xref: /openbsd/sys/dev/pci/if_msk.c (revision 097a140d)
1 /*	$OpenBSD: if_msk.c,v 1.136 2020/12/12 11:48:53 jan Exp $	*/
2 
3 /*
4  * Copyright (c) 1997, 1998, 1999, 2000
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
35  */
36 
37 /*
38  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
39  *
40  * Permission to use, copy, modify, and distribute this software for any
41  * purpose with or without fee is hereby granted, provided that the above
42  * copyright notice and this permission notice appear in all copies.
43  *
44  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
45  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
46  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
47  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
48  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
49  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
50  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
51  */
52 
53 /*
54  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
55  * the SK-984x series adapters, both single port and dual port.
56  * References:
57  * 	The XaQti XMAC II datasheet,
58  * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
59  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
60  *
61  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
62  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
63  * convenience to others until Vitesse corrects this problem:
64  *
65  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
66  *
67  * Written by Bill Paul <wpaul@ee.columbia.edu>
68  * Department of Electrical Engineering
69  * Columbia University, New York City
70  */
71 
72 /*
73  * The SysKonnect gigabit ethernet adapters consist of two main
74  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
75  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
76  * components and a PHY while the GEnesis controller provides a PCI
77  * interface with DMA support. Each card may have between 512K and
78  * 2MB of SRAM on board depending on the configuration.
79  *
80  * The SysKonnect GEnesis controller can have either one or two XMAC
81  * chips connected to it, allowing single or dual port NIC configurations.
82  * SysKonnect has the distinction of being the only vendor on the market
83  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
84  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
85  * XMAC registers. This driver takes advantage of these features to allow
86  * both XMACs to operate as independent interfaces.
87  */
88 
89 #include "bpfilter.h"
90 
91 #include <sys/param.h>
92 #include <sys/systm.h>
93 #include <sys/sockio.h>
94 #include <sys/mbuf.h>
95 #include <sys/malloc.h>
96 #include <sys/kernel.h>
97 #include <sys/socket.h>
98 #include <sys/timeout.h>
99 #include <sys/device.h>
100 #include <sys/queue.h>
101 
102 #include <net/if.h>
103 
104 #include <netinet/in.h>
105 #include <netinet/if_ether.h>
106 
107 #include <net/if_media.h>
108 
109 #if NBPFILTER > 0
110 #include <net/bpf.h>
111 #endif
112 
113 #include <dev/mii/mii.h>
114 #include <dev/mii/miivar.h>
115 
116 #include <dev/pci/pcireg.h>
117 #include <dev/pci/pcivar.h>
118 #include <dev/pci/pcidevs.h>
119 
120 #include <dev/pci/if_skreg.h>
121 #include <dev/pci/if_mskvar.h>
122 
123 int mskc_probe(struct device *, void *, void *);
124 void mskc_attach(struct device *, struct device *self, void *aux);
125 int mskc_detach(struct device *, int);
126 int mskc_activate(struct device *, int);
127 void mskc_reset(struct sk_softc *);
128 int msk_probe(struct device *, void *, void *);
129 void msk_attach(struct device *, struct device *self, void *aux);
130 int msk_detach(struct device *, int);
131 int msk_activate(struct device *, int);
132 void msk_reset(struct sk_if_softc *);
133 int mskcprint(void *, const char *);
134 int msk_intr(void *);
135 void msk_intr_yukon(struct sk_if_softc *);
136 static inline int msk_rxvalid(struct sk_softc *, u_int32_t, u_int32_t);
137 void msk_rxeof(struct sk_if_softc *, struct mbuf_list *, uint16_t, uint32_t);
138 void msk_txeof(struct sk_if_softc *);
139 static unsigned int msk_encap(struct sk_if_softc *, struct mbuf *, uint32_t);
140 void msk_start(struct ifnet *);
141 int msk_ioctl(struct ifnet *, u_long, caddr_t);
142 void msk_init(void *);
143 void msk_init_yukon(struct sk_if_softc *);
144 void msk_stop(struct sk_if_softc *, int);
145 void msk_watchdog(struct ifnet *);
146 int msk_ifmedia_upd(struct ifnet *);
147 void msk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
148 static int msk_newbuf(struct sk_if_softc *);
149 int msk_init_rx_ring(struct sk_if_softc *);
150 int msk_init_tx_ring(struct sk_if_softc *);
151 void msk_fill_rx_ring(struct sk_if_softc *);
152 
153 int msk_miibus_readreg(struct device *, int, int);
154 void msk_miibus_writereg(struct device *, int, int, int);
155 void msk_miibus_statchg(struct device *);
156 
157 void msk_iff(struct sk_if_softc *);
158 void msk_tick(void *);
159 void msk_fill_rx_tick(void *);
160 
161 #ifdef MSK_DEBUG
162 #define DPRINTF(x)	if (mskdebug) printf x
163 #define DPRINTFN(n,x)	if (mskdebug >= (n)) printf x
164 int	mskdebug = 0;
165 
166 void msk_dump_txdesc(struct msk_tx_desc *, int);
167 void msk_dump_mbuf(struct mbuf *);
168 void msk_dump_bytes(const char *, int);
169 #else
170 #define DPRINTF(x)
171 #define DPRINTFN(n,x)
172 #endif
173 
174 /* supported device vendors */
175 const struct pci_matchid mskc_devices[] = {
176 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DGE550SX },
177 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DGE550T_B1 },
178 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DGE560SX },
179 	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DGE560T },
180 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8021CU },
181 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8021X },
182 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8022CU },
183 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8022X },
184 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8035 },
185 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8036 },
186 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8038 },
187 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8039 },
188 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8040 },
189 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8040T },
190 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8042 },
191 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8048 },
192 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8050 },
193 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8052 },
194 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8053 },
195 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8055 },
196 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8055_2 },
197 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8056 },
198 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8057 },
199 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8058 },
200 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8059 },
201 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8061CU },
202 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8061X },
203 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8062CU },
204 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8062X },
205 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8070 },
206 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8071 },
207 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8072 },
208 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8075 },
209 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_8079 },
210 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C032 },
211 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C033 },
212 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C034 },
213 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C036 },
214 	{ PCI_VENDOR_MARVELL,		PCI_PRODUCT_MARVELL_YUKON_C042 },
215 	{ PCI_VENDOR_SCHNEIDERKOCH,	PCI_PRODUCT_SCHNEIDERKOCH_SK9EXX },
216 	{ PCI_VENDOR_SCHNEIDERKOCH,	PCI_PRODUCT_SCHNEIDERKOCH_SK9SXX }
217 };
218 
219 static inline u_int32_t
220 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
221 {
222 	return CSR_READ_4(sc, reg);
223 }
224 
225 static inline u_int16_t
226 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
227 {
228 	return CSR_READ_2(sc, reg);
229 }
230 
231 static inline u_int8_t
232 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
233 {
234 	return CSR_READ_1(sc, reg);
235 }
236 
237 static inline void
238 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
239 {
240 	CSR_WRITE_4(sc, reg, x);
241 }
242 
243 static inline void
244 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
245 {
246 	CSR_WRITE_2(sc, reg, x);
247 }
248 
249 static inline void
250 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
251 {
252 	CSR_WRITE_1(sc, reg, x);
253 }
254 
255 int
256 msk_miibus_readreg(struct device *dev, int phy, int reg)
257 {
258 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
259 	u_int16_t val;
260 	int i;
261 
262         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
263 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
264 
265 	for (i = 0; i < SK_TIMEOUT; i++) {
266 		DELAY(1);
267 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
268 		if (val & YU_SMICR_READ_VALID)
269 			break;
270 	}
271 
272 	if (i == SK_TIMEOUT) {
273 		printf("%s: phy failed to come ready\n",
274 		       sc_if->sk_dev.dv_xname);
275 		return (0);
276 	}
277 
278  	DPRINTFN(9, ("msk_miibus_readreg: i=%d, timeout=%d\n", i,
279 		     SK_TIMEOUT));
280 
281         val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
282 
283 	DPRINTFN(9, ("msk_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
284 		     phy, reg, val));
285 
286 	return (val);
287 }
288 
289 void
290 msk_miibus_writereg(struct device *dev, int phy, int reg, int val)
291 {
292 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
293 	int i;
294 
295 	DPRINTFN(9, ("msk_miibus_writereg phy=%d reg=%#x val=%#x\n",
296 		     phy, reg, val));
297 
298 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
299 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
300 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
301 
302 	for (i = 0; i < SK_TIMEOUT; i++) {
303 		DELAY(1);
304 		if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
305 			break;
306 	}
307 
308 	if (i == SK_TIMEOUT)
309 		printf("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
310 }
311 
312 void
313 msk_miibus_statchg(struct device *dev)
314 {
315 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
316 	struct mii_data *mii = &sc_if->sk_mii;
317 	struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
318 	int gpcr;
319 
320 	gpcr = SK_YU_READ_2(sc_if, YUKON_GPCR);
321 	gpcr &= (YU_GPCR_TXEN | YU_GPCR_RXEN);
322 
323 	if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO ||
324 	    sc_if->sk_softc->sk_type == SK_YUKON_FE_P) {
325 		/* Set speed. */
326 		gpcr |= YU_GPCR_SPEED_DIS;
327 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
328 		case IFM_1000_SX:
329 		case IFM_1000_LX:
330 		case IFM_1000_CX:
331 		case IFM_1000_T:
332 			gpcr |= (YU_GPCR_GIG | YU_GPCR_SPEED);
333 			break;
334 		case IFM_100_TX:
335 			gpcr |= YU_GPCR_SPEED;
336 			break;
337 		}
338 
339 		/* Set duplex. */
340 		gpcr |= YU_GPCR_DPLX_DIS;
341 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
342 			gpcr |= YU_GPCR_DUPLEX;
343 
344 		/* Disable flow control. */
345 		gpcr |= YU_GPCR_FCTL_DIS;
346 		gpcr |= (YU_GPCR_FCTL_TX_DIS | YU_GPCR_FCTL_RX_DIS);
347 	}
348 
349 	SK_YU_WRITE_2(sc_if, YUKON_GPCR, gpcr);
350 
351 	DPRINTFN(9, ("msk_miibus_statchg: gpcr=%x\n",
352 		     SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
353 }
354 
355 void
356 msk_iff(struct sk_if_softc *sc_if)
357 {
358 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
359 	struct arpcom *ac = &sc_if->arpcom;
360 	struct ether_multi *enm;
361 	struct ether_multistep step;
362 	u_int32_t hashes[2];
363 	u_int16_t rcr;
364 	int h;
365 
366 	rcr = SK_YU_READ_2(sc_if, YUKON_RCR);
367 	rcr &= ~(YU_RCR_MUFLEN | YU_RCR_UFLEN);
368 	ifp->if_flags &= ~IFF_ALLMULTI;
369 
370 	/*
371 	 * Always accept frames destined to our station address.
372 	 */
373 	rcr |= YU_RCR_UFLEN;
374 
375 	if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
376 		ifp->if_flags |= IFF_ALLMULTI;
377 		if (ifp->if_flags & IFF_PROMISC)
378 			rcr &= ~YU_RCR_UFLEN;
379 		else
380 			rcr |= YU_RCR_MUFLEN;
381 		hashes[0] = hashes[1] = 0xFFFFFFFF;
382 	} else {
383 		rcr |= YU_RCR_MUFLEN;
384 		/* Program new filter. */
385 		bzero(hashes, sizeof(hashes));
386 
387 		ETHER_FIRST_MULTI(step, ac, enm);
388 		while (enm != NULL) {
389 			h = ether_crc32_be(enm->enm_addrlo,
390 			    ETHER_ADDR_LEN) & ((1 << SK_HASH_BITS) - 1);
391 
392 			if (h < 32)
393 				hashes[0] |= (1 << h);
394 			else
395 				hashes[1] |= (1 << (h - 32));
396 
397 			ETHER_NEXT_MULTI(step, enm);
398 		}
399 	}
400 
401 	SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
402 	SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
403 	SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
404 	SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
405 	SK_YU_WRITE_2(sc_if, YUKON_RCR, rcr);
406 }
407 
408 int
409 msk_init_rx_ring(struct sk_if_softc *sc_if)
410 {
411 	struct msk_ring_data	*rd = sc_if->sk_rdata;
412 	struct msk_rx_desc	*r;
413 
414 	memset(rd->sk_rx_ring, 0, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
415 
416 	r = &rd->sk_rx_ring[0];
417 	r->sk_addr = htole32(0);
418 	r->sk_opcode = SK_Y2_RXOPC_OWN | SK_Y2_RXOPC_ADDR64;
419 
420 	sc_if->sk_cdata.sk_rx_prod = 1;
421 	sc_if->sk_cdata.sk_rx_cons = 0;
422 	sc_if->sk_cdata.sk_rx_hiaddr = 0;
423 
424 	/*
425 	 * up to two ring entries per packet, so the effective ring size is
426 	 * halved
427 	 */
428 	if_rxr_init(&sc_if->sk_cdata.sk_rx_ring, 2, (MSK_RX_RING_CNT/2) - 1);
429 
430 	msk_fill_rx_ring(sc_if);
431 	return (0);
432 }
433 
434 int
435 msk_init_tx_ring(struct sk_if_softc *sc_if)
436 {
437 	struct sk_softc		*sc = sc_if->sk_softc;
438 	struct msk_ring_data	*rd = sc_if->sk_rdata;
439 	struct msk_tx_desc	*t;
440 	int			i;
441 
442 	memset(rd->sk_tx_ring, 0, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
443 
444 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
445 		if (bus_dmamap_create(sc->sc_dmatag, sc_if->sk_pktlen,
446 		    SK_NTXSEG, sc_if->sk_pktlen, 0,
447 		    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW | BUS_DMA_64BIT,
448 		    &sc_if->sk_cdata.sk_tx_maps[i]))
449 			return (ENOBUFS);
450 	}
451 
452 	t = &rd->sk_tx_ring[0];
453 	t->sk_addr = htole32(0);
454 	t->sk_opcode = SK_Y2_TXOPC_OWN | SK_Y2_TXOPC_ADDR64;
455 
456 	sc_if->sk_cdata.sk_tx_prod = 1;
457 	sc_if->sk_cdata.sk_tx_cons = 0;
458 	sc_if->sk_cdata.sk_tx_hiaddr = 0;
459 
460 	MSK_CDTXSYNC(sc_if, 0, MSK_TX_RING_CNT, BUS_DMASYNC_PREWRITE);
461 
462 	return (0);
463 }
464 
465 static int
466 msk_newbuf(struct sk_if_softc *sc_if)
467 {
468 	struct msk_ring_data	*rd = sc_if->sk_rdata;
469 	struct msk_rx_desc	*r;
470 	struct mbuf		*m;
471 	bus_dmamap_t		map;
472 	uint64_t		addr;
473 	uint32_t		prod, head;
474 	uint32_t		hiaddr;
475 	unsigned int		pktlen = sc_if->sk_pktlen + ETHER_ALIGN;
476 
477 	m = MCLGETL(NULL, M_DONTWAIT, pktlen);
478 	if (m == NULL)
479 		return (0);
480 	m->m_len = m->m_pkthdr.len = pktlen;
481 	m_adj(m, ETHER_ALIGN);
482 
483 	prod = sc_if->sk_cdata.sk_rx_prod;
484 	map = sc_if->sk_cdata.sk_rx_maps[prod];
485 
486 	if (bus_dmamap_load_mbuf(sc_if->sk_softc->sc_dmatag, map, m,
487 	    BUS_DMA_READ|BUS_DMA_NOWAIT) != 0) {
488 		m_freem(m);
489 		return (0);
490 	}
491 
492 	bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, map, 0,
493 	    map->dm_mapsize, BUS_DMASYNC_PREREAD);
494 
495 	head = prod;
496 
497 	/* high 32 bits of address */
498 	addr = map->dm_segs[0].ds_addr;
499 	hiaddr = addr >> 32;
500 	if (sc_if->sk_cdata.sk_rx_hiaddr != hiaddr) {
501 		r = &rd->sk_rx_ring[prod];
502 		htolem32(&r->sk_addr, hiaddr);
503 		r->sk_len = htole16(0);
504 		r->sk_ctl = 0;
505 		r->sk_opcode = SK_Y2_RXOPC_OWN | SK_Y2_RXOPC_ADDR64;
506 
507 		sc_if->sk_cdata.sk_rx_hiaddr = hiaddr;
508 
509 		SK_INC(prod, MSK_RX_RING_CNT);
510 	}
511 
512 	r = &rd->sk_rx_ring[prod];
513 	htolem32(&r->sk_addr, addr);
514 	htolem16(&r->sk_len, map->dm_segs[0].ds_len);
515 	r->sk_ctl = 0;
516 	r->sk_opcode = SK_Y2_RXOPC_OWN | SK_Y2_RXOPC_PACKET;
517 
518 	sc_if->sk_cdata.sk_rx_maps[head] = sc_if->sk_cdata.sk_rx_maps[prod];
519 	sc_if->sk_cdata.sk_rx_maps[prod] = map;
520 
521 	sc_if->sk_cdata.sk_rx_mbuf[prod] = m;
522 
523 	SK_INC(prod, MSK_RX_RING_CNT);
524 	sc_if->sk_cdata.sk_rx_prod = prod;
525 
526 	return (1);
527 }
528 
529 /*
530  * Set media options.
531  */
532 int
533 msk_ifmedia_upd(struct ifnet *ifp)
534 {
535 	struct sk_if_softc *sc_if = ifp->if_softc;
536 
537 	mii_mediachg(&sc_if->sk_mii);
538 	return (0);
539 }
540 
541 /*
542  * Report current media status.
543  */
544 void
545 msk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
546 {
547 	struct sk_if_softc *sc_if = ifp->if_softc;
548 
549 	mii_pollstat(&sc_if->sk_mii);
550 	ifmr->ifm_active = sc_if->sk_mii.mii_media_active;
551 	ifmr->ifm_status = sc_if->sk_mii.mii_media_status;
552 }
553 
554 int
555 msk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
556 {
557 	struct sk_if_softc *sc_if = ifp->if_softc;
558 	struct ifreq *ifr = (struct ifreq *) data;
559 	struct mii_data *mii;
560 	int s, error = 0;
561 
562 	s = splnet();
563 
564 	switch(command) {
565 	case SIOCSIFADDR:
566 		ifp->if_flags |= IFF_UP;
567 		if (!(ifp->if_flags & IFF_RUNNING))
568 			msk_init(sc_if);
569 		break;
570 
571 	case SIOCSIFFLAGS:
572 		if (ifp->if_flags & IFF_UP) {
573 			if (ifp->if_flags & IFF_RUNNING)
574 				error = ENETRESET;
575 			else
576 				msk_init(sc_if);
577 		} else {
578 			if (ifp->if_flags & IFF_RUNNING)
579 				msk_stop(sc_if, 0);
580 		}
581 		break;
582 
583 	case SIOCGIFMEDIA:
584 	case SIOCSIFMEDIA:
585 		mii = &sc_if->sk_mii;
586 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
587 		break;
588 
589 	case SIOCGIFRXR:
590 		error = if_rxr_ioctl((struct if_rxrinfo *)ifr->ifr_data,
591 		    NULL, sc_if->sk_pktlen, &sc_if->sk_cdata.sk_rx_ring);
592  		break;
593 
594 	default:
595 		error = ether_ioctl(ifp, &sc_if->arpcom, command, data);
596 	}
597 
598 	if (error == ENETRESET) {
599 		if (ifp->if_flags & IFF_RUNNING)
600 			msk_iff(sc_if);
601 		error = 0;
602 	}
603 
604 	splx(s);
605 	return (error);
606 }
607 
608 /*
609  * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
610  * IDs against our list and return a device name if we find a match.
611  */
612 int
613 mskc_probe(struct device *parent, void *match, void *aux)
614 {
615 	return (pci_matchbyid((struct pci_attach_args *)aux, mskc_devices,
616 	    nitems(mskc_devices)));
617 }
618 
619 /*
620  * Force the GEnesis into reset, then bring it out of reset.
621  */
622 void
623 mskc_reset(struct sk_softc *sc)
624 {
625 	u_int32_t imtimer_ticks, reg1;
626 	int reg;
627 
628 	DPRINTFN(2, ("mskc_reset\n"));
629 
630 	CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_RESET);
631 	CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_RESET);
632 
633 	DELAY(1000);
634 	CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_UNRESET);
635 	DELAY(2);
636 	CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
637 
638 	sk_win_write_1(sc, SK_TESTCTL1, 2);
639 
640 	if (sc->sk_type == SK_YUKON_EC_U || sc->sk_type == SK_YUKON_EX ||
641 	    sc->sk_type >= SK_YUKON_FE_P) {
642 		/* enable all clocks. */
643 		sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG3), 0);
644 		reg1 = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4));
645 		reg1 &= (SK_Y2_REG4_FORCE_ASPM_REQUEST|
646 		    SK_Y2_REG4_ASPM_GPHY_LINK_DOWN|
647 		    SK_Y2_REG4_ASPM_INT_FIFO_EMPTY|
648 		    SK_Y2_REG4_ASPM_CLKRUN_REQUEST);
649 		sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4), reg1);
650 
651 		reg1 = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG5));
652 		reg1 &= SK_Y2_REG5_TIM_VMAIN_AV_MASK;
653 		sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG5), reg1);
654 		sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_CFGREG1), 0);
655 
656 		/*
657 		 * Disable status race, workaround for Yukon EC Ultra &
658 		 * Yukon EX.
659 		 */
660 		reg1 = sk_win_read_4(sc, SK_GPIO);
661 		reg1 |= SK_Y2_GPIO_STAT_RACE_DIS;
662 		sk_win_write_4(sc, SK_GPIO, reg1);
663 		sk_win_read_4(sc, SK_GPIO);
664 	}
665 
666 	reg1 = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1));
667 	if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
668 		reg1 |= (SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
669 	else
670 		reg1 &= ~(SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
671 	sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1), reg1);
672 
673 	if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
674 		sk_win_write_1(sc, SK_Y2_CLKGATE,
675 		    SK_Y2_CLKGATE_LINK1_GATE_DIS |
676 		    SK_Y2_CLKGATE_LINK2_GATE_DIS |
677 		    SK_Y2_CLKGATE_LINK1_CORE_DIS |
678 		    SK_Y2_CLKGATE_LINK2_CORE_DIS |
679 		    SK_Y2_CLKGATE_LINK1_PCI_DIS | SK_Y2_CLKGATE_LINK2_PCI_DIS);
680 	else
681 		sk_win_write_1(sc, SK_Y2_CLKGATE, 0);
682 
683 	CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
684 	CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_SET);
685 	DELAY(1000);
686 	CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
687 	CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_CLEAR);
688 
689 	if (sc->sk_type == SK_YUKON_EX || sc->sk_type == SK_YUKON_SUPR) {
690 		CSR_WRITE_2(sc, SK_GMAC_CTRL, SK_GMAC_BYP_MACSECRX |
691 		    SK_GMAC_BYP_MACSECTX | SK_GMAC_BYP_RETR_FIFO);
692 	}
693 
694 	sk_win_write_1(sc, SK_TESTCTL1, 1);
695 
696 	DPRINTFN(2, ("mskc_reset: sk_csr=%x\n", CSR_READ_1(sc, SK_CSR)));
697 	DPRINTFN(2, ("mskc_reset: sk_link_ctrl=%x\n",
698 		     CSR_READ_2(sc, SK_LINK_CTRL)));
699 
700 	/* Disable ASF */
701 	CSR_WRITE_1(sc, SK_Y2_ASF_CSR, SK_Y2_ASF_RESET);
702 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_ASF_OFF);
703 
704 	/* Clear I2C IRQ noise */
705 	CSR_WRITE_4(sc, SK_I2CHWIRQ, 1);
706 
707 	/* Disable hardware timer */
708 	CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_STOP);
709 	CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_IRQ_CLEAR);
710 
711 	/* Disable descriptor polling */
712 	CSR_WRITE_4(sc, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
713 
714 	/* Disable time stamps */
715 	CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_STOP);
716 	CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_IRQ_CLEAR);
717 
718 	/* Enable RAM interface */
719 	sk_win_write_1(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
720 	for (reg = SK_TO0;reg <= SK_TO11; reg++)
721 		sk_win_write_1(sc, reg, 36);
722 	sk_win_write_1(sc, SK_RAMCTL + (SK_WIN_LEN / 2), SK_RAMCTL_UNRESET);
723 	for (reg = SK_TO0;reg <= SK_TO11; reg++)
724 		sk_win_write_1(sc, reg + (SK_WIN_LEN / 2), 36);
725 
726 	/*
727 	 * Configure interrupt moderation. The moderation timer
728 	 * defers interrupts specified in the interrupt moderation
729 	 * timer mask based on the timeout specified in the interrupt
730 	 * moderation timer init register. Each bit in the timer
731 	 * register represents one tick, so to specify a timeout in
732 	 * microseconds, we have to multiply by the correct number of
733 	 * ticks-per-microsecond.
734 	 */
735 	switch (sc->sk_type) {
736 	case SK_YUKON_EC:
737 	case SK_YUKON_EC_U:
738 	case SK_YUKON_EX:
739 	case SK_YUKON_SUPR:
740 	case SK_YUKON_ULTRA2:
741 	case SK_YUKON_OPTIMA:
742 	case SK_YUKON_PRM:
743 	case SK_YUKON_OPTIMA2:
744 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
745 		break;
746 	case SK_YUKON_FE:
747 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
748 		break;
749 	case SK_YUKON_FE_P:
750 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
751 		break;
752 	case SK_YUKON_XL:
753 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
754 		break;
755 	default:
756 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
757 		break;
758 	}
759 
760 	/* Reset status ring. */
761 	bzero(sc->sk_status_ring,
762 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
763 	sc->sk_status_idx = 0;
764 
765 	sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_RESET);
766 	sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_UNRESET);
767 
768 	sk_win_write_2(sc, SK_STAT_BMU_LIDX, MSK_STATUS_RING_CNT - 1);
769 	sk_win_write_4(sc, SK_STAT_BMU_ADDRLO,
770 	    sc->sk_status_map->dm_segs[0].ds_addr);
771 	sk_win_write_4(sc, SK_STAT_BMU_ADDRHI,
772 	    (u_int64_t)sc->sk_status_map->dm_segs[0].ds_addr >> 32);
773 	sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, 10);
774 	sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 16);
775 	sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 16);
776 
777 #if 0
778 	sk_win_write_4(sc, SK_Y2_LEV_ITIMERINIT, SK_IM_USECS(100));
779 	sk_win_write_4(sc, SK_Y2_TX_ITIMERINIT, SK_IM_USECS(1000));
780 	sk_win_write_4(sc, SK_Y2_ISR_ITIMERINIT, SK_IM_USECS(20));
781 #else
782 	sk_win_write_4(sc, SK_Y2_ISR_ITIMERINIT, SK_IM_USECS(4));
783 #endif
784 
785 	sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_ON);
786 
787 	sk_win_write_1(sc, SK_Y2_LEV_ITIMERCTL, SK_IMCTL_START);
788 	sk_win_write_1(sc, SK_Y2_TX_ITIMERCTL, SK_IMCTL_START);
789 	sk_win_write_1(sc, SK_Y2_ISR_ITIMERCTL, SK_IMCTL_START);
790 }
791 
792 int
793 msk_probe(struct device *parent, void *match, void *aux)
794 {
795 	struct skc_attach_args *sa = aux;
796 
797 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
798 		return (0);
799 
800 	switch (sa->skc_type) {
801 	case SK_YUKON_XL:
802 	case SK_YUKON_EC_U:
803 	case SK_YUKON_EX:
804 	case SK_YUKON_EC:
805 	case SK_YUKON_FE:
806 	case SK_YUKON_FE_P:
807 	case SK_YUKON_SUPR:
808 	case SK_YUKON_ULTRA2:
809 	case SK_YUKON_OPTIMA:
810 	case SK_YUKON_PRM:
811 	case SK_YUKON_OPTIMA2:
812 		return (1);
813 	}
814 
815 	return (0);
816 }
817 
818 void
819 msk_reset(struct sk_if_softc *sc_if)
820 {
821 	/* GMAC and GPHY Reset */
822 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
823 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
824 	DELAY(1000);
825 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_CLEAR);
826 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
827 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
828 }
829 
830 /*
831  * Each XMAC chip is attached as a separate logical IP interface.
832  * Single port cards will have only one logical interface of course.
833  */
834 void
835 msk_attach(struct device *parent, struct device *self, void *aux)
836 {
837 	struct sk_if_softc *sc_if = (struct sk_if_softc *)self;
838 	struct sk_softc *sc = (struct sk_softc *)parent;
839 	struct skc_attach_args *sa = aux;
840 	struct ifnet *ifp;
841 	caddr_t kva;
842 	int i;
843 	u_int32_t chunk;
844 	int mii_flags;
845 	int error;
846 
847 	sc_if->sk_port = sa->skc_port;
848 	sc_if->sk_softc = sc;
849 	sc->sk_if[sa->skc_port] = sc_if;
850 
851 	DPRINTFN(2, ("begin msk_attach: port=%d\n", sc_if->sk_port));
852 
853 	/*
854 	 * Get station address for this interface. Note that
855 	 * dual port cards actually come with three station
856 	 * addresses: one for each port, plus an extra. The
857 	 * extra one is used by the SysKonnect driver software
858 	 * as a 'virtual' station address for when both ports
859 	 * are operating in failover mode. Currently we don't
860 	 * use this extra address.
861 	 */
862 	for (i = 0; i < ETHER_ADDR_LEN; i++)
863 		sc_if->arpcom.ac_enaddr[i] =
864 		    sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
865 
866 	printf(": address %s\n",
867 	    ether_sprintf(sc_if->arpcom.ac_enaddr));
868 
869 	/*
870 	 * Set up RAM buffer addresses. The Yukon2 has a small amount
871 	 * of SRAM on it, somewhere between 4K and 48K.  We need to
872 	 * divide this up between the transmitter and receiver.  We
873 	 * give the receiver 2/3 of the memory (rounded down), and the
874 	 * transmitter whatever remains.
875 	 */
876 	chunk = (2 * (sc->sk_ramsize / sizeof(u_int64_t)) / 3) & ~0xff;
877 	sc_if->sk_rx_ramstart = 0;
878 	sc_if->sk_rx_ramend = sc_if->sk_rx_ramstart + chunk - 1;
879 	chunk = (sc->sk_ramsize / sizeof(u_int64_t)) - chunk;
880 	sc_if->sk_tx_ramstart = sc_if->sk_rx_ramend + 1;
881 	sc_if->sk_tx_ramend = sc_if->sk_tx_ramstart + chunk - 1;
882 
883 	DPRINTFN(2, ("msk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
884 		     "           tx_ramstart=%#x tx_ramend=%#x\n",
885 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
886 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
887 
888 	/* Allocate the descriptor queues. */
889 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct msk_ring_data),
890 	    PAGE_SIZE, 0, &sc_if->sk_ring_seg, 1, &sc_if->sk_ring_nseg,
891 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO)) {
892 		printf(": can't alloc rx buffers\n");
893 		goto fail;
894 	}
895 	if (bus_dmamem_map(sc->sc_dmatag, &sc_if->sk_ring_seg,
896 	    sc_if->sk_ring_nseg,
897 	    sizeof(struct msk_ring_data), &kva, BUS_DMA_NOWAIT)) {
898 		printf(": can't map dma buffers (%lu bytes)\n",
899 		       (ulong)sizeof(struct msk_ring_data));
900 		goto fail_1;
901 	}
902 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct msk_ring_data), 1,
903 	    sizeof(struct msk_ring_data), 0,
904 	    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW | BUS_DMA_64BIT,
905             &sc_if->sk_ring_map)) {
906 		printf(": can't create dma map\n");
907 		goto fail_2;
908 	}
909 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
910 	    sizeof(struct msk_ring_data), NULL, BUS_DMA_NOWAIT)) {
911 		printf(": can't load dma map\n");
912 		goto fail_3;
913 	}
914         sc_if->sk_rdata = (struct msk_ring_data *)kva;
915 
916 	if (sc->sk_type != SK_YUKON_FE &&
917 	    sc->sk_type != SK_YUKON_FE_P)
918 		sc_if->sk_pktlen = SK_JLEN;
919 	else
920 		sc_if->sk_pktlen = MCLBYTES;
921 
922 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
923 		if ((error = bus_dmamap_create(sc->sc_dmatag,
924 		    sc_if->sk_pktlen, 1, sc_if->sk_pktlen, 0,
925 		    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW | BUS_DMA_64BIT,
926 		    &sc_if->sk_cdata.sk_rx_maps[i])) != 0) {
927 			printf("\n%s: unable to create rx DMA map %d, "
928 			    "error = %d\n", sc->sk_dev.dv_xname, i, error);
929 			goto fail_4;
930 		}
931 	}
932 
933 	ifp = &sc_if->arpcom.ac_if;
934 	ifp->if_softc = sc_if;
935 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
936 	ifp->if_ioctl = msk_ioctl;
937 	ifp->if_start = msk_start;
938 	ifp->if_watchdog = msk_watchdog;
939 	if (sc->sk_type != SK_YUKON_FE &&
940 	    sc->sk_type != SK_YUKON_FE_P)
941 		ifp->if_hardmtu = SK_JUMBO_MTU;
942 	ifq_set_maxlen(&ifp->if_snd, MSK_TX_RING_CNT - 1);
943 	bcopy(sc_if->sk_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
944 
945 	ifp->if_capabilities = IFCAP_VLAN_MTU;
946 
947 	msk_reset(sc_if);
948 
949 	/*
950 	 * Do miibus setup.
951 	 */
952 	msk_init_yukon(sc_if);
953 
954  	DPRINTFN(2, ("msk_attach: 1\n"));
955 
956 	sc_if->sk_mii.mii_ifp = ifp;
957 	sc_if->sk_mii.mii_readreg = msk_miibus_readreg;
958 	sc_if->sk_mii.mii_writereg = msk_miibus_writereg;
959 	sc_if->sk_mii.mii_statchg = msk_miibus_statchg;
960 
961 	ifmedia_init(&sc_if->sk_mii.mii_media, 0,
962 	    msk_ifmedia_upd, msk_ifmedia_sts);
963 	mii_flags = MIIF_DOPAUSE;
964 	if (sc->sk_fibertype)
965 		mii_flags |= MIIF_HAVEFIBER;
966 	mii_attach(self, &sc_if->sk_mii, 0xffffffff, 0,
967 	    MII_OFFSET_ANY, mii_flags);
968 	if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
969 		printf("%s: no PHY found!\n", sc_if->sk_dev.dv_xname);
970 		ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
971 			    0, NULL);
972 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
973 	} else
974 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
975 
976 	timeout_set(&sc_if->sk_tick_ch, msk_tick, sc_if);
977 	timeout_set(&sc_if->sk_tick_rx, msk_fill_rx_tick, sc_if);
978 
979 	/*
980 	 * Call MI attach routines.
981 	 */
982 	if_attach(ifp);
983 	ether_ifattach(ifp);
984 
985 	DPRINTFN(2, ("msk_attach: end\n"));
986 	return;
987 
988 fail_4:
989 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
990 		if (sc_if->sk_cdata.sk_rx_maps[i] != NULL)
991 			bus_dmamap_destroy(sc->sc_dmatag,
992 			    sc_if->sk_cdata.sk_rx_maps[i]);
993 	}
994 
995 fail_3:
996 	bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
997 fail_2:
998 	bus_dmamem_unmap(sc->sc_dmatag, kva, sizeof(struct msk_ring_data));
999 fail_1:
1000 	bus_dmamem_free(sc->sc_dmatag, &sc_if->sk_ring_seg, sc_if->sk_ring_nseg);
1001 fail:
1002 	sc->sk_if[sa->skc_port] = NULL;
1003 }
1004 
1005 int
1006 msk_detach(struct device *self, int flags)
1007 {
1008 	struct sk_if_softc *sc_if = (struct sk_if_softc *)self;
1009 	struct sk_softc *sc = sc_if->sk_softc;
1010 	struct ifnet *ifp= &sc_if->arpcom.ac_if;
1011 
1012 	if (sc->sk_if[sc_if->sk_port] == NULL)
1013 		return (0);
1014 
1015 	msk_stop(sc_if, 1);
1016 
1017 	/* Detach any PHYs we might have. */
1018 	if (LIST_FIRST(&sc_if->sk_mii.mii_phys) != NULL)
1019 		mii_detach(&sc_if->sk_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1020 
1021 	/* Delete any remaining media. */
1022 	ifmedia_delete_instance(&sc_if->sk_mii.mii_media, IFM_INST_ANY);
1023 
1024 	ether_ifdetach(ifp);
1025 	if_detach(ifp);
1026 
1027 	bus_dmamem_unmap(sc->sc_dmatag, (caddr_t)sc_if->sk_rdata,
1028 	    sizeof(struct msk_ring_data));
1029 	bus_dmamem_free(sc->sc_dmatag,
1030 	    &sc_if->sk_ring_seg, sc_if->sk_ring_nseg);
1031 	bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1032 	sc->sk_if[sc_if->sk_port] = NULL;
1033 
1034 	return (0);
1035 }
1036 
1037 int
1038 msk_activate(struct device *self, int act)
1039 {
1040 	struct sk_if_softc *sc_if = (void *)self;
1041 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
1042 	int rv = 0;
1043 
1044 	switch (act) {
1045 	case DVACT_RESUME:
1046 		msk_reset(sc_if);
1047 		if (ifp->if_flags & IFF_RUNNING)
1048 			msk_init(sc_if);
1049 		break;
1050 	default:
1051 		rv = config_activate_children(self, act);
1052 		break;
1053 	}
1054 	return (rv);
1055 }
1056 
1057 int
1058 mskcprint(void *aux, const char *pnp)
1059 {
1060 	struct skc_attach_args *sa = aux;
1061 
1062 	if (pnp)
1063 		printf("msk port %c at %s",
1064 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1065 	else
1066 		printf(" port %c", (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1067 	return (UNCONF);
1068 }
1069 
1070 /*
1071  * Attach the interface. Allocate softc structures, do ifmedia
1072  * setup and ethernet/BPF attach.
1073  */
1074 void
1075 mskc_attach(struct device *parent, struct device *self, void *aux)
1076 {
1077 	struct sk_softc *sc = (struct sk_softc *)self;
1078 	struct pci_attach_args *pa = aux;
1079 	struct skc_attach_args skca;
1080 	pci_chipset_tag_t pc = pa->pa_pc;
1081 	pcireg_t memtype;
1082 	pci_intr_handle_t ih;
1083 	const char *intrstr = NULL;
1084 	u_int8_t hw, pmd;
1085 	char *revstr = NULL;
1086 	caddr_t kva;
1087 
1088 	DPRINTFN(2, ("begin mskc_attach\n"));
1089 
1090 	pci_set_powerstate(pa->pa_pc, pa->pa_tag, PCI_PMCSR_STATE_D0);
1091 
1092 	/*
1093 	 * Map control/status registers.
1094 	 */
1095 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1096 	if (pci_mapreg_map(pa, SK_PCI_LOMEM, memtype, 0, &sc->sk_btag,
1097 	    &sc->sk_bhandle, NULL, &sc->sk_bsize, 0)) {
1098 		printf(": can't map mem space\n");
1099 		return;
1100 	}
1101 
1102 	sc->sc_dmatag = pa->pa_dmat;
1103 
1104 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1105 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1106 
1107 	/* bail out here if chip is not recognized */
1108 	if (!(SK_IS_YUKON2(sc))) {
1109 		printf(": unknown chip type: %d\n", sc->sk_type);
1110 		goto fail_1;
1111 	}
1112 	DPRINTFN(2, ("mskc_attach: allocate interrupt\n"));
1113 
1114 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_MARVELL) {
1115 		switch (PCI_PRODUCT(pa->pa_id)) {
1116 		case PCI_PRODUCT_MARVELL_YUKON_8036:
1117 		case PCI_PRODUCT_MARVELL_YUKON_8053:
1118 			pa->pa_flags &= ~PCI_FLAGS_MSI_ENABLED;
1119 		}
1120 	}
1121 
1122 	/* Allocate interrupt */
1123 	if (pci_intr_map_msi(pa, &ih) != 0 && pci_intr_map(pa, &ih) != 0) {
1124 		printf(": couldn't map interrupt\n");
1125 		goto fail_1;
1126 	}
1127 
1128 	intrstr = pci_intr_string(pc, ih);
1129 	sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, msk_intr, sc,
1130 	    self->dv_xname);
1131 	if (sc->sk_intrhand == NULL) {
1132 		printf(": couldn't establish interrupt");
1133 		if (intrstr != NULL)
1134 			printf(" at %s", intrstr);
1135 		printf("\n");
1136 		goto fail_1;
1137 	}
1138 	sc->sk_pc = pc;
1139 
1140 	if (bus_dmamem_alloc(sc->sc_dmatag,
1141 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1142 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1143 	    0, &sc->sk_status_seg, 1, &sc->sk_status_nseg,
1144 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO)) {
1145 		printf(": can't alloc status buffers\n");
1146 		goto fail_2;
1147 	}
1148 
1149 	if (bus_dmamem_map(sc->sc_dmatag,
1150 	    &sc->sk_status_seg, sc->sk_status_nseg,
1151 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1152 	    &kva, BUS_DMA_NOWAIT)) {
1153 		printf(": can't map dma buffers (%lu bytes)\n",
1154 		    (ulong)(MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc)));
1155 		goto fail_3;
1156 	}
1157 	if (bus_dmamap_create(sc->sc_dmatag,
1158 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 1,
1159 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 0,
1160 	    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW | BUS_DMA_64BIT,
1161 	    &sc->sk_status_map)) {
1162 		printf(": can't create dma map\n");
1163 		goto fail_4;
1164 	}
1165 	if (bus_dmamap_load(sc->sc_dmatag, sc->sk_status_map, kva,
1166 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1167 	    NULL, BUS_DMA_NOWAIT)) {
1168 		printf(": can't load dma map\n");
1169 		goto fail_5;
1170 	}
1171 	sc->sk_status_ring = (struct msk_status_desc *)kva;
1172 
1173 	/* Reset the adapter. */
1174 	mskc_reset(sc);
1175 
1176 	sc->sk_ramsize = sk_win_read_1(sc, SK_EPROM0) * 4096;
1177 	DPRINTFN(2, ("mskc_attach: ramsize=%dK\n", sc->sk_ramsize / 1024));
1178 
1179 	pmd = sk_win_read_1(sc, SK_PMDTYPE);
1180 	if (pmd == 'L' || pmd == 'S' || pmd == 'P')
1181 		sc->sk_fibertype = 1;
1182 
1183 	switch (sc->sk_type) {
1184 	case SK_YUKON_XL:
1185 		sc->sk_name = "Yukon-2 XL";
1186 		break;
1187 	case SK_YUKON_EC_U:
1188 		sc->sk_name = "Yukon-2 EC Ultra";
1189 		break;
1190 	case SK_YUKON_EX:
1191 		sc->sk_name = "Yukon-2 Extreme";
1192 		break;
1193 	case SK_YUKON_EC:
1194 		sc->sk_name = "Yukon-2 EC";
1195 		break;
1196 	case SK_YUKON_FE:
1197 		sc->sk_name = "Yukon-2 FE";
1198 		break;
1199 	case SK_YUKON_FE_P:
1200 		sc->sk_name = "Yukon-2 FE+";
1201 		break;
1202 	case SK_YUKON_SUPR:
1203 		sc->sk_name = "Yukon-2 Supreme";
1204 		break;
1205 	case SK_YUKON_ULTRA2:
1206 		sc->sk_name = "Yukon-2 Ultra 2";
1207 		break;
1208 	case SK_YUKON_OPTIMA:
1209 		sc->sk_name = "Yukon-2 Optima";
1210 		break;
1211 	case SK_YUKON_PRM:
1212 		sc->sk_name = "Yukon-2 Optima Prime";
1213 		break;
1214 	case SK_YUKON_OPTIMA2:
1215 		sc->sk_name = "Yukon-2 Optima 2";
1216 		break;
1217 	default:
1218 		sc->sk_name = "Yukon (Unknown)";
1219 	}
1220 
1221 	if (sc->sk_type == SK_YUKON_XL) {
1222 		switch (sc->sk_rev) {
1223 		case SK_YUKON_XL_REV_A0:
1224 			revstr = "A0";
1225 			break;
1226 		case SK_YUKON_XL_REV_A1:
1227 			revstr = "A1";
1228 			break;
1229 		case SK_YUKON_XL_REV_A2:
1230 			revstr = "A2";
1231 			break;
1232 		case SK_YUKON_XL_REV_A3:
1233 			revstr = "A3";
1234 			break;
1235 		default:
1236 			;
1237 		}
1238 	}
1239 
1240 	if (sc->sk_type == SK_YUKON_EC) {
1241 		switch (sc->sk_rev) {
1242 		case SK_YUKON_EC_REV_A1:
1243 			revstr = "A1";
1244 			break;
1245 		case SK_YUKON_EC_REV_A2:
1246 			revstr = "A2";
1247 			break;
1248 		case SK_YUKON_EC_REV_A3:
1249 			revstr = "A3";
1250 			break;
1251 		default:
1252 			;
1253 		}
1254 	}
1255 
1256 	if (sc->sk_type == SK_YUKON_EC_U) {
1257 		switch (sc->sk_rev) {
1258 		case SK_YUKON_EC_U_REV_A0:
1259 			revstr = "A0";
1260 			break;
1261 		case SK_YUKON_EC_U_REV_A1:
1262 			revstr = "A1";
1263 			break;
1264 		case SK_YUKON_EC_U_REV_B0:
1265 			revstr = "B0";
1266 			break;
1267 		case SK_YUKON_EC_U_REV_B1:
1268 			revstr = "B1";
1269 			break;
1270 		default:
1271 			;
1272 		}
1273 	}
1274 
1275 	if (sc->sk_type == SK_YUKON_FE) {
1276 		switch (sc->sk_rev) {
1277 		case SK_YUKON_FE_REV_A1:
1278 			revstr = "A1";
1279 			break;
1280 		case SK_YUKON_FE_REV_A2:
1281 			revstr = "A2";
1282 			break;
1283 		default:
1284 			;
1285 		}
1286 	}
1287 
1288 	if (sc->sk_type == SK_YUKON_FE_P && sc->sk_rev == SK_YUKON_FE_P_REV_A0)
1289 		revstr = "A0";
1290 
1291 	if (sc->sk_type == SK_YUKON_EX) {
1292 		switch (sc->sk_rev) {
1293 		case SK_YUKON_EX_REV_A0:
1294 			revstr = "A0";
1295 			break;
1296 		case SK_YUKON_EX_REV_B0:
1297 			revstr = "B0";
1298 			break;
1299 		default:
1300 			;
1301 		}
1302 	}
1303 
1304 	if (sc->sk_type == SK_YUKON_SUPR) {
1305 		switch (sc->sk_rev) {
1306 		case SK_YUKON_SUPR_REV_A0:
1307 			revstr = "A0";
1308 			break;
1309 		case SK_YUKON_SUPR_REV_B0:
1310 			revstr = "B0";
1311 			break;
1312 		case SK_YUKON_SUPR_REV_B1:
1313 			revstr = "B1";
1314 			break;
1315 		default:
1316 			;
1317 		}
1318 	}
1319 
1320 	if (sc->sk_type == SK_YUKON_PRM) {
1321 		switch (sc->sk_rev) {
1322 		case SK_YUKON_PRM_REV_Z1:
1323 			revstr = "Z1";
1324 			break;
1325 		case SK_YUKON_PRM_REV_A0:
1326 			revstr = "A0";
1327 			break;
1328 		default:
1329 			;
1330 		}
1331 	}
1332 
1333 	/* Announce the product name. */
1334 	printf(", %s", sc->sk_name);
1335 	if (revstr != NULL)
1336 		printf(" rev. %s", revstr);
1337 	printf(" (0x%x): %s\n", sc->sk_rev, intrstr);
1338 
1339 	sc->sk_macs = 1;
1340 
1341 	hw = sk_win_read_1(sc, SK_Y2_HWRES);
1342 	if ((hw & SK_Y2_HWRES_LINK_MASK) == SK_Y2_HWRES_LINK_DUAL) {
1343 		if ((sk_win_read_1(sc, SK_Y2_CLKGATE) &
1344 		    SK_Y2_CLKGATE_LINK2_INACTIVE) == 0)
1345 			sc->sk_macs++;
1346 	}
1347 
1348 	skca.skc_port = SK_PORT_A;
1349 	skca.skc_type = sc->sk_type;
1350 	skca.skc_rev = sc->sk_rev;
1351 	(void)config_found(&sc->sk_dev, &skca, mskcprint);
1352 
1353 	if (sc->sk_macs > 1) {
1354 		skca.skc_port = SK_PORT_B;
1355 		skca.skc_type = sc->sk_type;
1356 		skca.skc_rev = sc->sk_rev;
1357 		(void)config_found(&sc->sk_dev, &skca, mskcprint);
1358 	}
1359 
1360 	/* Turn on the 'driver is loaded' LED. */
1361 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1362 
1363 	return;
1364 
1365 fail_4:
1366 	bus_dmamem_unmap(sc->sc_dmatag, (caddr_t)sc->sk_status_ring,
1367 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1368 fail_3:
1369 	bus_dmamem_free(sc->sc_dmatag,
1370 	    &sc->sk_status_seg, sc->sk_status_nseg);
1371 	sc->sk_status_nseg = 0;
1372 fail_5:
1373 	bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1374 fail_2:
1375 	pci_intr_disestablish(sc->sk_pc, sc->sk_intrhand);
1376 	sc->sk_intrhand = NULL;
1377 fail_1:
1378 	bus_space_unmap(sc->sk_btag, sc->sk_bhandle, sc->sk_bsize);
1379 	sc->sk_bsize = 0;
1380 }
1381 
1382 int
1383 mskc_detach(struct device *self, int flags)
1384 {
1385 	struct sk_softc *sc = (struct sk_softc *)self;
1386 	int rv;
1387 
1388 	if (sc->sk_intrhand)
1389 		pci_intr_disestablish(sc->sk_pc, sc->sk_intrhand);
1390 
1391 	rv = config_detach_children(self, flags);
1392 	if (rv != 0)
1393 		return (rv);
1394 
1395 	if (sc->sk_status_nseg > 0) {
1396 		bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1397 		bus_dmamem_unmap(sc->sc_dmatag, (caddr_t)sc->sk_status_ring,
1398 		    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1399 		bus_dmamem_free(sc->sc_dmatag,
1400 		    &sc->sk_status_seg, sc->sk_status_nseg);
1401 	}
1402 
1403 	if (sc->sk_bsize > 0)
1404 		bus_space_unmap(sc->sk_btag, sc->sk_bhandle, sc->sk_bsize);
1405 
1406 	return(0);
1407 }
1408 
1409 int
1410 mskc_activate(struct device *self, int act)
1411 {
1412 	struct sk_softc *sc = (void *)self;
1413 	int rv = 0;
1414 
1415 	switch (act) {
1416 	case DVACT_RESUME:
1417 		mskc_reset(sc);
1418 		rv = config_activate_children(self, act);
1419 		break;
1420 	default:
1421 		rv = config_activate_children(self, act);
1422 		break;
1423 	}
1424 	return (rv);
1425 }
1426 
1427 static unsigned int
1428 msk_encap(struct sk_if_softc *sc_if, struct mbuf *m, uint32_t prod)
1429 {
1430 	struct sk_softc		*sc = sc_if->sk_softc;
1431 	struct msk_ring_data	*rd = sc_if->sk_rdata;
1432 	struct msk_tx_desc	*t;
1433 	bus_dmamap_t		map;
1434 	uint64_t		addr;
1435 	uint32_t		hiaddr;
1436 	uint32_t		next, last;
1437 	uint8_t			opcode;
1438 	unsigned int		entries = 0;
1439 	int			i;
1440 
1441 	map = sc_if->sk_cdata.sk_tx_maps[prod];
1442 
1443 	switch (bus_dmamap_load_mbuf(sc->sc_dmatag, map, m,
1444 	    BUS_DMA_STREAMING | BUS_DMA_NOWAIT)) {
1445 	case 0:
1446 		break;
1447 	case EFBIG: /* mbuf chain is too fragmented */
1448 		if (m_defrag(m, M_DONTWAIT) == 0 &&
1449 		    bus_dmamap_load_mbuf(sc->sc_dmatag, map, m,
1450 		    BUS_DMA_STREAMING | BUS_DMA_NOWAIT) == 0)
1451 			break;
1452 		/* FALLTHROUGH */
1453 	default:
1454 		return (0);
1455 	}
1456 
1457 	bus_dmamap_sync(sc->sc_dmatag, map, 0, map->dm_mapsize,
1458 	    BUS_DMASYNC_PREWRITE);
1459 
1460 	opcode = SK_Y2_TXOPC_OWN | SK_Y2_TXOPC_PACKET;
1461 	next = prod;
1462 	for (i = 0; i < map->dm_nsegs; i++) {
1463 		/* high 32 bits of address */
1464 		addr = map->dm_segs[i].ds_addr;
1465 		hiaddr = addr >> 32;
1466 		if (sc_if->sk_cdata.sk_tx_hiaddr != hiaddr) {
1467 			t = &rd->sk_tx_ring[next];
1468 			htolem32(&t->sk_addr, hiaddr);
1469 			t->sk_opcode = SK_Y2_TXOPC_OWN | SK_Y2_TXOPC_ADDR64;
1470 
1471 			sc_if->sk_cdata.sk_tx_hiaddr = hiaddr;
1472 
1473 			SK_INC(next, MSK_TX_RING_CNT);
1474 			entries++;
1475 		}
1476 
1477 		/* low 32 bits of address + length */
1478 		t = &rd->sk_tx_ring[next];
1479 		htolem32(&t->sk_addr, addr);
1480 		htolem16(&t->sk_len, map->dm_segs[i].ds_len);
1481 		t->sk_ctl = 0;
1482 		t->sk_opcode = opcode;
1483 
1484 		last = next;
1485 		SK_INC(next, MSK_TX_RING_CNT);
1486 		entries++;
1487 
1488 		opcode = SK_Y2_TXOPC_OWN | SK_Y2_TXOPC_BUFFER;
1489 	}
1490 	t->sk_ctl = SK_Y2_TXCTL_LASTFRAG;
1491 
1492 	sc_if->sk_cdata.sk_tx_maps[prod] = sc_if->sk_cdata.sk_tx_maps[last];
1493 	sc_if->sk_cdata.sk_tx_maps[last] = map;
1494 	sc_if->sk_cdata.sk_tx_mbuf[last] = m;
1495 
1496 	return (entries);
1497 }
1498 
1499 void
1500 msk_start(struct ifnet *ifp)
1501 {
1502 	struct sk_if_softc	*sc_if = ifp->if_softc;
1503 	struct mbuf		*m = NULL;
1504 	uint32_t		prod, free, used;
1505 	int			post = 0;
1506 
1507 	prod = sc_if->sk_cdata.sk_tx_prod;
1508 	free = sc_if->sk_cdata.sk_tx_cons;
1509 	if (free <= prod)
1510 		free += MSK_TX_RING_CNT;
1511 	free -= prod;
1512 
1513 	MSK_CDTXSYNC(sc_if, 0, MSK_TX_RING_CNT, BUS_DMASYNC_POSTWRITE);
1514 
1515 	for (;;) {
1516 		if (free <= SK_NTXSEG * 2) {
1517 			ifq_set_oactive(&ifp->if_snd);
1518 			break;
1519 		}
1520 
1521 		m = ifq_dequeue(&ifp->if_snd);
1522 		if (m == NULL)
1523 			break;
1524 
1525 		used = msk_encap(sc_if, m, prod);
1526 		if (used == 0) {
1527 			m_freem(m);
1528 			continue;
1529 		}
1530 
1531 		free -= used;
1532 		prod += used;
1533 		prod &= MSK_TX_RING_CNT - 1;
1534 
1535 #if NBPFILTER > 0
1536 		if (ifp->if_bpf)
1537 			bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT);
1538 #endif
1539 		post = 1;
1540 	}
1541 
1542 	MSK_CDTXSYNC(sc_if, 0, MSK_TX_RING_CNT, BUS_DMASYNC_PREWRITE);
1543 
1544 	if (post == 0)
1545 		return;
1546 
1547 	/* Transmit */
1548 	sc_if->sk_cdata.sk_tx_prod = prod;
1549 	SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_PUTIDX, prod);
1550 
1551 	/* Set a timeout in case the chip goes out to lunch. */
1552 	ifp->if_timer = MSK_TX_TIMEOUT;
1553 }
1554 
1555 void
1556 msk_watchdog(struct ifnet *ifp)
1557 {
1558 	struct sk_if_softc *sc_if = ifp->if_softc;
1559 
1560 	/*
1561 	 * Reclaim first as there is a possibility of losing Tx completion
1562 	 * interrupts.
1563 	 */
1564 	msk_txeof(sc_if);
1565 	if (sc_if->sk_cdata.sk_tx_prod != sc_if->sk_cdata.sk_tx_cons) {
1566 		printf("%s: watchdog timeout\n", sc_if->sk_dev.dv_xname);
1567 
1568 		ifp->if_oerrors++;
1569 
1570 		/* XXX Resets both ports; we shouldn't do that. */
1571 		mskc_reset(sc_if->sk_softc);
1572 		msk_reset(sc_if);
1573 		msk_init(sc_if);
1574 	}
1575 }
1576 
1577 static inline int
1578 msk_rxvalid(struct sk_softc *sc, u_int32_t stat, u_int32_t len)
1579 {
1580 	if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
1581 	    YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
1582 	    YU_RXSTAT_JABBER)) != 0 ||
1583 	    (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
1584 	    YU_RXSTAT_BYTES(stat) != len)
1585 		return (0);
1586 
1587 	return (1);
1588 }
1589 
1590 void
1591 msk_rxeof(struct sk_if_softc *sc_if, struct mbuf_list *ml,
1592     uint16_t len, uint32_t rxstat)
1593 {
1594 	struct sk_softc		*sc = sc_if->sk_softc;
1595 	struct ifnet		*ifp = &sc_if->arpcom.ac_if;
1596 	struct mbuf		*m = NULL;
1597 	int			prod, cons, tail;
1598 	bus_dmamap_t		map;
1599 
1600 	prod = sc_if->sk_cdata.sk_rx_prod;
1601 	cons = sc_if->sk_cdata.sk_rx_cons;
1602 
1603 	while (cons != prod) {
1604 		tail = cons;
1605 	  	SK_INC(cons, MSK_RX_RING_CNT);
1606 
1607 		m = sc_if->sk_cdata.sk_rx_mbuf[tail];
1608 		if (m != NULL) {
1609 			/* found it */
1610 			break;
1611 		}
1612 	}
1613 	sc_if->sk_cdata.sk_rx_cons = cons;
1614 
1615 	if (m == NULL) {
1616 		/* maybe if ADDR64 is consumed? */
1617 		return;
1618 	}
1619 
1620 	sc_if->sk_cdata.sk_rx_mbuf[tail] = NULL;
1621 
1622 	map = sc_if->sk_cdata.sk_rx_maps[tail];
1623 	if_rxr_put(&sc_if->sk_cdata.sk_rx_ring, 1);
1624 
1625 	bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, map, 0, map->dm_mapsize,
1626 	    BUS_DMASYNC_POSTREAD);
1627 	bus_dmamap_unload(sc_if->sk_softc->sc_dmatag, map);
1628 
1629 	if (len < SK_MIN_FRAMELEN || len > SK_JUMBO_FRAMELEN ||
1630 	    msk_rxvalid(sc, rxstat, len) == 0) {
1631 		ifp->if_ierrors++;
1632 		m_freem(m);
1633 		return;
1634 	}
1635 
1636 	m->m_pkthdr.len = m->m_len = len;
1637 
1638 	ml_enqueue(ml, m);
1639 }
1640 
1641 void
1642 msk_txeof(struct sk_if_softc *sc_if)
1643 {
1644 	struct ifnet		*ifp = &sc_if->arpcom.ac_if;
1645 	struct sk_softc		*sc = sc_if->sk_softc;
1646 	uint32_t		prod, cons;
1647 	struct mbuf		*m;
1648 	bus_dmamap_t		map;
1649 	bus_size_t		reg;
1650 
1651 	if (sc_if->sk_port == SK_PORT_A)
1652 		reg = SK_STAT_BMU_TXA1_RIDX;
1653 	else
1654 		reg = SK_STAT_BMU_TXA2_RIDX;
1655 
1656 	/*
1657 	 * Go through our tx ring and free mbufs for those
1658 	 * frames that have been sent.
1659 	 */
1660 	cons = sc_if->sk_cdata.sk_tx_cons;
1661 	prod = sk_win_read_2(sc, reg);
1662 
1663 	if (cons == prod)
1664 		return;
1665 
1666 	while (cons != prod) {
1667 		m = sc_if->sk_cdata.sk_tx_mbuf[cons];
1668 		if (m != NULL) {
1669 			sc_if->sk_cdata.sk_tx_mbuf[cons] = NULL;
1670 
1671 			map = sc_if->sk_cdata.sk_tx_maps[cons];
1672 			bus_dmamap_sync(sc->sc_dmatag, map, 0,
1673 			    map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1674 			bus_dmamap_unload(sc->sc_dmatag, map);
1675 
1676 			m_freem(m);
1677 		}
1678 
1679 		SK_INC(cons, MSK_TX_RING_CNT);
1680 	}
1681 	if (cons == sc_if->sk_cdata.sk_tx_prod)
1682 		ifp->if_timer = 0;
1683 
1684 	sc_if->sk_cdata.sk_tx_cons = cons;
1685 
1686 	if (ifq_is_oactive(&ifp->if_snd))
1687 		ifq_restart(&ifp->if_snd);
1688 }
1689 
1690 void
1691 msk_fill_rx_ring(struct sk_if_softc *sc_if)
1692 {
1693 	u_int slots, used;
1694 
1695 	slots = if_rxr_get(&sc_if->sk_cdata.sk_rx_ring, MSK_RX_RING_CNT/2);
1696 
1697 	MSK_CDRXSYNC(sc_if, 0, BUS_DMASYNC_POSTWRITE); /* XXX */
1698 	while (slots > 0) {
1699 		used = msk_newbuf(sc_if);
1700 		if (used == 0)
1701 			break;
1702 
1703 		slots -= used;
1704 	}
1705 	MSK_CDRXSYNC(sc_if, 0, BUS_DMASYNC_PREWRITE); /* XXX */
1706 
1707 	if_rxr_put(&sc_if->sk_cdata.sk_rx_ring, slots);
1708 	if (if_rxr_inuse(&sc_if->sk_cdata.sk_rx_ring) == 0)
1709 		timeout_add(&sc_if->sk_tick_rx, 1);
1710 }
1711 
1712 void
1713 msk_fill_rx_tick(void *xsc_if)
1714 {
1715 	struct sk_if_softc *sc_if = xsc_if;
1716 	int s;
1717 
1718 	s = splnet();
1719 	if (if_rxr_inuse(&sc_if->sk_cdata.sk_rx_ring) == 0) {
1720 		msk_fill_rx_ring(sc_if);
1721 		SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
1722 		    sc_if->sk_cdata.sk_rx_prod);
1723 	}
1724 	splx(s);
1725 }
1726 
1727 void
1728 msk_tick(void *xsc_if)
1729 {
1730 	struct sk_if_softc *sc_if = xsc_if;
1731 	struct mii_data *mii = &sc_if->sk_mii;
1732 	int s;
1733 
1734 	s = splnet();
1735 	mii_tick(mii);
1736 	splx(s);
1737 	timeout_add_sec(&sc_if->sk_tick_ch, 1);
1738 }
1739 
1740 void
1741 msk_intr_yukon(struct sk_if_softc *sc_if)
1742 {
1743 	u_int8_t status;
1744 
1745 	status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
1746 	/* RX overrun */
1747 	if ((status & SK_GMAC_INT_RX_OVER) != 0) {
1748 		SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
1749 		    SK_RFCTL_RX_FIFO_OVER);
1750 	}
1751 	/* TX underrun */
1752 	if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
1753 		SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST,
1754 		    SK_TFCTL_TX_FIFO_UNDER);
1755 	}
1756 
1757 	DPRINTFN(2, ("msk_intr_yukon status=%#x\n", status));
1758 }
1759 
1760 int
1761 msk_intr(void *xsc)
1762 {
1763 	struct sk_softc		*sc = xsc;
1764 	struct sk_if_softc	*sc_if;
1765 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
1766 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
1767 	struct mbuf_list	ml[2] = {
1768 					MBUF_LIST_INITIALIZER(),
1769 					MBUF_LIST_INITIALIZER(),
1770 				};
1771 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
1772 	int			claimed = 0;
1773 	u_int32_t		status;
1774 	struct msk_status_desc	*cur_st;
1775 
1776 	status = CSR_READ_4(sc, SK_Y2_ISSR2);
1777 	if (status == 0xffffffff)
1778 		return (0);
1779 	if (status == 0) {
1780 		CSR_WRITE_4(sc, SK_Y2_ICR, 2);
1781 		return (0);
1782 	}
1783 
1784 	status = CSR_READ_4(sc, SK_ISR);
1785 
1786 	if (sc_if0 != NULL)
1787 		ifp0 = &sc_if0->arpcom.ac_if;
1788 	if (sc_if1 != NULL)
1789 		ifp1 = &sc_if1->arpcom.ac_if;
1790 
1791 	if (sc_if0 && (status & SK_Y2_IMR_MAC1) &&
1792 	    (ifp0->if_flags & IFF_RUNNING)) {
1793 		msk_intr_yukon(sc_if0);
1794 	}
1795 
1796 	if (sc_if1 && (status & SK_Y2_IMR_MAC2) &&
1797 	    (ifp1->if_flags & IFF_RUNNING)) {
1798 		msk_intr_yukon(sc_if1);
1799 	}
1800 
1801 	MSK_CDSTSYNC(sc, sc->sk_status_idx,
1802 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1803 	cur_st = &sc->sk_status_ring[sc->sk_status_idx];
1804 
1805 	while (cur_st->sk_opcode & SK_Y2_STOPC_OWN) {
1806 		cur_st->sk_opcode &= ~SK_Y2_STOPC_OWN;
1807 		switch (cur_st->sk_opcode) {
1808 		case SK_Y2_STOPC_RXSTAT:
1809 			sc_if = sc->sk_if[cur_st->sk_link & 0x01];
1810 			msk_rxeof(sc_if, &ml[cur_st->sk_link & 0x01],
1811 			    lemtoh16(&cur_st->sk_len),
1812 			    lemtoh32(&cur_st->sk_status));
1813 			break;
1814 		case SK_Y2_STOPC_TXSTAT:
1815 			if (sc_if0)
1816 				msk_txeof(sc_if0);
1817 			if (sc_if1)
1818 				msk_txeof(sc_if1);
1819 			break;
1820 		default:
1821 			printf("opcode=0x%x\n", cur_st->sk_opcode);
1822 			break;
1823 		}
1824 		SK_INC(sc->sk_status_idx, MSK_STATUS_RING_CNT);
1825 
1826 		MSK_CDSTSYNC(sc, sc->sk_status_idx,
1827 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1828 		cur_st = &sc->sk_status_ring[sc->sk_status_idx];
1829 	}
1830 
1831 	if (status & SK_Y2_IMR_BMU) {
1832 		CSR_WRITE_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_IRQ_CLEAR);
1833 		claimed = 1;
1834 	}
1835 
1836 	CSR_WRITE_4(sc, SK_Y2_ICR, 2);
1837 
1838 	if (!ml_empty(&ml[0])) {
1839 		if (ifiq_input(&ifp0->if_rcv, &ml[0]))
1840 			if_rxr_livelocked(&sc_if0->sk_cdata.sk_rx_ring);
1841 		msk_fill_rx_ring(sc_if0);
1842 		SK_IF_WRITE_2(sc_if0, 0, SK_RXQ1_Y2_PREF_PUTIDX,
1843 		    sc_if0->sk_cdata.sk_rx_prod);
1844 	}
1845 	if (!ml_empty(&ml[1])) {
1846 		if (ifiq_input(&ifp1->if_rcv, &ml[1]))
1847 			if_rxr_livelocked(&sc_if1->sk_cdata.sk_rx_ring);
1848 		msk_fill_rx_ring(sc_if1);
1849 		SK_IF_WRITE_2(sc_if1, 0, SK_RXQ1_Y2_PREF_PUTIDX,
1850 		    sc_if1->sk_cdata.sk_rx_prod);
1851 	}
1852 
1853 	return (claimed);
1854 }
1855 
1856 void
1857 msk_init_yukon(struct sk_if_softc *sc_if)
1858 {
1859 	u_int32_t		v;
1860 	u_int16_t		reg;
1861 	struct sk_softc		*sc;
1862 	int			i;
1863 
1864 	sc = sc_if->sk_softc;
1865 
1866 	DPRINTFN(2, ("msk_init_yukon: start: sk_csr=%#x\n",
1867 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
1868 
1869 	DPRINTFN(6, ("msk_init_yukon: 1\n"));
1870 
1871 	DPRINTFN(3, ("msk_init_yukon: gmac_ctrl=%#x\n",
1872 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
1873 
1874 	DPRINTFN(6, ("msk_init_yukon: 3\n"));
1875 
1876 	/* unused read of the interrupt source register */
1877 	DPRINTFN(6, ("msk_init_yukon: 4\n"));
1878 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
1879 
1880 	DPRINTFN(6, ("msk_init_yukon: 4a\n"));
1881 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
1882 	DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
1883 
1884 	/* MIB Counter Clear Mode set */
1885         reg |= YU_PAR_MIB_CLR;
1886 	DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
1887 	DPRINTFN(6, ("msk_init_yukon: 4b\n"));
1888 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
1889 
1890 	/* MIB Counter Clear Mode clear */
1891 	DPRINTFN(6, ("msk_init_yukon: 5\n"));
1892         reg &= ~YU_PAR_MIB_CLR;
1893 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
1894 
1895 	/* receive control reg */
1896 	DPRINTFN(6, ("msk_init_yukon: 7\n"));
1897 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
1898 
1899 	/* transmit parameter register */
1900 	DPRINTFN(6, ("msk_init_yukon: 8\n"));
1901 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
1902 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
1903 
1904 	/* serial mode register */
1905 	DPRINTFN(6, ("msk_init_yukon: 9\n"));
1906 	reg = YU_SMR_DATA_BLIND(0x1c) |
1907 	      YU_SMR_MFL_VLAN |
1908 	      YU_SMR_IPG_DATA(0x1e);
1909 
1910 	if (sc->sk_type != SK_YUKON_FE &&
1911 	    sc->sk_type != SK_YUKON_FE_P)
1912 		reg |= YU_SMR_MFL_JUMBO;
1913 
1914 	SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
1915 
1916 	DPRINTFN(6, ("msk_init_yukon: 10\n"));
1917 	/* Setup Yukon's address */
1918 	for (i = 0; i < 3; i++) {
1919 		/* Write Source Address 1 (unicast filter) */
1920 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
1921 			      sc_if->arpcom.ac_enaddr[i * 2] |
1922 			      sc_if->arpcom.ac_enaddr[i * 2 + 1] << 8);
1923 	}
1924 
1925 	for (i = 0; i < 3; i++) {
1926 		reg = sk_win_read_2(sc_if->sk_softc,
1927 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
1928 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
1929 	}
1930 
1931 	/* Program promiscuous mode and multicast filters */
1932 	DPRINTFN(6, ("msk_init_yukon: 11\n"));
1933 	msk_iff(sc_if);
1934 
1935 	/* enable interrupt mask for counter overflows */
1936 	DPRINTFN(6, ("msk_init_yukon: 12\n"));
1937 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
1938 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
1939 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
1940 
1941 	/* Configure RX MAC FIFO Flush Mask */
1942 	v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
1943 	    YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
1944 	    YU_RXSTAT_JABBER;
1945 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
1946 
1947 	/* Configure RX MAC FIFO */
1948 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
1949 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON |
1950 	    SK_RFCTL_FIFO_FLUSH_ON);
1951 
1952 	/* Increase flush threshould to 64 bytes */
1953 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
1954 	    SK_RFCTL_FIFO_THRESHOLD + 1);
1955 
1956 	/* Configure TX MAC FIFO */
1957 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
1958 	SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
1959 
1960 #if 1
1961 	SK_YU_WRITE_2(sc_if, YUKON_GPCR, YU_GPCR_TXEN | YU_GPCR_RXEN);
1962 #endif
1963 	DPRINTFN(6, ("msk_init_yukon: end\n"));
1964 }
1965 
1966 /*
1967  * Note that to properly initialize any part of the GEnesis chip,
1968  * you first have to take it out of reset mode.
1969  */
1970 void
1971 msk_init(void *xsc_if)
1972 {
1973 	struct sk_if_softc	*sc_if = xsc_if;
1974 	struct sk_softc		*sc = sc_if->sk_softc;
1975 	struct ifnet		*ifp = &sc_if->arpcom.ac_if;
1976 	struct mii_data		*mii = &sc_if->sk_mii;
1977 	int			s;
1978 
1979 	DPRINTFN(2, ("msk_init\n"));
1980 
1981 	s = splnet();
1982 
1983 	/* Cancel pending I/O and free all RX/TX buffers. */
1984 	msk_stop(sc_if, 0);
1985 
1986 	/* Configure I2C registers */
1987 
1988 	/* Configure XMAC(s) */
1989 	msk_init_yukon(sc_if);
1990 	mii_mediachg(mii);
1991 
1992 	/* Configure transmit arbiter(s) */
1993 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_ON);
1994 #if 0
1995 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
1996 #endif
1997 
1998 	/* Configure RAMbuffers */
1999 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2000 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2001 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2002 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2003 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2004 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2005 
2006 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_UNRESET);
2007 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_STORENFWD_ON);
2008 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_START, sc_if->sk_tx_ramstart);
2009 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_WR_PTR, sc_if->sk_tx_ramstart);
2010 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_RD_PTR, sc_if->sk_tx_ramstart);
2011 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_END, sc_if->sk_tx_ramend);
2012 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_ON);
2013 
2014 	/* Configure BMUs */
2015 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000016);
2016 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000d28);
2017 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000080);
2018 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_WATERMARK, 0x00000600);
2019 
2020 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000016);
2021 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000d28);
2022 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000080);
2023 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_WATERMARK, 0x00000600);
2024 
2025 	/* Make sure the sync transmit queue is disabled. */
2026 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET);
2027 
2028 	/* Init descriptors */
2029 	if (msk_init_rx_ring(sc_if) == ENOBUFS) {
2030 		printf("%s: initialization failed: no "
2031 		    "memory for rx buffers\n", sc_if->sk_dev.dv_xname);
2032 		msk_stop(sc_if, 0);
2033 		splx(s);
2034 		return;
2035 	}
2036 
2037 	if (msk_init_tx_ring(sc_if) == ENOBUFS) {
2038 		printf("%s: initialization failed: no "
2039 		    "memory for tx buffers\n", sc_if->sk_dev.dv_xname);
2040 		msk_stop(sc_if, 0);
2041 		splx(s);
2042 		return;
2043 	}
2044 
2045 	/* Initialize prefetch engine. */
2046 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2047 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000002);
2048 	SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_LIDX, MSK_RX_RING_CNT - 1);
2049 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRLO,
2050 	    MSK_RX_RING_ADDR(sc_if, 0));
2051 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRHI,
2052 	    (u_int64_t)MSK_RX_RING_ADDR(sc_if, 0) >> 32);
2053 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000008);
2054 	SK_IF_READ_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR);
2055 
2056 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2057 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000002);
2058 	SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_LIDX, MSK_TX_RING_CNT - 1);
2059 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRLO,
2060 	    MSK_TX_RING_ADDR(sc_if, 0));
2061 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRHI,
2062 	    (u_int64_t)MSK_TX_RING_ADDR(sc_if, 0) >> 32);
2063 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000008);
2064 	SK_IF_READ_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR);
2065 
2066 	SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2067 	    sc_if->sk_cdata.sk_rx_prod);
2068 	SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_PUTIDX,
2069 	    sc_if->sk_cdata.sk_tx_prod);
2070 
2071 	/* Configure interrupt handling */
2072 	if (sc_if->sk_port == SK_PORT_A)
2073 		sc->sk_intrmask |= SK_Y2_INTRS1;
2074 	else
2075 		sc->sk_intrmask |= SK_Y2_INTRS2;
2076 	sc->sk_intrmask |= SK_Y2_IMR_BMU;
2077 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2078 
2079 	ifp->if_flags |= IFF_RUNNING;
2080 	ifq_clr_oactive(&ifp->if_snd);
2081 
2082 	timeout_add_sec(&sc_if->sk_tick_ch, 1);
2083 
2084 	splx(s);
2085 }
2086 
2087 void
2088 msk_stop(struct sk_if_softc *sc_if, int softonly)
2089 {
2090 	struct sk_softc		*sc = sc_if->sk_softc;
2091 	struct ifnet		*ifp = &sc_if->arpcom.ac_if;
2092 	struct mbuf		*m;
2093 	bus_dmamap_t		map;
2094 	int			i;
2095 
2096 	DPRINTFN(2, ("msk_stop\n"));
2097 
2098 	timeout_del(&sc_if->sk_tick_ch);
2099 	timeout_del(&sc_if->sk_tick_rx);
2100 
2101 	ifp->if_flags &= ~IFF_RUNNING;
2102 	ifq_clr_oactive(&ifp->if_snd);
2103 
2104 	/* Stop transfer of Tx descriptors */
2105 
2106 	/* Stop transfer of Rx descriptors */
2107 
2108 	if (!softonly) {
2109 		/* Turn off various components of this interface. */
2110 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2111 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2112 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2113 		SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2114 		SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, SK_TXBMU_OFFLINE);
2115 		SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2116 		SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2117 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2118 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_STOP);
2119 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2120 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2121 
2122 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2123 		SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2124 
2125 		/* Disable interrupts */
2126 		if (sc_if->sk_port == SK_PORT_A)
2127 			sc->sk_intrmask &= ~SK_Y2_INTRS1;
2128 		else
2129 			sc->sk_intrmask &= ~SK_Y2_INTRS2;
2130 		CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2131 	}
2132 
2133 	/* Free RX and TX mbufs still in the queues. */
2134 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
2135 		m = sc_if->sk_cdata.sk_rx_mbuf[i];
2136 		if (m == NULL)
2137 			continue;
2138 
2139 		map = sc_if->sk_cdata.sk_rx_maps[i];
2140 		bus_dmamap_sync(sc->sc_dmatag, map, 0, map->dm_mapsize,
2141 		    BUS_DMASYNC_POSTREAD);
2142 		bus_dmamap_unload(sc->sc_dmatag, map);
2143 
2144 		m_freem(m);
2145 
2146 		sc_if->sk_cdata.sk_rx_mbuf[i] = NULL;
2147 	}
2148 
2149 	sc_if->sk_cdata.sk_rx_prod = 0;
2150 	sc_if->sk_cdata.sk_rx_cons = 0;
2151 
2152 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
2153 		m = sc_if->sk_cdata.sk_tx_mbuf[i];
2154 		if (m == NULL)
2155 			continue;
2156 
2157 		map = sc_if->sk_cdata.sk_tx_maps[i];
2158 		bus_dmamap_sync(sc->sc_dmatag, map, 0, map->dm_mapsize,
2159 		    BUS_DMASYNC_POSTREAD);
2160 		bus_dmamap_unload(sc->sc_dmatag, map);
2161 
2162 		m_freem(m);
2163 
2164 		sc_if->sk_cdata.sk_tx_mbuf[i] = NULL;
2165 	}
2166 }
2167 
2168 struct cfattach mskc_ca = {
2169 	sizeof(struct sk_softc), mskc_probe, mskc_attach, mskc_detach,
2170 	mskc_activate
2171 };
2172 
2173 struct cfdriver mskc_cd = {
2174 	NULL, "mskc", DV_DULL
2175 };
2176 
2177 struct cfattach msk_ca = {
2178 	sizeof(struct sk_if_softc), msk_probe, msk_attach, msk_detach,
2179 	msk_activate
2180 };
2181 
2182 struct cfdriver msk_cd = {
2183 	NULL, "msk", DV_IFNET
2184 };
2185 
2186 #ifdef MSK_DEBUG
2187 void
2188 msk_dump_txdesc(struct msk_tx_desc *le, int idx)
2189 {
2190 #define DESC_PRINT(X)					\
2191 	if (X)					\
2192 		printf("txdesc[%d]." #X "=%#x\n",	\
2193 		       idx, X);
2194 
2195 	DESC_PRINT(letoh32(le->sk_addr));
2196 	DESC_PRINT(letoh16(le->sk_len));
2197 	DESC_PRINT(le->sk_ctl);
2198 	DESC_PRINT(le->sk_opcode);
2199 #undef DESC_PRINT
2200 }
2201 
2202 void
2203 msk_dump_bytes(const char *data, int len)
2204 {
2205 	int c, i, j;
2206 
2207 	for (i = 0; i < len; i += 16) {
2208 		printf("%08x  ", i);
2209 		c = len - i;
2210 		if (c > 16) c = 16;
2211 
2212 		for (j = 0; j < c; j++) {
2213 			printf("%02x ", data[i + j] & 0xff);
2214 			if ((j & 0xf) == 7 && j > 0)
2215 				printf(" ");
2216 		}
2217 
2218 		for (; j < 16; j++)
2219 			printf("   ");
2220 		printf("  ");
2221 
2222 		for (j = 0; j < c; j++) {
2223 			int ch = data[i + j] & 0xff;
2224 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2225 		}
2226 
2227 		printf("\n");
2228 
2229 		if (c < 16)
2230 			break;
2231 	}
2232 }
2233 
2234 void
2235 msk_dump_mbuf(struct mbuf *m)
2236 {
2237 	int count = m->m_pkthdr.len;
2238 
2239 	printf("m=%#lx, m->m_pkthdr.len=%#d\n", m, m->m_pkthdr.len);
2240 
2241 	while (count > 0 && m) {
2242 		printf("m=%#lx, m->m_data=%#lx, m->m_len=%d\n",
2243 		       m, m->m_data, m->m_len);
2244 		msk_dump_bytes(mtod(m, char *), m->m_len);
2245 
2246 		count -= m->m_len;
2247 		m = m->m_next;
2248 	}
2249 }
2250 #endif
2251