sk_cdata.sk_tx_mbuf[cons] = NULL;
1788 
1789 			map = sc_if->sk_cdata.sk_tx_maps[cons];
1790 			bus_dmamap_sync(sc->sc_dmatag, map, 0,
1791 			    map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1792 			bus_dmamap_unload(sc->sc_dmatag, map);
1793 
1794 			m_freem(m);
1795 		}
1796 
1797 		SK_INC(cons, MSK_TX_RING_CNT);
1798 	}
1799 	if (cons == sc_if->sk_cdata.sk_tx_prod)
1800 		ifp->if_timer = 0;
1801 
1802 	sc_if->sk_cdata.sk_tx_cons = cons;
1803 
1804 	if (ifq_is_oactive(&ifp->if_snd))
1805 		ifq_restart(&ifp->if_snd);
1806 }
1807 
1808 void
msk_fill_rx_ring(struct sk_if_softc * sc_if)1809 msk_fill_rx_ring(struct sk_if_softc *sc_if)
1810 {
1811 	u_int slots, used;
1812 
1813 	slots = if_rxr_get(&sc_if->sk_cdata.sk_rx_ring, MSK_RX_RING_CNT/2);
1814 
1815 	MSK_CDRXSYNC(sc_if, 0, BUS_DMASYNC_POSTWRITE); /* XXX */
1816 	while (slots > 0) {
1817 		used = msk_newbuf(sc_if);
1818 		if (used == 0)
1819 			break;
1820 
1821 		slots -= used;
1822 	}
1823 	MSK_CDRXSYNC(sc_if, 0, BUS_DMASYNC_PREWRITE); /* XXX */
1824 
1825 	if_rxr_put(&sc_if->sk_cdata.sk_rx_ring, slots);
1826 	if (if_rxr_inuse(&sc_if->sk_cdata.sk_rx_ring) == 0)
1827 		timeout_add(&sc_if->sk_tick_rx, 1);
1828 }
1829 
1830 void
msk_fill_rx_tick(void * xsc_if)1831 msk_fill_rx_tick(void *xsc_if)
1832 {
1833 	struct sk_if_softc *sc_if = xsc_if;
1834 	int s;
1835 
1836 	s = splnet();
1837 	if (if_rxr_inuse(&sc_if->sk_cdata.sk_rx_ring) == 0) {
1838 		msk_fill_rx_ring(sc_if);
1839 		SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
1840 		    sc_if->sk_cdata.sk_rx_prod);
1841 	}
1842 	splx(s);
1843 }
1844 
1845 void
msk_tick(void * xsc_if)1846 msk_tick(void *xsc_if)
1847 {
1848 	struct sk_if_softc *sc_if = xsc_if;
1849 	struct mii_data *mii = &sc_if->sk_mii;
1850 	int s;
1851 
1852 	s = splnet();
1853 	mii_tick(mii);
1854 	splx(s);
1855 	timeout_add_sec(&sc_if->sk_tick_ch, 1);
1856 }
1857 
1858 void
msk_intr_yukon(struct sk_if_softc * sc_if)1859 msk_intr_yukon(struct sk_if_softc *sc_if)
1860 {
1861 	u_int8_t status;
1862 
1863 	status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
1864 	/* RX overrun */
1865 	if ((status & SK_GMAC_INT_RX_OVER) != 0) {
1866 		SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
1867 		    SK_RFCTL_RX_FIFO_OVER);
1868 	}
1869 	/* TX underrun */
1870 	if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
1871 		SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST,
1872 		    SK_TFCTL_TX_FIFO_UNDER);
1873 	}
1874 
1875 	DPRINTFN(2, ("msk_intr_yukon status=%#x\n", status));
1876 }
1877 
1878 int
msk_intr(void * xsc)1879 msk_intr(void *xsc)
1880 {
1881 	struct sk_softc		*sc = xsc;
1882 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
1883 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
1884 	struct mbuf_list	ml[2] = {
1885 					MBUF_LIST_INITIALIZER(),
1886 					MBUF_LIST_INITIALIZER(),
1887 				};
1888 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
1889 	int			claimed = 0;
1890 	u_int32_t		status;
1891 	uint64_t		*ring = sc->sk_status_ring;
1892 	uint64_t		desc;
1893 
1894 	status = CSR_READ_4(sc, SK_Y2_ISSR2);
1895 	if (status == 0xffffffff)
1896 		return (0);
1897 	if (status == 0) {
1898 		CSR_WRITE_4(sc, SK_Y2_ICR, 2);
1899 		return (0);
1900 	}
1901 
1902 	status = CSR_READ_4(sc, SK_ISR);
1903 
1904 	if (sc_if0 != NULL)
1905 		ifp0 = &sc_if0->arpcom.ac_if;
1906 	if (sc_if1 != NULL)
1907 		ifp1 = &sc_if1->arpcom.ac_if;
1908 
1909 	if (sc_if0 && (status & SK_Y2_IMR_MAC1) &&
1910 	    (ifp0->if_flags & IFF_RUNNING)) {
1911 		msk_intr_yukon(sc_if0);
1912 	}
1913 
1914 	if (sc_if1 && (status & SK_Y2_IMR_MAC2) &&
1915 	    (ifp1->if_flags & IFF_RUNNING)) {
1916 		msk_intr_yukon(sc_if1);
1917 	}
1918 
1919 	MSK_CDSTSYNC(sc, sc->sk_status_idx,
1920 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1921 
1922 	while (MSK_STATUS_OWN(desc = lemtoh64(&ring[sc->sk_status_idx]))) {
1923 		unsigned int opcode, port;
1924 
1925 		ring[sc->sk_status_idx] = htole64(0); /* clear ownership */
1926 
1927 		opcode = MSK_STATUS_OPCODE(desc);
1928 		switch (opcode) {
1929 		case MSK_STATUS_OPCODE_RXSTAT:
1930 			port = MSK_STATUS_RXSTAT_PORT(desc);
1931 			msk_rxeof(sc->sk_if[port], &ml[port],
1932 			    MSK_STATUS_RXSTAT_LEN(desc),
1933 			    MSK_STATUS_RXSTAT_STATUS(desc));
1934 			break;
1935 		case SK_Y2_STOPC_TXSTAT:
1936 			if (sc_if0) {
1937 				msk_txeof(sc_if0,
1938 				    MSK_STATUS_TXIDX_PORTA(desc));
1939 			}
1940 			if (sc_if1) {
1941 				msk_txeof(sc_if1,
1942 				    MSK_STATUS_TXIDX_PORTB(desc));
1943 			}
1944 			break;
1945 		default:
1946 			printf("opcode=0x%x\n", opcode);
1947 			break;
1948 		}
1949 
1950 		SK_INC(sc->sk_status_idx, MSK_STATUS_RING_CNT);
1951 	}
1952 
1953 	MSK_CDSTSYNC(sc, sc->sk_status_idx,
1954 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1955 
1956 	if (status & SK_Y2_IMR_BMU) {
1957 		CSR_WRITE_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_IRQ_CLEAR);
1958 		claimed = 1;
1959 	}
1960 
1961 	CSR_WRITE_4(sc, SK_Y2_ICR, 2);
1962 
1963 	if (!ml_empty(&ml[0])) {
1964 		if (ifiq_input(&ifp0->if_rcv, &ml[0]))
1965 			if_rxr_livelocked(&sc_if0->sk_cdata.sk_rx_ring);
1966 		msk_fill_rx_ring(sc_if0);
1967 		SK_IF_WRITE_2(sc_if0, 0, SK_RXQ1_Y2_PREF_PUTIDX,
1968 		    sc_if0->sk_cdata.sk_rx_prod);
1969 	}
1970 	if (!ml_empty(&ml[1])) {
1971 		if (ifiq_input(&ifp1->if_rcv, &ml[1]))
1972 			if_rxr_livelocked(&sc_if1->sk_cdata.sk_rx_ring);
1973 		msk_fill_rx_ring(sc_if1);
1974 		SK_IF_WRITE_2(sc_if1, 0, SK_RXQ1_Y2_PREF_PUTIDX,
1975 		    sc_if1->sk_cdata.sk_rx_prod);
1976 	}
1977 
1978 	return (claimed);
1979 }
1980 
1981 void
msk_init_yukon(struct sk_if_softc * sc_if)1982 msk_init_yukon(struct sk_if_softc *sc_if)
1983 {
1984 	u_int32_t		v;
1985 	u_int16_t		reg;
1986 	struct sk_softc		*sc;
1987 	int			i;
1988 
1989 	sc = sc_if->sk_softc;
1990 
1991 	DPRINTFN(2, ("msk_init_yukon: start: sk_csr=%#x\n",
1992 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
1993 
1994 	DPRINTFN(6, ("msk_init_yukon: 1\n"));
1995 
1996 	DPRINTFN(3, ("msk_init_yukon: gmac_ctrl=%#x\n",
1997 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
1998 
1999 	DPRINTFN(6, ("msk_init_yukon: 3\n"));
2000 
2001 	/* unused read of the interrupt source register */
2002 	DPRINTFN(6, ("msk_init_yukon: 4\n"));
2003 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2004 
2005 	DPRINTFN(6, ("msk_init_yukon: 4a\n"));
2006 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2007 	DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2008 
2009 	/* MIB Counter Clear Mode set */
2010         reg |= YU_PAR_MIB_CLR;
2011 	DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2012 	DPRINTFN(6, ("msk_init_yukon: 4b\n"));
2013 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2014 
2015 	/* MIB Counter Clear Mode clear */
2016 	DPRINTFN(6, ("msk_init_yukon: 5\n"));
2017         reg &= ~YU_PAR_MIB_CLR;
2018 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2019 
2020 	/* receive control reg */
2021 	DPRINTFN(6, ("msk_init_yukon: 7\n"));
2022 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
2023 
2024 	/* transmit parameter register */
2025 	DPRINTFN(6, ("msk_init_yukon: 8\n"));
2026 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2027 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2028 
2029 	/* serial mode register */
2030 	DPRINTFN(6, ("msk_init_yukon: 9\n"));
2031 	reg = YU_SMR_DATA_BLIND(0x1c) |
2032 	      YU_SMR_MFL_VLAN |
2033 	      YU_SMR_IPG_DATA(0x1e);
2034 
2035 	if (sc->sk_type != SK_YUKON_FE &&
2036 	    sc->sk_type != SK_YUKON_FE_P)
2037 		reg |= YU_SMR_MFL_JUMBO;
2038 
2039 	SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
2040 
2041 	DPRINTFN(6, ("msk_init_yukon: 10\n"));
2042 	/* Setup Yukon's address */
2043 	for (i = 0; i < 3; i++) {
2044 		/* Write Source Address 1 (unicast filter) */
2045 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2046 			      sc_if->arpcom.ac_enaddr[i * 2] |
2047 			      sc_if->arpcom.ac_enaddr[i * 2 + 1] << 8);
2048 	}
2049 
2050 	for (i = 0; i < 3; i++) {
2051 		reg = sk_win_read_2(sc_if->sk_softc,
2052 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2053 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2054 	}
2055 
2056 	/* Program promiscuous mode and multicast filters */
2057 	DPRINTFN(6, ("msk_init_yukon: 11\n"));
2058 	msk_iff(sc_if);
2059 
2060 	/* enable interrupt mask for counter overflows */
2061 	DPRINTFN(6, ("msk_init_yukon: 12\n"));
2062 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2063 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2064 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2065 
2066 	/* Configure RX MAC FIFO Flush Mask */
2067 	v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
2068 	    YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
2069 	    YU_RXSTAT_JABBER;
2070 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
2071 
2072 	/* Configure RX MAC FIFO */
2073 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2074 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON |
2075 	    SK_RFCTL_FIFO_FLUSH_ON);
2076 
2077 	/* Increase flush threshold to 64 bytes */
2078 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
2079 	    SK_RFCTL_FIFO_THRESHOLD + 1);
2080 
2081 	/* Configure TX MAC FIFO */
2082 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2083 	SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2084 
2085 #if 1
2086 	SK_YU_WRITE_2(sc_if, YUKON_GPCR, YU_GPCR_TXEN | YU_GPCR_RXEN);
2087 #endif
2088 	DPRINTFN(6, ("msk_init_yukon: end\n"));
2089 }
2090 
2091 /*
2092  * Note that to properly initialize any part of the GEnesis chip,
2093  * you first have to take it out of reset mode.
2094  */
2095 void
msk_init(void * xsc_if)2096 msk_init(void *xsc_if)
2097 {
2098 	struct sk_if_softc	*sc_if = xsc_if;
2099 	struct sk_softc		*sc = sc_if->sk_softc;
2100 	struct ifnet		*ifp = &sc_if->arpcom.ac_if;
2101 	struct mii_data		*mii = &sc_if->sk_mii;
2102 	int			s;
2103 
2104 	DPRINTFN(2, ("msk_init\n"));
2105 
2106 	s = splnet();
2107 
2108 	/* Cancel pending I/O and free all RX/TX buffers. */
2109 	msk_stop(sc_if, 0);
2110 
2111 	/* Configure I2C registers */
2112 
2113 	/* Configure XMAC(s) */
2114 	msk_init_yukon(sc_if);
2115 	mii_mediachg(mii);
2116 
2117 	/* Configure transmit arbiter(s) */
2118 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_ON);
2119 #if 0
2120 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2121 #endif
2122 
2123 	/* Configure RAMbuffers */
2124 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2125 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2126 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2127 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2128 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2129 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2130 
2131 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_UNRESET);
2132 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_STORENFWD_ON);
2133 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_START, sc_if->sk_tx_ramstart);
2134 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_WR_PTR, sc_if->sk_tx_ramstart);
2135 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_RD_PTR, sc_if->sk_tx_ramstart);
2136 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_END, sc_if->sk_tx_ramend);
2137 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_ON);
2138 
2139 	/* Configure BMUs */
2140 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000016);
2141 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000d28);
2142 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000080);
2143 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_WATERMARK, 0x00000600);
2144 
2145 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000016);
2146 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000d28);
2147 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000080);
2148 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_WATERMARK, 0x00000600);
2149 
2150 	/* Make sure the sync transmit queue is disabled. */
2151 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET);
2152 
2153 	/* Init descriptors */
2154 	if (msk_init_rx_ring(sc_if) == ENOBUFS) {
2155 		printf("%s: initialization failed: no "
2156 		    "memory for rx buffers\n", sc_if->sk_dev.dv_xname);
2157 		msk_stop(sc_if, 0);
2158 		splx(s);
2159 		return;
2160 	}
2161 
2162 	if (msk_init_tx_ring(sc_if) == ENOBUFS) {
2163 		printf("%s: initialization failed: no "
2164 		    "memory for tx buffers\n", sc_if->sk_dev.dv_xname);
2165 		msk_stop(sc_if, 0);
2166 		splx(s);
2167 		return;
2168 	}
2169 
2170 	/* Initialize prefetch engine. */
2171 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2172 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000002);
2173 	SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_LIDX, MSK_RX_RING_CNT - 1);
2174 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRLO,
2175 	    MSK_RX_RING_ADDR(sc_if, 0));
2176 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRHI,
2177 	    (u_int64_t)MSK_RX_RING_ADDR(sc_if, 0) >> 32);
2178 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000008);
2179 	SK_IF_READ_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR);
2180 
2181 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2182 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000002);
2183 	SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_LIDX, MSK_TX_RING_CNT - 1);
2184 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRLO,
2185 	    MSK_TX_RING_ADDR(sc_if, 0));
2186 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRHI,
2187 	    (u_int64_t)MSK_TX_RING_ADDR(sc_if, 0) >> 32);
2188 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000008);
2189 	SK_IF_READ_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR);
2190 
2191 	SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2192 	    sc_if->sk_cdata.sk_rx_prod);
2193 
2194 	/*
2195 	 * tell the chip the tx ring is empty for now. the first
2196 	 * msk_start will end up posting the ADDR64 tx descriptor
2197 	 * that resets the high address.
2198 	 */
2199 	SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_PUTIDX, 0);
2200 
2201 	/* Configure interrupt handling */
2202 	if (sc_if->sk_port == SK_PORT_A)
2203 		sc->sk_intrmask |= SK_Y2_INTRS1;
2204 	else
2205 		sc->sk_intrmask |= SK_Y2_INTRS2;
2206 	sc->sk_intrmask |= SK_Y2_IMR_BMU;
2207 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2208 
2209 	ifp->if_flags |= IFF_RUNNING;
2210 	ifq_clr_oactive(&ifp->if_snd);
2211 
2212 	timeout_add_sec(&sc_if->sk_tick_ch, 1);
2213 
2214 	splx(s);
2215 }
2216 
2217 void
msk_stop(struct sk_if_softc * sc_if,int softonly)2218 msk_stop(struct sk_if_softc *sc_if, int softonly)
2219 {
2220 	struct sk_softc		*sc = sc_if->sk_softc;
2221 	struct ifnet		*ifp = &sc_if->arpcom.ac_if;
2222 	struct mbuf		*m;
2223 	bus_dmamap_t		map;
2224 	int			i;
2225 
2226 	DPRINTFN(2, ("msk_stop\n"));
2227 
2228 	timeout_del(&sc_if->sk_tick_ch);
2229 	timeout_del(&sc_if->sk_tick_rx);
2230 
2231 	ifp->if_flags &= ~IFF_RUNNING;
2232 	ifq_clr_oactive(&ifp->if_snd);
2233 
2234 	/* Stop transfer of Tx descriptors */
2235 
2236 	/* Stop transfer of Rx descriptors */
2237 
2238 	if (!softonly) {
2239 		/* Turn off various components of this interface. */
2240 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2241 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2242 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2243 		SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2244 		SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, SK_TXBMU_OFFLINE);
2245 		SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2246 		SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2247 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2248 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_STOP);
2249 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2250 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2251 
2252 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2253 		SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2254 
2255 		/* Disable interrupts */
2256 		if (sc_if->sk_port == SK_PORT_A)
2257 			sc->sk_intrmask &= ~SK_Y2_INTRS1;
2258 		else
2259 			sc->sk_intrmask &= ~SK_Y2_INTRS2;
2260 		CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2261 	}
2262 
2263 	/* Free RX and TX mbufs still in the queues. */
2264 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
2265 		m = sc_if->sk_cdata.sk_rx_mbuf[i];
2266 		if (m == NULL)
2267 			continue;
2268 
2269 		map = sc_if->sk_cdata.sk_rx_maps[i];
2270 		bus_dmamap_sync(sc->sc_dmatag, map, 0, map->dm_mapsize,
2271 		    BUS_DMASYNC_POSTREAD);
2272 		bus_dmamap_unload(sc->sc_dmatag, map);
2273 
2274 		m_freem(m);
2275 
2276 		sc_if->sk_cdata.sk_rx_mbuf[i] = NULL;
2277 	}
2278 
2279 	sc_if->sk_cdata.sk_rx_prod = 0;
2280 	sc_if->sk_cdata.sk_rx_cons = 0;
2281 
2282 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
2283 		m = sc_if->sk_cdata.sk_tx_mbuf[i];
2284 		if (m == NULL)
2285 			continue;
2286 
2287 		map = sc_if->sk_cdata.sk_tx_maps[i];
2288 		bus_dmamap_sync(sc->sc_dmatag, map, 0, map->dm_mapsize,
2289 		    BUS_DMASYNC_POSTREAD);
2290 		bus_dmamap_unload(sc->sc_dmatag, map);
2291 
2292 		m_freem(m);
2293 
2294 		sc_if->sk_cdata.sk_tx_mbuf[i] = NULL;
2295 	}
2296 }
2297 
2298 const struct cfattach mskc_ca = {
2299 	sizeof(struct sk_softc), mskc_probe, mskc_attach, mskc_detach,
2300 	mskc_activate
2301 };
2302 
2303 struct cfdriver mskc_cd = {
2304 	NULL, "mskc", DV_DULL
2305 };
2306 
2307 const struct cfattach msk_ca = {
2308 	sizeof(struct sk_if_softc), msk_probe, msk_attach, msk_detach,
2309 	msk_activate
2310 };
2311 
2312 struct cfdriver msk_cd = {
2313 	NULL, "msk", DV_IFNET
2314 };
2315 
2316 #if NKSTAT > 0
2317 static uint32_t
msk_mib_read32(struct sk_if_softc * sc_if,uint32_t r)2318 msk_mib_read32(struct sk_if_softc *sc_if, uint32_t r)
2319 {
2320 	uint16_t hi, lo, xx;
2321 
2322 	hi = SK_YU_READ_2(sc_if, r + 4);
2323 	for (;;) {
2324 		/* XXX barriers? */
2325 		lo = SK_YU_READ_2(sc_if, r);
2326 		xx = SK_YU_READ_2(sc_if, r + 4);
2327 
2328 		if (hi == xx)
2329 			break;
2330 
2331 		hi = xx;
2332 	}
2333 
2334 	return (((uint32_t)hi << 16) | (uint32_t) lo);
2335 }
2336 
2337 static uint64_t
msk_mib_read64(struct sk_if_softc * sc_if,uint32_t r)2338 msk_mib_read64(struct sk_if_softc *sc_if, uint32_t r)
2339 {
2340 	uint32_t hi, lo, xx;
2341 
2342 	hi = msk_mib_read32(sc_if, r + 8);
2343 	for (;;) {
2344 		lo = msk_mib_read32(sc_if, r);
2345 		xx = msk_mib_read32(sc_if, r + 8);
2346 
2347 		if (hi == xx)
2348 			break;
2349 
2350 		hi = xx;
2351 	}
2352 
2353 	return (((uint64_t)hi << 32) | (uint64_t)lo);
2354 }
2355 
2356 void
msk_kstat_attach(struct sk_if_softc * sc_if)2357 msk_kstat_attach(struct sk_if_softc *sc_if)
2358 {
2359 	struct kstat *ks;
2360 	struct kstat_kv *kvs;
2361 	struct msk_kstat *mks;
2362 	size_t i;
2363 
2364 	ks = kstat_create(sc_if->sk_dev.dv_xname, 0, "msk-mib", 0,
2365 	    KSTAT_T_KV, 0);
2366 	if (ks == NULL) {
2367 		/* oh well */
2368 		return;
2369 	}
2370 
2371 	mks = malloc(sizeof(*mks), M_DEVBUF, M_WAITOK);
2372 	rw_init(&mks->lock, "mskstat");
2373 	mks->ks = ks;
2374 
2375 	kvs = mallocarray(nitems(msk_mib), sizeof(*kvs),
2376 	    M_DEVBUF, M_WAITOK|M_ZERO);
2377 	for (i = 0; i < nitems(msk_mib); i++) {
2378 		const struct msk_mib *m = &msk_mib[i];
2379 		kstat_kv_unit_init(&kvs[i], m->name, m->type, m->unit);
2380 	}
2381 
2382 	ks->ks_softc = sc_if;
2383 	ks->ks_data = kvs;
2384 	ks->ks_datalen = nitems(msk_mib) * sizeof(*kvs);
2385 	ks->ks_read = msk_kstat_read;
2386 	kstat_set_wlock(ks, &mks->lock);
2387 
2388 	kstat_install(ks);
2389 
2390 	sc_if->sk_kstat = mks;
2391 }
2392 
2393 void
msk_kstat_detach(struct sk_if_softc * sc_if)2394 msk_kstat_detach(struct sk_if_softc *sc_if)
2395 {
2396 	struct msk_kstat *mks = sc_if->sk_kstat;
2397 	struct kstat_kv *kvs;
2398 	size_t kvslen;
2399 
2400 	if (mks == NULL)
2401 		return;
2402 
2403 	sc_if->sk_kstat = NULL;
2404 
2405 	kvs = mks->ks->ks_data;
2406 	kvslen = mks->ks->ks_datalen;
2407 
2408 	kstat_destroy(mks->ks);
2409 	free(kvs, M_DEVBUF, kvslen);
2410 	free(mks, M_DEVBUF, sizeof(*mks));
2411 }
2412 
2413 int
msk_kstat_read(struct kstat * ks)2414 msk_kstat_read(struct kstat *ks)
2415 {
2416 	struct sk_if_softc *sc_if = ks->ks_softc;
2417 	struct kstat_kv *kvs = ks->ks_data;
2418 	size_t i;
2419 
2420 	nanouptime(&ks->ks_updated);
2421 
2422 	for (i = 0; i < nitems(msk_mib); i++) {
2423 		const struct msk_mib *m = &msk_mib[i];
2424 
2425 		switch (m->type) {
2426 		case KSTAT_KV_T_COUNTER32:
2427 			kstat_kv_u32(&kvs[i]) = msk_mib_read32(sc_if, m->reg);
2428 			break;
2429 		case KSTAT_KV_T_COUNTER64:
2430 			kstat_kv_u64(&kvs[i]) = msk_mib_read64(sc_if, m->reg);
2431 			break;
2432 		default:
2433 			panic("unexpected msk_mib type");
2434 			/* NOTREACHED */
2435 		}
2436 	}
2437 
2438 	return (0);
2439 }
2440 #endif /* NKSTAT */
2441 
2442 #ifdef MSK_DEBUG
2443 void
msk_dump_txdesc(struct msk_tx_desc * le,int idx)2444 msk_dump_txdesc(struct msk_tx_desc *le, int idx)
2445 {
2446 #define DESC_PRINT(X)					\
2447 	if (X)					\
2448 		printf("txdesc[%d]." #X "=%#x\n",	\
2449 		       idx, X);
2450 
2451 	DESC_PRINT(letoh32(le->sk_addr));
2452 	DESC_PRINT(letoh16(le->sk_len));
2453 	DESC_PRINT(le->sk_ctl);
2454 	DESC_PRINT(le->sk_opcode);
2455 #undef DESC_PRINT
2456 }
2457 
2458 void
msk_dump_bytes(const char * data,int len)2459 msk_dump_bytes(const char *data, int len)
2460 {
2461 	int c, i, j;
2462 
2463 	for (i = 0; i < len; i += 16) {
2464 		printf("%08x  ", i);
2465 		c = len - i;
2466 		if (c > 16) c = 16;
2467 
2468 		for (j = 0; j < c; j++) {
2469 			printf("%02x ", data[i + j] & 0xff);
2470 			if ((j & 0xf) == 7 && j > 0)
2471 				printf(" ");
2472 		}
2473 
2474 		for (; j < 16; j++)
2475 			printf("   ");
2476 		printf("  ");
2477 
2478 		for (j = 0; j < c; j++) {
2479 			int ch = data[i + j] & 0xff;
2480 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2481 		}
2482 
2483 		printf("\n");
2484 
2485 		if (c < 16)
2486 			break;
2487 	}
2488 }
2489 
2490 void
msk_dump_mbuf(struct mbuf * m)2491 msk_dump_mbuf(struct mbuf *m)
2492 {
2493 	int count = m->m_pkthdr.len;
2494 
2495 	printf("m=%#lx, m->m_pkthdr.len=%#d\n", m, m->m_pkthdr.len);
2496 
2497 	while (count > 0 && m) {
2498 		printf("m=%#lx, m->m_data=%#lx, m->m_len=%d\n",
2499 		       m, m->m_data, m->m_len);
2500 		msk_dump_bytes(mtod(m, char *), m->m_len);
2501 
2502 		count -= m->m_len;
2503 		m = m->m_next;
2504 	}
2505 }
2506 #endif
2507