xref: /openbsd/sys/dev/pci/if_nge.c (revision 898184e3)
1 /*	$OpenBSD: if_nge.c,v 1.73 2012/11/29 21:10:32 brad Exp $	*/
2 /*
3  * Copyright (c) 2001 Wind River Systems
4  * Copyright (c) 1997, 1998, 1999, 2000, 2001
5  *	Bill Paul <wpaul@bsdi.com>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * $FreeBSD: if_nge.c,v 1.35 2002/08/08 18:33:28 ambrisko Exp $
35  */
36 
37 /*
38  * National Semiconductor DP83820/DP83821 gigabit ethernet driver
39  * for FreeBSD. Datasheets are available from:
40  *
41  * http://www.national.com/ds/DP/DP83820.pdf
42  * http://www.national.com/ds/DP/DP83821.pdf
43  *
44  * These chips are used on several low cost gigabit ethernet NICs
45  * sold by D-Link, Addtron, SMC and Asante. Both parts are
46  * virtually the same, except the 83820 is a 64-bit/32-bit part,
47  * while the 83821 is 32-bit only.
48  *
49  * Many cards also use National gigE transceivers, such as the
50  * DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet
51  * contains a full register description that applies to all of these
52  * components:
53  *
54  * http://www.national.com/ds/DP/DP83861.pdf
55  *
56  * Written by Bill Paul <wpaul@bsdi.com>
57  * BSDi Open Source Solutions
58  */
59 
60 /*
61  * The NatSemi DP83820 and 83821 controllers are enhanced versions
62  * of the NatSemi MacPHYTER 10/100 devices. They support 10, 100
63  * and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII
64  * ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP
65  * hardware checksum offload (IPv4 only), VLAN tagging and filtering,
66  * priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern
67  * matching buffers, one perfect address filter buffer and interrupt
68  * moderation. The 83820 supports both 64-bit and 32-bit addressing
69  * and data transfers: the 64-bit support can be toggled on or off
70  * via software. This affects the size of certain fields in the DMA
71  * descriptors.
72  *
73  * There are two bugs/misfeatures in the 83820/83821 that I have
74  * discovered so far:
75  *
76  * - Receive buffers must be aligned on 64-bit boundaries, which means
77  *   you must resort to copying data in order to fix up the payload
78  *   alignment.
79  *
80  * - In order to transmit jumbo frames larger than 8170 bytes, you have
81  *   to turn off transmit checksum offloading, because the chip can't
82  *   compute the checksum on an outgoing frame unless it fits entirely
83  *   within the TX FIFO, which is only 8192 bytes in size. If you have
84  *   TX checksum offload enabled and you transmit attempt to transmit a
85  *   frame larger than 8170 bytes, the transmitter will wedge.
86  *
87  * To work around the latter problem, TX checksum offload is disabled
88  * if the user selects an MTU larger than 8152 (8170 - 18).
89  */
90 
91 #include "bpfilter.h"
92 #include "vlan.h"
93 
94 #include <sys/param.h>
95 #include <sys/systm.h>
96 #include <sys/sockio.h>
97 #include <sys/mbuf.h>
98 #include <sys/malloc.h>
99 #include <sys/kernel.h>
100 #include <sys/device.h>
101 #include <sys/socket.h>
102 
103 #include <net/if.h>
104 #include <net/if_dl.h>
105 #include <net/if_media.h>
106 
107 #ifdef INET
108 #include <netinet/in.h>
109 #include <netinet/in_systm.h>
110 #include <netinet/in_var.h>
111 #include <netinet/ip.h>
112 #include <netinet/if_ether.h>
113 #endif
114 
115 #if NVLAN > 0
116 #include <net/if_types.h>
117 #include <net/if_vlan_var.h>
118 #endif
119 
120 #if NBPFILTER > 0
121 #include <net/bpf.h>
122 #endif
123 
124 #include <uvm/uvm_extern.h>              /* for vtophys */
125 #define	VTOPHYS(v)	vtophys((vaddr_t)(v))
126 
127 #include <dev/pci/pcireg.h>
128 #include <dev/pci/pcivar.h>
129 #include <dev/pci/pcidevs.h>
130 
131 #include <dev/mii/mii.h>
132 #include <dev/mii/miivar.h>
133 
134 #define NGE_USEIOSPACE
135 
136 #include <dev/pci/if_ngereg.h>
137 
138 int nge_probe(struct device *, void *, void *);
139 void nge_attach(struct device *, struct device *, void *);
140 
141 int nge_alloc_jumbo_mem(struct nge_softc *);
142 void *nge_jalloc(struct nge_softc *);
143 void nge_jfree(caddr_t, u_int, void *);
144 
145 int nge_newbuf(struct nge_softc *, struct nge_desc *,
146 			     struct mbuf *);
147 int nge_encap(struct nge_softc *, struct mbuf *, u_int32_t *);
148 void nge_rxeof(struct nge_softc *);
149 void nge_txeof(struct nge_softc *);
150 int nge_intr(void *);
151 void nge_tick(void *);
152 void nge_start(struct ifnet *);
153 int nge_ioctl(struct ifnet *, u_long, caddr_t);
154 void nge_init(void *);
155 void nge_stop(struct nge_softc *);
156 void nge_watchdog(struct ifnet *);
157 int nge_ifmedia_mii_upd(struct ifnet *);
158 void nge_ifmedia_mii_sts(struct ifnet *, struct ifmediareq *);
159 int nge_ifmedia_tbi_upd(struct ifnet *);
160 void nge_ifmedia_tbi_sts(struct ifnet *, struct ifmediareq *);
161 
162 void nge_delay(struct nge_softc *);
163 void nge_eeprom_idle(struct nge_softc *);
164 void nge_eeprom_putbyte(struct nge_softc *, int);
165 void nge_eeprom_getword(struct nge_softc *, int, u_int16_t *);
166 void nge_read_eeprom(struct nge_softc *, caddr_t, int, int, int);
167 
168 void nge_mii_sync(struct nge_softc *);
169 void nge_mii_send(struct nge_softc *, u_int32_t, int);
170 int nge_mii_readreg(struct nge_softc *, struct nge_mii_frame *);
171 int nge_mii_writereg(struct nge_softc *, struct nge_mii_frame *);
172 
173 int nge_miibus_readreg(struct device *, int, int);
174 void nge_miibus_writereg(struct device *, int, int, int);
175 void nge_miibus_statchg(struct device *);
176 
177 void nge_setmulti(struct nge_softc *);
178 void nge_reset(struct nge_softc *);
179 int nge_list_rx_init(struct nge_softc *);
180 int nge_list_tx_init(struct nge_softc *);
181 
182 #ifdef NGE_USEIOSPACE
183 #define NGE_RES			SYS_RES_IOPORT
184 #define NGE_RID			NGE_PCI_LOIO
185 #else
186 #define NGE_RES			SYS_RES_MEMORY
187 #define NGE_RID			NGE_PCI_LOMEM
188 #endif
189 
190 #ifdef NGE_DEBUG
191 #define DPRINTF(x)	if (ngedebug) printf x
192 #define DPRINTFN(n,x)	if (ngedebug >= (n)) printf x
193 int	ngedebug = 0;
194 #else
195 #define DPRINTF(x)
196 #define DPRINTFN(n,x)
197 #endif
198 
199 #define NGE_SETBIT(sc, reg, x)				\
200 	CSR_WRITE_4(sc, reg,				\
201 		CSR_READ_4(sc, reg) | (x))
202 
203 #define NGE_CLRBIT(sc, reg, x)				\
204 	CSR_WRITE_4(sc, reg,				\
205 		CSR_READ_4(sc, reg) & ~(x))
206 
207 #define SIO_SET(x)					\
208 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | (x))
209 
210 #define SIO_CLR(x)					\
211 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~(x))
212 
213 void
214 nge_delay(sc)
215 	struct nge_softc	*sc;
216 {
217 	int			idx;
218 
219 	for (idx = (300 / 33) + 1; idx > 0; idx--)
220 		CSR_READ_4(sc, NGE_CSR);
221 }
222 
223 void
224 nge_eeprom_idle(sc)
225 	struct nge_softc	*sc;
226 {
227 	int		i;
228 
229 	SIO_SET(NGE_MEAR_EE_CSEL);
230 	nge_delay(sc);
231 	SIO_SET(NGE_MEAR_EE_CLK);
232 	nge_delay(sc);
233 
234 	for (i = 0; i < 25; i++) {
235 		SIO_CLR(NGE_MEAR_EE_CLK);
236 		nge_delay(sc);
237 		SIO_SET(NGE_MEAR_EE_CLK);
238 		nge_delay(sc);
239 	}
240 
241 	SIO_CLR(NGE_MEAR_EE_CLK);
242 	nge_delay(sc);
243 	SIO_CLR(NGE_MEAR_EE_CSEL);
244 	nge_delay(sc);
245 	CSR_WRITE_4(sc, NGE_MEAR, 0x00000000);
246 }
247 
248 /*
249  * Send a read command and address to the EEPROM, check for ACK.
250  */
251 void
252 nge_eeprom_putbyte(sc, addr)
253 	struct nge_softc	*sc;
254 	int			addr;
255 {
256 	int			d, i;
257 
258 	d = addr | NGE_EECMD_READ;
259 
260 	/*
261 	 * Feed in each bit and strobe the clock.
262 	 */
263 	for (i = 0x400; i; i >>= 1) {
264 		if (d & i) {
265 			SIO_SET(NGE_MEAR_EE_DIN);
266 		} else {
267 			SIO_CLR(NGE_MEAR_EE_DIN);
268 		}
269 		nge_delay(sc);
270 		SIO_SET(NGE_MEAR_EE_CLK);
271 		nge_delay(sc);
272 		SIO_CLR(NGE_MEAR_EE_CLK);
273 		nge_delay(sc);
274 	}
275 }
276 
277 /*
278  * Read a word of data stored in the EEPROM at address 'addr.'
279  */
280 void
281 nge_eeprom_getword(sc, addr, dest)
282 	struct nge_softc	*sc;
283 	int			addr;
284 	u_int16_t		*dest;
285 {
286 	int			i;
287 	u_int16_t		word = 0;
288 
289 	/* Force EEPROM to idle state. */
290 	nge_eeprom_idle(sc);
291 
292 	/* Enter EEPROM access mode. */
293 	nge_delay(sc);
294 	SIO_CLR(NGE_MEAR_EE_CLK);
295 	nge_delay(sc);
296 	SIO_SET(NGE_MEAR_EE_CSEL);
297 	nge_delay(sc);
298 
299 	/*
300 	 * Send address of word we want to read.
301 	 */
302 	nge_eeprom_putbyte(sc, addr);
303 
304 	/*
305 	 * Start reading bits from EEPROM.
306 	 */
307 	for (i = 0x8000; i; i >>= 1) {
308 		SIO_SET(NGE_MEAR_EE_CLK);
309 		nge_delay(sc);
310 		if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT)
311 			word |= i;
312 		nge_delay(sc);
313 		SIO_CLR(NGE_MEAR_EE_CLK);
314 		nge_delay(sc);
315 	}
316 
317 	/* Turn off EEPROM access mode. */
318 	nge_eeprom_idle(sc);
319 
320 	*dest = word;
321 }
322 
323 /*
324  * Read a sequence of words from the EEPROM.
325  */
326 void
327 nge_read_eeprom(sc, dest, off, cnt, swap)
328 	struct nge_softc	*sc;
329 	caddr_t			dest;
330 	int			off;
331 	int			cnt;
332 	int			swap;
333 {
334 	int			i;
335 	u_int16_t		word = 0, *ptr;
336 
337 	for (i = 0; i < cnt; i++) {
338 		nge_eeprom_getword(sc, off + i, &word);
339 		ptr = (u_int16_t *)(dest + (i * 2));
340 		if (swap)
341 			*ptr = ntohs(word);
342 		else
343 			*ptr = word;
344 	}
345 }
346 
347 /*
348  * Sync the PHYs by setting data bit and strobing the clock 32 times.
349  */
350 void
351 nge_mii_sync(sc)
352 	struct nge_softc		*sc;
353 {
354 	int			i;
355 
356 	SIO_SET(NGE_MEAR_MII_DIR|NGE_MEAR_MII_DATA);
357 
358 	for (i = 0; i < 32; i++) {
359 		SIO_SET(NGE_MEAR_MII_CLK);
360 		DELAY(1);
361 		SIO_CLR(NGE_MEAR_MII_CLK);
362 		DELAY(1);
363 	}
364 }
365 
366 /*
367  * Clock a series of bits through the MII.
368  */
369 void
370 nge_mii_send(sc, bits, cnt)
371 	struct nge_softc		*sc;
372 	u_int32_t		bits;
373 	int			cnt;
374 {
375 	int			i;
376 
377 	SIO_CLR(NGE_MEAR_MII_CLK);
378 
379 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
380                 if (bits & i) {
381 			SIO_SET(NGE_MEAR_MII_DATA);
382                 } else {
383 			SIO_CLR(NGE_MEAR_MII_DATA);
384                 }
385 		DELAY(1);
386 		SIO_CLR(NGE_MEAR_MII_CLK);
387 		DELAY(1);
388 		SIO_SET(NGE_MEAR_MII_CLK);
389 	}
390 }
391 
392 /*
393  * Read an PHY register through the MII.
394  */
395 int
396 nge_mii_readreg(sc, frame)
397 	struct nge_softc		*sc;
398 	struct nge_mii_frame	*frame;
399 {
400 	int			i, ack, s;
401 
402 	s = splnet();
403 
404 	/*
405 	 * Set up frame for RX.
406 	 */
407 	frame->mii_stdelim = NGE_MII_STARTDELIM;
408 	frame->mii_opcode = NGE_MII_READOP;
409 	frame->mii_turnaround = 0;
410 	frame->mii_data = 0;
411 
412 	CSR_WRITE_4(sc, NGE_MEAR, 0);
413 
414 	/*
415 	 * Turn on data xmit.
416 	 */
417 	SIO_SET(NGE_MEAR_MII_DIR);
418 
419 	nge_mii_sync(sc);
420 
421 	/*
422 	 * Send command/address info.
423 	 */
424 	nge_mii_send(sc, frame->mii_stdelim, 2);
425 	nge_mii_send(sc, frame->mii_opcode, 2);
426 	nge_mii_send(sc, frame->mii_phyaddr, 5);
427 	nge_mii_send(sc, frame->mii_regaddr, 5);
428 
429 	/* Idle bit */
430 	SIO_CLR((NGE_MEAR_MII_CLK|NGE_MEAR_MII_DATA));
431 	DELAY(1);
432 	SIO_SET(NGE_MEAR_MII_CLK);
433 	DELAY(1);
434 
435 	/* Turn off xmit. */
436 	SIO_CLR(NGE_MEAR_MII_DIR);
437 	/* Check for ack */
438 	SIO_CLR(NGE_MEAR_MII_CLK);
439 	DELAY(1);
440 	ack = CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA;
441 	SIO_SET(NGE_MEAR_MII_CLK);
442 	DELAY(1);
443 
444 	/*
445 	 * Now try reading data bits. If the ack failed, we still
446 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
447 	 */
448 	if (ack) {
449 		for(i = 0; i < 16; i++) {
450 			SIO_CLR(NGE_MEAR_MII_CLK);
451 			DELAY(1);
452 			SIO_SET(NGE_MEAR_MII_CLK);
453 			DELAY(1);
454 		}
455 		goto fail;
456 	}
457 
458 	for (i = 0x8000; i; i >>= 1) {
459 		SIO_CLR(NGE_MEAR_MII_CLK);
460 		DELAY(1);
461 		if (!ack) {
462 			if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA)
463 				frame->mii_data |= i;
464 			DELAY(1);
465 		}
466 		SIO_SET(NGE_MEAR_MII_CLK);
467 		DELAY(1);
468 	}
469 
470 fail:
471 
472 	SIO_CLR(NGE_MEAR_MII_CLK);
473 	DELAY(1);
474 	SIO_SET(NGE_MEAR_MII_CLK);
475 	DELAY(1);
476 
477 	splx(s);
478 
479 	if (ack)
480 		return(1);
481 	return(0);
482 }
483 
484 /*
485  * Write to a PHY register through the MII.
486  */
487 int
488 nge_mii_writereg(sc, frame)
489 	struct nge_softc		*sc;
490 	struct nge_mii_frame	*frame;
491 {
492 	int			s;
493 
494 	s = splnet();
495 	/*
496 	 * Set up frame for TX.
497 	 */
498 
499 	frame->mii_stdelim = NGE_MII_STARTDELIM;
500 	frame->mii_opcode = NGE_MII_WRITEOP;
501 	frame->mii_turnaround = NGE_MII_TURNAROUND;
502 
503 	/*
504 	 * Turn on data output.
505 	 */
506 	SIO_SET(NGE_MEAR_MII_DIR);
507 
508 	nge_mii_sync(sc);
509 
510 	nge_mii_send(sc, frame->mii_stdelim, 2);
511 	nge_mii_send(sc, frame->mii_opcode, 2);
512 	nge_mii_send(sc, frame->mii_phyaddr, 5);
513 	nge_mii_send(sc, frame->mii_regaddr, 5);
514 	nge_mii_send(sc, frame->mii_turnaround, 2);
515 	nge_mii_send(sc, frame->mii_data, 16);
516 
517 	/* Idle bit. */
518 	SIO_SET(NGE_MEAR_MII_CLK);
519 	DELAY(1);
520 	SIO_CLR(NGE_MEAR_MII_CLK);
521 	DELAY(1);
522 
523 	/*
524 	 * Turn off xmit.
525 	 */
526 	SIO_CLR(NGE_MEAR_MII_DIR);
527 
528 	splx(s);
529 
530 	return(0);
531 }
532 
533 int
534 nge_miibus_readreg(dev, phy, reg)
535 	struct device		*dev;
536 	int			phy, reg;
537 {
538 	struct nge_softc	*sc = (struct nge_softc *)dev;
539 	struct nge_mii_frame	frame;
540 
541 	DPRINTFN(9, ("%s: nge_miibus_readreg\n", sc->sc_dv.dv_xname));
542 
543 	bzero(&frame, sizeof(frame));
544 
545 	frame.mii_phyaddr = phy;
546 	frame.mii_regaddr = reg;
547 	nge_mii_readreg(sc, &frame);
548 
549 	return(frame.mii_data);
550 }
551 
552 void
553 nge_miibus_writereg(dev, phy, reg, data)
554 	struct device		*dev;
555 	int			phy, reg, data;
556 {
557 	struct nge_softc	*sc = (struct nge_softc *)dev;
558 	struct nge_mii_frame	frame;
559 
560 
561 	DPRINTFN(9, ("%s: nge_miibus_writereg\n", sc->sc_dv.dv_xname));
562 
563 	bzero(&frame, sizeof(frame));
564 
565 	frame.mii_phyaddr = phy;
566 	frame.mii_regaddr = reg;
567 	frame.mii_data = data;
568 	nge_mii_writereg(sc, &frame);
569 }
570 
571 void
572 nge_miibus_statchg(dev)
573 	struct device		*dev;
574 {
575 	struct nge_softc	*sc = (struct nge_softc *)dev;
576 	struct mii_data		*mii = &sc->nge_mii;
577 	u_int32_t		txcfg, rxcfg;
578 
579 	txcfg = CSR_READ_4(sc, NGE_TX_CFG);
580 	rxcfg = CSR_READ_4(sc, NGE_RX_CFG);
581 
582 	DPRINTFN(4, ("%s: nge_miibus_statchg txcfg=%#x, rxcfg=%#x\n",
583 		     sc->sc_dv.dv_xname, txcfg, rxcfg));
584 
585 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
586 		txcfg |= (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR);
587 		rxcfg |= (NGE_RXCFG_RX_FDX);
588 	} else {
589 		txcfg &= ~(NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR);
590 		rxcfg &= ~(NGE_RXCFG_RX_FDX);
591 	}
592 
593 	txcfg |= NGE_TXCFG_AUTOPAD;
594 
595 	CSR_WRITE_4(sc, NGE_TX_CFG, txcfg);
596 	CSR_WRITE_4(sc, NGE_RX_CFG, rxcfg);
597 
598 	/* If we have a 1000Mbps link, set the mode_1000 bit. */
599 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)
600 		NGE_SETBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
601 	else
602 		NGE_CLRBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
603 }
604 
605 void
606 nge_setmulti(sc)
607 	struct nge_softc	*sc;
608 {
609 	struct arpcom		*ac = &sc->arpcom;
610 	struct ifnet		*ifp = &ac->ac_if;
611 	struct ether_multi      *enm;
612 	struct ether_multistep  step;
613 	u_int32_t		h = 0, i, filtsave;
614 	int			bit, index;
615 
616 allmulti:
617 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
618 		NGE_CLRBIT(sc, NGE_RXFILT_CTL,
619 		    NGE_RXFILTCTL_MCHASH|NGE_RXFILTCTL_UCHASH);
620 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLMULTI);
621 		return;
622 	}
623 
624 	/*
625 	 * We have to explicitly enable the multicast hash table
626 	 * on the NatSemi chip if we want to use it, which we do.
627 	 * We also have to tell it that we don't want to use the
628 	 * hash table for matching unicast addresses.
629 	 */
630 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_MCHASH);
631 	NGE_CLRBIT(sc, NGE_RXFILT_CTL,
632 	    NGE_RXFILTCTL_ALLMULTI|NGE_RXFILTCTL_UCHASH);
633 
634 	filtsave = CSR_READ_4(sc, NGE_RXFILT_CTL);
635 
636 	/* first, zot all the existing hash bits */
637 	for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) {
638 		CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i);
639 		CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0);
640 	}
641 
642 	/*
643 	 * From the 11 bits returned by the crc routine, the top 7
644 	 * bits represent the 16-bit word in the mcast hash table
645 	 * that needs to be updated, and the lower 4 bits represent
646 	 * which bit within that byte needs to be set.
647 	 */
648 	ETHER_FIRST_MULTI(step, ac, enm);
649 	while (enm != NULL) {
650 		if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
651 			ifp->if_flags |= IFF_ALLMULTI;
652 			goto allmulti;
653 		}
654 		h = (ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) >> 21) &
655 		    0x00000FFF;
656 		index = (h >> 4) & 0x7F;
657 		bit = h & 0xF;
658 		CSR_WRITE_4(sc, NGE_RXFILT_CTL,
659 		    NGE_FILTADDR_MCAST_LO + (index * 2));
660 		NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit));
661 		ETHER_NEXT_MULTI(step, enm);
662 	}
663 
664 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, filtsave);
665 }
666 
667 void
668 nge_reset(sc)
669 	struct nge_softc	*sc;
670 {
671 	int			i;
672 
673 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET);
674 
675 	for (i = 0; i < NGE_TIMEOUT; i++) {
676 		if (!(CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET))
677 			break;
678 	}
679 
680 	if (i == NGE_TIMEOUT)
681 		printf("%s: reset never completed\n", sc->sc_dv.dv_xname);
682 
683 	/* Wait a little while for the chip to get its brains in order. */
684 	DELAY(1000);
685 
686 	/*
687 	 * If this is a NetSemi chip, make sure to clear
688 	 * PME mode.
689 	 */
690 	CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS);
691 	CSR_WRITE_4(sc, NGE_CLKRUN, 0);
692 }
693 
694 /*
695  * Probe for an NatSemi chip. Check the PCI vendor and device
696  * IDs against our list and return a device name if we find a match.
697  */
698 int
699 nge_probe(parent, match, aux)
700 	struct device *parent;
701 	void *match;
702 	void *aux;
703 {
704 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
705 
706 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NS &&
707 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NS_DP83820)
708 		return (1);
709 
710 	return (0);
711 }
712 
713 /*
714  * Attach the interface. Allocate softc structures, do ifmedia
715  * setup and ethernet/BPF attach.
716  */
717 void
718 nge_attach(parent, self, aux)
719 	struct device *parent, *self;
720 	void *aux;
721 {
722 	struct nge_softc	*sc = (struct nge_softc *)self;
723 	struct pci_attach_args	*pa = aux;
724 	pci_chipset_tag_t	pc = pa->pa_pc;
725 	pci_intr_handle_t	ih;
726 	const char		*intrstr = NULL;
727 	bus_size_t		size;
728 	bus_dma_segment_t	seg;
729 	bus_dmamap_t		dmamap;
730 	int			rseg;
731 	u_char			eaddr[ETHER_ADDR_LEN];
732 #ifndef NGE_USEIOSPACE
733 	pcireg_t		memtype;
734 #endif
735 	struct ifnet		*ifp;
736 	caddr_t			kva;
737 
738 	pci_set_powerstate(pa->pa_pc, pa->pa_tag, PCI_PMCSR_STATE_D0);
739 
740 	/*
741 	 * Map control/status registers.
742 	 */
743 	DPRINTFN(5, ("%s: map control/status regs\n", sc->sc_dv.dv_xname));
744 
745 #ifdef NGE_USEIOSPACE
746 	DPRINTFN(5, ("%s: pci_mapreg_map\n", sc->sc_dv.dv_xname));
747 	if (pci_mapreg_map(pa, NGE_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
748 	    &sc->nge_btag, &sc->nge_bhandle, NULL, &size, 0)) {
749 		printf(": can't map i/o space\n");
750 		return;
751 	}
752 #else
753 	DPRINTFN(5, ("%s: pci_mapreg_map\n", sc->sc_dv.dv_xname));
754 	memtype = pci_mapreg_type(pc, pa->pa_tag, NGE_PCI_LOMEM);
755 	if (pci_mapreg_map(pa, NGE_PCI_LOMEM, memtype, 0, &sc->nge_btag,
756 	    &sc->nge_bhandle, NULL, &size, 0)) {
757 		printf(": can't map mem space\n");
758 		return;
759 	}
760 #endif
761 
762 	/* Disable all interrupts */
763 	CSR_WRITE_4(sc, NGE_IER, 0);
764 
765 	DPRINTFN(5, ("%s: pci_intr_map\n", sc->sc_dv.dv_xname));
766 	if (pci_intr_map(pa, &ih)) {
767 		printf(": couldn't map interrupt\n");
768 		goto fail_1;
769 	}
770 
771 	DPRINTFN(5, ("%s: pci_intr_string\n", sc->sc_dv.dv_xname));
772 	intrstr = pci_intr_string(pc, ih);
773 	DPRINTFN(5, ("%s: pci_intr_establish\n", sc->sc_dv.dv_xname));
774 	sc->nge_intrhand = pci_intr_establish(pc, ih, IPL_NET, nge_intr, sc,
775 					      sc->sc_dv.dv_xname);
776 	if (sc->nge_intrhand == NULL) {
777 		printf(": couldn't establish interrupt");
778 		if (intrstr != NULL)
779 			printf(" at %s", intrstr);
780 		printf("\n");
781 		goto fail_1;
782 	}
783 	printf(": %s", intrstr);
784 
785 	/* Reset the adapter. */
786 	DPRINTFN(5, ("%s: nge_reset\n", sc->sc_dv.dv_xname));
787 	nge_reset(sc);
788 
789 	/*
790 	 * Get station address from the EEPROM.
791 	 */
792 	DPRINTFN(5, ("%s: nge_read_eeprom\n", sc->sc_dv.dv_xname));
793 	nge_read_eeprom(sc, (caddr_t)&eaddr[4], NGE_EE_NODEADDR, 1, 0);
794 	nge_read_eeprom(sc, (caddr_t)&eaddr[2], NGE_EE_NODEADDR + 1, 1, 0);
795 	nge_read_eeprom(sc, (caddr_t)&eaddr[0], NGE_EE_NODEADDR + 2, 1, 0);
796 
797 	/*
798 	 * A NatSemi chip was detected. Inform the world.
799 	 */
800 	printf(", address %s\n", ether_sprintf(eaddr));
801 
802 	bcopy(eaddr, &sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
803 
804 	sc->sc_dmatag = pa->pa_dmat;
805 	DPRINTFN(5, ("%s: bus_dmamem_alloc\n", sc->sc_dv.dv_xname));
806 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct nge_list_data),
807 			     PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT |
808 			     BUS_DMA_ZERO)) {
809 		printf("%s: can't alloc rx buffers\n", sc->sc_dv.dv_xname);
810 		goto fail_2;
811 	}
812 	DPRINTFN(5, ("%s: bus_dmamem_map\n", sc->sc_dv.dv_xname));
813 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
814 			   sizeof(struct nge_list_data), &kva,
815 			   BUS_DMA_NOWAIT)) {
816 		printf("%s: can't map dma buffers (%d bytes)\n",
817 		       sc->sc_dv.dv_xname, sizeof(struct nge_list_data));
818 		goto fail_3;
819 	}
820 	DPRINTFN(5, ("%s: bus_dmamem_create\n", sc->sc_dv.dv_xname));
821 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct nge_list_data), 1,
822 			      sizeof(struct nge_list_data), 0,
823 			      BUS_DMA_NOWAIT, &dmamap)) {
824 		printf("%s: can't create dma map\n", sc->sc_dv.dv_xname);
825 		goto fail_4;
826 	}
827 	DPRINTFN(5, ("%s: bus_dmamem_load\n", sc->sc_dv.dv_xname));
828 	if (bus_dmamap_load(sc->sc_dmatag, dmamap, kva,
829 			    sizeof(struct nge_list_data), NULL,
830 			    BUS_DMA_NOWAIT)) {
831 		goto fail_5;
832 	}
833 
834 	DPRINTFN(5, ("%s: bzero\n", sc->sc_dv.dv_xname));
835 	sc->nge_ldata = (struct nge_list_data *)kva;
836 
837 	/* Try to allocate memory for jumbo buffers. */
838 	DPRINTFN(5, ("%s: nge_alloc_jumbo_mem\n", sc->sc_dv.dv_xname));
839 	if (nge_alloc_jumbo_mem(sc)) {
840 		printf("%s: jumbo buffer allocation failed\n",
841 		       sc->sc_dv.dv_xname);
842 		goto fail_5;
843 	}
844 
845 	ifp = &sc->arpcom.ac_if;
846 	ifp->if_softc = sc;
847 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
848 	ifp->if_ioctl = nge_ioctl;
849 	ifp->if_start = nge_start;
850 	ifp->if_watchdog = nge_watchdog;
851 	ifp->if_hardmtu = NGE_JUMBO_MTU;
852 	IFQ_SET_MAXLEN(&ifp->if_snd, NGE_TX_LIST_CNT - 1);
853 	IFQ_SET_READY(&ifp->if_snd);
854 	DPRINTFN(5, ("%s: bcopy\n", sc->sc_dv.dv_xname));
855 	bcopy(sc->sc_dv.dv_xname, ifp->if_xname, IFNAMSIZ);
856 
857 	ifp->if_capabilities = IFCAP_VLAN_MTU;
858 
859 #if NVLAN > 0
860 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
861 #endif
862 
863 	/*
864 	 * Do MII setup.
865 	 */
866 	DPRINTFN(5, ("%s: mii setup\n", sc->sc_dv.dv_xname));
867 	if (CSR_READ_4(sc, NGE_CFG) & NGE_CFG_TBI_EN) {
868 		DPRINTFN(5, ("%s: TBI mode\n", sc->sc_dv.dv_xname));
869 		sc->nge_tbi = 1;
870 
871 		ifmedia_init(&sc->nge_ifmedia, 0, nge_ifmedia_tbi_upd,
872 			     nge_ifmedia_tbi_sts);
873 
874 		ifmedia_add(&sc->nge_ifmedia, IFM_ETHER|IFM_NONE, 0, NULL),
875 		ifmedia_add(&sc->nge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
876 		ifmedia_add(&sc->nge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
877 			    0, NULL);
878 		ifmedia_add(&sc->nge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
879 
880 		ifmedia_set(&sc->nge_ifmedia, IFM_ETHER|IFM_AUTO);
881 
882 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
883 			    | NGE_GPIO_GP4_OUT
884 			    | NGE_GPIO_GP1_OUTENB | NGE_GPIO_GP2_OUTENB
885 			    | NGE_GPIO_GP3_OUTENB | NGE_GPIO_GP4_OUTENB
886 			    | NGE_GPIO_GP5_OUTENB);
887 
888 		NGE_SETBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
889 	} else {
890 		sc->nge_mii.mii_ifp = ifp;
891 		sc->nge_mii.mii_readreg = nge_miibus_readreg;
892 		sc->nge_mii.mii_writereg = nge_miibus_writereg;
893 		sc->nge_mii.mii_statchg = nge_miibus_statchg;
894 
895 		ifmedia_init(&sc->nge_mii.mii_media, 0, nge_ifmedia_mii_upd,
896 			     nge_ifmedia_mii_sts);
897 		mii_attach(&sc->sc_dv, &sc->nge_mii, 0xffffffff, MII_PHY_ANY,
898 			   MII_OFFSET_ANY, 0);
899 
900 		if (LIST_FIRST(&sc->nge_mii.mii_phys) == NULL) {
901 
902 			printf("%s: no PHY found!\n", sc->sc_dv.dv_xname);
903 			ifmedia_add(&sc->nge_mii.mii_media,
904 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
905 			ifmedia_set(&sc->nge_mii.mii_media,
906 				    IFM_ETHER|IFM_MANUAL);
907 		}
908 		else
909 			ifmedia_set(&sc->nge_mii.mii_media,
910 				    IFM_ETHER|IFM_AUTO);
911 	}
912 
913 	/*
914 	 * Call MI attach routine.
915 	 */
916 	DPRINTFN(5, ("%s: if_attach\n", sc->sc_dv.dv_xname));
917 	if_attach(ifp);
918 	DPRINTFN(5, ("%s: ether_ifattach\n", sc->sc_dv.dv_xname));
919 	ether_ifattach(ifp);
920 	DPRINTFN(5, ("%s: timeout_set\n", sc->sc_dv.dv_xname));
921 	timeout_set(&sc->nge_timeout, nge_tick, sc);
922 	timeout_add_sec(&sc->nge_timeout, 1);
923 	return;
924 
925 fail_5:
926 	bus_dmamap_destroy(sc->sc_dmatag, dmamap);
927 
928 fail_4:
929 	bus_dmamem_unmap(sc->sc_dmatag, kva,
930 	    sizeof(struct nge_list_data));
931 
932 fail_3:
933 	bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
934 
935 fail_2:
936 	pci_intr_disestablish(pc, sc->nge_intrhand);
937 
938 fail_1:
939 	bus_space_unmap(sc->nge_btag, sc->nge_bhandle, size);
940 }
941 
942 /*
943  * Initialize the transmit descriptors.
944  */
945 int
946 nge_list_tx_init(sc)
947 	struct nge_softc	*sc;
948 {
949 	struct nge_list_data	*ld;
950 	struct nge_ring_data	*cd;
951 	int			i;
952 
953 	cd = &sc->nge_cdata;
954 	ld = sc->nge_ldata;
955 
956 	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
957 		if (i == (NGE_TX_LIST_CNT - 1)) {
958 			ld->nge_tx_list[i].nge_nextdesc =
959 			    &ld->nge_tx_list[0];
960 			ld->nge_tx_list[i].nge_next =
961 			    VTOPHYS(&ld->nge_tx_list[0]);
962 		} else {
963 			ld->nge_tx_list[i].nge_nextdesc =
964 			    &ld->nge_tx_list[i + 1];
965 			ld->nge_tx_list[i].nge_next =
966 			    VTOPHYS(&ld->nge_tx_list[i + 1]);
967 		}
968 		ld->nge_tx_list[i].nge_mbuf = NULL;
969 		ld->nge_tx_list[i].nge_ptr = 0;
970 		ld->nge_tx_list[i].nge_ctl = 0;
971 	}
972 
973 	cd->nge_tx_prod = cd->nge_tx_cons = cd->nge_tx_cnt = 0;
974 
975 	return(0);
976 }
977 
978 
979 /*
980  * Initialize the RX descriptors and allocate mbufs for them. Note that
981  * we arrange the descriptors in a closed ring, so that the last descriptor
982  * points back to the first.
983  */
984 int
985 nge_list_rx_init(sc)
986 	struct nge_softc	*sc;
987 {
988 	struct nge_list_data	*ld;
989 	struct nge_ring_data	*cd;
990 	int			i;
991 
992 	ld = sc->nge_ldata;
993 	cd = &sc->nge_cdata;
994 
995 	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
996 		if (nge_newbuf(sc, &ld->nge_rx_list[i], NULL) == ENOBUFS)
997 			return(ENOBUFS);
998 		if (i == (NGE_RX_LIST_CNT - 1)) {
999 			ld->nge_rx_list[i].nge_nextdesc =
1000 			    &ld->nge_rx_list[0];
1001 			ld->nge_rx_list[i].nge_next =
1002 			    VTOPHYS(&ld->nge_rx_list[0]);
1003 		} else {
1004 			ld->nge_rx_list[i].nge_nextdesc =
1005 			    &ld->nge_rx_list[i + 1];
1006 			ld->nge_rx_list[i].nge_next =
1007 			    VTOPHYS(&ld->nge_rx_list[i + 1]);
1008 		}
1009 	}
1010 
1011 	cd->nge_rx_prod = 0;
1012 
1013 	return(0);
1014 }
1015 
1016 /*
1017  * Initialize an RX descriptor and attach an MBUF cluster.
1018  */
1019 int
1020 nge_newbuf(sc, c, m)
1021 	struct nge_softc	*sc;
1022 	struct nge_desc		*c;
1023 	struct mbuf		*m;
1024 {
1025 	struct mbuf		*m_new = NULL;
1026 
1027 	if (m == NULL) {
1028 		caddr_t buf = NULL;
1029 
1030 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1031 		if (m_new == NULL)
1032 			return (ENOBUFS);
1033 
1034 		/* Allocate the jumbo buffer */
1035 		buf = nge_jalloc(sc);
1036 		if (buf == NULL) {
1037 			m_freem(m_new);
1038 			return (ENOBUFS);
1039 		}
1040 
1041 		/* Attach the buffer to the mbuf */
1042 		m_new->m_len = m_new->m_pkthdr.len = NGE_MCLBYTES;
1043 		MEXTADD(m_new, buf, NGE_MCLBYTES, 0, nge_jfree, sc);
1044 	} else {
1045 		/*
1046 		 * We're re-using a previously allocated mbuf;
1047 		 * be sure to re-init pointers and lengths to
1048 		 * default values.
1049 		 */
1050 		m_new = m;
1051 		m_new->m_len = m_new->m_pkthdr.len = NGE_MCLBYTES;
1052 		m_new->m_data = m_new->m_ext.ext_buf;
1053 	}
1054 
1055 	m_adj(m_new, sizeof(u_int64_t));
1056 
1057 	c->nge_mbuf = m_new;
1058 	c->nge_ptr = VTOPHYS(mtod(m_new, caddr_t));
1059 	DPRINTFN(7,("%s: c->nge_ptr=%#x\n", sc->sc_dv.dv_xname,
1060 		    c->nge_ptr));
1061 	c->nge_ctl = m_new->m_len;
1062 	c->nge_extsts = 0;
1063 
1064 	return(0);
1065 }
1066 
1067 int
1068 nge_alloc_jumbo_mem(sc)
1069 	struct nge_softc	*sc;
1070 {
1071 	caddr_t			ptr, kva;
1072 	bus_dma_segment_t	seg;
1073 	bus_dmamap_t		dmamap;
1074 	int			i, rseg, state, error;
1075 	struct nge_jpool_entry	*entry;
1076 
1077 	state = error = 0;
1078 
1079 	if (bus_dmamem_alloc(sc->sc_dmatag, NGE_JMEM, PAGE_SIZE, 0,
1080 			     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1081 		printf("%s: can't alloc rx buffers\n", sc->sc_dv.dv_xname);
1082 		return (ENOBUFS);
1083 	}
1084 
1085 	state = 1;
1086 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, NGE_JMEM, &kva,
1087 			   BUS_DMA_NOWAIT)) {
1088 		printf("%s: can't map dma buffers (%d bytes)\n",
1089 		       sc->sc_dv.dv_xname, NGE_JMEM);
1090 		error = ENOBUFS;
1091 		goto out;
1092 	}
1093 
1094 	state = 2;
1095 	if (bus_dmamap_create(sc->sc_dmatag, NGE_JMEM, 1,
1096 			      NGE_JMEM, 0, BUS_DMA_NOWAIT, &dmamap)) {
1097 		printf("%s: can't create dma map\n", sc->sc_dv.dv_xname);
1098 		error = ENOBUFS;
1099 		goto out;
1100 	}
1101 
1102 	state = 3;
1103 	if (bus_dmamap_load(sc->sc_dmatag, dmamap, kva, NGE_JMEM,
1104 			    NULL, BUS_DMA_NOWAIT)) {
1105 		printf("%s: can't load dma map\n", sc->sc_dv.dv_xname);
1106 		error = ENOBUFS;
1107 		goto out;
1108         }
1109 
1110 	state = 4;
1111 	sc->nge_cdata.nge_jumbo_buf = (caddr_t)kva;
1112 	DPRINTFN(1,("%s: nge_jumbo_buf=%#x, NGE_MCLBYTES=%#x\n",
1113 		    sc->sc_dv.dv_xname , sc->nge_cdata.nge_jumbo_buf,
1114 		    NGE_MCLBYTES));
1115 
1116 	LIST_INIT(&sc->nge_jfree_listhead);
1117 	LIST_INIT(&sc->nge_jinuse_listhead);
1118 
1119 	/*
1120 	 * Now divide it up into 9K pieces and save the addresses
1121 	 * in an array. Note that we play an evil trick here by using
1122 	 * the first few bytes in the buffer to hold the address
1123 	 * of the softc structure for this interface. This is because
1124 	 * nge_jfree() needs it, but it is called by the mbuf management
1125 	 * code which will not pass it to us explicitly.
1126 	 */
1127 	ptr = sc->nge_cdata.nge_jumbo_buf;
1128 	for (i = 0; i < NGE_JSLOTS; i++) {
1129 		sc->nge_cdata.nge_jslots[i].nge_buf = ptr;
1130 		sc->nge_cdata.nge_jslots[i].nge_inuse = 0;
1131 		ptr += NGE_MCLBYTES;
1132 		entry = malloc(sizeof(struct nge_jpool_entry),
1133 			       M_DEVBUF, M_NOWAIT);
1134 		if (entry == NULL) {
1135 			sc->nge_cdata.nge_jumbo_buf = NULL;
1136 			printf("%s: no memory for jumbo buffer queue!\n",
1137 			       sc->sc_dv.dv_xname);
1138 			error = ENOBUFS;
1139 			goto out;
1140 		}
1141 		entry->slot = i;
1142 		LIST_INSERT_HEAD(&sc->nge_jfree_listhead, entry,
1143 				 jpool_entries);
1144 	}
1145 out:
1146 	if (error != 0) {
1147 		switch (state) {
1148 		case 4:
1149 			bus_dmamap_unload(sc->sc_dmatag, dmamap);
1150 		case 3:
1151 			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1152 		case 2:
1153 			bus_dmamem_unmap(sc->sc_dmatag, kva, NGE_JMEM);
1154 		case 1:
1155 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1156 			break;
1157 		default:
1158 			break;
1159 		}
1160 	}
1161 
1162 	return (error);
1163 }
1164 
1165 /*
1166  * Allocate a jumbo buffer.
1167  */
1168 void *
1169 nge_jalloc(sc)
1170 	struct nge_softc	*sc;
1171 {
1172 	struct nge_jpool_entry   *entry;
1173 
1174 	entry = LIST_FIRST(&sc->nge_jfree_listhead);
1175 
1176 	if (entry == NULL)
1177 		return (NULL);
1178 
1179 	LIST_REMOVE(entry, jpool_entries);
1180 	LIST_INSERT_HEAD(&sc->nge_jinuse_listhead, entry, jpool_entries);
1181 	sc->nge_cdata.nge_jslots[entry->slot].nge_inuse = 1;
1182 	return(sc->nge_cdata.nge_jslots[entry->slot].nge_buf);
1183 }
1184 
1185 /*
1186  * Release a jumbo buffer.
1187  */
1188 void
1189 nge_jfree(buf, size, arg)
1190 	caddr_t		buf;
1191 	u_int		size;
1192 	void		*arg;
1193 {
1194 	struct nge_softc	*sc;
1195 	int		        i;
1196 	struct nge_jpool_entry *entry;
1197 
1198 	/* Extract the softc struct pointer. */
1199 	sc = (struct nge_softc *)arg;
1200 
1201 	if (sc == NULL)
1202 		panic("nge_jfree: can't find softc pointer!");
1203 
1204 	/* calculate the slot this buffer belongs to */
1205 
1206 	i = ((vaddr_t)buf - (vaddr_t)sc->nge_cdata.nge_jumbo_buf)
1207 	  / NGE_MCLBYTES;
1208 
1209 	if ((i < 0) || (i >= NGE_JSLOTS))
1210 		panic("nge_jfree: asked to free buffer that we don't manage!");
1211 	else if (sc->nge_cdata.nge_jslots[i].nge_inuse == 0)
1212 		panic("nge_jfree: buffer already free!");
1213 	else {
1214 		sc->nge_cdata.nge_jslots[i].nge_inuse--;
1215 		if(sc->nge_cdata.nge_jslots[i].nge_inuse == 0) {
1216 			entry = LIST_FIRST(&sc->nge_jinuse_listhead);
1217 			if (entry == NULL)
1218 				panic("nge_jfree: buffer not in use!");
1219 			entry->slot = i;
1220 			LIST_REMOVE(entry, jpool_entries);
1221 			LIST_INSERT_HEAD(&sc->nge_jfree_listhead,
1222 					 entry, jpool_entries);
1223 		}
1224 	}
1225 }
1226 
1227 /*
1228  * A frame has been uploaded: pass the resulting mbuf chain up to
1229  * the higher level protocols.
1230  */
1231 void
1232 nge_rxeof(sc)
1233 	struct nge_softc	*sc;
1234 {
1235         struct mbuf		*m;
1236         struct ifnet		*ifp;
1237 	struct nge_desc		*cur_rx;
1238 	int			i, total_len = 0;
1239 	u_int32_t		rxstat;
1240 
1241 	ifp = &sc->arpcom.ac_if;
1242 	i = sc->nge_cdata.nge_rx_prod;
1243 
1244 	while (NGE_OWNDESC(&sc->nge_ldata->nge_rx_list[i])) {
1245 		struct mbuf		*m0 = NULL;
1246 		u_int32_t		extsts;
1247 
1248 		cur_rx = &sc->nge_ldata->nge_rx_list[i];
1249 		rxstat = cur_rx->nge_rxstat;
1250 		extsts = cur_rx->nge_extsts;
1251 		m = cur_rx->nge_mbuf;
1252 		cur_rx->nge_mbuf = NULL;
1253 		total_len = NGE_RXBYTES(cur_rx);
1254 		NGE_INC(i, NGE_RX_LIST_CNT);
1255 
1256 		/*
1257 		 * If an error occurs, update stats, clear the
1258 		 * status word and leave the mbuf cluster in place:
1259 		 * it should simply get re-used next time this descriptor
1260 		 * comes up in the ring.
1261 		 */
1262 		if (!(rxstat & NGE_CMDSTS_PKT_OK)) {
1263 #if NVLAN > 0
1264 			if ((rxstat & NGE_RXSTAT_RUNT) &&
1265 			    total_len >= (ETHER_MIN_LEN - ETHER_CRC_LEN -
1266 			    ETHER_VLAN_ENCAP_LEN)) {
1267 				/*
1268 				 * Workaround a hardware bug. Accept runt
1269 				 * frames if its length is larger than or
1270 				 * equal to 56.
1271 				 */
1272 			} else {
1273 #endif
1274 				ifp->if_ierrors++;
1275 				nge_newbuf(sc, cur_rx, m);
1276 				continue;
1277 #if NVLAN > 0
1278 			}
1279 #endif
1280 		}
1281 
1282 		/*
1283 		 * Ok. NatSemi really screwed up here. This is the
1284 		 * only gigE chip I know of with alignment constraints
1285 		 * on receive buffers. RX buffers must be 64-bit aligned.
1286 		 */
1287 #ifndef __STRICT_ALIGNMENT
1288 		/*
1289 		 * By popular demand, ignore the alignment problems
1290 		 * on the Intel x86 platform. The performance hit
1291 		 * incurred due to unaligned accesses is much smaller
1292 		 * than the hit produced by forcing buffer copies all
1293 		 * the time, especially with jumbo frames. We still
1294 		 * need to fix up the alignment everywhere else though.
1295 		 */
1296 		if (nge_newbuf(sc, cur_rx, NULL) == ENOBUFS) {
1297 #endif
1298 			m0 = m_devget(mtod(m, char *), total_len,
1299 			    ETHER_ALIGN, ifp, NULL);
1300 			nge_newbuf(sc, cur_rx, m);
1301 			if (m0 == NULL) {
1302 				ifp->if_ierrors++;
1303 				continue;
1304 			}
1305 			m_adj(m0, ETHER_ALIGN);
1306 			m = m0;
1307 #ifndef __STRICT_ALIGNMENT
1308 		} else {
1309 			m->m_pkthdr.rcvif = ifp;
1310 			m->m_pkthdr.len = m->m_len = total_len;
1311 		}
1312 #endif
1313 
1314 		ifp->if_ipackets++;
1315 
1316 #if NVLAN > 0
1317 		if (extsts & NGE_RXEXTSTS_VLANPKT) {
1318 			m->m_pkthdr.ether_vtag =
1319 			    ntohs(extsts & NGE_RXEXTSTS_VTCI);
1320 			m->m_flags |= M_VLANTAG;
1321 		}
1322 #endif
1323 
1324 #if NBPFILTER > 0
1325 		/*
1326 		 * Handle BPF listeners. Let the BPF user see the packet.
1327 		 */
1328 		if (ifp->if_bpf)
1329 			bpf_mtap_ether(ifp->if_bpf, m, BPF_DIRECTION_IN);
1330 #endif
1331 
1332 		/* Do IP checksum checking. */
1333 		if (extsts & NGE_RXEXTSTS_IPPKT) {
1334 			if (!(extsts & NGE_RXEXTSTS_IPCSUMERR))
1335 				m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
1336 			if ((extsts & NGE_RXEXTSTS_TCPPKT) &&
1337 			    (!(extsts & NGE_RXEXTSTS_TCPCSUMERR)))
1338 				m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK;
1339 			else if ((extsts & NGE_RXEXTSTS_UDPPKT) &&
1340 				 (!(extsts & NGE_RXEXTSTS_UDPCSUMERR)))
1341 				m->m_pkthdr.csum_flags |= M_UDP_CSUM_IN_OK;
1342 		}
1343 
1344 		ether_input_mbuf(ifp, m);
1345 	}
1346 
1347 	sc->nge_cdata.nge_rx_prod = i;
1348 }
1349 
1350 /*
1351  * A frame was downloaded to the chip. It's safe for us to clean up
1352  * the list buffers.
1353  */
1354 
1355 void
1356 nge_txeof(sc)
1357 	struct nge_softc	*sc;
1358 {
1359 	struct nge_desc		*cur_tx;
1360 	struct ifnet		*ifp;
1361 	u_int32_t		idx;
1362 
1363 	ifp = &sc->arpcom.ac_if;
1364 
1365 	/*
1366 	 * Go through our tx list and free mbufs for those
1367 	 * frames that have been transmitted.
1368 	 */
1369 	idx = sc->nge_cdata.nge_tx_cons;
1370 	while (idx != sc->nge_cdata.nge_tx_prod) {
1371 		cur_tx = &sc->nge_ldata->nge_tx_list[idx];
1372 
1373 		if (NGE_OWNDESC(cur_tx))
1374 			break;
1375 
1376 		if (cur_tx->nge_ctl & NGE_CMDSTS_MORE) {
1377 			sc->nge_cdata.nge_tx_cnt--;
1378 			NGE_INC(idx, NGE_TX_LIST_CNT);
1379 			continue;
1380 		}
1381 
1382 		if (!(cur_tx->nge_ctl & NGE_CMDSTS_PKT_OK)) {
1383 			ifp->if_oerrors++;
1384 			if (cur_tx->nge_txstat & NGE_TXSTAT_EXCESSCOLLS)
1385 				ifp->if_collisions++;
1386 			if (cur_tx->nge_txstat & NGE_TXSTAT_OUTOFWINCOLL)
1387 				ifp->if_collisions++;
1388 		}
1389 
1390 		ifp->if_collisions +=
1391 		    (cur_tx->nge_txstat & NGE_TXSTAT_COLLCNT) >> 16;
1392 
1393 		ifp->if_opackets++;
1394 		if (cur_tx->nge_mbuf != NULL) {
1395 			m_freem(cur_tx->nge_mbuf);
1396 			cur_tx->nge_mbuf = NULL;
1397 			ifp->if_flags &= ~IFF_OACTIVE;
1398 		}
1399 
1400 		sc->nge_cdata.nge_tx_cnt--;
1401 		NGE_INC(idx, NGE_TX_LIST_CNT);
1402 	}
1403 
1404 	sc->nge_cdata.nge_tx_cons = idx;
1405 
1406 	if (idx == sc->nge_cdata.nge_tx_prod)
1407 		ifp->if_timer = 0;
1408 }
1409 
1410 void
1411 nge_tick(xsc)
1412 	void			*xsc;
1413 {
1414 	struct nge_softc	*sc = xsc;
1415 	struct mii_data		*mii = &sc->nge_mii;
1416 	struct ifnet		*ifp = &sc->arpcom.ac_if;
1417 	int			s;
1418 
1419 	s = splnet();
1420 
1421 	DPRINTFN(10, ("%s: nge_tick: link=%d\n", sc->sc_dv.dv_xname,
1422 		      sc->nge_link));
1423 
1424 	timeout_add_sec(&sc->nge_timeout, 1);
1425 	if (sc->nge_link) {
1426 		splx(s);
1427 		return;
1428 	}
1429 
1430 	if (sc->nge_tbi) {
1431 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
1432 		    == IFM_AUTO) {
1433 			u_int32_t bmsr, anlpar, txcfg, rxcfg;
1434 
1435 			bmsr = CSR_READ_4(sc, NGE_TBI_BMSR);
1436 			DPRINTFN(2, ("%s: nge_tick: bmsr=%#x\n",
1437 				     sc->sc_dv.dv_xname, bmsr));
1438 
1439 			if (!(bmsr & NGE_TBIBMSR_ANEG_DONE)) {
1440 				CSR_WRITE_4(sc, NGE_TBI_BMCR, 0);
1441 
1442 				splx(s);
1443 				return;
1444 			}
1445 
1446 			anlpar = CSR_READ_4(sc, NGE_TBI_ANLPAR);
1447 			txcfg = CSR_READ_4(sc, NGE_TX_CFG);
1448 			rxcfg = CSR_READ_4(sc, NGE_RX_CFG);
1449 
1450 			DPRINTFN(2, ("%s: nge_tick: anlpar=%#x, txcfg=%#x, "
1451 				     "rxcfg=%#x\n", sc->sc_dv.dv_xname, anlpar,
1452 				     txcfg, rxcfg));
1453 
1454 			if (anlpar == 0 || anlpar & NGE_TBIANAR_FDX) {
1455 				txcfg |= (NGE_TXCFG_IGN_HBEAT|
1456 					  NGE_TXCFG_IGN_CARR);
1457 				rxcfg |= NGE_RXCFG_RX_FDX;
1458 			} else {
1459 				txcfg &= ~(NGE_TXCFG_IGN_HBEAT|
1460 					   NGE_TXCFG_IGN_CARR);
1461 				rxcfg &= ~(NGE_RXCFG_RX_FDX);
1462 			}
1463 			txcfg |= NGE_TXCFG_AUTOPAD;
1464 			CSR_WRITE_4(sc, NGE_TX_CFG, txcfg);
1465 			CSR_WRITE_4(sc, NGE_RX_CFG, rxcfg);
1466 		}
1467 
1468 		DPRINTF(("%s: gigabit link up\n", sc->sc_dv.dv_xname));
1469 		sc->nge_link++;
1470 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
1471 			nge_start(ifp);
1472 	} else {
1473 		mii_tick(mii);
1474 		if (mii->mii_media_status & IFM_ACTIVE &&
1475 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1476 			sc->nge_link++;
1477 			if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)
1478 				DPRINTF(("%s: gigabit link up\n",
1479 					 sc->sc_dv.dv_xname));
1480 			if (!IFQ_IS_EMPTY(&ifp->if_snd))
1481 				nge_start(ifp);
1482 		}
1483 
1484 	}
1485 
1486 	splx(s);
1487 }
1488 
1489 int
1490 nge_intr(arg)
1491 	void			*arg;
1492 {
1493 	struct nge_softc	*sc;
1494 	struct ifnet		*ifp;
1495 	u_int32_t		status;
1496 	int			claimed = 0;
1497 
1498 	sc = arg;
1499 	ifp = &sc->arpcom.ac_if;
1500 
1501 	/* Suppress unwanted interrupts */
1502 	if (!(ifp->if_flags & IFF_UP)) {
1503 		nge_stop(sc);
1504 		return (0);
1505 	}
1506 
1507 	/* Disable interrupts. */
1508 	CSR_WRITE_4(sc, NGE_IER, 0);
1509 
1510 	/* Data LED on for TBI mode */
1511 	if(sc->nge_tbi)
1512 		 CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1513 			     | NGE_GPIO_GP3_OUT);
1514 
1515 	for (;;) {
1516 		/* Reading the ISR register clears all interrupts. */
1517 		status = CSR_READ_4(sc, NGE_ISR);
1518 
1519 		if ((status & NGE_INTRS) == 0)
1520 			break;
1521 
1522 		claimed = 1;
1523 
1524 		if ((status & NGE_ISR_TX_DESC_OK) ||
1525 		    (status & NGE_ISR_TX_ERR) ||
1526 		    (status & NGE_ISR_TX_OK) ||
1527 		    (status & NGE_ISR_TX_IDLE))
1528 			nge_txeof(sc);
1529 
1530 		if ((status & NGE_ISR_RX_DESC_OK) ||
1531 		    (status & NGE_ISR_RX_ERR) ||
1532 		    (status & NGE_ISR_RX_OFLOW) ||
1533 		    (status & NGE_ISR_RX_FIFO_OFLOW) ||
1534 		    (status & NGE_ISR_RX_IDLE) ||
1535 		    (status & NGE_ISR_RX_OK))
1536 			nge_rxeof(sc);
1537 
1538 		if ((status & NGE_ISR_RX_IDLE))
1539 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1540 
1541 		if (status & NGE_ISR_SYSERR) {
1542 			nge_reset(sc);
1543 			ifp->if_flags &= ~IFF_RUNNING;
1544 			nge_init(sc);
1545 		}
1546 
1547 #if 0
1548 		/*
1549 		 * XXX: nge_tick() is not ready to be called this way
1550 		 * it screws up the aneg timeout because mii_tick() is
1551 		 * only to be called once per second.
1552 		 */
1553 		if (status & NGE_IMR_PHY_INTR) {
1554 			sc->nge_link = 0;
1555 			nge_tick(sc);
1556 		}
1557 #endif
1558 	}
1559 
1560 	/* Re-enable interrupts. */
1561 	CSR_WRITE_4(sc, NGE_IER, 1);
1562 
1563 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
1564 		nge_start(ifp);
1565 
1566 	/* Data LED off for TBI mode */
1567 	if(sc->nge_tbi)
1568 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1569 			    & ~NGE_GPIO_GP3_OUT);
1570 
1571 	return claimed;
1572 }
1573 
1574 /*
1575  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1576  * pointers to the fragment pointers.
1577  */
1578 int
1579 nge_encap(sc, m_head, txidx)
1580 	struct nge_softc	*sc;
1581 	struct mbuf		*m_head;
1582 	u_int32_t		*txidx;
1583 {
1584 	struct nge_desc		*f = NULL;
1585 	struct mbuf		*m;
1586 	int			frag, cur, cnt = 0;
1587 
1588 	/*
1589 	 * Start packing the mbufs in this chain into
1590 	 * the fragment pointers. Stop when we run out
1591 	 * of fragments or hit the end of the mbuf chain.
1592 	 */
1593 	m = m_head;
1594 	cur = frag = *txidx;
1595 
1596 	for (m = m_head; m != NULL; m = m->m_next) {
1597 		if (m->m_len != 0) {
1598 			if ((NGE_TX_LIST_CNT -
1599 			    (sc->nge_cdata.nge_tx_cnt + cnt)) < 2)
1600 				return(ENOBUFS);
1601 			f = &sc->nge_ldata->nge_tx_list[frag];
1602 			f->nge_ctl = NGE_CMDSTS_MORE | m->m_len;
1603 			f->nge_ptr = VTOPHYS(mtod(m, vaddr_t));
1604 			DPRINTFN(7,("%s: f->nge_ptr=%#x\n",
1605 				    sc->sc_dv.dv_xname, f->nge_ptr));
1606 			if (cnt != 0)
1607 				f->nge_ctl |= NGE_CMDSTS_OWN;
1608 			cur = frag;
1609 			NGE_INC(frag, NGE_TX_LIST_CNT);
1610 			cnt++;
1611 		}
1612 	}
1613 
1614 	if (m != NULL)
1615 		return(ENOBUFS);
1616 
1617 	sc->nge_ldata->nge_tx_list[*txidx].nge_extsts = 0;
1618 
1619 #if NVLAN > 0
1620 	if (m_head->m_flags & M_VLANTAG) {
1621 		sc->nge_ldata->nge_tx_list[cur].nge_extsts |=
1622 		    (NGE_TXEXTSTS_VLANPKT|htons(m_head->m_pkthdr.ether_vtag));
1623 	}
1624 #endif
1625 
1626 	sc->nge_ldata->nge_tx_list[cur].nge_mbuf = m_head;
1627 	sc->nge_ldata->nge_tx_list[cur].nge_ctl &= ~NGE_CMDSTS_MORE;
1628 	sc->nge_ldata->nge_tx_list[*txidx].nge_ctl |= NGE_CMDSTS_OWN;
1629 	sc->nge_cdata.nge_tx_cnt += cnt;
1630 	*txidx = frag;
1631 
1632 	return(0);
1633 }
1634 
1635 /*
1636  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1637  * to the mbuf data regions directly in the transmit lists. We also save a
1638  * copy of the pointers since the transmit list fragment pointers are
1639  * physical addresses.
1640  */
1641 
1642 void
1643 nge_start(ifp)
1644 	struct ifnet		*ifp;
1645 {
1646 	struct nge_softc	*sc;
1647 	struct mbuf		*m_head = NULL;
1648 	u_int32_t		idx;
1649 	int			pkts = 0;
1650 
1651 	sc = ifp->if_softc;
1652 
1653 	if (!sc->nge_link)
1654 		return;
1655 
1656 	idx = sc->nge_cdata.nge_tx_prod;
1657 
1658 	if (ifp->if_flags & IFF_OACTIVE)
1659 		return;
1660 
1661 	while(sc->nge_ldata->nge_tx_list[idx].nge_mbuf == NULL) {
1662 		IFQ_POLL(&ifp->if_snd, m_head);
1663 		if (m_head == NULL)
1664 			break;
1665 
1666 		if (nge_encap(sc, m_head, &idx)) {
1667 			ifp->if_flags |= IFF_OACTIVE;
1668 			break;
1669 		}
1670 
1671 		/* now we are committed to transmit the packet */
1672 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1673 		pkts++;
1674 
1675 #if NBPFILTER > 0
1676 		/*
1677 		 * If there's a BPF listener, bounce a copy of this frame
1678 		 * to him.
1679 		 */
1680 		if (ifp->if_bpf)
1681 			bpf_mtap_ether(ifp->if_bpf, m_head, BPF_DIRECTION_OUT);
1682 #endif
1683 	}
1684 	if (pkts == 0)
1685 		return;
1686 
1687 	/* Transmit */
1688 	sc->nge_cdata.nge_tx_prod = idx;
1689 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE);
1690 
1691 	/*
1692 	 * Set a timeout in case the chip goes out to lunch.
1693 	 */
1694 	ifp->if_timer = 5;
1695 }
1696 
1697 void
1698 nge_init(xsc)
1699 	void			*xsc;
1700 {
1701 	struct nge_softc	*sc = xsc;
1702 	struct ifnet		*ifp = &sc->arpcom.ac_if;
1703 	struct mii_data		*mii;
1704 	u_int32_t		txcfg, rxcfg;
1705 	int			s, media;
1706 
1707 	if (ifp->if_flags & IFF_RUNNING)
1708 		return;
1709 
1710 	s = splnet();
1711 
1712 	/*
1713 	 * Cancel pending I/O and free all RX/TX buffers.
1714 	 */
1715 	nge_stop(sc);
1716 
1717 	mii = sc->nge_tbi ? NULL: &sc->nge_mii;
1718 
1719 	/* Set MAC address */
1720 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0);
1721 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1722 	    ((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
1723 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1);
1724 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1725 	    ((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
1726 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2);
1727 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1728 	    ((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
1729 
1730 	/* Init circular RX list. */
1731 	if (nge_list_rx_init(sc) == ENOBUFS) {
1732 		printf("%s: initialization failed: no "
1733 			"memory for rx buffers\n", sc->sc_dv.dv_xname);
1734 		nge_stop(sc);
1735 		splx(s);
1736 		return;
1737 	}
1738 
1739 	/*
1740 	 * Init tx descriptors.
1741 	 */
1742 	nge_list_tx_init(sc);
1743 
1744 	/*
1745 	 * For the NatSemi chip, we have to explicitly enable the
1746 	 * reception of ARP frames, as well as turn on the 'perfect
1747 	 * match' filter where we store the station address, otherwise
1748 	 * we won't receive unicasts meant for this host.
1749 	 */
1750 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ARP);
1751 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_PERFECT);
1752 
1753 	 /* If we want promiscuous mode, set the allframes bit. */
1754 	if (ifp->if_flags & IFF_PROMISC)
1755 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1756 	else
1757 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1758 
1759 	/*
1760 	 * Set the capture broadcast bit to capture broadcast frames.
1761 	 */
1762 	if (ifp->if_flags & IFF_BROADCAST)
1763 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1764 	else
1765 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1766 
1767 	/*
1768 	 * Load the multicast filter.
1769 	 */
1770 	nge_setmulti(sc);
1771 
1772 	/* Turn the receive filter on */
1773 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ENABLE);
1774 
1775 	/*
1776 	 * Load the address of the RX and TX lists.
1777 	 */
1778 	CSR_WRITE_4(sc, NGE_RX_LISTPTR,
1779 	    VTOPHYS(&sc->nge_ldata->nge_rx_list[0]));
1780 	CSR_WRITE_4(sc, NGE_TX_LISTPTR,
1781 	    VTOPHYS(&sc->nge_ldata->nge_tx_list[0]));
1782 
1783 	/* Set RX configuration */
1784 	CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG);
1785 
1786 	/*
1787 	 * Enable hardware checksum validation for all IPv4
1788 	 * packets, do not reject packets with bad checksums.
1789 	 */
1790 	CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB);
1791 
1792 	/*
1793 	 * If VLAN support is enabled, tell the chip to detect
1794 	 * and strip VLAN tag info from received frames. The tag
1795 	 * will be provided in the extsts field in the RX descriptors.
1796 	 */
1797 	if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)
1798 		NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL,
1799 		    NGE_VIPRXCTL_TAG_DETECT_ENB | NGE_VIPRXCTL_TAG_STRIP_ENB);
1800 
1801 	/* Set TX configuration */
1802 	CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG);
1803 
1804 	/*
1805 	 * If VLAN support is enabled, tell the chip to insert
1806 	 * VLAN tags on a per-packet basis as dictated by the
1807 	 * code in the frame encapsulation routine.
1808 	 */
1809 	if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)
1810 		NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT);
1811 
1812 	/* Set full/half duplex mode. */
1813 	if (sc->nge_tbi)
1814 		media = sc->nge_ifmedia.ifm_cur->ifm_media;
1815 	else
1816 		media = mii->mii_media_active;
1817 
1818 	txcfg = CSR_READ_4(sc, NGE_TX_CFG);
1819 	rxcfg = CSR_READ_4(sc, NGE_RX_CFG);
1820 
1821 	DPRINTFN(4, ("%s: nge_init txcfg=%#x, rxcfg=%#x\n",
1822 		     sc->sc_dv.dv_xname, txcfg, rxcfg));
1823 
1824 	if ((media & IFM_GMASK) == IFM_FDX) {
1825 		txcfg |= (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR);
1826 		rxcfg |= (NGE_RXCFG_RX_FDX);
1827 	} else {
1828 		txcfg &= ~(NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR);
1829 		rxcfg &= ~(NGE_RXCFG_RX_FDX);
1830 	}
1831 
1832 	txcfg |= NGE_TXCFG_AUTOPAD;
1833 
1834 	CSR_WRITE_4(sc, NGE_TX_CFG, txcfg);
1835 	CSR_WRITE_4(sc, NGE_RX_CFG, rxcfg);
1836 
1837 	nge_tick(sc);
1838 
1839 	/*
1840 	 * Enable the delivery of PHY interrupts based on
1841 	 * link/speed/duplex status changes and enable return
1842 	 * of extended status information in the DMA descriptors,
1843 	 * required for checksum offloading.
1844 	 */
1845 	NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD|NGE_CFG_PHYINTR_LNK|
1846 		   NGE_CFG_PHYINTR_DUP|NGE_CFG_EXTSTS_ENB);
1847 
1848 	DPRINTFN(1, ("%s: nge_init: config=%#x\n", sc->sc_dv.dv_xname,
1849 		     CSR_READ_4(sc, NGE_CFG)));
1850 
1851 	/*
1852 	 * Configure interrupt holdoff (moderation). We can
1853 	 * have the chip delay interrupt delivery for a certain
1854 	 * period. Units are in 100us, and the max setting
1855 	 * is 25500us (0xFF x 100us). Default is a 100us holdoff.
1856 	 */
1857 	CSR_WRITE_4(sc, NGE_IHR, 0x01);
1858 
1859 	/*
1860 	 * Enable interrupts.
1861 	 */
1862 	CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS);
1863 	CSR_WRITE_4(sc, NGE_IER, 1);
1864 
1865 	/* Enable receiver and transmitter. */
1866 	NGE_CLRBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE);
1867 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1868 
1869 	if (sc->nge_tbi)
1870 	    nge_ifmedia_tbi_upd(ifp);
1871 	else
1872 	    nge_ifmedia_mii_upd(ifp);
1873 
1874 	ifp->if_flags |= IFF_RUNNING;
1875 	ifp->if_flags &= ~IFF_OACTIVE;
1876 
1877 	splx(s);
1878 }
1879 
1880 /*
1881  * Set mii media options.
1882  */
1883 int
1884 nge_ifmedia_mii_upd(ifp)
1885 	struct ifnet		*ifp;
1886 {
1887 	struct nge_softc	*sc = ifp->if_softc;
1888 	struct mii_data 	*mii = &sc->nge_mii;
1889 
1890 	DPRINTFN(2, ("%s: nge_ifmedia_mii_upd\n", sc->sc_dv.dv_xname));
1891 
1892 	sc->nge_link = 0;
1893 
1894 	if (mii->mii_instance) {
1895 		struct mii_softc *miisc;
1896 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1897 			mii_phy_reset(miisc);
1898 	}
1899 	mii_mediachg(mii);
1900 
1901 	return(0);
1902 }
1903 
1904 /*
1905  * Report current mii media status.
1906  */
1907 void
1908 nge_ifmedia_mii_sts(ifp, ifmr)
1909 	struct ifnet		*ifp;
1910 	struct ifmediareq	*ifmr;
1911 {
1912 	struct nge_softc	*sc = ifp->if_softc;
1913 	struct mii_data *mii = &sc->nge_mii;
1914 
1915 	DPRINTFN(2, ("%s: nge_ifmedia_mii_sts\n", sc->sc_dv.dv_xname));
1916 
1917 	mii_pollstat(mii);
1918 	ifmr->ifm_active = mii->mii_media_active;
1919 	ifmr->ifm_status = mii->mii_media_status;
1920 }
1921 
1922 /*
1923  * Set mii media options.
1924  */
1925 int
1926 nge_ifmedia_tbi_upd(ifp)
1927 	struct ifnet		*ifp;
1928 {
1929 	struct nge_softc	*sc = ifp->if_softc;
1930 
1931 	DPRINTFN(2, ("%s: nge_ifmedia_tbi_upd\n", sc->sc_dv.dv_xname));
1932 
1933 	sc->nge_link = 0;
1934 
1935 	if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
1936 	    == IFM_AUTO) {
1937 		u_int32_t anar, bmcr;
1938 		anar = CSR_READ_4(sc, NGE_TBI_ANAR);
1939 		anar |= (NGE_TBIANAR_HDX | NGE_TBIANAR_FDX);
1940 		CSR_WRITE_4(sc, NGE_TBI_ANAR, anar);
1941 
1942 		bmcr = CSR_READ_4(sc, NGE_TBI_BMCR);
1943 		bmcr |= (NGE_TBIBMCR_ENABLE_ANEG|NGE_TBIBMCR_RESTART_ANEG);
1944 		CSR_WRITE_4(sc, NGE_TBI_BMCR, bmcr);
1945 
1946 		bmcr &= ~(NGE_TBIBMCR_RESTART_ANEG);
1947 		CSR_WRITE_4(sc, NGE_TBI_BMCR, bmcr);
1948 	} else {
1949 		u_int32_t txcfg, rxcfg;
1950 		txcfg = CSR_READ_4(sc, NGE_TX_CFG);
1951 		rxcfg = CSR_READ_4(sc, NGE_RX_CFG);
1952 
1953 		if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
1954 		    == IFM_FDX) {
1955 			txcfg |= NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR;
1956 			rxcfg |= NGE_RXCFG_RX_FDX;
1957 		} else {
1958 			txcfg &= ~(NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR);
1959 			rxcfg &= ~(NGE_RXCFG_RX_FDX);
1960 		}
1961 
1962 		txcfg |= NGE_TXCFG_AUTOPAD;
1963 		CSR_WRITE_4(sc, NGE_TX_CFG, txcfg);
1964 		CSR_WRITE_4(sc, NGE_RX_CFG, rxcfg);
1965 	}
1966 
1967 	NGE_CLRBIT(sc, NGE_GPIO, NGE_GPIO_GP3_OUT);
1968 
1969 	return(0);
1970 }
1971 
1972 /*
1973  * Report current tbi media status.
1974  */
1975 void
1976 nge_ifmedia_tbi_sts(ifp, ifmr)
1977 	struct ifnet		*ifp;
1978 	struct ifmediareq	*ifmr;
1979 {
1980 	struct nge_softc	*sc = ifp->if_softc;
1981 	u_int32_t		bmcr;
1982 
1983 	bmcr = CSR_READ_4(sc, NGE_TBI_BMCR);
1984 
1985 	if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media) == IFM_AUTO) {
1986 		u_int32_t bmsr = CSR_READ_4(sc, NGE_TBI_BMSR);
1987 		DPRINTFN(2, ("%s: nge_ifmedia_tbi_sts bmsr=%#x, bmcr=%#x\n",
1988 			     sc->sc_dv.dv_xname, bmsr, bmcr));
1989 
1990 		if (!(bmsr & NGE_TBIBMSR_ANEG_DONE)) {
1991 			ifmr->ifm_active = IFM_ETHER|IFM_NONE;
1992 			ifmr->ifm_status = IFM_AVALID;
1993 			return;
1994 		}
1995 	} else {
1996 		DPRINTFN(2, ("%s: nge_ifmedia_tbi_sts bmcr=%#x\n",
1997 			     sc->sc_dv.dv_xname, bmcr));
1998 	}
1999 
2000 	ifmr->ifm_status = IFM_AVALID|IFM_ACTIVE;
2001 	ifmr->ifm_active = IFM_ETHER|IFM_1000_SX;
2002 
2003 	if (bmcr & NGE_TBIBMCR_LOOPBACK)
2004 		ifmr->ifm_active |= IFM_LOOP;
2005 
2006 	if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media) == IFM_AUTO) {
2007 		u_int32_t anlpar = CSR_READ_4(sc, NGE_TBI_ANLPAR);
2008 		DPRINTFN(2, ("%s: nge_ifmedia_tbi_sts anlpar=%#x\n",
2009 			     sc->sc_dv.dv_xname, anlpar));
2010 
2011 		ifmr->ifm_active |= IFM_AUTO;
2012 		if (anlpar & NGE_TBIANLPAR_FDX) {
2013 			ifmr->ifm_active |= IFM_FDX;
2014 		} else if (anlpar & NGE_TBIANLPAR_HDX) {
2015 			ifmr->ifm_active |= IFM_HDX;
2016 		} else
2017 			ifmr->ifm_active |= IFM_FDX;
2018 
2019 	} else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK) == IFM_FDX)
2020 		ifmr->ifm_active |= IFM_FDX;
2021 	else
2022 		ifmr->ifm_active |= IFM_HDX;
2023 
2024 }
2025 
2026 int
2027 nge_ioctl(ifp, command, data)
2028 	struct ifnet		*ifp;
2029 	u_long			command;
2030 	caddr_t			data;
2031 {
2032 	struct nge_softc	*sc = ifp->if_softc;
2033 	struct ifaddr		*ifa = (struct ifaddr *) data;
2034 	struct ifreq		*ifr = (struct ifreq *) data;
2035 	struct mii_data		*mii;
2036 	int			s, error = 0;
2037 
2038 	s = splnet();
2039 
2040 	switch(command) {
2041 	case SIOCSIFADDR:
2042 		ifp->if_flags |= IFF_UP;
2043 		switch (ifa->ifa_addr->sa_family) {
2044 #ifdef INET
2045 		case AF_INET:
2046 			nge_init(sc);
2047 			arp_ifinit(&sc->arpcom, ifa);
2048 			break;
2049 #endif /* INET */
2050 		default:
2051 			nge_init(sc);
2052 			break;
2053                 }
2054 		break;
2055 
2056 	case SIOCSIFFLAGS:
2057 		if (ifp->if_flags & IFF_UP) {
2058 			if (ifp->if_flags & IFF_RUNNING &&
2059 			    ifp->if_flags & IFF_PROMISC &&
2060 			    !(sc->nge_if_flags & IFF_PROMISC)) {
2061 				NGE_SETBIT(sc, NGE_RXFILT_CTL,
2062 				    NGE_RXFILTCTL_ALLPHYS|
2063 				    NGE_RXFILTCTL_ALLMULTI);
2064 			} else if (ifp->if_flags & IFF_RUNNING &&
2065 			    !(ifp->if_flags & IFF_PROMISC) &&
2066 			    sc->nge_if_flags & IFF_PROMISC) {
2067 				NGE_CLRBIT(sc, NGE_RXFILT_CTL,
2068 				    NGE_RXFILTCTL_ALLPHYS);
2069 				if (!(ifp->if_flags & IFF_ALLMULTI))
2070 					NGE_CLRBIT(sc, NGE_RXFILT_CTL,
2071 					    NGE_RXFILTCTL_ALLMULTI);
2072 			} else {
2073 				ifp->if_flags &= ~IFF_RUNNING;
2074 				nge_init(sc);
2075 			}
2076 		} else {
2077 			if (ifp->if_flags & IFF_RUNNING)
2078 				nge_stop(sc);
2079 		}
2080 		sc->nge_if_flags = ifp->if_flags;
2081 		error = 0;
2082 		break;
2083 
2084 	case SIOCGIFMEDIA:
2085 	case SIOCSIFMEDIA:
2086 		if (sc->nge_tbi) {
2087 			error = ifmedia_ioctl(ifp, ifr, &sc->nge_ifmedia,
2088 					      command);
2089 		} else {
2090 			mii = &sc->nge_mii;
2091 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
2092 					      command);
2093 		}
2094 		break;
2095 
2096 	default:
2097 		error = ether_ioctl(ifp, &sc->arpcom, command, data);
2098 	}
2099 
2100 	if (error == ENETRESET) {
2101 		if (ifp->if_flags & IFF_RUNNING)
2102 			nge_setmulti(sc);
2103 		error = 0;
2104 	}
2105 
2106 	splx(s);
2107 	return(error);
2108 }
2109 
2110 void
2111 nge_watchdog(ifp)
2112 	struct ifnet		*ifp;
2113 {
2114 	struct nge_softc	*sc;
2115 
2116 	sc = ifp->if_softc;
2117 
2118 	ifp->if_oerrors++;
2119 	printf("%s: watchdog timeout\n", sc->sc_dv.dv_xname);
2120 
2121 	nge_stop(sc);
2122 	nge_reset(sc);
2123 	ifp->if_flags &= ~IFF_RUNNING;
2124 	nge_init(sc);
2125 
2126 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
2127 		nge_start(ifp);
2128 }
2129 
2130 /*
2131  * Stop the adapter and free any mbufs allocated to the
2132  * RX and TX lists.
2133  */
2134 void
2135 nge_stop(sc)
2136 	struct nge_softc	*sc;
2137 {
2138 	int			i;
2139 	struct ifnet		*ifp;
2140 	struct mii_data		*mii;
2141 
2142 	ifp = &sc->arpcom.ac_if;
2143 	ifp->if_timer = 0;
2144 	if (sc->nge_tbi) {
2145 		mii = NULL;
2146 	} else {
2147 		mii = &sc->nge_mii;
2148 	}
2149 
2150 	timeout_del(&sc->nge_timeout);
2151 
2152 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2153 
2154 	CSR_WRITE_4(sc, NGE_IER, 0);
2155 	CSR_WRITE_4(sc, NGE_IMR, 0);
2156 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE);
2157 	DELAY(1000);
2158 	CSR_WRITE_4(sc, NGE_TX_LISTPTR, 0);
2159 	CSR_WRITE_4(sc, NGE_RX_LISTPTR, 0);
2160 
2161 	if (!sc->nge_tbi)
2162 		mii_down(mii);
2163 
2164 	sc->nge_link = 0;
2165 
2166 	/*
2167 	 * Free data in the RX lists.
2168 	 */
2169 	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
2170 		if (sc->nge_ldata->nge_rx_list[i].nge_mbuf != NULL) {
2171 			m_freem(sc->nge_ldata->nge_rx_list[i].nge_mbuf);
2172 			sc->nge_ldata->nge_rx_list[i].nge_mbuf = NULL;
2173 		}
2174 	}
2175 	bzero(&sc->nge_ldata->nge_rx_list,
2176 		sizeof(sc->nge_ldata->nge_rx_list));
2177 
2178 	/*
2179 	 * Free the TX list buffers.
2180 	 */
2181 	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
2182 		if (sc->nge_ldata->nge_tx_list[i].nge_mbuf != NULL) {
2183 			m_freem(sc->nge_ldata->nge_tx_list[i].nge_mbuf);
2184 			sc->nge_ldata->nge_tx_list[i].nge_mbuf = NULL;
2185 		}
2186 	}
2187 
2188 	bzero(&sc->nge_ldata->nge_tx_list,
2189 		sizeof(sc->nge_ldata->nge_tx_list));
2190 }
2191 
2192 struct cfattach nge_ca = {
2193 	sizeof(struct nge_softc), nge_probe, nge_attach
2194 };
2195 
2196 struct cfdriver nge_cd = {
2197 	NULL, "nge", DV_IFNET
2198 };
2199