xref: /openbsd/sys/dev/pci/if_nge.c (revision 0f9891f1)
1 /*	$OpenBSD: if_nge.c,v 1.99 2024/05/24 06:02:56 jsg Exp $	*/
2 /*
3  * Copyright (c) 2001 Wind River Systems
4  * Copyright (c) 1997, 1998, 1999, 2000, 2001
5  *	Bill Paul <wpaul@bsdi.com>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * $FreeBSD: if_nge.c,v 1.35 2002/08/08 18:33:28 ambrisko Exp $
35  */
36 
37 /*
38  * National Semiconductor DP83820/DP83821 gigabit ethernet driver
39  * for FreeBSD. Datasheets are available from:
40  *
41  * http://www.national.com/ds/DP/DP83820.pdf
42  * http://www.national.com/ds/DP/DP83821.pdf
43  *
44  * These chips are used on several low cost gigabit ethernet NICs
45  * sold by D-Link, Addtron, SMC and Asante. Both parts are
46  * virtually the same, except the 83820 is a 64-bit/32-bit part,
47  * while the 83821 is 32-bit only.
48  *
49  * Many cards also use National gigE transceivers, such as the
50  * DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet
51  * contains a full register description that applies to all of these
52  * components:
53  *
54  * http://www.national.com/ds/DP/DP83861.pdf
55  *
56  * Written by Bill Paul <wpaul@bsdi.com>
57  * BSDi Open Source Solutions
58  */
59 
60 /*
61  * The NatSemi DP83820 and 83821 controllers are enhanced versions
62  * of the NatSemi MacPHYTER 10/100 devices. They support 10, 100
63  * and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII
64  * ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP
65  * hardware checksum offload (IPv4 only), VLAN tagging and filtering,
66  * priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern
67  * matching buffers, one perfect address filter buffer and interrupt
68  * moderation. The 83820 supports both 64-bit and 32-bit addressing
69  * and data transfers: the 64-bit support can be toggled on or off
70  * via software. This affects the size of certain fields in the DMA
71  * descriptors.
72  *
73  * There are two bugs/misfeatures in the 83820/83821 that I have
74  * discovered so far:
75  *
76  * - Receive buffers must be aligned on 64-bit boundaries, which means
77  *   you must resort to copying data in order to fix up the payload
78  *   alignment.
79  *
80  * - In order to transmit jumbo frames larger than 8170 bytes, you have
81  *   to turn off transmit checksum offloading, because the chip can't
82  *   compute the checksum on an outgoing frame unless it fits entirely
83  *   within the TX FIFO, which is only 8192 bytes in size. If you have
84  *   TX checksum offload enabled and you transmit attempt to transmit a
85  *   frame larger than 8170 bytes, the transmitter will wedge.
86  *
87  * To work around the latter problem, TX checksum offload is disabled
88  * if the user selects an MTU larger than 8152 (8170 - 18).
89  */
90 
91 #include "bpfilter.h"
92 #include "vlan.h"
93 
94 #include <sys/param.h>
95 #include <sys/systm.h>
96 #include <sys/sockio.h>
97 #include <sys/mbuf.h>
98 #include <sys/device.h>
99 
100 #include <net/if.h>
101 #include <net/if_media.h>
102 
103 #include <netinet/in.h>
104 #include <netinet/if_ether.h>
105 
106 #if NBPFILTER > 0
107 #include <net/bpf.h>
108 #endif
109 
110 #include <uvm/uvm_extern.h>              /* for vtophys */
111 #define	VTOPHYS(v)	vtophys((vaddr_t)(v))
112 
113 #include <dev/pci/pcireg.h>
114 #include <dev/pci/pcivar.h>
115 #include <dev/pci/pcidevs.h>
116 
117 #include <dev/mii/miivar.h>
118 
119 #define NGE_USEIOSPACE
120 
121 #include <dev/pci/if_ngereg.h>
122 
123 int nge_probe(struct device *, void *, void *);
124 void nge_attach(struct device *, struct device *, void *);
125 
126 int nge_newbuf(struct nge_softc *, struct nge_desc *,
127 			     struct mbuf *);
128 int nge_encap(struct nge_softc *, struct mbuf *, u_int32_t *);
129 void nge_rxeof(struct nge_softc *);
130 void nge_txeof(struct nge_softc *);
131 int nge_intr(void *);
132 void nge_tick(void *);
133 void nge_start(struct ifnet *);
134 int nge_ioctl(struct ifnet *, u_long, caddr_t);
135 void nge_init(void *);
136 void nge_stop(struct nge_softc *);
137 void nge_watchdog(struct ifnet *);
138 int nge_ifmedia_mii_upd(struct ifnet *);
139 void nge_ifmedia_mii_sts(struct ifnet *, struct ifmediareq *);
140 int nge_ifmedia_tbi_upd(struct ifnet *);
141 void nge_ifmedia_tbi_sts(struct ifnet *, struct ifmediareq *);
142 
143 void nge_delay(struct nge_softc *);
144 void nge_eeprom_idle(struct nge_softc *);
145 void nge_eeprom_putbyte(struct nge_softc *, int);
146 void nge_eeprom_getword(struct nge_softc *, int, u_int16_t *);
147 void nge_read_eeprom(struct nge_softc *, caddr_t, int, int, int);
148 
149 void nge_mii_sync(struct nge_softc *);
150 void nge_mii_send(struct nge_softc *, u_int32_t, int);
151 int nge_mii_readreg(struct nge_softc *, struct nge_mii_frame *);
152 int nge_mii_writereg(struct nge_softc *, struct nge_mii_frame *);
153 
154 int nge_miibus_readreg(struct device *, int, int);
155 void nge_miibus_writereg(struct device *, int, int, int);
156 void nge_miibus_statchg(struct device *);
157 
158 void nge_setmulti(struct nge_softc *);
159 void nge_reset(struct nge_softc *);
160 int nge_list_rx_init(struct nge_softc *);
161 int nge_list_tx_init(struct nge_softc *);
162 
163 #ifdef NGE_USEIOSPACE
164 #define NGE_RES			SYS_RES_IOPORT
165 #define NGE_RID			NGE_PCI_LOIO
166 #else
167 #define NGE_RES			SYS_RES_MEMORY
168 #define NGE_RID			NGE_PCI_LOMEM
169 #endif
170 
171 #ifdef NGE_DEBUG
172 #define DPRINTF(x)	if (ngedebug) printf x
173 #define DPRINTFN(n,x)	if (ngedebug >= (n)) printf x
174 int	ngedebug = 0;
175 #else
176 #define DPRINTF(x)
177 #define DPRINTFN(n,x)
178 #endif
179 
180 #define NGE_SETBIT(sc, reg, x)				\
181 	CSR_WRITE_4(sc, reg,				\
182 		CSR_READ_4(sc, reg) | (x))
183 
184 #define NGE_CLRBIT(sc, reg, x)				\
185 	CSR_WRITE_4(sc, reg,				\
186 		CSR_READ_4(sc, reg) & ~(x))
187 
188 #define SIO_SET(x)					\
189 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | (x))
190 
191 #define SIO_CLR(x)					\
192 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~(x))
193 
194 void
nge_delay(struct nge_softc * sc)195 nge_delay(struct nge_softc *sc)
196 {
197 	int			idx;
198 
199 	for (idx = (300 / 33) + 1; idx > 0; idx--)
200 		CSR_READ_4(sc, NGE_CSR);
201 }
202 
203 void
nge_eeprom_idle(struct nge_softc * sc)204 nge_eeprom_idle(struct nge_softc *sc)
205 {
206 	int		i;
207 
208 	SIO_SET(NGE_MEAR_EE_CSEL);
209 	nge_delay(sc);
210 	SIO_SET(NGE_MEAR_EE_CLK);
211 	nge_delay(sc);
212 
213 	for (i = 0; i < 25; i++) {
214 		SIO_CLR(NGE_MEAR_EE_CLK);
215 		nge_delay(sc);
216 		SIO_SET(NGE_MEAR_EE_CLK);
217 		nge_delay(sc);
218 	}
219 
220 	SIO_CLR(NGE_MEAR_EE_CLK);
221 	nge_delay(sc);
222 	SIO_CLR(NGE_MEAR_EE_CSEL);
223 	nge_delay(sc);
224 	CSR_WRITE_4(sc, NGE_MEAR, 0x00000000);
225 }
226 
227 /*
228  * Send a read command and address to the EEPROM, check for ACK.
229  */
230 void
nge_eeprom_putbyte(struct nge_softc * sc,int addr)231 nge_eeprom_putbyte(struct nge_softc *sc, int addr)
232 {
233 	int			d, i;
234 
235 	d = addr | NGE_EECMD_READ;
236 
237 	/*
238 	 * Feed in each bit and strobe the clock.
239 	 */
240 	for (i = 0x400; i; i >>= 1) {
241 		if (d & i) {
242 			SIO_SET(NGE_MEAR_EE_DIN);
243 		} else {
244 			SIO_CLR(NGE_MEAR_EE_DIN);
245 		}
246 		nge_delay(sc);
247 		SIO_SET(NGE_MEAR_EE_CLK);
248 		nge_delay(sc);
249 		SIO_CLR(NGE_MEAR_EE_CLK);
250 		nge_delay(sc);
251 	}
252 }
253 
254 /*
255  * Read a word of data stored in the EEPROM at address 'addr.'
256  */
257 void
nge_eeprom_getword(struct nge_softc * sc,int addr,u_int16_t * dest)258 nge_eeprom_getword(struct nge_softc *sc, int addr, u_int16_t *dest)
259 {
260 	int			i;
261 	u_int16_t		word = 0;
262 
263 	/* Force EEPROM to idle state. */
264 	nge_eeprom_idle(sc);
265 
266 	/* Enter EEPROM access mode. */
267 	nge_delay(sc);
268 	SIO_CLR(NGE_MEAR_EE_CLK);
269 	nge_delay(sc);
270 	SIO_SET(NGE_MEAR_EE_CSEL);
271 	nge_delay(sc);
272 
273 	/*
274 	 * Send address of word we want to read.
275 	 */
276 	nge_eeprom_putbyte(sc, addr);
277 
278 	/*
279 	 * Start reading bits from EEPROM.
280 	 */
281 	for (i = 0x8000; i; i >>= 1) {
282 		SIO_SET(NGE_MEAR_EE_CLK);
283 		nge_delay(sc);
284 		if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT)
285 			word |= i;
286 		nge_delay(sc);
287 		SIO_CLR(NGE_MEAR_EE_CLK);
288 		nge_delay(sc);
289 	}
290 
291 	/* Turn off EEPROM access mode. */
292 	nge_eeprom_idle(sc);
293 
294 	*dest = word;
295 }
296 
297 /*
298  * Read a sequence of words from the EEPROM.
299  */
300 void
nge_read_eeprom(struct nge_softc * sc,caddr_t dest,int off,int cnt,int swap)301 nge_read_eeprom(struct nge_softc *sc, caddr_t dest, int off, int cnt, int swap)
302 {
303 	int			i;
304 	u_int16_t		word = 0, *ptr;
305 
306 	for (i = 0; i < cnt; i++) {
307 		nge_eeprom_getword(sc, off + i, &word);
308 		ptr = (u_int16_t *)(dest + (i * 2));
309 		if (swap)
310 			*ptr = ntohs(word);
311 		else
312 			*ptr = word;
313 	}
314 }
315 
316 /*
317  * Sync the PHYs by setting data bit and strobing the clock 32 times.
318  */
319 void
nge_mii_sync(struct nge_softc * sc)320 nge_mii_sync(struct nge_softc *sc)
321 {
322 	int			i;
323 
324 	SIO_SET(NGE_MEAR_MII_DIR|NGE_MEAR_MII_DATA);
325 
326 	for (i = 0; i < 32; i++) {
327 		SIO_SET(NGE_MEAR_MII_CLK);
328 		DELAY(1);
329 		SIO_CLR(NGE_MEAR_MII_CLK);
330 		DELAY(1);
331 	}
332 }
333 
334 /*
335  * Clock a series of bits through the MII.
336  */
337 void
nge_mii_send(struct nge_softc * sc,u_int32_t bits,int cnt)338 nge_mii_send(struct nge_softc *sc, u_int32_t bits, int cnt)
339 {
340 	int			i;
341 
342 	SIO_CLR(NGE_MEAR_MII_CLK);
343 
344 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
345                 if (bits & i) {
346 			SIO_SET(NGE_MEAR_MII_DATA);
347                 } else {
348 			SIO_CLR(NGE_MEAR_MII_DATA);
349                 }
350 		DELAY(1);
351 		SIO_CLR(NGE_MEAR_MII_CLK);
352 		DELAY(1);
353 		SIO_SET(NGE_MEAR_MII_CLK);
354 	}
355 }
356 
357 /*
358  * Read an PHY register through the MII.
359  */
360 int
nge_mii_readreg(struct nge_softc * sc,struct nge_mii_frame * frame)361 nge_mii_readreg(struct nge_softc *sc, struct nge_mii_frame *frame)
362 {
363 	int			i, ack, s;
364 
365 	s = splnet();
366 
367 	/*
368 	 * Set up frame for RX.
369 	 */
370 	frame->mii_stdelim = NGE_MII_STARTDELIM;
371 	frame->mii_opcode = NGE_MII_READOP;
372 	frame->mii_turnaround = 0;
373 	frame->mii_data = 0;
374 
375 	CSR_WRITE_4(sc, NGE_MEAR, 0);
376 
377 	/*
378 	 * Turn on data xmit.
379 	 */
380 	SIO_SET(NGE_MEAR_MII_DIR);
381 
382 	nge_mii_sync(sc);
383 
384 	/*
385 	 * Send command/address info.
386 	 */
387 	nge_mii_send(sc, frame->mii_stdelim, 2);
388 	nge_mii_send(sc, frame->mii_opcode, 2);
389 	nge_mii_send(sc, frame->mii_phyaddr, 5);
390 	nge_mii_send(sc, frame->mii_regaddr, 5);
391 
392 	/* Idle bit */
393 	SIO_CLR((NGE_MEAR_MII_CLK|NGE_MEAR_MII_DATA));
394 	DELAY(1);
395 	SIO_SET(NGE_MEAR_MII_CLK);
396 	DELAY(1);
397 
398 	/* Turn off xmit. */
399 	SIO_CLR(NGE_MEAR_MII_DIR);
400 	/* Check for ack */
401 	SIO_CLR(NGE_MEAR_MII_CLK);
402 	DELAY(1);
403 	ack = CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA;
404 	SIO_SET(NGE_MEAR_MII_CLK);
405 	DELAY(1);
406 
407 	/*
408 	 * Now try reading data bits. If the ack failed, we still
409 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
410 	 */
411 	if (ack) {
412 		for(i = 0; i < 16; i++) {
413 			SIO_CLR(NGE_MEAR_MII_CLK);
414 			DELAY(1);
415 			SIO_SET(NGE_MEAR_MII_CLK);
416 			DELAY(1);
417 		}
418 		goto fail;
419 	}
420 
421 	for (i = 0x8000; i; i >>= 1) {
422 		SIO_CLR(NGE_MEAR_MII_CLK);
423 		DELAY(1);
424 		if (!ack) {
425 			if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA)
426 				frame->mii_data |= i;
427 			DELAY(1);
428 		}
429 		SIO_SET(NGE_MEAR_MII_CLK);
430 		DELAY(1);
431 	}
432 
433 fail:
434 
435 	SIO_CLR(NGE_MEAR_MII_CLK);
436 	DELAY(1);
437 	SIO_SET(NGE_MEAR_MII_CLK);
438 	DELAY(1);
439 
440 	splx(s);
441 
442 	if (ack)
443 		return(1);
444 	return(0);
445 }
446 
447 /*
448  * Write to a PHY register through the MII.
449  */
450 int
nge_mii_writereg(struct nge_softc * sc,struct nge_mii_frame * frame)451 nge_mii_writereg(struct nge_softc *sc, struct nge_mii_frame *frame)
452 {
453 	int			s;
454 
455 	s = splnet();
456 	/*
457 	 * Set up frame for TX.
458 	 */
459 
460 	frame->mii_stdelim = NGE_MII_STARTDELIM;
461 	frame->mii_opcode = NGE_MII_WRITEOP;
462 	frame->mii_turnaround = NGE_MII_TURNAROUND;
463 
464 	/*
465 	 * Turn on data output.
466 	 */
467 	SIO_SET(NGE_MEAR_MII_DIR);
468 
469 	nge_mii_sync(sc);
470 
471 	nge_mii_send(sc, frame->mii_stdelim, 2);
472 	nge_mii_send(sc, frame->mii_opcode, 2);
473 	nge_mii_send(sc, frame->mii_phyaddr, 5);
474 	nge_mii_send(sc, frame->mii_regaddr, 5);
475 	nge_mii_send(sc, frame->mii_turnaround, 2);
476 	nge_mii_send(sc, frame->mii_data, 16);
477 
478 	/* Idle bit. */
479 	SIO_SET(NGE_MEAR_MII_CLK);
480 	DELAY(1);
481 	SIO_CLR(NGE_MEAR_MII_CLK);
482 	DELAY(1);
483 
484 	/*
485 	 * Turn off xmit.
486 	 */
487 	SIO_CLR(NGE_MEAR_MII_DIR);
488 
489 	splx(s);
490 
491 	return(0);
492 }
493 
494 int
nge_miibus_readreg(struct device * dev,int phy,int reg)495 nge_miibus_readreg(struct device *dev, int phy, int reg)
496 {
497 	struct nge_softc	*sc = (struct nge_softc *)dev;
498 	struct nge_mii_frame	frame;
499 
500 	DPRINTFN(9, ("%s: nge_miibus_readreg\n", sc->sc_dv.dv_xname));
501 
502 	bzero(&frame, sizeof(frame));
503 
504 	frame.mii_phyaddr = phy;
505 	frame.mii_regaddr = reg;
506 	nge_mii_readreg(sc, &frame);
507 
508 	return(frame.mii_data);
509 }
510 
511 void
nge_miibus_writereg(struct device * dev,int phy,int reg,int data)512 nge_miibus_writereg(struct device *dev, int phy, int reg, int data)
513 {
514 	struct nge_softc	*sc = (struct nge_softc *)dev;
515 	struct nge_mii_frame	frame;
516 
517 
518 	DPRINTFN(9, ("%s: nge_miibus_writereg\n", sc->sc_dv.dv_xname));
519 
520 	bzero(&frame, sizeof(frame));
521 
522 	frame.mii_phyaddr = phy;
523 	frame.mii_regaddr = reg;
524 	frame.mii_data = data;
525 	nge_mii_writereg(sc, &frame);
526 }
527 
528 void
nge_miibus_statchg(struct device * dev)529 nge_miibus_statchg(struct device *dev)
530 {
531 	struct nge_softc	*sc = (struct nge_softc *)dev;
532 	struct mii_data		*mii = &sc->nge_mii;
533 	u_int32_t		txcfg, rxcfg;
534 
535 	txcfg = CSR_READ_4(sc, NGE_TX_CFG);
536 	rxcfg = CSR_READ_4(sc, NGE_RX_CFG);
537 
538 	DPRINTFN(4, ("%s: nge_miibus_statchg txcfg=%#x, rxcfg=%#x\n",
539 		     sc->sc_dv.dv_xname, txcfg, rxcfg));
540 
541 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
542 		txcfg |= (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR);
543 		rxcfg |= (NGE_RXCFG_RX_FDX);
544 	} else {
545 		txcfg &= ~(NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR);
546 		rxcfg &= ~(NGE_RXCFG_RX_FDX);
547 	}
548 
549 	txcfg |= NGE_TXCFG_AUTOPAD;
550 
551 	CSR_WRITE_4(sc, NGE_TX_CFG, txcfg);
552 	CSR_WRITE_4(sc, NGE_RX_CFG, rxcfg);
553 
554 	/* If we have a 1000Mbps link, set the mode_1000 bit. */
555 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)
556 		NGE_SETBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
557 	else
558 		NGE_CLRBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
559 }
560 
561 void
nge_setmulti(struct nge_softc * sc)562 nge_setmulti(struct nge_softc *sc)
563 {
564 	struct arpcom		*ac = &sc->arpcom;
565 	struct ifnet		*ifp = &ac->ac_if;
566 	struct ether_multi      *enm;
567 	struct ether_multistep  step;
568 	u_int32_t		h = 0, i, filtsave;
569 	int			bit, index;
570 
571 	if (ac->ac_multirangecnt > 0)
572 		ifp->if_flags |= IFF_ALLMULTI;
573 
574 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
575 		NGE_CLRBIT(sc, NGE_RXFILT_CTL,
576 		    NGE_RXFILTCTL_MCHASH|NGE_RXFILTCTL_UCHASH);
577 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLMULTI);
578 		return;
579 	}
580 
581 	/*
582 	 * We have to explicitly enable the multicast hash table
583 	 * on the NatSemi chip if we want to use it, which we do.
584 	 * We also have to tell it that we don't want to use the
585 	 * hash table for matching unicast addresses.
586 	 */
587 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_MCHASH);
588 	NGE_CLRBIT(sc, NGE_RXFILT_CTL,
589 	    NGE_RXFILTCTL_ALLMULTI|NGE_RXFILTCTL_UCHASH);
590 
591 	filtsave = CSR_READ_4(sc, NGE_RXFILT_CTL);
592 
593 	/* first, zot all the existing hash bits */
594 	for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) {
595 		CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i);
596 		CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0);
597 	}
598 
599 	/*
600 	 * From the 11 bits returned by the crc routine, the top 7
601 	 * bits represent the 16-bit word in the mcast hash table
602 	 * that needs to be updated, and the lower 4 bits represent
603 	 * which bit within that byte needs to be set.
604 	 */
605 	ETHER_FIRST_MULTI(step, ac, enm);
606 	while (enm != NULL) {
607 		h = (ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) >> 21) &
608 		    0x00000FFF;
609 		index = (h >> 4) & 0x7F;
610 		bit = h & 0xF;
611 		CSR_WRITE_4(sc, NGE_RXFILT_CTL,
612 		    NGE_FILTADDR_MCAST_LO + (index * 2));
613 		NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit));
614 		ETHER_NEXT_MULTI(step, enm);
615 	}
616 
617 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, filtsave);
618 }
619 
620 void
nge_reset(struct nge_softc * sc)621 nge_reset(struct nge_softc *sc)
622 {
623 	int			i;
624 
625 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET);
626 
627 	for (i = 0; i < NGE_TIMEOUT; i++) {
628 		if (!(CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET))
629 			break;
630 	}
631 
632 	if (i == NGE_TIMEOUT)
633 		printf("%s: reset never completed\n", sc->sc_dv.dv_xname);
634 
635 	/* Wait a little while for the chip to get its brains in order. */
636 	DELAY(1000);
637 
638 	/*
639 	 * If this is a NetSemi chip, make sure to clear
640 	 * PME mode.
641 	 */
642 	CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS);
643 	CSR_WRITE_4(sc, NGE_CLKRUN, 0);
644 }
645 
646 /*
647  * Probe for an NatSemi chip. Check the PCI vendor and device
648  * IDs against our list and return a device name if we find a match.
649  */
650 int
nge_probe(struct device * parent,void * match,void * aux)651 nge_probe(struct device *parent, void *match, void *aux)
652 {
653 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
654 
655 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NS &&
656 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NS_DP83820)
657 		return (1);
658 
659 	return (0);
660 }
661 
662 /*
663  * Attach the interface. Allocate softc structures, do ifmedia
664  * setup and ethernet/BPF attach.
665  */
666 void
nge_attach(struct device * parent,struct device * self,void * aux)667 nge_attach(struct device *parent, struct device *self, void *aux)
668 {
669 	struct nge_softc	*sc = (struct nge_softc *)self;
670 	struct pci_attach_args	*pa = aux;
671 	pci_chipset_tag_t	pc = pa->pa_pc;
672 	pci_intr_handle_t	ih;
673 	const char		*intrstr = NULL;
674 	bus_size_t		size;
675 	bus_dma_segment_t	seg;
676 	bus_dmamap_t		dmamap;
677 	int			rseg;
678 	u_char			eaddr[ETHER_ADDR_LEN];
679 #ifndef NGE_USEIOSPACE
680 	pcireg_t		memtype;
681 #endif
682 	struct ifnet		*ifp;
683 	caddr_t			kva;
684 
685 	pci_set_powerstate(pa->pa_pc, pa->pa_tag, PCI_PMCSR_STATE_D0);
686 
687 	/*
688 	 * Map control/status registers.
689 	 */
690 	DPRINTFN(5, ("%s: map control/status regs\n", sc->sc_dv.dv_xname));
691 
692 #ifdef NGE_USEIOSPACE
693 	DPRINTFN(5, ("%s: pci_mapreg_map\n", sc->sc_dv.dv_xname));
694 	if (pci_mapreg_map(pa, NGE_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
695 	    &sc->nge_btag, &sc->nge_bhandle, NULL, &size, 0)) {
696 		printf(": can't map i/o space\n");
697 		return;
698 	}
699 #else
700 	DPRINTFN(5, ("%s: pci_mapreg_map\n", sc->sc_dv.dv_xname));
701 	memtype = pci_mapreg_type(pc, pa->pa_tag, NGE_PCI_LOMEM);
702 	if (pci_mapreg_map(pa, NGE_PCI_LOMEM, memtype, 0, &sc->nge_btag,
703 	    &sc->nge_bhandle, NULL, &size, 0)) {
704 		printf(": can't map mem space\n");
705 		return;
706 	}
707 #endif
708 
709 	/* Disable all interrupts */
710 	CSR_WRITE_4(sc, NGE_IER, 0);
711 
712 	DPRINTFN(5, ("%s: pci_intr_map\n", sc->sc_dv.dv_xname));
713 	if (pci_intr_map(pa, &ih)) {
714 		printf(": couldn't map interrupt\n");
715 		goto fail_1;
716 	}
717 
718 	DPRINTFN(5, ("%s: pci_intr_string\n", sc->sc_dv.dv_xname));
719 	intrstr = pci_intr_string(pc, ih);
720 	DPRINTFN(5, ("%s: pci_intr_establish\n", sc->sc_dv.dv_xname));
721 	sc->nge_intrhand = pci_intr_establish(pc, ih, IPL_NET, nge_intr, sc,
722 					      sc->sc_dv.dv_xname);
723 	if (sc->nge_intrhand == NULL) {
724 		printf(": couldn't establish interrupt");
725 		if (intrstr != NULL)
726 			printf(" at %s", intrstr);
727 		printf("\n");
728 		goto fail_1;
729 	}
730 	printf(": %s", intrstr);
731 
732 	/* Reset the adapter. */
733 	DPRINTFN(5, ("%s: nge_reset\n", sc->sc_dv.dv_xname));
734 	nge_reset(sc);
735 
736 	/*
737 	 * Get station address from the EEPROM.
738 	 */
739 	DPRINTFN(5, ("%s: nge_read_eeprom\n", sc->sc_dv.dv_xname));
740 	nge_read_eeprom(sc, (caddr_t)&eaddr[4], NGE_EE_NODEADDR, 1, 0);
741 	nge_read_eeprom(sc, (caddr_t)&eaddr[2], NGE_EE_NODEADDR + 1, 1, 0);
742 	nge_read_eeprom(sc, (caddr_t)&eaddr[0], NGE_EE_NODEADDR + 2, 1, 0);
743 
744 	/*
745 	 * A NatSemi chip was detected. Inform the world.
746 	 */
747 	printf(", address %s\n", ether_sprintf(eaddr));
748 
749 	bcopy(eaddr, &sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
750 
751 	sc->sc_dmatag = pa->pa_dmat;
752 	DPRINTFN(5, ("%s: bus_dmamem_alloc\n", sc->sc_dv.dv_xname));
753 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct nge_list_data),
754 			     PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT |
755 			     BUS_DMA_ZERO)) {
756 		printf("%s: can't alloc rx buffers\n", sc->sc_dv.dv_xname);
757 		goto fail_2;
758 	}
759 	DPRINTFN(5, ("%s: bus_dmamem_map\n", sc->sc_dv.dv_xname));
760 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
761 			   sizeof(struct nge_list_data), &kva,
762 			   BUS_DMA_NOWAIT)) {
763 		printf("%s: can't map dma buffers (%zd bytes)\n",
764 		       sc->sc_dv.dv_xname, sizeof(struct nge_list_data));
765 		goto fail_3;
766 	}
767 	DPRINTFN(5, ("%s: bus_dmamap_create\n", sc->sc_dv.dv_xname));
768 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct nge_list_data), 1,
769 			      sizeof(struct nge_list_data), 0,
770 			      BUS_DMA_NOWAIT, &dmamap)) {
771 		printf("%s: can't create dma map\n", sc->sc_dv.dv_xname);
772 		goto fail_4;
773 	}
774 	DPRINTFN(5, ("%s: bus_dmamap_load\n", sc->sc_dv.dv_xname));
775 	if (bus_dmamap_load(sc->sc_dmatag, dmamap, kva,
776 			    sizeof(struct nge_list_data), NULL,
777 			    BUS_DMA_NOWAIT)) {
778 		goto fail_5;
779 	}
780 
781 	DPRINTFN(5, ("%s: bzero\n", sc->sc_dv.dv_xname));
782 	sc->nge_ldata = (struct nge_list_data *)kva;
783 
784 	ifp = &sc->arpcom.ac_if;
785 	ifp->if_softc = sc;
786 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
787 	ifp->if_ioctl = nge_ioctl;
788 	ifp->if_start = nge_start;
789 	ifp->if_watchdog = nge_watchdog;
790 	ifp->if_hardmtu = NGE_JUMBO_MTU;
791 	ifq_init_maxlen(&ifp->if_snd, NGE_TX_LIST_CNT - 1);
792 	DPRINTFN(5, ("%s: bcopy\n", sc->sc_dv.dv_xname));
793 	bcopy(sc->sc_dv.dv_xname, ifp->if_xname, IFNAMSIZ);
794 
795 	ifp->if_capabilities = IFCAP_VLAN_MTU;
796 
797 #if NVLAN > 0
798 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
799 #endif
800 
801 	/*
802 	 * Do MII setup.
803 	 */
804 	DPRINTFN(5, ("%s: mii setup\n", sc->sc_dv.dv_xname));
805 	if (CSR_READ_4(sc, NGE_CFG) & NGE_CFG_TBI_EN) {
806 		DPRINTFN(5, ("%s: TBI mode\n", sc->sc_dv.dv_xname));
807 		sc->nge_tbi = 1;
808 
809 		ifmedia_init(&sc->nge_ifmedia, 0, nge_ifmedia_tbi_upd,
810 			     nge_ifmedia_tbi_sts);
811 
812 		ifmedia_add(&sc->nge_ifmedia, IFM_ETHER|IFM_NONE, 0, NULL),
813 		ifmedia_add(&sc->nge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
814 		ifmedia_add(&sc->nge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
815 			    0, NULL);
816 		ifmedia_add(&sc->nge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
817 
818 		ifmedia_set(&sc->nge_ifmedia, IFM_ETHER|IFM_AUTO);
819 
820 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
821 			    | NGE_GPIO_GP4_OUT
822 			    | NGE_GPIO_GP1_OUTENB | NGE_GPIO_GP2_OUTENB
823 			    | NGE_GPIO_GP3_OUTENB | NGE_GPIO_GP4_OUTENB
824 			    | NGE_GPIO_GP5_OUTENB);
825 
826 		NGE_SETBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
827 	} else {
828 		sc->nge_mii.mii_ifp = ifp;
829 		sc->nge_mii.mii_readreg = nge_miibus_readreg;
830 		sc->nge_mii.mii_writereg = nge_miibus_writereg;
831 		sc->nge_mii.mii_statchg = nge_miibus_statchg;
832 
833 		ifmedia_init(&sc->nge_mii.mii_media, 0, nge_ifmedia_mii_upd,
834 			     nge_ifmedia_mii_sts);
835 		mii_attach(&sc->sc_dv, &sc->nge_mii, 0xffffffff, MII_PHY_ANY,
836 			   MII_OFFSET_ANY, 0);
837 
838 		if (LIST_FIRST(&sc->nge_mii.mii_phys) == NULL) {
839 
840 			printf("%s: no PHY found!\n", sc->sc_dv.dv_xname);
841 			ifmedia_add(&sc->nge_mii.mii_media,
842 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
843 			ifmedia_set(&sc->nge_mii.mii_media,
844 				    IFM_ETHER|IFM_MANUAL);
845 		}
846 		else
847 			ifmedia_set(&sc->nge_mii.mii_media,
848 				    IFM_ETHER|IFM_AUTO);
849 	}
850 
851 	/*
852 	 * Call MI attach routine.
853 	 */
854 	DPRINTFN(5, ("%s: if_attach\n", sc->sc_dv.dv_xname));
855 	if_attach(ifp);
856 	DPRINTFN(5, ("%s: ether_ifattach\n", sc->sc_dv.dv_xname));
857 	ether_ifattach(ifp);
858 	DPRINTFN(5, ("%s: timeout_set\n", sc->sc_dv.dv_xname));
859 	timeout_set(&sc->nge_timeout, nge_tick, sc);
860 	timeout_add_sec(&sc->nge_timeout, 1);
861 	return;
862 
863 fail_5:
864 	bus_dmamap_destroy(sc->sc_dmatag, dmamap);
865 
866 fail_4:
867 	bus_dmamem_unmap(sc->sc_dmatag, kva,
868 	    sizeof(struct nge_list_data));
869 
870 fail_3:
871 	bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
872 
873 fail_2:
874 	pci_intr_disestablish(pc, sc->nge_intrhand);
875 
876 fail_1:
877 	bus_space_unmap(sc->nge_btag, sc->nge_bhandle, size);
878 }
879 
880 /*
881  * Initialize the transmit descriptors.
882  */
883 int
nge_list_tx_init(struct nge_softc * sc)884 nge_list_tx_init(struct nge_softc *sc)
885 {
886 	struct nge_list_data	*ld;
887 	struct nge_ring_data	*cd;
888 	int			i;
889 
890 	cd = &sc->nge_cdata;
891 	ld = sc->nge_ldata;
892 
893 	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
894 		if (i == (NGE_TX_LIST_CNT - 1)) {
895 			ld->nge_tx_list[i].nge_nextdesc =
896 			    &ld->nge_tx_list[0];
897 			ld->nge_tx_list[i].nge_next =
898 			    VTOPHYS(&ld->nge_tx_list[0]);
899 		} else {
900 			ld->nge_tx_list[i].nge_nextdesc =
901 			    &ld->nge_tx_list[i + 1];
902 			ld->nge_tx_list[i].nge_next =
903 			    VTOPHYS(&ld->nge_tx_list[i + 1]);
904 		}
905 		ld->nge_tx_list[i].nge_mbuf = NULL;
906 		ld->nge_tx_list[i].nge_ptr = 0;
907 		ld->nge_tx_list[i].nge_ctl = 0;
908 	}
909 
910 	cd->nge_tx_prod = cd->nge_tx_cons = cd->nge_tx_cnt = 0;
911 
912 	return(0);
913 }
914 
915 
916 /*
917  * Initialize the RX descriptors and allocate mbufs for them. Note that
918  * we arrange the descriptors in a closed ring, so that the last descriptor
919  * points back to the first.
920  */
921 int
nge_list_rx_init(struct nge_softc * sc)922 nge_list_rx_init(struct nge_softc *sc)
923 {
924 	struct nge_list_data	*ld;
925 	struct nge_ring_data	*cd;
926 	int			i;
927 
928 	ld = sc->nge_ldata;
929 	cd = &sc->nge_cdata;
930 
931 	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
932 		if (nge_newbuf(sc, &ld->nge_rx_list[i], NULL) == ENOBUFS)
933 			return(ENOBUFS);
934 		if (i == (NGE_RX_LIST_CNT - 1)) {
935 			ld->nge_rx_list[i].nge_nextdesc =
936 			    &ld->nge_rx_list[0];
937 			ld->nge_rx_list[i].nge_next =
938 			    VTOPHYS(&ld->nge_rx_list[0]);
939 		} else {
940 			ld->nge_rx_list[i].nge_nextdesc =
941 			    &ld->nge_rx_list[i + 1];
942 			ld->nge_rx_list[i].nge_next =
943 			    VTOPHYS(&ld->nge_rx_list[i + 1]);
944 		}
945 	}
946 
947 	cd->nge_rx_prod = 0;
948 
949 	return(0);
950 }
951 
952 /*
953  * Initialize an RX descriptor and attach an MBUF cluster.
954  */
955 int
nge_newbuf(struct nge_softc * sc,struct nge_desc * c,struct mbuf * m)956 nge_newbuf(struct nge_softc *sc, struct nge_desc *c, struct mbuf *m)
957 {
958 	struct mbuf		*m_new = NULL;
959 
960 	if (m == NULL) {
961 		m_new = MCLGETL(NULL, M_DONTWAIT, NGE_MCLBYTES);
962 		if (m_new == NULL)
963 			return (ENOBUFS);
964 	} else {
965 		/*
966 		 * We're re-using a previously allocated mbuf;
967 		 * be sure to re-init pointers and lengths to
968 		 * default values.
969 		 */
970 		m_new = m;
971 		m_new->m_data = m_new->m_ext.ext_buf;
972 	}
973 
974 	m_new->m_len = m_new->m_pkthdr.len = NGE_MCLBYTES;
975 	m_adj(m_new, sizeof(u_int64_t));
976 
977 	c->nge_mbuf = m_new;
978 	c->nge_ptr = VTOPHYS(mtod(m_new, caddr_t));
979 	DPRINTFN(7,("%s: c->nge_ptr=%#x\n", sc->sc_dv.dv_xname,
980 		    c->nge_ptr));
981 	c->nge_ctl = m_new->m_len;
982 	c->nge_extsts = 0;
983 
984 	return(0);
985 }
986 
987 /*
988  * A frame has been uploaded: pass the resulting mbuf chain up to
989  * the higher level protocols.
990  */
991 void
nge_rxeof(struct nge_softc * sc)992 nge_rxeof(struct nge_softc *sc)
993 {
994 	struct mbuf_list	ml = MBUF_LIST_INITIALIZER();
995         struct mbuf		*m;
996         struct ifnet		*ifp;
997 	struct nge_desc		*cur_rx;
998 	int			i, total_len = 0;
999 	u_int32_t		rxstat;
1000 
1001 	ifp = &sc->arpcom.ac_if;
1002 	i = sc->nge_cdata.nge_rx_prod;
1003 
1004 	while (NGE_OWNDESC(&sc->nge_ldata->nge_rx_list[i])) {
1005 		struct mbuf		*m0 = NULL;
1006 		u_int32_t		extsts;
1007 
1008 		cur_rx = &sc->nge_ldata->nge_rx_list[i];
1009 		rxstat = cur_rx->nge_rxstat;
1010 		extsts = cur_rx->nge_extsts;
1011 		m = cur_rx->nge_mbuf;
1012 		cur_rx->nge_mbuf = NULL;
1013 		total_len = NGE_RXBYTES(cur_rx);
1014 		NGE_INC(i, NGE_RX_LIST_CNT);
1015 
1016 		/*
1017 		 * If an error occurs, update stats, clear the
1018 		 * status word and leave the mbuf cluster in place:
1019 		 * it should simply get re-used next time this descriptor
1020 		 * comes up in the ring.
1021 		 */
1022 		if (!(rxstat & NGE_CMDSTS_PKT_OK)) {
1023 #if NVLAN > 0
1024 			if ((rxstat & NGE_RXSTAT_RUNT) &&
1025 			    total_len >= (ETHER_MIN_LEN - ETHER_CRC_LEN -
1026 			    ETHER_VLAN_ENCAP_LEN)) {
1027 				/*
1028 				 * Workaround a hardware bug. Accept runt
1029 				 * frames if its length is larger than or
1030 				 * equal to 56.
1031 				 */
1032 			} else {
1033 #endif
1034 				ifp->if_ierrors++;
1035 				nge_newbuf(sc, cur_rx, m);
1036 				continue;
1037 #if NVLAN > 0
1038 			}
1039 #endif
1040 		}
1041 
1042 		/*
1043 		 * Ok. NatSemi really screwed up here. This is the
1044 		 * only gigE chip I know of with alignment constraints
1045 		 * on receive buffers. RX buffers must be 64-bit aligned.
1046 		 */
1047 #ifndef __STRICT_ALIGNMENT
1048 		/*
1049 		 * By popular demand, ignore the alignment problems
1050 		 * on the Intel x86 platform. The performance hit
1051 		 * incurred due to unaligned accesses is much smaller
1052 		 * than the hit produced by forcing buffer copies all
1053 		 * the time, especially with jumbo frames. We still
1054 		 * need to fix up the alignment everywhere else though.
1055 		 */
1056 		if (nge_newbuf(sc, cur_rx, NULL) == ENOBUFS) {
1057 #endif
1058 			m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN);
1059 			nge_newbuf(sc, cur_rx, m);
1060 			if (m0 == NULL) {
1061 				ifp->if_ierrors++;
1062 				continue;
1063 			}
1064 			m_adj(m0, ETHER_ALIGN);
1065 			m = m0;
1066 #ifndef __STRICT_ALIGNMENT
1067 		} else {
1068 			m->m_pkthdr.len = m->m_len = total_len;
1069 		}
1070 #endif
1071 
1072 #if NVLAN > 0
1073 		if (extsts & NGE_RXEXTSTS_VLANPKT) {
1074 			m->m_pkthdr.ether_vtag =
1075 			    ntohs(extsts & NGE_RXEXTSTS_VTCI);
1076 			m->m_flags |= M_VLANTAG;
1077 		}
1078 #endif
1079 
1080 		/* Do IP checksum checking. */
1081 		if (extsts & NGE_RXEXTSTS_IPPKT) {
1082 			if (!(extsts & NGE_RXEXTSTS_IPCSUMERR))
1083 				m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
1084 			if ((extsts & NGE_RXEXTSTS_TCPPKT) &&
1085 			    (!(extsts & NGE_RXEXTSTS_TCPCSUMERR)))
1086 				m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK;
1087 			else if ((extsts & NGE_RXEXTSTS_UDPPKT) &&
1088 				 (!(extsts & NGE_RXEXTSTS_UDPCSUMERR)))
1089 				m->m_pkthdr.csum_flags |= M_UDP_CSUM_IN_OK;
1090 		}
1091 
1092 		ml_enqueue(&ml, m);
1093 	}
1094 
1095 	if_input(ifp, &ml);
1096 
1097 	sc->nge_cdata.nge_rx_prod = i;
1098 }
1099 
1100 /*
1101  * A frame was downloaded to the chip. It's safe for us to clean up
1102  * the list buffers.
1103  */
1104 
1105 void
nge_txeof(struct nge_softc * sc)1106 nge_txeof(struct nge_softc *sc)
1107 {
1108 	struct nge_desc		*cur_tx;
1109 	struct ifnet		*ifp;
1110 	u_int32_t		idx;
1111 
1112 	ifp = &sc->arpcom.ac_if;
1113 
1114 	/*
1115 	 * Go through our tx list and free mbufs for those
1116 	 * frames that have been transmitted.
1117 	 */
1118 	idx = sc->nge_cdata.nge_tx_cons;
1119 	while (idx != sc->nge_cdata.nge_tx_prod) {
1120 		cur_tx = &sc->nge_ldata->nge_tx_list[idx];
1121 
1122 		if (NGE_OWNDESC(cur_tx))
1123 			break;
1124 
1125 		if (cur_tx->nge_ctl & NGE_CMDSTS_MORE) {
1126 			sc->nge_cdata.nge_tx_cnt--;
1127 			NGE_INC(idx, NGE_TX_LIST_CNT);
1128 			continue;
1129 		}
1130 
1131 		if (!(cur_tx->nge_ctl & NGE_CMDSTS_PKT_OK)) {
1132 			ifp->if_oerrors++;
1133 			if (cur_tx->nge_txstat & NGE_TXSTAT_EXCESSCOLLS)
1134 				ifp->if_collisions++;
1135 			if (cur_tx->nge_txstat & NGE_TXSTAT_OUTOFWINCOLL)
1136 				ifp->if_collisions++;
1137 		}
1138 
1139 		ifp->if_collisions +=
1140 		    (cur_tx->nge_txstat & NGE_TXSTAT_COLLCNT) >> 16;
1141 
1142 		if (cur_tx->nge_mbuf != NULL) {
1143 			m_freem(cur_tx->nge_mbuf);
1144 			cur_tx->nge_mbuf = NULL;
1145 			ifq_clr_oactive(&ifp->if_snd);
1146 		}
1147 
1148 		sc->nge_cdata.nge_tx_cnt--;
1149 		NGE_INC(idx, NGE_TX_LIST_CNT);
1150 	}
1151 
1152 	sc->nge_cdata.nge_tx_cons = idx;
1153 
1154 	if (idx == sc->nge_cdata.nge_tx_prod)
1155 		ifp->if_timer = 0;
1156 }
1157 
1158 void
nge_tick(void * xsc)1159 nge_tick(void *xsc)
1160 {
1161 	struct nge_softc	*sc = xsc;
1162 	struct mii_data		*mii = &sc->nge_mii;
1163 	struct ifnet		*ifp = &sc->arpcom.ac_if;
1164 	int			s;
1165 
1166 	s = splnet();
1167 
1168 	DPRINTFN(10, ("%s: nge_tick: link=%d\n", sc->sc_dv.dv_xname,
1169 		      sc->nge_link));
1170 
1171 	timeout_add_sec(&sc->nge_timeout, 1);
1172 	if (sc->nge_link) {
1173 		splx(s);
1174 		return;
1175 	}
1176 
1177 	if (sc->nge_tbi) {
1178 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
1179 		    == IFM_AUTO) {
1180 			u_int32_t bmsr, anlpar, txcfg, rxcfg;
1181 
1182 			bmsr = CSR_READ_4(sc, NGE_TBI_BMSR);
1183 			DPRINTFN(2, ("%s: nge_tick: bmsr=%#x\n",
1184 				     sc->sc_dv.dv_xname, bmsr));
1185 
1186 			if (!(bmsr & NGE_TBIBMSR_ANEG_DONE)) {
1187 				CSR_WRITE_4(sc, NGE_TBI_BMCR, 0);
1188 
1189 				splx(s);
1190 				return;
1191 			}
1192 
1193 			anlpar = CSR_READ_4(sc, NGE_TBI_ANLPAR);
1194 			txcfg = CSR_READ_4(sc, NGE_TX_CFG);
1195 			rxcfg = CSR_READ_4(sc, NGE_RX_CFG);
1196 
1197 			DPRINTFN(2, ("%s: nge_tick: anlpar=%#x, txcfg=%#x, "
1198 				     "rxcfg=%#x\n", sc->sc_dv.dv_xname, anlpar,
1199 				     txcfg, rxcfg));
1200 
1201 			if (anlpar == 0 || anlpar & NGE_TBIANAR_FDX) {
1202 				txcfg |= (NGE_TXCFG_IGN_HBEAT|
1203 					  NGE_TXCFG_IGN_CARR);
1204 				rxcfg |= NGE_RXCFG_RX_FDX;
1205 			} else {
1206 				txcfg &= ~(NGE_TXCFG_IGN_HBEAT|
1207 					   NGE_TXCFG_IGN_CARR);
1208 				rxcfg &= ~(NGE_RXCFG_RX_FDX);
1209 			}
1210 			txcfg |= NGE_TXCFG_AUTOPAD;
1211 			CSR_WRITE_4(sc, NGE_TX_CFG, txcfg);
1212 			CSR_WRITE_4(sc, NGE_RX_CFG, rxcfg);
1213 		}
1214 
1215 		DPRINTF(("%s: gigabit link up\n", sc->sc_dv.dv_xname));
1216 		sc->nge_link++;
1217 		if (!ifq_empty(&ifp->if_snd))
1218 			nge_start(ifp);
1219 	} else {
1220 		mii_tick(mii);
1221 		if (mii->mii_media_status & IFM_ACTIVE &&
1222 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1223 			sc->nge_link++;
1224 			if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)
1225 				DPRINTF(("%s: gigabit link up\n",
1226 					 sc->sc_dv.dv_xname));
1227 			if (!ifq_empty(&ifp->if_snd))
1228 				nge_start(ifp);
1229 		}
1230 
1231 	}
1232 
1233 	splx(s);
1234 }
1235 
1236 int
nge_intr(void * arg)1237 nge_intr(void *arg)
1238 {
1239 	struct nge_softc	*sc;
1240 	struct ifnet		*ifp;
1241 	u_int32_t		status;
1242 	int			claimed = 0;
1243 
1244 	sc = arg;
1245 	ifp = &sc->arpcom.ac_if;
1246 
1247 	/* Suppress unwanted interrupts */
1248 	if (!(ifp->if_flags & IFF_UP)) {
1249 		nge_stop(sc);
1250 		return (0);
1251 	}
1252 
1253 	/* Disable interrupts. */
1254 	CSR_WRITE_4(sc, NGE_IER, 0);
1255 
1256 	/* Data LED on for TBI mode */
1257 	if(sc->nge_tbi)
1258 		 CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1259 			     | NGE_GPIO_GP3_OUT);
1260 
1261 	for (;;) {
1262 		/* Reading the ISR register clears all interrupts. */
1263 		status = CSR_READ_4(sc, NGE_ISR);
1264 
1265 		if ((status & NGE_INTRS) == 0)
1266 			break;
1267 
1268 		claimed = 1;
1269 
1270 		if ((status & NGE_ISR_TX_DESC_OK) ||
1271 		    (status & NGE_ISR_TX_ERR) ||
1272 		    (status & NGE_ISR_TX_OK) ||
1273 		    (status & NGE_ISR_TX_IDLE))
1274 			nge_txeof(sc);
1275 
1276 		if ((status & NGE_ISR_RX_DESC_OK) ||
1277 		    (status & NGE_ISR_RX_ERR) ||
1278 		    (status & NGE_ISR_RX_OFLOW) ||
1279 		    (status & NGE_ISR_RX_FIFO_OFLOW) ||
1280 		    (status & NGE_ISR_RX_IDLE) ||
1281 		    (status & NGE_ISR_RX_OK))
1282 			nge_rxeof(sc);
1283 
1284 		if ((status & NGE_ISR_RX_IDLE))
1285 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1286 
1287 		if (status & NGE_ISR_SYSERR) {
1288 			nge_reset(sc);
1289 			ifp->if_flags &= ~IFF_RUNNING;
1290 			nge_init(sc);
1291 		}
1292 
1293 #if 0
1294 		/*
1295 		 * XXX: nge_tick() is not ready to be called this way
1296 		 * it screws up the aneg timeout because mii_tick() is
1297 		 * only to be called once per second.
1298 		 */
1299 		if (status & NGE_IMR_PHY_INTR) {
1300 			sc->nge_link = 0;
1301 			nge_tick(sc);
1302 		}
1303 #endif
1304 	}
1305 
1306 	/* Re-enable interrupts. */
1307 	CSR_WRITE_4(sc, NGE_IER, 1);
1308 
1309 	if (!ifq_empty(&ifp->if_snd))
1310 		nge_start(ifp);
1311 
1312 	/* Data LED off for TBI mode */
1313 	if(sc->nge_tbi)
1314 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1315 			    & ~NGE_GPIO_GP3_OUT);
1316 
1317 	return claimed;
1318 }
1319 
1320 /*
1321  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1322  * pointers to the fragment pointers.
1323  */
1324 int
nge_encap(struct nge_softc * sc,struct mbuf * m_head,u_int32_t * txidx)1325 nge_encap(struct nge_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
1326 {
1327 	struct nge_desc		*f = NULL;
1328 	struct mbuf		*m;
1329 	int			frag, cur, cnt = 0;
1330 
1331 	/*
1332 	 * Start packing the mbufs in this chain into
1333 	 * the fragment pointers. Stop when we run out
1334 	 * of fragments or hit the end of the mbuf chain.
1335 	 */
1336 	m = m_head;
1337 	cur = frag = *txidx;
1338 
1339 	for (m = m_head; m != NULL; m = m->m_next) {
1340 		if (m->m_len != 0) {
1341 			if ((NGE_TX_LIST_CNT -
1342 			    (sc->nge_cdata.nge_tx_cnt + cnt)) < 2)
1343 				return(ENOBUFS);
1344 			f = &sc->nge_ldata->nge_tx_list[frag];
1345 			f->nge_ctl = NGE_CMDSTS_MORE | m->m_len;
1346 			f->nge_ptr = VTOPHYS(mtod(m, vaddr_t));
1347 			DPRINTFN(7,("%s: f->nge_ptr=%#x\n",
1348 				    sc->sc_dv.dv_xname, f->nge_ptr));
1349 			if (cnt != 0)
1350 				f->nge_ctl |= NGE_CMDSTS_OWN;
1351 			cur = frag;
1352 			NGE_INC(frag, NGE_TX_LIST_CNT);
1353 			cnt++;
1354 		}
1355 	}
1356 
1357 	if (m != NULL)
1358 		return(ENOBUFS);
1359 
1360 	sc->nge_ldata->nge_tx_list[*txidx].nge_extsts = 0;
1361 
1362 #if NVLAN > 0
1363 	if (m_head->m_flags & M_VLANTAG) {
1364 		sc->nge_ldata->nge_tx_list[cur].nge_extsts |=
1365 		    (NGE_TXEXTSTS_VLANPKT|htons(m_head->m_pkthdr.ether_vtag));
1366 	}
1367 #endif
1368 
1369 	sc->nge_ldata->nge_tx_list[cur].nge_mbuf = m_head;
1370 	sc->nge_ldata->nge_tx_list[cur].nge_ctl &= ~NGE_CMDSTS_MORE;
1371 	sc->nge_ldata->nge_tx_list[*txidx].nge_ctl |= NGE_CMDSTS_OWN;
1372 	sc->nge_cdata.nge_tx_cnt += cnt;
1373 	*txidx = frag;
1374 
1375 	return(0);
1376 }
1377 
1378 /*
1379  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1380  * to the mbuf data regions directly in the transmit lists. We also save a
1381  * copy of the pointers since the transmit list fragment pointers are
1382  * physical addresses.
1383  */
1384 
1385 void
nge_start(struct ifnet * ifp)1386 nge_start(struct ifnet *ifp)
1387 {
1388 	struct nge_softc	*sc;
1389 	struct mbuf		*m_head = NULL;
1390 	u_int32_t		idx;
1391 	int			pkts = 0;
1392 
1393 	sc = ifp->if_softc;
1394 
1395 	if (!sc->nge_link)
1396 		return;
1397 
1398 	idx = sc->nge_cdata.nge_tx_prod;
1399 
1400 	if (ifq_is_oactive(&ifp->if_snd))
1401 		return;
1402 
1403 	while(sc->nge_ldata->nge_tx_list[idx].nge_mbuf == NULL) {
1404 		m_head = ifq_deq_begin(&ifp->if_snd);
1405 		if (m_head == NULL)
1406 			break;
1407 
1408 		if (nge_encap(sc, m_head, &idx)) {
1409 			ifq_deq_rollback(&ifp->if_snd, m_head);
1410 			ifq_set_oactive(&ifp->if_snd);
1411 			break;
1412 		}
1413 
1414 		/* now we are committed to transmit the packet */
1415 		ifq_deq_commit(&ifp->if_snd, m_head);
1416 		pkts++;
1417 
1418 #if NBPFILTER > 0
1419 		/*
1420 		 * If there's a BPF listener, bounce a copy of this frame
1421 		 * to him.
1422 		 */
1423 		if (ifp->if_bpf)
1424 			bpf_mtap_ether(ifp->if_bpf, m_head, BPF_DIRECTION_OUT);
1425 #endif
1426 	}
1427 	if (pkts == 0)
1428 		return;
1429 
1430 	/* Transmit */
1431 	sc->nge_cdata.nge_tx_prod = idx;
1432 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE);
1433 
1434 	/*
1435 	 * Set a timeout in case the chip goes out to lunch.
1436 	 */
1437 	ifp->if_timer = 5;
1438 }
1439 
1440 void
nge_init(void * xsc)1441 nge_init(void *xsc)
1442 {
1443 	struct nge_softc	*sc = xsc;
1444 	struct ifnet		*ifp = &sc->arpcom.ac_if;
1445 	struct mii_data		*mii;
1446 	u_int32_t		txcfg, rxcfg;
1447 	uint64_t		media;
1448 	int			s;
1449 
1450 	if (ifp->if_flags & IFF_RUNNING)
1451 		return;
1452 
1453 	s = splnet();
1454 
1455 	/*
1456 	 * Cancel pending I/O and free all RX/TX buffers.
1457 	 */
1458 	nge_stop(sc);
1459 
1460 	mii = sc->nge_tbi ? NULL: &sc->nge_mii;
1461 
1462 	/* Set MAC address */
1463 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0);
1464 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1465 	    ((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
1466 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1);
1467 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1468 	    ((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
1469 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2);
1470 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1471 	    ((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
1472 
1473 	/* Init circular RX list. */
1474 	if (nge_list_rx_init(sc) == ENOBUFS) {
1475 		printf("%s: initialization failed: no "
1476 			"memory for rx buffers\n", sc->sc_dv.dv_xname);
1477 		nge_stop(sc);
1478 		splx(s);
1479 		return;
1480 	}
1481 
1482 	/*
1483 	 * Init tx descriptors.
1484 	 */
1485 	nge_list_tx_init(sc);
1486 
1487 	/*
1488 	 * For the NatSemi chip, we have to explicitly enable the
1489 	 * reception of ARP frames, as well as turn on the 'perfect
1490 	 * match' filter where we store the station address, otherwise
1491 	 * we won't receive unicasts meant for this host.
1492 	 */
1493 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ARP);
1494 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_PERFECT);
1495 
1496 	 /* If we want promiscuous mode, set the allframes bit. */
1497 	if (ifp->if_flags & IFF_PROMISC)
1498 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1499 	else
1500 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1501 
1502 	/*
1503 	 * Set the capture broadcast bit to capture broadcast frames.
1504 	 */
1505 	if (ifp->if_flags & IFF_BROADCAST)
1506 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1507 	else
1508 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1509 
1510 	/*
1511 	 * Load the multicast filter.
1512 	 */
1513 	nge_setmulti(sc);
1514 
1515 	/* Turn the receive filter on */
1516 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ENABLE);
1517 
1518 	/*
1519 	 * Load the address of the RX and TX lists.
1520 	 */
1521 	CSR_WRITE_4(sc, NGE_RX_LISTPTR,
1522 	    VTOPHYS(&sc->nge_ldata->nge_rx_list[0]));
1523 	CSR_WRITE_4(sc, NGE_TX_LISTPTR,
1524 	    VTOPHYS(&sc->nge_ldata->nge_tx_list[0]));
1525 
1526 	/* Set RX configuration */
1527 	CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG);
1528 
1529 	/*
1530 	 * Enable hardware checksum validation for all IPv4
1531 	 * packets, do not reject packets with bad checksums.
1532 	 */
1533 	CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB);
1534 
1535 	/*
1536 	 * If VLAN support is enabled, tell the chip to detect
1537 	 * and strip VLAN tag info from received frames. The tag
1538 	 * will be provided in the extsts field in the RX descriptors.
1539 	 */
1540 	if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)
1541 		NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL,
1542 		    NGE_VIPRXCTL_TAG_DETECT_ENB | NGE_VIPRXCTL_TAG_STRIP_ENB);
1543 
1544 	/* Set TX configuration */
1545 	CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG);
1546 
1547 	/*
1548 	 * If VLAN support is enabled, tell the chip to insert
1549 	 * VLAN tags on a per-packet basis as dictated by the
1550 	 * code in the frame encapsulation routine.
1551 	 */
1552 	if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)
1553 		NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT);
1554 
1555 	/* Set full/half duplex mode. */
1556 	if (sc->nge_tbi)
1557 		media = sc->nge_ifmedia.ifm_cur->ifm_media;
1558 	else
1559 		media = mii->mii_media_active;
1560 
1561 	txcfg = CSR_READ_4(sc, NGE_TX_CFG);
1562 	rxcfg = CSR_READ_4(sc, NGE_RX_CFG);
1563 
1564 	DPRINTFN(4, ("%s: nge_init txcfg=%#x, rxcfg=%#x\n",
1565 		     sc->sc_dv.dv_xname, txcfg, rxcfg));
1566 
1567 	if ((media & IFM_GMASK) == IFM_FDX) {
1568 		txcfg |= (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR);
1569 		rxcfg |= (NGE_RXCFG_RX_FDX);
1570 	} else {
1571 		txcfg &= ~(NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR);
1572 		rxcfg &= ~(NGE_RXCFG_RX_FDX);
1573 	}
1574 
1575 	txcfg |= NGE_TXCFG_AUTOPAD;
1576 
1577 	CSR_WRITE_4(sc, NGE_TX_CFG, txcfg);
1578 	CSR_WRITE_4(sc, NGE_RX_CFG, rxcfg);
1579 
1580 	nge_tick(sc);
1581 
1582 	/*
1583 	 * Enable the delivery of PHY interrupts based on
1584 	 * link/speed/duplex status changes and enable return
1585 	 * of extended status information in the DMA descriptors,
1586 	 * required for checksum offloading.
1587 	 */
1588 	NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD|NGE_CFG_PHYINTR_LNK|
1589 		   NGE_CFG_PHYINTR_DUP|NGE_CFG_EXTSTS_ENB);
1590 
1591 	DPRINTFN(1, ("%s: nge_init: config=%#x\n", sc->sc_dv.dv_xname,
1592 		     CSR_READ_4(sc, NGE_CFG)));
1593 
1594 	/*
1595 	 * Configure interrupt holdoff (moderation). We can
1596 	 * have the chip delay interrupt delivery for a certain
1597 	 * period. Units are in 100us, and the max setting
1598 	 * is 25500us (0xFF x 100us). Default is a 100us holdoff.
1599 	 */
1600 	CSR_WRITE_4(sc, NGE_IHR, 0x01);
1601 
1602 	/*
1603 	 * Enable interrupts.
1604 	 */
1605 	CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS);
1606 	CSR_WRITE_4(sc, NGE_IER, 1);
1607 
1608 	/* Enable receiver and transmitter. */
1609 	NGE_CLRBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE);
1610 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1611 
1612 	if (sc->nge_tbi)
1613 	    nge_ifmedia_tbi_upd(ifp);
1614 	else
1615 	    nge_ifmedia_mii_upd(ifp);
1616 
1617 	ifp->if_flags |= IFF_RUNNING;
1618 	ifq_clr_oactive(&ifp->if_snd);
1619 
1620 	splx(s);
1621 }
1622 
1623 /*
1624  * Set mii media options.
1625  */
1626 int
nge_ifmedia_mii_upd(struct ifnet * ifp)1627 nge_ifmedia_mii_upd(struct ifnet *ifp)
1628 {
1629 	struct nge_softc	*sc = ifp->if_softc;
1630 	struct mii_data 	*mii = &sc->nge_mii;
1631 
1632 	DPRINTFN(2, ("%s: nge_ifmedia_mii_upd\n", sc->sc_dv.dv_xname));
1633 
1634 	sc->nge_link = 0;
1635 
1636 	if (mii->mii_instance) {
1637 		struct mii_softc *miisc;
1638 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1639 			mii_phy_reset(miisc);
1640 	}
1641 	mii_mediachg(mii);
1642 
1643 	return(0);
1644 }
1645 
1646 /*
1647  * Report current mii media status.
1648  */
1649 void
nge_ifmedia_mii_sts(struct ifnet * ifp,struct ifmediareq * ifmr)1650 nge_ifmedia_mii_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1651 {
1652 	struct nge_softc	*sc = ifp->if_softc;
1653 	struct mii_data *mii = &sc->nge_mii;
1654 
1655 	DPRINTFN(2, ("%s: nge_ifmedia_mii_sts\n", sc->sc_dv.dv_xname));
1656 
1657 	mii_pollstat(mii);
1658 	ifmr->ifm_active = mii->mii_media_active;
1659 	ifmr->ifm_status = mii->mii_media_status;
1660 }
1661 
1662 /*
1663  * Set mii media options.
1664  */
1665 int
nge_ifmedia_tbi_upd(struct ifnet * ifp)1666 nge_ifmedia_tbi_upd(struct ifnet *ifp)
1667 {
1668 	struct nge_softc	*sc = ifp->if_softc;
1669 
1670 	DPRINTFN(2, ("%s: nge_ifmedia_tbi_upd\n", sc->sc_dv.dv_xname));
1671 
1672 	sc->nge_link = 0;
1673 
1674 	if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
1675 	    == IFM_AUTO) {
1676 		u_int32_t anar, bmcr;
1677 		anar = CSR_READ_4(sc, NGE_TBI_ANAR);
1678 		anar |= (NGE_TBIANAR_HDX | NGE_TBIANAR_FDX);
1679 		CSR_WRITE_4(sc, NGE_TBI_ANAR, anar);
1680 
1681 		bmcr = CSR_READ_4(sc, NGE_TBI_BMCR);
1682 		bmcr |= (NGE_TBIBMCR_ENABLE_ANEG|NGE_TBIBMCR_RESTART_ANEG);
1683 		CSR_WRITE_4(sc, NGE_TBI_BMCR, bmcr);
1684 
1685 		bmcr &= ~(NGE_TBIBMCR_RESTART_ANEG);
1686 		CSR_WRITE_4(sc, NGE_TBI_BMCR, bmcr);
1687 	} else {
1688 		u_int32_t txcfg, rxcfg;
1689 		txcfg = CSR_READ_4(sc, NGE_TX_CFG);
1690 		rxcfg = CSR_READ_4(sc, NGE_RX_CFG);
1691 
1692 		if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
1693 		    == IFM_FDX) {
1694 			txcfg |= NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR;
1695 			rxcfg |= NGE_RXCFG_RX_FDX;
1696 		} else {
1697 			txcfg &= ~(NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR);
1698 			rxcfg &= ~(NGE_RXCFG_RX_FDX);
1699 		}
1700 
1701 		txcfg |= NGE_TXCFG_AUTOPAD;
1702 		CSR_WRITE_4(sc, NGE_TX_CFG, txcfg);
1703 		CSR_WRITE_4(sc, NGE_RX_CFG, rxcfg);
1704 	}
1705 
1706 	NGE_CLRBIT(sc, NGE_GPIO, NGE_GPIO_GP3_OUT);
1707 
1708 	return(0);
1709 }
1710 
1711 /*
1712  * Report current tbi media status.
1713  */
1714 void
nge_ifmedia_tbi_sts(struct ifnet * ifp,struct ifmediareq * ifmr)1715 nge_ifmedia_tbi_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1716 {
1717 	struct nge_softc	*sc = ifp->if_softc;
1718 	u_int32_t		bmcr;
1719 
1720 	bmcr = CSR_READ_4(sc, NGE_TBI_BMCR);
1721 
1722 	if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media) == IFM_AUTO) {
1723 		u_int32_t bmsr = CSR_READ_4(sc, NGE_TBI_BMSR);
1724 		DPRINTFN(2, ("%s: nge_ifmedia_tbi_sts bmsr=%#x, bmcr=%#x\n",
1725 			     sc->sc_dv.dv_xname, bmsr, bmcr));
1726 
1727 		if (!(bmsr & NGE_TBIBMSR_ANEG_DONE)) {
1728 			ifmr->ifm_active = IFM_ETHER|IFM_NONE;
1729 			ifmr->ifm_status = IFM_AVALID;
1730 			return;
1731 		}
1732 	} else {
1733 		DPRINTFN(2, ("%s: nge_ifmedia_tbi_sts bmcr=%#x\n",
1734 			     sc->sc_dv.dv_xname, bmcr));
1735 	}
1736 
1737 	ifmr->ifm_status = IFM_AVALID|IFM_ACTIVE;
1738 	ifmr->ifm_active = IFM_ETHER|IFM_1000_SX;
1739 
1740 	if (bmcr & NGE_TBIBMCR_LOOPBACK)
1741 		ifmr->ifm_active |= IFM_LOOP;
1742 
1743 	if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media) == IFM_AUTO) {
1744 		u_int32_t anlpar = CSR_READ_4(sc, NGE_TBI_ANLPAR);
1745 		DPRINTFN(2, ("%s: nge_ifmedia_tbi_sts anlpar=%#x\n",
1746 			     sc->sc_dv.dv_xname, anlpar));
1747 
1748 		ifmr->ifm_active |= IFM_AUTO;
1749 		if (anlpar & NGE_TBIANLPAR_FDX) {
1750 			ifmr->ifm_active |= IFM_FDX;
1751 		} else if (anlpar & NGE_TBIANLPAR_HDX) {
1752 			ifmr->ifm_active |= IFM_HDX;
1753 		} else
1754 			ifmr->ifm_active |= IFM_FDX;
1755 
1756 	} else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK) == IFM_FDX)
1757 		ifmr->ifm_active |= IFM_FDX;
1758 	else
1759 		ifmr->ifm_active |= IFM_HDX;
1760 
1761 }
1762 
1763 int
nge_ioctl(struct ifnet * ifp,u_long command,caddr_t data)1764 nge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1765 {
1766 	struct nge_softc	*sc = ifp->if_softc;
1767 	struct ifreq		*ifr = (struct ifreq *) data;
1768 	struct mii_data		*mii;
1769 	int			s, error = 0;
1770 
1771 	s = splnet();
1772 
1773 	switch(command) {
1774 	case SIOCSIFADDR:
1775 		ifp->if_flags |= IFF_UP;
1776 		nge_init(sc);
1777 		break;
1778 
1779 	case SIOCSIFFLAGS:
1780 		if (ifp->if_flags & IFF_UP) {
1781 			if (ifp->if_flags & IFF_RUNNING &&
1782 			    ifp->if_flags & IFF_PROMISC &&
1783 			    !(sc->nge_if_flags & IFF_PROMISC)) {
1784 				NGE_SETBIT(sc, NGE_RXFILT_CTL,
1785 				    NGE_RXFILTCTL_ALLPHYS|
1786 				    NGE_RXFILTCTL_ALLMULTI);
1787 			} else if (ifp->if_flags & IFF_RUNNING &&
1788 			    !(ifp->if_flags & IFF_PROMISC) &&
1789 			    sc->nge_if_flags & IFF_PROMISC) {
1790 				NGE_CLRBIT(sc, NGE_RXFILT_CTL,
1791 				    NGE_RXFILTCTL_ALLPHYS);
1792 				if (!(ifp->if_flags & IFF_ALLMULTI))
1793 					NGE_CLRBIT(sc, NGE_RXFILT_CTL,
1794 					    NGE_RXFILTCTL_ALLMULTI);
1795 			} else {
1796 				ifp->if_flags &= ~IFF_RUNNING;
1797 				nge_init(sc);
1798 			}
1799 		} else {
1800 			if (ifp->if_flags & IFF_RUNNING)
1801 				nge_stop(sc);
1802 		}
1803 		sc->nge_if_flags = ifp->if_flags;
1804 		error = 0;
1805 		break;
1806 
1807 	case SIOCGIFMEDIA:
1808 	case SIOCSIFMEDIA:
1809 		if (sc->nge_tbi) {
1810 			error = ifmedia_ioctl(ifp, ifr, &sc->nge_ifmedia,
1811 					      command);
1812 		} else {
1813 			mii = &sc->nge_mii;
1814 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
1815 					      command);
1816 		}
1817 		break;
1818 
1819 	default:
1820 		error = ether_ioctl(ifp, &sc->arpcom, command, data);
1821 	}
1822 
1823 	if (error == ENETRESET) {
1824 		if (ifp->if_flags & IFF_RUNNING)
1825 			nge_setmulti(sc);
1826 		error = 0;
1827 	}
1828 
1829 	splx(s);
1830 	return(error);
1831 }
1832 
1833 void
nge_watchdog(struct ifnet * ifp)1834 nge_watchdog(struct ifnet *ifp)
1835 {
1836 	struct nge_softc	*sc;
1837 
1838 	sc = ifp->if_softc;
1839 
1840 	ifp->if_oerrors++;
1841 	printf("%s: watchdog timeout\n", sc->sc_dv.dv_xname);
1842 
1843 	nge_stop(sc);
1844 	nge_reset(sc);
1845 	ifp->if_flags &= ~IFF_RUNNING;
1846 	nge_init(sc);
1847 
1848 	if (!ifq_empty(&ifp->if_snd))
1849 		nge_start(ifp);
1850 }
1851 
1852 /*
1853  * Stop the adapter and free any mbufs allocated to the
1854  * RX and TX lists.
1855  */
1856 void
nge_stop(struct nge_softc * sc)1857 nge_stop(struct nge_softc *sc)
1858 {
1859 	int			i;
1860 	struct ifnet		*ifp;
1861 	struct mii_data		*mii;
1862 
1863 	ifp = &sc->arpcom.ac_if;
1864 	ifp->if_timer = 0;
1865 	if (sc->nge_tbi) {
1866 		mii = NULL;
1867 	} else {
1868 		mii = &sc->nge_mii;
1869 	}
1870 
1871 	timeout_del(&sc->nge_timeout);
1872 
1873 	ifp->if_flags &= ~IFF_RUNNING;
1874 	ifq_clr_oactive(&ifp->if_snd);
1875 
1876 	CSR_WRITE_4(sc, NGE_IER, 0);
1877 	CSR_WRITE_4(sc, NGE_IMR, 0);
1878 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE);
1879 	DELAY(1000);
1880 	CSR_WRITE_4(sc, NGE_TX_LISTPTR, 0);
1881 	CSR_WRITE_4(sc, NGE_RX_LISTPTR, 0);
1882 
1883 	if (!sc->nge_tbi)
1884 		mii_down(mii);
1885 
1886 	sc->nge_link = 0;
1887 
1888 	/*
1889 	 * Free data in the RX lists.
1890 	 */
1891 	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
1892 		if (sc->nge_ldata->nge_rx_list[i].nge_mbuf != NULL) {
1893 			m_freem(sc->nge_ldata->nge_rx_list[i].nge_mbuf);
1894 			sc->nge_ldata->nge_rx_list[i].nge_mbuf = NULL;
1895 		}
1896 	}
1897 	bzero(&sc->nge_ldata->nge_rx_list,
1898 		sizeof(sc->nge_ldata->nge_rx_list));
1899 
1900 	/*
1901 	 * Free the TX list buffers.
1902 	 */
1903 	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
1904 		if (sc->nge_ldata->nge_tx_list[i].nge_mbuf != NULL) {
1905 			m_freem(sc->nge_ldata->nge_tx_list[i].nge_mbuf);
1906 			sc->nge_ldata->nge_tx_list[i].nge_mbuf = NULL;
1907 		}
1908 	}
1909 
1910 	bzero(&sc->nge_ldata->nge_tx_list,
1911 		sizeof(sc->nge_ldata->nge_tx_list));
1912 }
1913 
1914 const struct cfattach nge_ca = {
1915 	sizeof(struct nge_softc), nge_probe, nge_attach
1916 };
1917 
1918 struct cfdriver nge_cd = {
1919 	NULL, "nge", DV_IFNET
1920 };
1921