xref: /openbsd/sys/dev/pci/if_stge.c (revision 91f110e0)
1 /*	$OpenBSD: if_stge.c,v 1.55 2013/08/07 01:06:38 bluhm Exp $	*/
2 /*	$NetBSD: if_stge.c,v 1.27 2005/05/16 21:35:32 bouyer Exp $	*/
3 
4 /*-
5  * Copyright (c) 2001 The NetBSD Foundation, Inc.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to The NetBSD Foundation
9  * by Jason R. Thorpe.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Device driver for the Sundance Tech. TC9021 10/100/1000
35  * Ethernet controller.
36  */
37 
38 #include "bpfilter.h"
39 #include "vlan.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/timeout.h>
44 #include <sys/mbuf.h>
45 #include <sys/malloc.h>
46 #include <sys/kernel.h>
47 #include <sys/socket.h>
48 #include <sys/ioctl.h>
49 #include <sys/errno.h>
50 #include <sys/device.h>
51 #include <sys/queue.h>
52 
53 #include <net/if.h>
54 #include <net/if_dl.h>
55 
56 #ifdef INET
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/ip.h>
60 #include <netinet/if_ether.h>
61 #endif
62 
63 #include <net/if_media.h>
64 
65 #if NVLAN > 0
66 #include <net/if_types.h>
67 #include <net/if_vlan_var.h>
68 #endif
69 
70 #if NBPFILTER > 0
71 #include <net/bpf.h>
72 #endif
73 
74 #include <machine/bus.h>
75 #include <machine/intr.h>
76 
77 #include <dev/mii/mii.h>
78 #include <dev/mii/miivar.h>
79 #include <dev/mii/mii_bitbang.h>
80 
81 #include <dev/pci/pcireg.h>
82 #include <dev/pci/pcivar.h>
83 #include <dev/pci/pcidevs.h>
84 
85 #include <dev/pci/if_stgereg.h>
86 
87 void	stge_start(struct ifnet *);
88 void	stge_watchdog(struct ifnet *);
89 int	stge_ioctl(struct ifnet *, u_long, caddr_t);
90 int	stge_init(struct ifnet *);
91 void	stge_stop(struct ifnet *, int);
92 
93 void	stge_reset(struct stge_softc *);
94 void	stge_rxdrain(struct stge_softc *);
95 int	stge_add_rxbuf(struct stge_softc *, int);
96 void	stge_read_eeprom(struct stge_softc *, int, uint16_t *);
97 void	stge_tick(void *);
98 
99 void	stge_stats_update(struct stge_softc *);
100 
101 void	stge_iff(struct stge_softc *);
102 
103 int	stge_intr(void *);
104 void	stge_txintr(struct stge_softc *);
105 void	stge_rxintr(struct stge_softc *);
106 
107 int	stge_mii_readreg(struct device *, int, int);
108 void	stge_mii_writereg(struct device *, int, int, int);
109 void	stge_mii_statchg(struct device *);
110 
111 int	stge_mediachange(struct ifnet *);
112 void	stge_mediastatus(struct ifnet *, struct ifmediareq *);
113 
114 int	stge_match(struct device *, void *, void *);
115 void	stge_attach(struct device *, struct device *, void *);
116 
117 int	stge_copy_small = 0;
118 
119 struct cfattach stge_ca = {
120 	sizeof(struct stge_softc), stge_match, stge_attach,
121 };
122 
123 struct cfdriver stge_cd = {
124 	NULL, "stge", DV_IFNET
125 };
126 
127 uint32_t stge_mii_bitbang_read(struct device *);
128 void	stge_mii_bitbang_write(struct device *, uint32_t);
129 
130 const struct mii_bitbang_ops stge_mii_bitbang_ops = {
131 	stge_mii_bitbang_read,
132 	stge_mii_bitbang_write,
133 	{
134 		PC_MgmtData,		/* MII_BIT_MDO */
135 		PC_MgmtData,		/* MII_BIT_MDI */
136 		PC_MgmtClk,		/* MII_BIT_MDC */
137 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
138 		0,			/* MII_BIT_DIR_PHY_HOST */
139 	}
140 };
141 
142 /*
143  * Devices supported by this driver.
144  */
145 const struct pci_matchid stge_devices[] = {
146 	{ PCI_VENDOR_ANTARES, PCI_PRODUCT_ANTARES_TC9021 },
147 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE550T },
148 	{ PCI_VENDOR_SUNDANCE, PCI_PRODUCT_SUNDANCE_ST1023 },
149 	{ PCI_VENDOR_SUNDANCE, PCI_PRODUCT_SUNDANCE_ST2021 },
150 	{ PCI_VENDOR_SUNDANCE, PCI_PRODUCT_SUNDANCE_TC9021 },
151 	{ PCI_VENDOR_SUNDANCE, PCI_PRODUCT_SUNDANCE_TC9021_ALT },
152 	{ PCI_VENDOR_TAMARACK, PCI_PRODUCT_TAMARACK_TC9021 },
153 	{ PCI_VENDOR_TAMARACK, PCI_PRODUCT_TAMARACK_TC9021_ALT }
154 };
155 
156 int
157 stge_match(struct device *parent, void *match, void *aux)
158 {
159 	return (pci_matchbyid((struct pci_attach_args *)aux, stge_devices,
160 	    sizeof(stge_devices) / sizeof(stge_devices[0])));
161 }
162 
163 void
164 stge_attach(struct device *parent, struct device *self, void *aux)
165 {
166 	struct stge_softc *sc = (struct stge_softc *) self;
167 	struct pci_attach_args *pa = aux;
168 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
169 	pci_chipset_tag_t pc = pa->pa_pc;
170 	pci_intr_handle_t ih;
171 	const char *intrstr = NULL;
172 	bus_space_tag_t iot, memt;
173 	bus_space_handle_t ioh, memh;
174 	bus_dma_segment_t seg;
175 	bus_size_t iosize;
176 	int ioh_valid, memh_valid;
177 	int i, rseg, error;
178 
179 	timeout_set(&sc->sc_timeout, stge_tick, sc);
180 
181 	sc->sc_rev = PCI_REVISION(pa->pa_class);
182 
183 	/*
184 	 * Map the device.
185 	 */
186 	ioh_valid = (pci_mapreg_map(pa, STGE_PCI_IOBA,
187 	    PCI_MAPREG_TYPE_IO, 0,
188 	    &iot, &ioh, NULL, &iosize, 0) == 0);
189 	memh_valid = (pci_mapreg_map(pa, STGE_PCI_MMBA,
190 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
191 	    &memt, &memh, NULL, &iosize, 0) == 0);
192 
193 	if (memh_valid) {
194 		sc->sc_st = memt;
195 		sc->sc_sh = memh;
196 	} else if (ioh_valid) {
197 		sc->sc_st = iot;
198 		sc->sc_sh = ioh;
199 	} else {
200 		printf(": unable to map device registers\n");
201 		return;
202 	}
203 
204 	sc->sc_dmat = pa->pa_dmat;
205 
206 	/* Get it out of power save mode if needed. */
207 	pci_set_powerstate(pc, pa->pa_tag, PCI_PMCSR_STATE_D0);
208 
209 	/*
210 	 * Map and establish our interrupt.
211 	 */
212 	if (pci_intr_map(pa, &ih)) {
213 		printf(": unable to map interrupt\n");
214 		goto fail_0;
215 	}
216 	intrstr = pci_intr_string(pc, ih);
217 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, stge_intr, sc,
218 				       sc->sc_dev.dv_xname);
219 	if (sc->sc_ih == NULL) {
220 		printf(": unable to establish interrupt");
221 		if (intrstr != NULL)
222 			printf(" at %s", intrstr);
223 		printf("\n");
224 		goto fail_0;
225 	}
226 	printf(": %s", intrstr);
227 
228 	/*
229 	 * Allocate the control data structures, and create and load the
230 	 * DMA map for it.
231 	 */
232 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
233 	    sizeof(struct stge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
234 	    0)) != 0) {
235 		printf("%s: unable to allocate control data, error = %d\n",
236 		    sc->sc_dev.dv_xname, error);
237 		goto fail_0;
238 	}
239 
240 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
241 	    sizeof(struct stge_control_data), (caddr_t *)&sc->sc_control_data,
242 	    BUS_DMA_COHERENT)) != 0) {
243 		printf("%s: unable to map control data, error = %d\n",
244 		    sc->sc_dev.dv_xname, error);
245 		goto fail_1;
246 	}
247 
248 	if ((error = bus_dmamap_create(sc->sc_dmat,
249 	    sizeof(struct stge_control_data), 1,
250 	    sizeof(struct stge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
251 		printf("%s: unable to create control data DMA map, "
252 		    "error = %d\n", sc->sc_dev.dv_xname, error);
253 		goto fail_2;
254 	}
255 
256 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
257 	    sc->sc_control_data, sizeof(struct stge_control_data), NULL,
258 	    0)) != 0) {
259 		printf("%s: unable to load control data DMA map, error = %d\n",
260 		    sc->sc_dev.dv_xname, error);
261 		goto fail_3;
262 	}
263 
264 	/*
265 	 * Create the transmit buffer DMA maps.  Note that rev B.3
266 	 * and earlier seem to have a bug regarding multi-fragment
267 	 * packets.  We need to limit the number of Tx segments on
268 	 * such chips to 1.
269 	 */
270 	for (i = 0; i < STGE_NTXDESC; i++) {
271 		if ((error = bus_dmamap_create(sc->sc_dmat,
272 		    STGE_JUMBO_FRAMELEN, STGE_NTXFRAGS, MCLBYTES, 0, 0,
273 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
274 			printf("%s: unable to create tx DMA map %d, "
275 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
276 			goto fail_4;
277 		}
278 	}
279 
280 	/*
281 	 * Create the receive buffer DMA maps.
282 	 */
283 	for (i = 0; i < STGE_NRXDESC; i++) {
284 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
285 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
286 			printf("%s: unable to create rx DMA map %d, "
287 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
288 			goto fail_5;
289 		}
290 		sc->sc_rxsoft[i].ds_mbuf = NULL;
291 	}
292 
293 	/*
294 	 * Determine if we're copper or fiber.  It affects how we
295 	 * reset the card.
296 	 */
297 	if (CSR_READ_4(sc, STGE_AsicCtrl) & AC_PhyMedia)
298 		sc->sc_usefiber = 1;
299 	else
300 		sc->sc_usefiber = 0;
301 
302 	/*
303 	 * Reset the chip to a known state.
304 	 */
305 	stge_reset(sc);
306 
307 	/*
308 	 * Reading the station address from the EEPROM doesn't seem
309 	 * to work, at least on my sample boards.  Instead, since
310 	 * the reset sequence does AutoInit, read it from the station
311 	 * address registers. For Sundance 1023 you can only read it
312 	 * from EEPROM.
313 	 */
314 	if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_SUNDANCE_ST1023) {
315 		sc->sc_arpcom.ac_enaddr[0] = CSR_READ_2(sc,
316 		    STGE_StationAddress0) & 0xff;
317 		sc->sc_arpcom.ac_enaddr[1] = CSR_READ_2(sc,
318 		    STGE_StationAddress0) >> 8;
319 		sc->sc_arpcom.ac_enaddr[2] = CSR_READ_2(sc,
320 		    STGE_StationAddress1) & 0xff;
321 		sc->sc_arpcom.ac_enaddr[3] = CSR_READ_2(sc,
322 		    STGE_StationAddress1) >> 8;
323 		sc->sc_arpcom.ac_enaddr[4] = CSR_READ_2(sc,
324 		    STGE_StationAddress2) & 0xff;
325 		sc->sc_arpcom.ac_enaddr[5] = CSR_READ_2(sc,
326 		    STGE_StationAddress2) >> 8;
327 		sc->sc_stge1023 = 0;
328 	} else {
329 		uint16_t myaddr[ETHER_ADDR_LEN / 2];
330 		for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
331 			stge_read_eeprom(sc, STGE_EEPROM_StationAddress0 + i,
332 			    &myaddr[i]);
333 			myaddr[i] = letoh16(myaddr[i]);
334 		}
335 		(void)memcpy(sc->sc_arpcom.ac_enaddr, myaddr,
336 		    sizeof(sc->sc_arpcom.ac_enaddr));
337 		sc->sc_stge1023 = 1;
338 	}
339 
340 	printf(", address %s\n", ether_sprintf(sc->sc_arpcom.ac_enaddr));
341 
342 	/*
343 	 * Read some important bits from the PhyCtrl register.
344 	 */
345 	sc->sc_PhyCtrl = CSR_READ_1(sc, STGE_PhyCtrl) &
346 	    (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
347 
348 	/*
349 	 * Initialize our media structures and probe the MII.
350 	 */
351 	sc->sc_mii.mii_ifp = ifp;
352 	sc->sc_mii.mii_readreg = stge_mii_readreg;
353 	sc->sc_mii.mii_writereg = stge_mii_writereg;
354 	sc->sc_mii.mii_statchg = stge_mii_statchg;
355 	ifmedia_init(&sc->sc_mii.mii_media, 0, stge_mediachange,
356 	    stge_mediastatus);
357 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
358 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
359 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
360 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
361 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
362 	} else
363 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
364 
365 	ifp = &sc->sc_arpcom.ac_if;
366 	strlcpy(ifp->if_xname, sc->sc_dev.dv_xname, sizeof ifp->if_xname);
367 	ifp->if_softc = sc;
368 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
369 	ifp->if_ioctl = stge_ioctl;
370 	ifp->if_start = stge_start;
371 	ifp->if_watchdog = stge_watchdog;
372 #ifdef STGE_JUMBO
373 	ifp->if_hardmtu = STGE_JUMBO_MTU;
374 #endif
375 	IFQ_SET_MAXLEN(&ifp->if_snd, STGE_NTXDESC - 1);
376 	IFQ_SET_READY(&ifp->if_snd);
377 
378 	ifp->if_capabilities = IFCAP_VLAN_MTU;
379 
380 #if NVLAN > 0
381 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
382 #endif
383 
384 	/*
385 	 * The manual recommends disabling early transmit, so we
386 	 * do.  It's disabled anyway, if using IP checksumming,
387 	 * since the entire packet must be in the FIFO in order
388 	 * for the chip to perform the checksum.
389 	 */
390 	sc->sc_txthresh = 0x0fff;
391 
392 	/*
393 	 * Disable MWI if the PCI layer tells us to.
394 	 */
395 	sc->sc_DMACtrl = 0;
396 #ifdef fake
397 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
398 		sc->sc_DMACtrl |= DMAC_MWIDisable;
399 #endif
400 
401 #ifdef STGE_CHECKSUM
402 	/*
403 	 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
404 	 */
405 	sc->sc_arpcom.ac_if.if_capabilities |= IFCAP_CSUM_IPv4 |
406 	    IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
407 #endif
408 
409 	/*
410 	 * Attach the interface.
411 	 */
412 	if_attach(ifp);
413 	ether_ifattach(ifp);
414 	return;
415 
416 	/*
417 	 * Free any resources we've allocated during the failed attach
418 	 * attempt.  Do this in reverse order and fall through.
419 	 */
420  fail_5:
421 	for (i = 0; i < STGE_NRXDESC; i++) {
422 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
423 			bus_dmamap_destroy(sc->sc_dmat,
424 			    sc->sc_rxsoft[i].ds_dmamap);
425 	}
426  fail_4:
427 	for (i = 0; i < STGE_NTXDESC; i++) {
428 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
429 			bus_dmamap_destroy(sc->sc_dmat,
430 			    sc->sc_txsoft[i].ds_dmamap);
431 	}
432 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
433  fail_3:
434 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
435  fail_2:
436 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
437 	    sizeof(struct stge_control_data));
438  fail_1:
439 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
440  fail_0:
441 	bus_space_unmap(sc->sc_st, sc->sc_sh, iosize);
442 	return;
443 }
444 
445 static void
446 stge_dma_wait(struct stge_softc *sc)
447 {
448 	int i;
449 
450 	for (i = 0; i < STGE_TIMEOUT; i++) {
451 		delay(2);
452 		if ((CSR_READ_4(sc, STGE_DMACtrl) & DMAC_TxDMAInProg) == 0)
453 			break;
454 	}
455 
456 	if (i == STGE_TIMEOUT)
457 		printf("%s: DMA wait timed out\n", sc->sc_dev.dv_xname);
458 }
459 
460 /*
461  * stge_start:		[ifnet interface function]
462  *
463  *	Start packet transmission on the interface.
464  */
465 void
466 stge_start(struct ifnet *ifp)
467 {
468 	struct stge_softc *sc = ifp->if_softc;
469 	struct mbuf *m0;
470 	struct stge_descsoft *ds;
471 	struct stge_tfd *tfd;
472 	bus_dmamap_t dmamap;
473 	int error, firsttx, nexttx, opending, seg, totlen;
474 	uint64_t csum_flags = 0, tfc;
475 
476 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
477 		return;
478 
479 	/*
480 	 * Remember the previous number of pending transmissions
481 	 * and the first descriptor we will use.
482 	 */
483 	opending = sc->sc_txpending;
484 	firsttx = STGE_NEXTTX(sc->sc_txlast);
485 
486 	/*
487 	 * Loop through the send queue, setting up transmit descriptors
488 	 * until we drain the queue, or use up all available transmit
489 	 * descriptors.
490 	 */
491 	for (;;) {
492 		/*
493 		 * Grab a packet off the queue.
494 		 */
495 		IFQ_POLL(&ifp->if_snd, m0);
496 		if (m0 == NULL)
497 			break;
498 
499 		/*
500 		 * Leave one unused descriptor at the end of the
501 		 * list to prevent wrapping completely around.
502 		 */
503 		if (sc->sc_txpending == (STGE_NTXDESC - 1))
504 			break;
505 
506 		/*
507 		 * Get the last and next available transmit descriptor.
508 		 */
509 		nexttx = STGE_NEXTTX(sc->sc_txlast);
510 		tfd = &sc->sc_txdescs[nexttx];
511 		ds = &sc->sc_txsoft[nexttx];
512 
513 		dmamap = ds->ds_dmamap;
514 
515 		/*
516 		 * Load the DMA map.  If this fails, the packet either
517 		 * didn't fit in the alloted number of segments, or we
518 		 * were short on resources.  For the too-many-segments
519 		 * case, we simply report an error and drop the packet,
520 		 * since we can't sanely copy a jumbo packet to a single
521 		 * buffer.
522 		 */
523 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
524 		    BUS_DMA_NOWAIT);
525 		if (error) {
526 			if (error == EFBIG) {
527 				printf("%s: Tx packet consumes too many "
528 				    "DMA segments (%u), dropping...\n",
529 				    sc->sc_dev.dv_xname, dmamap->dm_nsegs);
530 				IFQ_DEQUEUE(&ifp->if_snd, m0);
531 				m_freem(m0);
532 				continue;
533 			}
534 			/*
535 			 * Short on resources, just stop for now.
536 			 */
537 			break;
538 		}
539 
540 		IFQ_DEQUEUE(&ifp->if_snd, m0);
541 
542 		/*
543 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
544 		 */
545 
546 		/* Sync the DMA map. */
547 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
548 		    BUS_DMASYNC_PREWRITE);
549 
550 		/* Initialize the fragment list. */
551 		for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
552 			tfd->tfd_frags[seg].frag_word0 =
553 			    htole64(FRAG_ADDR(dmamap->dm_segs[seg].ds_addr) |
554 			    FRAG_LEN(dmamap->dm_segs[seg].ds_len));
555 			totlen += dmamap->dm_segs[seg].ds_len;
556 		}
557 
558 #ifdef STGE_CHECKSUM
559 		/*
560 		 * Initialize checksumming flags in the descriptor.
561 		 * Byte-swap constants so the compiler can optimize.
562 		 */
563 		if (m0->m_pkthdr.csum_flags & M_IPV4_CSUM_OUT)
564 			csum_flags |= TFD_IPChecksumEnable;
565 
566 		if (m0->m_pkthdr.csum_flags & M_TCP_CSUM_OUT)
567 			csum_flags |= TFD_TCPChecksumEnable;
568 		else if (m0->m_pkthdr.csum_flags & M_UDP_CSUM_OUT)
569 			csum_flags |= TFD_UDPChecksumEnable;
570 #endif
571 
572 		/*
573 		 * Initialize the descriptor and give it to the chip.
574 		 */
575 		tfc = TFD_FrameId(nexttx) | TFD_WordAlign(/*totlen & */3) |
576 		    TFD_FragCount(seg) | csum_flags;
577 		if ((nexttx & STGE_TXINTR_SPACING_MASK) == 0)
578 			tfc |= TFD_TxDMAIndicate;
579 
580 #if NVLAN > 0
581 		/* Check if we have a VLAN tag to insert. */
582 		if (m0->m_flags & M_VLANTAG)
583 			tfc |= (TFD_VLANTagInsert |
584 			    TFD_VID(m0->m_pkthdr.ether_vtag));
585 #endif
586 
587 		tfd->tfd_control = htole64(tfc);
588 
589 		/* Sync the descriptor. */
590 		STGE_CDTXSYNC(sc, nexttx,
591 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
592 
593 		/*
594 		 * Kick the transmit DMA logic.
595 		 */
596 		CSR_WRITE_4(sc, STGE_DMACtrl,
597 		    sc->sc_DMACtrl | DMAC_TxDMAPollNow);
598 
599 		/*
600 		 * Store a pointer to the packet so we can free it later.
601 		 */
602 		ds->ds_mbuf = m0;
603 
604 		/* Advance the tx pointer. */
605 		sc->sc_txpending++;
606 		sc->sc_txlast = nexttx;
607 
608 #if NBPFILTER > 0
609 		/*
610 		 * Pass the packet to any BPF listeners.
611 		 */
612 		if (ifp->if_bpf)
613 			bpf_mtap_ether(ifp->if_bpf, m0, BPF_DIRECTION_OUT);
614 #endif /* NBPFILTER > 0 */
615 	}
616 
617 	if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
618 		/* No more slots left; notify upper layer. */
619 		ifp->if_flags |= IFF_OACTIVE;
620 	}
621 
622 	if (sc->sc_txpending != opending) {
623 		/*
624 		 * We enqueued packets.  If the transmitter was idle,
625 		 * reset the txdirty pointer.
626 		 */
627 		if (opending == 0)
628 			sc->sc_txdirty = firsttx;
629 
630 		/* Set a watchdog timer in case the chip flakes out. */
631 		ifp->if_timer = 5;
632 	}
633 }
634 
635 /*
636  * stge_watchdog:	[ifnet interface function]
637  *
638  *	Watchdog timer handler.
639  */
640 void
641 stge_watchdog(struct ifnet *ifp)
642 {
643 	struct stge_softc *sc = ifp->if_softc;
644 
645 	/*
646 	 * Sweep up first, since we don't interrupt every frame.
647 	 */
648 	stge_txintr(sc);
649 	if (sc->sc_txpending != 0) {
650 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
651 		ifp->if_oerrors++;
652 
653 		(void) stge_init(ifp);
654 
655 		/* Try to get more packets going. */
656 		stge_start(ifp);
657 	}
658 }
659 
660 /*
661  * stge_ioctl:		[ifnet interface function]
662  *
663  *	Handle control requests from the operator.
664  */
665 int
666 stge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
667 {
668 	struct stge_softc *sc = ifp->if_softc;
669 	struct ifaddr *ifa = (struct ifaddr *)data;
670 	struct ifreq *ifr = (struct ifreq *)data;
671 	int s, error = 0;
672 
673 	s = splnet();
674 
675 	switch (cmd) {
676 	case SIOCSIFADDR:
677 		ifp->if_flags |= IFF_UP;
678 		if (!(ifp->if_flags & IFF_RUNNING))
679 			stge_init(ifp);
680 
681 #ifdef INET
682 		if (ifa->ifa_addr->sa_family == AF_INET)
683 			arp_ifinit(&sc->sc_arpcom, ifa);
684 #endif
685 		break;
686 
687 	case SIOCSIFFLAGS:
688 		if (ifp->if_flags & IFF_UP) {
689 			if (ifp->if_flags & IFF_RUNNING)
690 				error = ENETRESET;
691 			else
692 				stge_init(ifp);
693 		} else {
694 			if (ifp->if_flags & IFF_RUNNING)
695 				stge_stop(ifp, 1);
696 		}
697 		break;
698 
699 	case SIOCSIFMEDIA:
700 	case SIOCGIFMEDIA:
701 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
702 		break;
703 
704 	default:
705 		error = ether_ioctl(ifp, &sc->sc_arpcom, cmd, data);
706 	}
707 
708 	if (error == ENETRESET) {
709 		if (ifp->if_flags & IFF_RUNNING)
710 			stge_iff(sc);
711 		error = 0;
712 	}
713 
714 	/* Try to get more packets going. */
715 	stge_start(ifp);
716 
717 	splx(s);
718 	return (error);
719 }
720 
721 /*
722  * stge_intr:
723  *
724  *	Interrupt service routine.
725  */
726 int
727 stge_intr(void *arg)
728 {
729 	struct stge_softc *sc = arg;
730 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
731 	uint32_t txstat;
732 	int wantinit;
733 	uint16_t isr;
734 
735 	if ((CSR_READ_2(sc, STGE_IntStatus) & IS_InterruptStatus) == 0)
736 		return (0);
737 
738 	for (wantinit = 0; wantinit == 0;) {
739 		isr = CSR_READ_2(sc, STGE_IntStatusAck);
740 		if ((isr & sc->sc_IntEnable) == 0)
741 			break;
742 
743 		/* Host interface errors. */
744 		if (isr & IS_HostError) {
745 			printf("%s: Host interface error\n",
746 			    sc->sc_dev.dv_xname);
747 			wantinit = 1;
748 			continue;
749 		}
750 
751 		/* Receive interrupts. */
752 		if (isr & (IS_RxDMAComplete|IS_RFDListEnd)) {
753 			stge_rxintr(sc);
754 			if (isr & IS_RFDListEnd) {
755 				printf("%s: receive ring overflow\n",
756 				    sc->sc_dev.dv_xname);
757 				/*
758 				 * XXX Should try to recover from this
759 				 * XXX more gracefully.
760 				 */
761 				wantinit = 1;
762 			}
763 		}
764 
765 		/* Transmit interrupts. */
766 		if (isr & (IS_TxDMAComplete|IS_TxComplete))
767 			stge_txintr(sc);
768 
769 		/* Statistics overflow. */
770 		if (isr & IS_UpdateStats)
771 			stge_stats_update(sc);
772 
773 		/* Transmission errors. */
774 		if (isr & IS_TxComplete) {
775 			for (;;) {
776 				txstat = CSR_READ_4(sc, STGE_TxStatus);
777 				if ((txstat & TS_TxComplete) == 0)
778 					break;
779 				if (txstat & TS_TxUnderrun) {
780 					sc->sc_txthresh++;
781 					if (sc->sc_txthresh > 0x0fff)
782 						sc->sc_txthresh = 0x0fff;
783 					printf("%s: transmit underrun, new "
784 					    "threshold: %d bytes\n",
785 					    sc->sc_dev.dv_xname,
786 					    sc->sc_txthresh << 5);
787 				}
788 				if (txstat & TS_MaxCollisions)
789 					printf("%s: excessive collisions\n",
790 					    sc->sc_dev.dv_xname);
791 			}
792 			wantinit = 1;
793 		}
794 
795 	}
796 
797 	if (wantinit)
798 		stge_init(ifp);
799 
800 	CSR_WRITE_2(sc, STGE_IntEnable, sc->sc_IntEnable);
801 
802 	/* Try to get more packets going. */
803 	stge_start(ifp);
804 
805 	return (1);
806 }
807 
808 /*
809  * stge_txintr:
810  *
811  *	Helper; handle transmit interrupts.
812  */
813 void
814 stge_txintr(struct stge_softc *sc)
815 {
816 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
817 	struct stge_descsoft *ds;
818 	uint64_t control;
819 	int i;
820 
821 	ifp->if_flags &= ~IFF_OACTIVE;
822 
823 	/*
824 	 * Go through our Tx list and free mbufs for those
825 	 * frames which have been transmitted.
826 	 */
827 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
828 	     i = STGE_NEXTTX(i), sc->sc_txpending--) {
829 		ds = &sc->sc_txsoft[i];
830 
831 		STGE_CDTXSYNC(sc, i,
832 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
833 
834 		control = letoh64(sc->sc_txdescs[i].tfd_control);
835 		if ((control & TFD_TFDDone) == 0)
836 			break;
837 
838 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
839 		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
840 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
841 		m_freem(ds->ds_mbuf);
842 		ds->ds_mbuf = NULL;
843 	}
844 
845 	/* Update the dirty transmit buffer pointer. */
846 	sc->sc_txdirty = i;
847 
848 	/*
849 	 * If there are no more pending transmissions, cancel the watchdog
850 	 * timer.
851 	 */
852 	if (sc->sc_txpending == 0)
853 		ifp->if_timer = 0;
854 }
855 
856 /*
857  * stge_rxintr:
858  *
859  *	Helper; handle receive interrupts.
860  */
861 void
862 stge_rxintr(struct stge_softc *sc)
863 {
864 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
865 	struct stge_descsoft *ds;
866 	struct mbuf *m, *tailm;
867 	uint64_t status;
868 	int i, len;
869 
870 	for (i = sc->sc_rxptr;; i = STGE_NEXTRX(i)) {
871 		ds = &sc->sc_rxsoft[i];
872 
873 		STGE_CDRXSYNC(sc, i,
874 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
875 
876 		status = letoh64(sc->sc_rxdescs[i].rfd_status);
877 
878 		if ((status & RFD_RFDDone) == 0)
879 			break;
880 
881 		if (__predict_false(sc->sc_rxdiscard)) {
882 			STGE_INIT_RXDESC(sc, i);
883 			if (status & RFD_FrameEnd) {
884 				/* Reset our state. */
885 				sc->sc_rxdiscard = 0;
886 			}
887 			continue;
888 		}
889 
890 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
891 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
892 
893 		m = ds->ds_mbuf;
894 
895 		/*
896 		 * Add a new receive buffer to the ring.
897 		 */
898 		if (stge_add_rxbuf(sc, i) != 0) {
899 			/*
900 			 * Failed, throw away what we've done so
901 			 * far, and discard the rest of the packet.
902 			 */
903 			ifp->if_ierrors++;
904 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
905 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
906 			STGE_INIT_RXDESC(sc, i);
907 			if ((status & RFD_FrameEnd) == 0)
908 				sc->sc_rxdiscard = 1;
909 			if (sc->sc_rxhead != NULL)
910 				m_freem(sc->sc_rxhead);
911 			STGE_RXCHAIN_RESET(sc);
912 			continue;
913 		}
914 
915 #ifdef DIAGNOSTIC
916 		if (status & RFD_FrameStart) {
917 			KASSERT(sc->sc_rxhead == NULL);
918 			KASSERT(sc->sc_rxtailp == &sc->sc_rxhead);
919 		}
920 #endif
921 
922 		STGE_RXCHAIN_LINK(sc, m);
923 
924 		/*
925 		 * If this is not the end of the packet, keep
926 		 * looking.
927 		 */
928 		if ((status & RFD_FrameEnd) == 0) {
929 			sc->sc_rxlen += m->m_len;
930 			continue;
931 		}
932 
933 		/*
934 		 * Okay, we have the entire packet now...
935 		 */
936 		*sc->sc_rxtailp = NULL;
937 		m = sc->sc_rxhead;
938 		tailm = sc->sc_rxtail;
939 
940 		STGE_RXCHAIN_RESET(sc);
941 
942 		/*
943 		 * If the packet had an error, drop it.  Note we
944 		 * count the error later in the periodic stats update.
945 		 */
946 		if (status & (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
947 			      RFD_RxAlignmentError | RFD_RxFCSError |
948 			      RFD_RxLengthError)) {
949 			m_freem(m);
950 			continue;
951 		}
952 
953 		/*
954 		 * No errors.
955 		 *
956 		 * Note we have configured the chip to not include
957 		 * the CRC at the end of the packet.
958 		 */
959 		len = RFD_RxDMAFrameLen(status);
960 		tailm->m_len = len - sc->sc_rxlen;
961 
962 		/*
963 		 * If the packet is small enough to fit in a
964 		 * single header mbuf, allocate one and copy
965 		 * the data into it.  This greatly reduces
966 		 * memory consumption when we receive lots
967 		 * of small packets.
968 		 */
969 		if (stge_copy_small != 0 && len <= (MHLEN - 2)) {
970 			struct mbuf *nm;
971 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
972 			if (nm == NULL) {
973 				ifp->if_ierrors++;
974 				m_freem(m);
975 				continue;
976 			}
977 			nm->m_data += 2;
978 			nm->m_pkthdr.len = nm->m_len = len;
979 			m_copydata(m, 0, len, mtod(nm, caddr_t));
980 			m_freem(m);
981 			m = nm;
982 		}
983 
984 		/*
985 		 * Set the incoming checksum information for the packet.
986 		 */
987 		if ((status & RFD_IPDetected) &&
988 		    (!(status & RFD_IPError)))
989 			m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
990 		if ((status & RFD_TCPDetected) &&
991 		    (!(status & RFD_TCPError)))
992 			m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK;
993 		else if ((status & RFD_UDPDetected) &&
994 		    (!(status & RFD_UDPError)))
995 			m->m_pkthdr.csum_flags |= M_UDP_CSUM_IN_OK;
996 
997 #if NVLAN > 0
998 		/* Check for VLAN tagged packets. */
999 		if (status & RFD_VLANDetected) {
1000 			m->m_pkthdr.ether_vtag = RFD_TCI(status);
1001 			m->m_flags |= M_VLANTAG;
1002 		}
1003 #endif
1004 
1005 		m->m_pkthdr.rcvif = ifp;
1006 		m->m_pkthdr.len = len;
1007 
1008 #if NBPFILTER > 0
1009 		/*
1010 		 * Pass this up to any BPF listeners, but only
1011 		 * pass if up the stack if it's for us.
1012 		 */
1013 		if (ifp->if_bpf)
1014 			bpf_mtap_ether(ifp->if_bpf, m, BPF_DIRECTION_IN);
1015 #endif /* NBPFILTER > 0 */
1016 
1017 		/* Pass it on. */
1018 		ether_input_mbuf(ifp, m);
1019 	}
1020 
1021 	/* Update the receive pointer. */
1022 	sc->sc_rxptr = i;
1023 }
1024 
1025 /*
1026  * stge_tick:
1027  *
1028  *	One second timer, used to tick the MII.
1029  */
1030 void
1031 stge_tick(void *arg)
1032 {
1033 	struct stge_softc *sc = arg;
1034 	int s;
1035 
1036 	s = splnet();
1037 	mii_tick(&sc->sc_mii);
1038 	stge_stats_update(sc);
1039 	splx(s);
1040 
1041 	timeout_add_sec(&sc->sc_timeout, 1);
1042 }
1043 
1044 /*
1045  * stge_stats_update:
1046  *
1047  *	Read the TC9021 statistics counters.
1048  */
1049 void
1050 stge_stats_update(struct stge_softc *sc)
1051 {
1052 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1053 
1054 	(void) CSR_READ_4(sc, STGE_OctetRcvOk);
1055 
1056 	ifp->if_ipackets +=
1057 	    CSR_READ_4(sc, STGE_FramesRcvdOk);
1058 
1059 	ifp->if_ierrors +=
1060 	    (u_int) CSR_READ_2(sc, STGE_FramesLostRxErrors);
1061 
1062 	(void) CSR_READ_4(sc, STGE_OctetXmtdOk);
1063 
1064 	ifp->if_opackets +=
1065 	    CSR_READ_4(sc, STGE_FramesXmtdOk);
1066 
1067 	ifp->if_collisions +=
1068 	    CSR_READ_4(sc, STGE_LateCollisions) +
1069 	    CSR_READ_4(sc, STGE_MultiColFrames) +
1070 	    CSR_READ_4(sc, STGE_SingleColFrames);
1071 
1072 	ifp->if_oerrors +=
1073 	    (u_int) CSR_READ_2(sc, STGE_FramesAbortXSColls) +
1074 	    (u_int) CSR_READ_2(sc, STGE_FramesWEXDeferal);
1075 }
1076 
1077 /*
1078  * stge_reset:
1079  *
1080  *	Perform a soft reset on the TC9021.
1081  */
1082 void
1083 stge_reset(struct stge_softc *sc)
1084 {
1085 	uint32_t ac;
1086 	int i;
1087 
1088 	ac = CSR_READ_4(sc, STGE_AsicCtrl);
1089 
1090 	/*
1091 	 * Only assert RstOut if we're fiber.  We need GMII clocks
1092 	 * to be present in order for the reset to complete on fiber
1093 	 * cards.
1094 	 */
1095 	CSR_WRITE_4(sc, STGE_AsicCtrl,
1096 	    ac | AC_GlobalReset | AC_RxReset | AC_TxReset |
1097 	    AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
1098 	    (sc->sc_usefiber ? AC_RstOut : 0));
1099 
1100 	delay(50000);
1101 
1102 	for (i = 0; i < STGE_TIMEOUT; i++) {
1103 		delay(5000);
1104 		if ((CSR_READ_4(sc, STGE_AsicCtrl) & AC_ResetBusy) == 0)
1105 			break;
1106 	}
1107 
1108 	if (i == STGE_TIMEOUT)
1109 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1110 
1111 	delay(1000);
1112 }
1113 
1114 /*
1115  * stge_init:		[ ifnet interface function ]
1116  *
1117  *	Initialize the interface.  Must be called at splnet().
1118  */
1119 int
1120 stge_init(struct ifnet *ifp)
1121 {
1122 	struct stge_softc *sc = ifp->if_softc;
1123 	struct stge_descsoft *ds;
1124 	int i, error = 0;
1125 
1126 	/*
1127 	 * Cancel any pending I/O.
1128 	 */
1129 	stge_stop(ifp, 0);
1130 
1131 	/*
1132 	 * Reset the chip to a known state.
1133 	 */
1134 	stge_reset(sc);
1135 
1136 	/*
1137 	 * Initialize the transmit descriptor ring.
1138 	 */
1139 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1140 	for (i = 0; i < STGE_NTXDESC; i++) {
1141 		sc->sc_txdescs[i].tfd_next = htole64(
1142 		    STGE_CDTXADDR(sc, STGE_NEXTTX(i)));
1143 		sc->sc_txdescs[i].tfd_control = htole64(TFD_TFDDone);
1144 	}
1145 	sc->sc_txpending = 0;
1146 	sc->sc_txdirty = 0;
1147 	sc->sc_txlast = STGE_NTXDESC - 1;
1148 
1149 	/*
1150 	 * Initialize the receive descriptor and receive job
1151 	 * descriptor rings.
1152 	 */
1153 	for (i = 0; i < STGE_NRXDESC; i++) {
1154 		ds = &sc->sc_rxsoft[i];
1155 		if (ds->ds_mbuf == NULL) {
1156 			if ((error = stge_add_rxbuf(sc, i)) != 0) {
1157 				printf("%s: unable to allocate or map rx "
1158 				    "buffer %d, error = %d\n",
1159 				    sc->sc_dev.dv_xname, i, error);
1160 				/*
1161 				 * XXX Should attempt to run with fewer receive
1162 				 * XXX buffers instead of just failing.
1163 				 */
1164 				stge_rxdrain(sc);
1165 				goto out;
1166 			}
1167 		} else
1168 			STGE_INIT_RXDESC(sc, i);
1169 	}
1170 	sc->sc_rxptr = 0;
1171 	sc->sc_rxdiscard = 0;
1172 	STGE_RXCHAIN_RESET(sc);
1173 
1174 	/* Set the station address. */
1175 	if (sc->sc_stge1023) {
1176 		CSR_WRITE_2(sc, STGE_StationAddress0,
1177 		    sc->sc_arpcom.ac_enaddr[0] | sc->sc_arpcom.ac_enaddr[1] << 8);
1178 		CSR_WRITE_2(sc, STGE_StationAddress1,
1179 		    sc->sc_arpcom.ac_enaddr[2] | sc->sc_arpcom.ac_enaddr[3] << 8);
1180 		CSR_WRITE_2(sc, STGE_StationAddress2,
1181 		    sc->sc_arpcom.ac_enaddr[4] | sc->sc_arpcom.ac_enaddr[5] << 8);
1182 	} else {
1183 		for (i = 0; i < ETHER_ADDR_LEN; i++)
1184 			CSR_WRITE_1(sc, STGE_StationAddress0 + i,
1185 			    sc->sc_arpcom.ac_enaddr[i]);
1186 	}
1187 
1188 	/*
1189 	 * Set the statistics masks.  Disable all the RMON stats,
1190 	 * and disable selected stats in the non-RMON stats registers.
1191 	 */
1192 	CSR_WRITE_4(sc, STGE_RMONStatisticsMask, 0xffffffff);
1193 	CSR_WRITE_4(sc, STGE_StatisticsMask,
1194 	    (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
1195 	    (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
1196 	    (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
1197 	    (1U << 21));
1198 
1199 	/* Program promiscuous mode and multicast filters. */
1200 	stge_iff(sc);
1201 
1202 	/*
1203 	 * Give the transmit and receive ring to the chip.
1204 	 */
1205 	CSR_WRITE_4(sc, STGE_TFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1206 	CSR_WRITE_4(sc, STGE_TFDListPtrLo,
1207 	    STGE_CDTXADDR(sc, sc->sc_txdirty));
1208 
1209 	CSR_WRITE_4(sc, STGE_RFDListPtrHi, 0); /* NOTE: 32-bit DMA */
1210 	CSR_WRITE_4(sc, STGE_RFDListPtrLo,
1211 	    STGE_CDRXADDR(sc, sc->sc_rxptr));
1212 
1213 	/*
1214 	 * Initialize the Tx auto-poll period.  It's OK to make this number
1215 	 * large (255 is the max, but we use 127) -- we explicitly kick the
1216 	 * transmit engine when there's actually a packet.
1217 	 */
1218 	CSR_WRITE_1(sc, STGE_TxDMAPollPeriod, 127);
1219 
1220 	/* ..and the Rx auto-poll period. */
1221 	CSR_WRITE_1(sc, STGE_RxDMAPollPeriod, 64);
1222 
1223 	/* Initialize the Tx start threshold. */
1224 	CSR_WRITE_2(sc, STGE_TxStartThresh, sc->sc_txthresh);
1225 
1226 	/* RX DMA thresholds, from linux */
1227 	CSR_WRITE_1(sc, STGE_RxDMABurstThresh, 0x30);
1228 	CSR_WRITE_1(sc, STGE_RxDMAUrgentThresh, 0x30);
1229 
1230 	/* Rx early threhold, from Linux */
1231 	CSR_WRITE_2(sc, STGE_RxEarlyThresh, 0x7ff);
1232 
1233 	/* Tx DMA thresholds, from Linux */
1234 	CSR_WRITE_1(sc, STGE_TxDMABurstThresh, 0x30);
1235 	CSR_WRITE_1(sc, STGE_TxDMAUrgentThresh, 0x04);
1236 
1237 	/*
1238 	 * Initialize the Rx DMA interrupt control register.  We
1239 	 * request an interrupt after every incoming packet, but
1240 	 * defer it for 32us (64 * 512 ns).  When the number of
1241 	 * interrupts pending reaches 8, we stop deferring the
1242 	 * interrupt, and signal it immediately.
1243 	 */
1244 	CSR_WRITE_4(sc, STGE_RxDMAIntCtrl,
1245 	    RDIC_RxFrameCount(8) | RDIC_RxDMAWaitTime(512));
1246 
1247 	/*
1248 	 * Initialize the interrupt mask.
1249 	 */
1250 	sc->sc_IntEnable = IS_HostError | IS_TxComplete | IS_UpdateStats |
1251 	    IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
1252 	CSR_WRITE_2(sc, STGE_IntStatus, 0xffff);
1253 	CSR_WRITE_2(sc, STGE_IntEnable, sc->sc_IntEnable);
1254 
1255 	/*
1256 	 * Configure the DMA engine.
1257 	 * XXX Should auto-tune TxBurstLimit.
1258 	 */
1259 	CSR_WRITE_4(sc, STGE_DMACtrl, sc->sc_DMACtrl |
1260 	    DMAC_TxBurstLimit(3));
1261 
1262 	/*
1263 	 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
1264 	 * FIFO, and send an un-PAUSE frame when we reach 3056 bytes
1265 	 * in the Rx FIFO.
1266 	 */
1267 	CSR_WRITE_2(sc, STGE_FlowOnTresh, 29696 / 16);
1268 	CSR_WRITE_2(sc, STGE_FlowOffThresh, 3056 / 16);
1269 
1270 	/*
1271 	 * Set the maximum frame size.
1272 	 */
1273 #ifdef STGE_JUMBO
1274 	CSR_WRITE_2(sc, STGE_MaxFrameSize, STGE_JUMBO_FRAMELEN);
1275 #else
1276 	CSR_WRITE_2(sc, STGE_MaxFrameSize, ETHER_MAX_LEN);
1277 #endif
1278 
1279 	/*
1280 	 * Initialize MacCtrl -- do it before setting the media,
1281 	 * as setting the media will actually program the register.
1282 	 *
1283 	 * Note: We have to poke the IFS value before poking
1284 	 * anything else.
1285 	 */
1286 	sc->sc_MACCtrl = MC_IFSSelect(0);
1287 	CSR_WRITE_4(sc, STGE_MACCtrl, sc->sc_MACCtrl);
1288 
1289 	if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)
1290 		sc->sc_MACCtrl |= MC_AutoVLANuntagging;
1291 
1292 	sc->sc_MACCtrl |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
1293 
1294 	if (sc->sc_rev >= 6) {		/* >= B.2 */
1295 		/* Multi-frag frame bug work-around. */
1296 		CSR_WRITE_2(sc, STGE_DebugCtrl,
1297 		    CSR_READ_2(sc, STGE_DebugCtrl) | 0x0200);
1298 
1299 		/* Tx Poll Now bug work-around. */
1300 		CSR_WRITE_2(sc, STGE_DebugCtrl,
1301 		    CSR_READ_2(sc, STGE_DebugCtrl) | 0x0010);
1302 
1303 		/* Rx Poll Now bug work-around. */
1304 		CSR_WRITE_2(sc, STGE_DebugCtrl,
1305 		    CSR_READ_2(sc, STGE_DebugCtrl) | 0x0020);
1306 	}
1307 
1308 	/*
1309 	 * Set the current media.
1310 	 */
1311 	mii_mediachg(&sc->sc_mii);
1312 
1313 	/*
1314 	 * Start the one second MII clock.
1315 	 */
1316 	timeout_add_sec(&sc->sc_timeout, 1);
1317 
1318 	/*
1319 	 * ...all done!
1320 	 */
1321 	ifp->if_flags |= IFF_RUNNING;
1322 	ifp->if_flags &= ~IFF_OACTIVE;
1323 
1324  out:
1325 	if (error)
1326 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1327 	return (error);
1328 }
1329 
1330 /*
1331  * stge_drain:
1332  *
1333  *	Drain the receive queue.
1334  */
1335 void
1336 stge_rxdrain(struct stge_softc *sc)
1337 {
1338 	struct stge_descsoft *ds;
1339 	int i;
1340 
1341 	for (i = 0; i < STGE_NRXDESC; i++) {
1342 		ds = &sc->sc_rxsoft[i];
1343 		if (ds->ds_mbuf != NULL) {
1344 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1345 			ds->ds_mbuf->m_next = NULL;
1346 			m_freem(ds->ds_mbuf);
1347 			ds->ds_mbuf = NULL;
1348 		}
1349 	}
1350 }
1351 
1352 /*
1353  * stge_stop:		[ ifnet interface function ]
1354  *
1355  *	Stop transmission on the interface.
1356  */
1357 void
1358 stge_stop(struct ifnet *ifp, int disable)
1359 {
1360 	struct stge_softc *sc = ifp->if_softc;
1361 	struct stge_descsoft *ds;
1362 	int i;
1363 
1364 	/*
1365 	 * Stop the one second clock.
1366 	 */
1367 	timeout_del(&sc->sc_timeout);
1368 
1369 	/*
1370 	 * Mark the interface down and cancel the watchdog timer.
1371 	 */
1372 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1373 	ifp->if_timer = 0;
1374 
1375 	/* Down the MII. */
1376 	mii_down(&sc->sc_mii);
1377 
1378 	/*
1379 	 * Disable interrupts.
1380 	 */
1381 	CSR_WRITE_2(sc, STGE_IntEnable, 0);
1382 
1383 	/*
1384 	 * Stop receiver, transmitter, and stats update.
1385 	 */
1386 	CSR_WRITE_4(sc, STGE_MACCtrl,
1387 	    MC_StatisticsDisable | MC_TxDisable | MC_RxDisable);
1388 
1389 	/*
1390 	 * Stop the transmit and receive DMA.
1391 	 */
1392 	stge_dma_wait(sc);
1393 	CSR_WRITE_4(sc, STGE_TFDListPtrHi, 0);
1394 	CSR_WRITE_4(sc, STGE_TFDListPtrLo, 0);
1395 	CSR_WRITE_4(sc, STGE_RFDListPtrHi, 0);
1396 	CSR_WRITE_4(sc, STGE_RFDListPtrLo, 0);
1397 
1398 	/*
1399 	 * Release any queued transmit buffers.
1400 	 */
1401 	for (i = 0; i < STGE_NTXDESC; i++) {
1402 		ds = &sc->sc_txsoft[i];
1403 		if (ds->ds_mbuf != NULL) {
1404 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1405 			m_freem(ds->ds_mbuf);
1406 			ds->ds_mbuf = NULL;
1407 		}
1408 	}
1409 
1410 	if (disable)
1411 		stge_rxdrain(sc);
1412 }
1413 
1414 static int
1415 stge_eeprom_wait(struct stge_softc *sc)
1416 {
1417 	int i;
1418 
1419 	for (i = 0; i < STGE_TIMEOUT; i++) {
1420 		delay(1000);
1421 		if ((CSR_READ_2(sc, STGE_EepromCtrl) & EC_EepromBusy) == 0)
1422 			return (0);
1423 	}
1424 	return (1);
1425 }
1426 
1427 /*
1428  * stge_read_eeprom:
1429  *
1430  *	Read data from the serial EEPROM.
1431  */
1432 void
1433 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
1434 {
1435 
1436 	if (stge_eeprom_wait(sc))
1437 		printf("%s: EEPROM failed to come ready\n",
1438 		    sc->sc_dev.dv_xname);
1439 
1440 	CSR_WRITE_2(sc, STGE_EepromCtrl,
1441 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
1442 	if (stge_eeprom_wait(sc))
1443 		printf("%s: EEPROM read timed out\n",
1444 		    sc->sc_dev.dv_xname);
1445 	*data = CSR_READ_2(sc, STGE_EepromData);
1446 }
1447 
1448 /*
1449  * stge_add_rxbuf:
1450  *
1451  *	Add a receive buffer to the indicated descriptor.
1452  */
1453 int
1454 stge_add_rxbuf(struct stge_softc *sc, int idx)
1455 {
1456 	struct stge_descsoft *ds = &sc->sc_rxsoft[idx];
1457 	struct mbuf *m;
1458 	int error;
1459 
1460 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1461 	if (m == NULL)
1462 		return (ENOBUFS);
1463 
1464 	MCLGET(m, M_DONTWAIT);
1465 	if ((m->m_flags & M_EXT) == 0) {
1466 		m_freem(m);
1467 		return (ENOBUFS);
1468 	}
1469 
1470 	m->m_data = m->m_ext.ext_buf + 2;
1471 	m->m_len = MCLBYTES - 2;
1472 
1473 	if (ds->ds_mbuf != NULL)
1474 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1475 
1476 	ds->ds_mbuf = m;
1477 
1478 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1479 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1480 	if (error) {
1481 		printf("%s: can't load rx DMA map %d, error = %d\n",
1482 		    sc->sc_dev.dv_xname, idx, error);
1483 		panic("stge_add_rxbuf");	/* XXX */
1484 	}
1485 
1486 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1487 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1488 
1489 	STGE_INIT_RXDESC(sc, idx);
1490 
1491 	return (0);
1492 }
1493 
1494 /*
1495  * stge_iff:
1496  *
1497  *	Set up the receive filter.
1498  */
1499 void
1500 stge_iff(struct stge_softc *sc)
1501 {
1502 	struct arpcom *ac = &sc->sc_arpcom;
1503 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1504 	struct ether_multi *enm;
1505 	struct ether_multistep step;
1506 	uint32_t crc;
1507 	uint32_t mchash[2];
1508 
1509 	memset(mchash, 0, sizeof(mchash));
1510 	ifp->if_flags &= ~IFF_ALLMULTI;
1511 
1512 	/*
1513 	 * Always accept broadcast packets.
1514 	 * Always accept frames destined to our station address.
1515 	 */
1516 	sc->sc_ReceiveMode = RM_ReceiveBroadcast | RM_ReceiveUnicast;
1517 
1518 	if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
1519 		ifp->if_flags |= IFF_ALLMULTI;
1520 		if (ifp->if_flags & IFF_PROMISC)
1521 			sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1522 		else
1523 			sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1524 	} else {
1525 		/*
1526 		 * Set up the multicast address filter by passing all
1527 		 * multicast addresses through a CRC generator, and then
1528 		 * using the low-order 6 bits as an index into the 64 bit
1529 		 * multicast hash table.  The high order bits select the
1530 		 * register, while the rest of the bits select the bit
1531 		 * within the register.
1532 		 */
1533 		sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1534 
1535 		ETHER_FIRST_MULTI(step, ac, enm);
1536 		while (enm != NULL) {
1537 			crc = ether_crc32_be(enm->enm_addrlo,
1538 			    ETHER_ADDR_LEN);
1539 
1540 			/* Just want the 6 least significant bits. */
1541 			crc &= 0x3f;
1542 
1543 			/* Set the corresponding bit in the hash table. */
1544 			mchash[crc >> 5] |= 1 << (crc & 0x1f);
1545 
1546 			ETHER_NEXT_MULTI(step, enm);
1547 		}
1548 	}
1549 
1550 	CSR_WRITE_4(sc, STGE_HashTable0, mchash[0]);
1551 	CSR_WRITE_4(sc, STGE_HashTable1, mchash[1]);
1552 	CSR_WRITE_2(sc, STGE_ReceiveMode, sc->sc_ReceiveMode);
1553 }
1554 
1555 /*
1556  * stge_mii_readreg:	[mii interface function]
1557  *
1558  *	Read a PHY register on the MII of the TC9021.
1559  */
1560 int
1561 stge_mii_readreg(struct device *self, int phy, int reg)
1562 {
1563 
1564 	return (mii_bitbang_readreg(self, &stge_mii_bitbang_ops, phy, reg));
1565 }
1566 
1567 /*
1568  * stge_mii_writereg:	[mii interface function]
1569  *
1570  *	Write a PHY register on the MII of the TC9021.
1571  */
1572 void
1573 stge_mii_writereg(struct device *self, int phy, int reg, int val)
1574 {
1575 
1576 	mii_bitbang_writereg(self, &stge_mii_bitbang_ops, phy, reg, val);
1577 }
1578 
1579 /*
1580  * stge_mii_statchg:	[mii interface function]
1581  *
1582  *	Callback from MII layer when media changes.
1583  */
1584 void
1585 stge_mii_statchg(struct device *self)
1586 {
1587 	struct stge_softc *sc = (struct stge_softc *) self;
1588 	struct mii_data *mii = &sc->sc_mii;
1589 
1590 	sc->sc_MACCtrl &= ~(MC_DuplexSelect | MC_RxFlowControlEnable |
1591 	    MC_TxFlowControlEnable);
1592 
1593 	if (((mii->mii_media_active & IFM_GMASK) & IFM_FDX) != 0)
1594 		sc->sc_MACCtrl |= MC_DuplexSelect;
1595 
1596 	if (((mii->mii_media_active & IFM_GMASK) & IFM_ETH_RXPAUSE) != 0)
1597 		sc->sc_MACCtrl |= MC_RxFlowControlEnable;
1598 	if (((mii->mii_media_active & IFM_GMASK) & IFM_ETH_TXPAUSE) != 0)
1599 		sc->sc_MACCtrl |= MC_TxFlowControlEnable;
1600 
1601 	CSR_WRITE_4(sc, STGE_MACCtrl, sc->sc_MACCtrl);
1602 }
1603 
1604 /*
1605  * sste_mii_bitbang_read: [mii bit-bang interface function]
1606  *
1607  *	Read the MII serial port for the MII bit-bang module.
1608  */
1609 uint32_t
1610 stge_mii_bitbang_read(struct device *self)
1611 {
1612 	struct stge_softc *sc = (void *) self;
1613 
1614 	return (CSR_READ_1(sc, STGE_PhyCtrl));
1615 }
1616 
1617 /*
1618  * stge_mii_bitbang_write: [mii big-bang interface function]
1619  *
1620  *	Write the MII serial port for the MII bit-bang module.
1621  */
1622 void
1623 stge_mii_bitbang_write(struct device *self, uint32_t val)
1624 {
1625 	struct stge_softc *sc = (void *) self;
1626 
1627 	CSR_WRITE_1(sc, STGE_PhyCtrl, val | sc->sc_PhyCtrl);
1628 }
1629 
1630 /*
1631  * stge_mediastatus:	[ifmedia interface function]
1632  *
1633  *	Get the current interface media status.
1634  */
1635 void
1636 stge_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1637 {
1638 	struct stge_softc *sc = ifp->if_softc;
1639 
1640 	mii_pollstat(&sc->sc_mii);
1641 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1642 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1643 }
1644 
1645 /*
1646  * stge_mediachange:	[ifmedia interface function]
1647  *
1648  *	Set hardware to newly-selected media.
1649  */
1650 int
1651 stge_mediachange(struct ifnet *ifp)
1652 {
1653 	struct stge_softc *sc = ifp->if_softc;
1654 
1655 	if (ifp->if_flags & IFF_UP)
1656 		mii_mediachg(&sc->sc_mii);
1657 	return (0);
1658 }
1659