xref: /openbsd/sys/dev/pci/if_vr.c (revision 097a140d)
1 /*	$OpenBSD: if_vr.c,v 1.157 2020/12/12 11:48:53 jan Exp $	*/
2 
3 /*
4  * Copyright (c) 1997, 1998
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * $FreeBSD: src/sys/pci/if_vr.c,v 1.73 2003/08/22 07:13:22 imp Exp $
35  */
36 
37 /*
38  * VIA Rhine fast ethernet PCI NIC driver
39  *
40  * Supports various network adapters based on the VIA Rhine
41  * and Rhine II PCI controllers, including the D-Link DFE530TX.
42  * Datasheets are available at ftp://ftp.vtbridge.org/Docs/LAN/.
43  *
44  * Written by Bill Paul <wpaul@ctr.columbia.edu>
45  * Electrical Engineering Department
46  * Columbia University, New York City
47  */
48 
49 /*
50  * The VIA Rhine controllers are similar in some respects to the
51  * the DEC tulip chips, except less complicated. The controller
52  * uses an MII bus and an external physical layer interface. The
53  * receiver has a one entry perfect filter and a 64-bit hash table
54  * multicast filter. Transmit and receive descriptors are similar
55  * to the tulip.
56  *
57  * Early Rhine has a serious flaw in its transmit DMA mechanism:
58  * transmit buffers must be longword aligned. Unfortunately,
59  * OpenBSD doesn't guarantee that mbufs will be filled in starting
60  * at longword boundaries, so we have to do a buffer copy before
61  * transmission.
62  */
63 
64 #include "bpfilter.h"
65 #include "vlan.h"
66 
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/sockio.h>
70 #include <sys/mbuf.h>
71 #include <sys/kernel.h>
72 #include <sys/timeout.h>
73 #include <sys/socket.h>
74 
75 #include <net/if.h>
76 #include <sys/device.h>
77 #include <netinet/in.h>
78 #include <netinet/if_ether.h>
79 #include <net/if_media.h>
80 
81 #if NBPFILTER > 0
82 #include <net/bpf.h>
83 #endif
84 
85 #include <machine/bus.h>
86 
87 #include <dev/mii/miivar.h>
88 
89 #include <dev/pci/pcireg.h>
90 #include <dev/pci/pcivar.h>
91 #include <dev/pci/pcidevs.h>
92 
93 #define VR_USEIOSPACE
94 
95 #include <dev/pci/if_vrreg.h>
96 
97 int vr_probe(struct device *, void *, void *);
98 int vr_quirks(struct pci_attach_args *);
99 void vr_attach(struct device *, struct device *, void *);
100 int vr_activate(struct device *, int);
101 
102 struct cfattach vr_ca = {
103 	sizeof(struct vr_softc), vr_probe, vr_attach, NULL,
104 	vr_activate
105 };
106 struct cfdriver vr_cd = {
107 	NULL, "vr", DV_IFNET
108 };
109 
110 int vr_encap(struct vr_softc *, struct vr_chain **, struct mbuf *);
111 void vr_rxeof(struct vr_softc *);
112 void vr_rxeoc(struct vr_softc *);
113 void vr_txeof(struct vr_softc *);
114 void vr_tick(void *);
115 void vr_rxtick(void *);
116 int vr_intr(void *);
117 int vr_dmamem_alloc(struct vr_softc *, struct vr_dmamem *,
118     bus_size_t, u_int);
119 void vr_dmamem_free(struct vr_softc *, struct vr_dmamem *);
120 void vr_start(struct ifnet *);
121 int vr_ioctl(struct ifnet *, u_long, caddr_t);
122 void vr_chipinit(struct vr_softc *);
123 void vr_init(void *);
124 void vr_stop(struct vr_softc *);
125 void vr_watchdog(struct ifnet *);
126 int vr_ifmedia_upd(struct ifnet *);
127 void vr_ifmedia_sts(struct ifnet *, struct ifmediareq *);
128 
129 int vr_mii_readreg(struct vr_softc *, struct vr_mii_frame *);
130 int vr_mii_writereg(struct vr_softc *, struct vr_mii_frame *);
131 int vr_miibus_readreg(struct device *, int, int);
132 void vr_miibus_writereg(struct device *, int, int, int);
133 void vr_miibus_statchg(struct device *);
134 
135 void vr_setcfg(struct vr_softc *, uint64_t);
136 void vr_iff(struct vr_softc *);
137 void vr_reset(struct vr_softc *);
138 int vr_list_rx_init(struct vr_softc *);
139 void vr_fill_rx_ring(struct vr_softc *);
140 int vr_list_tx_init(struct vr_softc *);
141 #ifndef SMALL_KERNEL
142 int vr_wol(struct ifnet *, int);
143 #endif
144 
145 int vr_alloc_mbuf(struct vr_softc *, struct vr_chain_onefrag *);
146 
147 /*
148  * Supported devices & quirks
149  */
150 #define	VR_Q_NEEDALIGN		(1<<0)
151 #define	VR_Q_CSUM		(1<<1)
152 #define	VR_Q_CAM		(1<<2)
153 #define	VR_Q_HWTAG		(1<<3)
154 #define	VR_Q_INTDISABLE		(1<<4)
155 #define	VR_Q_BABYJUMBO		(1<<5) /* others may work too */
156 
157 struct vr_type {
158 	pci_vendor_id_t		vr_vid;
159 	pci_product_id_t	vr_pid;
160 	int			vr_quirks;
161 } vr_devices[] = {
162 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_RHINE,
163 	    VR_Q_NEEDALIGN },
164 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_RHINEII,
165 	    VR_Q_NEEDALIGN },
166 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_RHINEII_2,
167 	    VR_Q_BABYJUMBO },
168 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105,
169 	    VR_Q_BABYJUMBO },
170 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105M,
171 	    VR_Q_CSUM | VR_Q_CAM | VR_Q_HWTAG | VR_Q_INTDISABLE |
172 	    VR_Q_BABYJUMBO },
173 	{ PCI_VENDOR_DELTA, PCI_PRODUCT_DELTA_RHINEII,
174 	    VR_Q_NEEDALIGN },
175 	{ PCI_VENDOR_ADDTRON, PCI_PRODUCT_ADDTRON_RHINEII,
176 	    VR_Q_NEEDALIGN }
177 };
178 
179 #define VR_SETBIT(sc, reg, x)				\
180 	CSR_WRITE_1(sc, reg,				\
181 		CSR_READ_1(sc, reg) | (x))
182 
183 #define VR_CLRBIT(sc, reg, x)				\
184 	CSR_WRITE_1(sc, reg,				\
185 		CSR_READ_1(sc, reg) & ~(x))
186 
187 #define VR_SETBIT16(sc, reg, x)				\
188 	CSR_WRITE_2(sc, reg,				\
189 		CSR_READ_2(sc, reg) | (x))
190 
191 #define VR_CLRBIT16(sc, reg, x)				\
192 	CSR_WRITE_2(sc, reg,				\
193 		CSR_READ_2(sc, reg) & ~(x))
194 
195 #define VR_SETBIT32(sc, reg, x)				\
196 	CSR_WRITE_4(sc, reg,				\
197 		CSR_READ_4(sc, reg) | (x))
198 
199 #define VR_CLRBIT32(sc, reg, x)				\
200 	CSR_WRITE_4(sc, reg,				\
201 		CSR_READ_4(sc, reg) & ~(x))
202 
203 #define SIO_SET(x)					\
204 	CSR_WRITE_1(sc, VR_MIICMD,			\
205 		CSR_READ_1(sc, VR_MIICMD) | (x))
206 
207 #define SIO_CLR(x)					\
208 	CSR_WRITE_1(sc, VR_MIICMD,			\
209 		CSR_READ_1(sc, VR_MIICMD) & ~(x))
210 
211 /*
212  * Read an PHY register through the MII.
213  */
214 int
215 vr_mii_readreg(struct vr_softc *sc, struct vr_mii_frame *frame)
216 {
217 	int			s, i;
218 
219 	s = splnet();
220 
221 	/* Set the PHY-address */
222 	CSR_WRITE_1(sc, VR_PHYADDR, (CSR_READ_1(sc, VR_PHYADDR)& 0xe0)|
223 	    frame->mii_phyaddr);
224 
225 	/* Set the register-address */
226 	CSR_WRITE_1(sc, VR_MIIADDR, frame->mii_regaddr);
227 	VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_READ_ENB);
228 
229 	for (i = 0; i < 10000; i++) {
230 		if ((CSR_READ_1(sc, VR_MIICMD) & VR_MIICMD_READ_ENB) == 0)
231 			break;
232 		DELAY(1);
233 	}
234 
235 	frame->mii_data = CSR_READ_2(sc, VR_MIIDATA);
236 
237 	splx(s);
238 
239 	return(0);
240 }
241 
242 /*
243  * Write to a PHY register through the MII.
244  */
245 int
246 vr_mii_writereg(struct vr_softc *sc, struct vr_mii_frame *frame)
247 {
248 	int			s, i;
249 
250 	s = splnet();
251 
252 	/* Set the PHY-address */
253 	CSR_WRITE_1(sc, VR_PHYADDR, (CSR_READ_1(sc, VR_PHYADDR)& 0xe0)|
254 	    frame->mii_phyaddr);
255 
256 	/* Set the register-address and data to write */
257 	CSR_WRITE_1(sc, VR_MIIADDR, frame->mii_regaddr);
258 	CSR_WRITE_2(sc, VR_MIIDATA, frame->mii_data);
259 
260 	VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_WRITE_ENB);
261 
262 	for (i = 0; i < 10000; i++) {
263 		if ((CSR_READ_1(sc, VR_MIICMD) & VR_MIICMD_WRITE_ENB) == 0)
264 			break;
265 		DELAY(1);
266 	}
267 
268 	splx(s);
269 
270 	return(0);
271 }
272 
273 int
274 vr_miibus_readreg(struct device *dev, int phy, int reg)
275 {
276 	struct vr_softc *sc = (struct vr_softc *)dev;
277 	struct vr_mii_frame frame;
278 
279 	switch (sc->vr_revid) {
280 	case REV_ID_VT6102_APOLLO:
281 	case REV_ID_VT6103:
282 		if (phy != 1)
283 			return 0;
284 	default:
285 		break;
286 	}
287 
288 	bzero(&frame, sizeof(frame));
289 
290 	frame.mii_phyaddr = phy;
291 	frame.mii_regaddr = reg;
292 	vr_mii_readreg(sc, &frame);
293 
294 	return(frame.mii_data);
295 }
296 
297 void
298 vr_miibus_writereg(struct device *dev, int phy, int reg, int data)
299 {
300 	struct vr_softc *sc = (struct vr_softc *)dev;
301 	struct vr_mii_frame frame;
302 
303 	switch (sc->vr_revid) {
304 	case REV_ID_VT6102_APOLLO:
305 	case REV_ID_VT6103:
306 		if (phy != 1)
307 			return;
308 	default:
309 		break;
310 	}
311 
312 	bzero(&frame, sizeof(frame));
313 
314 	frame.mii_phyaddr = phy;
315 	frame.mii_regaddr = reg;
316 	frame.mii_data = data;
317 
318 	vr_mii_writereg(sc, &frame);
319 }
320 
321 void
322 vr_miibus_statchg(struct device *dev)
323 {
324 	struct vr_softc *sc = (struct vr_softc *)dev;
325 
326 	vr_setcfg(sc, sc->sc_mii.mii_media_active);
327 }
328 
329 void
330 vr_iff(struct vr_softc *sc)
331 {
332 	struct arpcom		*ac = &sc->arpcom;
333 	struct ifnet		*ifp = &sc->arpcom.ac_if;
334 	int			h = 0;
335 	u_int32_t		hashes[2];
336 	struct ether_multi	*enm;
337 	struct ether_multistep	step;
338 	u_int8_t		rxfilt;
339 
340 	rxfilt = CSR_READ_1(sc, VR_RXCFG);
341 	rxfilt &= ~(VR_RXCFG_RX_BROAD | VR_RXCFG_RX_MULTI |
342 	    VR_RXCFG_RX_PROMISC);
343 	ifp->if_flags &= ~IFF_ALLMULTI;
344 
345 	/*
346 	 * Always accept broadcast frames.
347 	 */
348 	rxfilt |= VR_RXCFG_RX_BROAD;
349 
350 	if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
351 		ifp->if_flags |= IFF_ALLMULTI;
352 		rxfilt |= VR_RXCFG_RX_MULTI;
353 		if (ifp->if_flags & IFF_PROMISC)
354 			rxfilt |= VR_RXCFG_RX_PROMISC;
355 		hashes[0] = hashes[1] = 0xFFFFFFFF;
356 	} else {
357 		/* Program new filter. */
358 		rxfilt |= VR_RXCFG_RX_MULTI;
359 		bzero(hashes, sizeof(hashes));
360 
361 		ETHER_FIRST_MULTI(step, ac, enm);
362 		while (enm != NULL) {
363 			h = ether_crc32_be(enm->enm_addrlo,
364 			    ETHER_ADDR_LEN) >> 26;
365 
366 			if (h < 32)
367 				hashes[0] |= (1 << h);
368 			else
369 				hashes[1] |= (1 << (h - 32));
370 
371 			ETHER_NEXT_MULTI(step, enm);
372 		}
373 	}
374 
375 	CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
376 	CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
377 	CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
378 }
379 
380 /*
381  * In order to fiddle with the
382  * 'full-duplex' and '100Mbps' bits in the netconfig register, we
383  * first have to put the transmit and/or receive logic in the idle state.
384  */
385 void
386 vr_setcfg(struct vr_softc *sc, uint64_t media)
387 {
388 	int i;
389 
390 	if (sc->sc_mii.mii_media_status & IFM_ACTIVE &&
391 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) != IFM_NONE) {
392 		sc->vr_link = 1;
393 
394 		if (CSR_READ_2(sc, VR_COMMAND) & (VR_CMD_TX_ON|VR_CMD_RX_ON))
395 			VR_CLRBIT16(sc, VR_COMMAND,
396 			    (VR_CMD_TX_ON|VR_CMD_RX_ON));
397 
398 		if ((media & IFM_GMASK) == IFM_FDX)
399 			VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
400 		else
401 			VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
402 
403 		VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
404 	} else {
405 		sc->vr_link = 0;
406 		VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
407 		for (i = VR_TIMEOUT; i > 0; i--) {
408 			DELAY(10);
409 			if (!(CSR_READ_2(sc, VR_COMMAND) &
410 			    (VR_CMD_TX_ON|VR_CMD_RX_ON)))
411 				break;
412 		}
413 		if (i == 0) {
414 #ifdef VR_DEBUG
415 			printf("%s: rx shutdown error!\n", sc->sc_dev.dv_xname);
416 #endif
417 			sc->vr_flags |= VR_F_RESTART;
418 		}
419 	}
420 }
421 
422 void
423 vr_reset(struct vr_softc *sc)
424 {
425 	int			i;
426 
427 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
428 
429 	for (i = 0; i < VR_TIMEOUT; i++) {
430 		DELAY(10);
431 		if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
432 			break;
433 	}
434 	if (i == VR_TIMEOUT) {
435 		if (sc->vr_revid < REV_ID_VT3065_A)
436 			printf("%s: reset never completed!\n",
437 			    sc->sc_dev.dv_xname);
438 		else {
439 #ifdef VR_DEBUG
440 			/* Use newer force reset command */
441 			printf("%s: Using force reset command.\n",
442 			    sc->sc_dev.dv_xname);
443 #endif
444 			VR_SETBIT(sc, VR_MISC_CR1, VR_MISCCR1_FORSRST);
445 		}
446 	}
447 
448 	/* Wait a little while for the chip to get its brains in order. */
449 	DELAY(1000);
450 }
451 
452 /*
453  * Probe for a VIA Rhine chip.
454  */
455 int
456 vr_probe(struct device *parent, void *match, void *aux)
457 {
458 	const struct vr_type *vr;
459 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
460 	int i, nent = nitems(vr_devices);
461 
462 	for (i = 0, vr = vr_devices; i < nent; i++, vr++)
463 		if (PCI_VENDOR(pa->pa_id) == vr->vr_vid &&
464 		   PCI_PRODUCT(pa->pa_id) == vr->vr_pid)
465 			return(1);
466 
467 	return(0);
468 }
469 
470 int
471 vr_quirks(struct pci_attach_args *pa)
472 {
473 	const struct vr_type *vr;
474 	int i, nent = nitems(vr_devices);
475 
476 	for (i = 0, vr = vr_devices; i < nent; i++, vr++)
477 		if (PCI_VENDOR(pa->pa_id) == vr->vr_vid &&
478 		   PCI_PRODUCT(pa->pa_id) == vr->vr_pid)
479 			return(vr->vr_quirks);
480 
481 	return(0);
482 }
483 
484 int
485 vr_dmamem_alloc(struct vr_softc *sc, struct vr_dmamem *vrm,
486     bus_size_t size, u_int align)
487 {
488 	vrm->vrm_size = size;
489 
490 	if (bus_dmamap_create(sc->sc_dmat, vrm->vrm_size, 1,
491 	    vrm->vrm_size, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
492 	    &vrm->vrm_map) != 0)
493 		return (1);
494 	if (bus_dmamem_alloc(sc->sc_dmat, vrm->vrm_size,
495 	    align, 0, &vrm->vrm_seg, 1, &vrm->vrm_nsegs,
496 	    BUS_DMA_WAITOK | BUS_DMA_ZERO) != 0)
497 		goto destroy;
498 	if (bus_dmamem_map(sc->sc_dmat, &vrm->vrm_seg, vrm->vrm_nsegs,
499 	    vrm->vrm_size, &vrm->vrm_kva, BUS_DMA_WAITOK) != 0)
500 		goto free;
501 	if (bus_dmamap_load(sc->sc_dmat, vrm->vrm_map, vrm->vrm_kva,
502 	    vrm->vrm_size, NULL, BUS_DMA_WAITOK) != 0)
503 		goto unmap;
504 
505 	return (0);
506  unmap:
507 	bus_dmamem_unmap(sc->sc_dmat, vrm->vrm_kva, vrm->vrm_size);
508  free:
509 	bus_dmamem_free(sc->sc_dmat, &vrm->vrm_seg, 1);
510  destroy:
511 	bus_dmamap_destroy(sc->sc_dmat, vrm->vrm_map);
512 	return (1);
513 }
514 
515 void
516 vr_dmamem_free(struct vr_softc *sc, struct vr_dmamem *vrm)
517 {
518 	bus_dmamap_unload(sc->sc_dmat, vrm->vrm_map);
519 	bus_dmamem_unmap(sc->sc_dmat, vrm->vrm_kva, vrm->vrm_size);
520 	bus_dmamem_free(sc->sc_dmat, &vrm->vrm_seg, 1);
521 	bus_dmamap_destroy(sc->sc_dmat, vrm->vrm_map);
522 }
523 
524 /*
525  * Attach the interface. Allocate softc structures, do ifmedia
526  * setup and ethernet/BPF attach.
527  */
528 void
529 vr_attach(struct device *parent, struct device *self, void *aux)
530 {
531 	int			i;
532 	struct vr_softc		*sc = (struct vr_softc *)self;
533 	struct pci_attach_args	*pa = aux;
534 	pci_chipset_tag_t	pc = pa->pa_pc;
535 	pci_intr_handle_t	ih;
536 	const char		*intrstr = NULL;
537 	struct ifnet		*ifp = &sc->arpcom.ac_if;
538 	bus_size_t		size;
539 
540 	pci_set_powerstate(pa->pa_pc, pa->pa_tag, PCI_PMCSR_STATE_D0);
541 
542 	/*
543 	 * Map control/status registers.
544 	 */
545 
546 #ifdef VR_USEIOSPACE
547 	if (pci_mapreg_map(pa, VR_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
548 	    &sc->vr_btag, &sc->vr_bhandle, NULL, &size, 0)) {
549 		printf(": can't map i/o space\n");
550 		return;
551 	}
552 #else
553 	if (pci_mapreg_map(pa, VR_PCI_LOMEM, PCI_MAPREG_TYPE_MEM, 0,
554 	    &sc->vr_btag, &sc->vr_bhandle, NULL, &size, 0)) {
555 		printf(": can't map mem space\n");
556 		return;
557 	}
558 #endif
559 
560 	/* Allocate interrupt */
561 	if (pci_intr_map(pa, &ih)) {
562 		printf(": can't map interrupt\n");
563 		goto fail;
564 	}
565 	intrstr = pci_intr_string(pc, ih);
566 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, vr_intr, sc,
567 				       self->dv_xname);
568 	if (sc->sc_ih == NULL) {
569 		printf(": can't establish interrupt");
570 		if (intrstr != NULL)
571 			printf(" at %s", intrstr);
572 		printf("\n");
573 		goto fail;
574 	}
575 	printf(": %s", intrstr);
576 
577 	sc->vr_revid = PCI_REVISION(pa->pa_class);
578 	sc->sc_pc = pa->pa_pc;
579 	sc->sc_tag = pa->pa_tag;
580 
581 	vr_chipinit(sc);
582 
583 	/*
584 	 * Get station address. The way the Rhine chips work,
585 	 * you're not allowed to directly access the EEPROM once
586 	 * they've been programmed a special way. Consequently,
587 	 * we need to read the node address from the PAR0 and PAR1
588 	 * registers.
589 	 */
590 	VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
591 	DELAY(1000);
592 	for (i = 0; i < ETHER_ADDR_LEN; i++)
593 		sc->arpcom.ac_enaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
594 
595 	/*
596 	 * A Rhine chip was detected. Inform the world.
597 	 */
598 	printf(", address %s\n", ether_sprintf(sc->arpcom.ac_enaddr));
599 
600 	sc->sc_dmat = pa->pa_dmat;
601 	if (vr_dmamem_alloc(sc, &sc->sc_zeromap, 64, PAGE_SIZE) != 0) {
602 		printf(": failed to allocate zero pad memory\n");
603 		return;
604 	}
605 	bzero(sc->sc_zeromap.vrm_kva, 64);
606 	bus_dmamap_sync(sc->sc_dmat, sc->sc_zeromap.vrm_map, 0,
607 	    sc->sc_zeromap.vrm_map->dm_mapsize, BUS_DMASYNC_PREREAD);
608 	if (vr_dmamem_alloc(sc, &sc->sc_listmap, sizeof(struct vr_list_data),
609 	    PAGE_SIZE) != 0) {
610 		printf(": failed to allocate dma map\n");
611 		goto free_zero;
612 	}
613 
614 	sc->vr_ldata = (struct vr_list_data *)sc->sc_listmap.vrm_kva;
615 	sc->vr_quirks = vr_quirks(pa);
616 
617 	ifp = &sc->arpcom.ac_if;
618 	ifp->if_softc = sc;
619 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
620 	ifp->if_ioctl = vr_ioctl;
621 	ifp->if_start = vr_start;
622 	ifp->if_watchdog = vr_watchdog;
623 	if (sc->vr_quirks & VR_Q_BABYJUMBO)
624 		ifp->if_hardmtu = VR_RXLEN_BABYJUMBO -
625 		    ETHER_HDR_LEN - ETHER_CRC_LEN;
626 	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
627 
628 	ifp->if_capabilities = IFCAP_VLAN_MTU;
629 
630 	if (sc->vr_quirks & VR_Q_CSUM)
631 		ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
632 					IFCAP_CSUM_UDPv4;
633 
634 #if NVLAN > 0
635 	/* if the hardware can do VLAN tagging, say so. */
636 	if (sc->vr_quirks & VR_Q_HWTAG)
637 		ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
638 #endif
639 
640 #ifndef SMALL_KERNEL
641 	if (sc->vr_revid >= REV_ID_VT3065_A) {
642 		ifp->if_capabilities |= IFCAP_WOL;
643 		ifp->if_wol = vr_wol;
644 		vr_wol(ifp, 0);
645 	}
646 #endif
647 
648 	/*
649 	 * Do MII setup.
650 	 */
651 	sc->sc_mii.mii_ifp = ifp;
652 	sc->sc_mii.mii_readreg = vr_miibus_readreg;
653 	sc->sc_mii.mii_writereg = vr_miibus_writereg;
654 	sc->sc_mii.mii_statchg = vr_miibus_statchg;
655 	ifmedia_init(&sc->sc_mii.mii_media, 0, vr_ifmedia_upd, vr_ifmedia_sts);
656 	mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY,
657 	    0);
658 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
659 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
660 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
661 	} else
662 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
663 	timeout_set(&sc->sc_to, vr_tick, sc);
664 	timeout_set(&sc->sc_rxto, vr_rxtick, sc);
665 
666 	/*
667 	 * Call MI attach routines.
668 	 */
669 	if_attach(ifp);
670 	ether_ifattach(ifp);
671 	return;
672 
673 free_zero:
674 	bus_dmamap_sync(sc->sc_dmat, sc->sc_zeromap.vrm_map, 0,
675 	    sc->sc_zeromap.vrm_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
676 	vr_dmamem_free(sc, &sc->sc_zeromap);
677 fail:
678 	bus_space_unmap(sc->vr_btag, sc->vr_bhandle, size);
679 }
680 
681 int
682 vr_activate(struct device *self, int act)
683 {
684 	struct vr_softc *sc = (struct vr_softc *)self;
685 	struct ifnet *ifp = &sc->arpcom.ac_if;
686 	int rv = 0;
687 
688 	switch (act) {
689 	case DVACT_SUSPEND:
690 		if (ifp->if_flags & IFF_RUNNING)
691 			vr_stop(sc);
692 		rv = config_activate_children(self, act);
693 		break;
694 	case DVACT_RESUME:
695 		if (ifp->if_flags & IFF_UP)
696 			vr_init(sc);
697 		break;
698 	default:
699 		rv = config_activate_children(self, act);
700 		break;
701 	}
702 	return (rv);
703 }
704 
705 /*
706  * Initialize the transmit descriptors.
707  */
708 int
709 vr_list_tx_init(struct vr_softc *sc)
710 {
711 	struct vr_chain_data	*cd;
712 	struct vr_list_data	*ld;
713 	int			i;
714 
715 	cd = &sc->vr_cdata;
716 	ld = sc->vr_ldata;
717 
718 	cd->vr_tx_cnt = cd->vr_tx_pkts = 0;
719 
720 	for (i = 0; i < VR_TX_LIST_CNT; i++) {
721 		cd->vr_tx_chain[i].vr_ptr = &ld->vr_tx_list[i];
722 		cd->vr_tx_chain[i].vr_paddr =
723 		    sc->sc_listmap.vrm_map->dm_segs[0].ds_addr +
724 		    offsetof(struct vr_list_data, vr_tx_list[i]);
725 
726 		if (bus_dmamap_create(sc->sc_dmat, MCLBYTES, VR_MAXFRAGS,
727 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &cd->vr_tx_chain[i].vr_map))
728 			return (ENOBUFS);
729 
730 		if (i == (VR_TX_LIST_CNT - 1))
731 			cd->vr_tx_chain[i].vr_nextdesc =
732 				&cd->vr_tx_chain[0];
733 		else
734 			cd->vr_tx_chain[i].vr_nextdesc =
735 				&cd->vr_tx_chain[i + 1];
736 	}
737 
738 	cd->vr_tx_cons = cd->vr_tx_prod = &cd->vr_tx_chain[0];
739 
740 	return (0);
741 }
742 
743 
744 /*
745  * Initialize the RX descriptors and allocate mbufs for them. Note that
746  * we arrange the descriptors in a closed ring, so that the last descriptor
747  * points back to the first.
748  */
749 int
750 vr_list_rx_init(struct vr_softc *sc)
751 {
752 	struct vr_chain_data	*cd;
753 	struct vr_list_data	*ld;
754 	struct vr_desc		*d;
755 	int			 i, nexti;
756 
757 	cd = &sc->vr_cdata;
758 	ld = sc->vr_ldata;
759 
760 	for (i = 0; i < VR_RX_LIST_CNT; i++) {
761 		if (bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
762 		    0, BUS_DMA_NOWAIT | BUS_DMA_READ,
763 		    &cd->vr_rx_chain[i].vr_map))
764 			return (ENOBUFS);
765 
766 		d = (struct vr_desc *)&ld->vr_rx_list[i];
767 		cd->vr_rx_chain[i].vr_ptr = d;
768 		cd->vr_rx_chain[i].vr_paddr =
769 		    sc->sc_listmap.vrm_map->dm_segs[0].ds_addr +
770 		    offsetof(struct vr_list_data, vr_rx_list[i]);
771 
772 		if (i == (VR_RX_LIST_CNT - 1))
773 			nexti = 0;
774 		else
775 			nexti = i + 1;
776 
777 		cd->vr_rx_chain[i].vr_nextdesc = &cd->vr_rx_chain[nexti];
778 		ld->vr_rx_list[i].vr_next =
779 		    htole32(sc->sc_listmap.vrm_map->dm_segs[0].ds_addr +
780 		    offsetof(struct vr_list_data, vr_rx_list[nexti]));
781 	}
782 
783 	cd->vr_rx_prod = cd->vr_rx_cons = &cd->vr_rx_chain[0];
784 	if_rxr_init(&sc->sc_rxring, 2, VR_RX_LIST_CNT - 1);
785 	vr_fill_rx_ring(sc);
786 
787 	return (0);
788 }
789 
790 void
791 vr_fill_rx_ring(struct vr_softc *sc)
792 {
793 	struct vr_chain_data	*cd;
794 	struct vr_list_data	*ld;
795 	u_int			slots;
796 
797 	cd = &sc->vr_cdata;
798 	ld = sc->vr_ldata;
799 
800 	for (slots = if_rxr_get(&sc->sc_rxring, VR_RX_LIST_CNT);
801 	    slots > 0; slots--) {
802 		if (vr_alloc_mbuf(sc, cd->vr_rx_prod))
803 			break;
804 
805 		cd->vr_rx_prod = cd->vr_rx_prod->vr_nextdesc;
806 	}
807 
808 	if_rxr_put(&sc->sc_rxring, slots);
809 	if (if_rxr_inuse(&sc->sc_rxring) == 0)
810 		timeout_add(&sc->sc_rxto, 0);
811 }
812 
813 /*
814  * A frame has been uploaded: pass the resulting mbuf chain up to
815  * the higher level protocols.
816  */
817 void
818 vr_rxeof(struct vr_softc *sc)
819 {
820 	struct mbuf		*m;
821 	struct mbuf_list 	ml = MBUF_LIST_INITIALIZER();
822 	struct ifnet		*ifp;
823 	struct vr_chain_onefrag	*cur_rx;
824 	int			total_len = 0;
825 	u_int32_t		rxstat, rxctl;
826 
827 	ifp = &sc->arpcom.ac_if;
828 
829 	while (if_rxr_inuse(&sc->sc_rxring) > 0) {
830 		bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap.vrm_map,
831 		    0, sc->sc_listmap.vrm_map->dm_mapsize,
832 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
833 		rxstat = letoh32(sc->vr_cdata.vr_rx_cons->vr_ptr->vr_status);
834 		if (rxstat & VR_RXSTAT_OWN)
835 			break;
836 
837 		rxctl = letoh32(sc->vr_cdata.vr_rx_cons->vr_ptr->vr_ctl);
838 
839 		cur_rx = sc->vr_cdata.vr_rx_cons;
840 		m = cur_rx->vr_mbuf;
841 		cur_rx->vr_mbuf = NULL;
842 		sc->vr_cdata.vr_rx_cons = cur_rx->vr_nextdesc;
843 		if_rxr_put(&sc->sc_rxring, 1);
844 
845 		/*
846 		 * If an error occurs, update stats, clear the
847 		 * status word and leave the mbuf cluster in place:
848 		 * it should simply get re-used next time this descriptor
849 		 * comes up in the ring.
850 		 */
851 		if ((rxstat & VR_RXSTAT_RX_OK) == 0) {
852 			ifp->if_ierrors++;
853 #ifdef VR_DEBUG
854 			printf("%s: rx error (%02x):",
855 			    sc->sc_dev.dv_xname, rxstat & 0x000000ff);
856 			if (rxstat & VR_RXSTAT_CRCERR)
857 				printf(" crc error");
858 			if (rxstat & VR_RXSTAT_FRAMEALIGNERR)
859 				printf(" frame alignment error");
860 			if (rxstat & VR_RXSTAT_FIFOOFLOW)
861 				printf(" FIFO overflow");
862 			if (rxstat & VR_RXSTAT_GIANT)
863 				printf(" received giant packet");
864 			if (rxstat & VR_RXSTAT_RUNT)
865 				printf(" received runt packet");
866 			if (rxstat & VR_RXSTAT_BUSERR)
867 				printf(" system bus error");
868 			if (rxstat & VR_RXSTAT_BUFFERR)
869 				printf(" rx buffer error");
870 			printf("\n");
871 #endif
872 
873 			m_freem(m);
874 			continue;
875 		}
876 
877 		/* No errors; receive the packet. */
878 		total_len = VR_RXBYTES(letoh32(cur_rx->vr_ptr->vr_status));
879 
880 		bus_dmamap_sync(sc->sc_dmat, cur_rx->vr_map, 0,
881 		    cur_rx->vr_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
882 		bus_dmamap_unload(sc->sc_dmat, cur_rx->vr_map);
883 
884 		/*
885 		 * The VIA Rhine chip includes the CRC with every
886 		 * received frame, and there's no way to turn this
887 		 * behavior off so trim the CRC manually.
888 		 */
889 		total_len -= ETHER_CRC_LEN;
890 
891 #ifdef __STRICT_ALIGNMENT
892 		{
893 			struct mbuf *m0;
894 			m0 = m_devget(mtod(m, caddr_t), total_len, ETHER_ALIGN);
895 			m_freem(m);
896 			if (m0 == NULL) {
897 				ifp->if_ierrors++;
898 				continue;
899 			}
900 			m = m0;
901 		}
902 #else
903 		m->m_pkthdr.len = m->m_len = total_len;
904 #endif
905 
906 		if (sc->vr_quirks & VR_Q_CSUM &&
907 		    (rxstat & VR_RXSTAT_FRAG) == 0 &&
908 		    (rxctl & VR_RXCTL_IP) != 0) {
909 			/* Checksum is valid for non-fragmented IP packets. */
910 			if ((rxctl & VR_RXCTL_IPOK) == VR_RXCTL_IPOK)
911 				m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
912 			if (rxctl & (VR_RXCTL_TCP | VR_RXCTL_UDP) &&
913 			    ((rxctl & VR_RXCTL_TCPUDPOK) != 0))
914 				m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK |
915 				    M_UDP_CSUM_IN_OK;
916 		}
917 
918 #if NVLAN > 0
919 		/*
920 		 * If there's a tagged packet, the 802.1q header will be at the
921 		 * 4-byte boundary following the CRC.  There will be 2 bytes
922 		 * TPID (0x8100) and 2 bytes TCI (including VLAN ID).
923 		 * This isn't in the data sheet.
924 		 */
925 		if (rxctl & VR_RXCTL_TAG) {
926 			int offset = ((total_len + 3) & ~3) + ETHER_CRC_LEN + 2;
927 			m->m_pkthdr.ether_vtag = htons(*(u_int16_t *)
928 			    ((u_int8_t *)m->m_data + offset));
929 			m->m_flags |= M_VLANTAG;
930 		}
931 #endif
932 
933 		ml_enqueue(&ml, m);
934 	}
935 
936 	if (ifiq_input(&ifp->if_rcv, &ml))
937 		if_rxr_livelocked(&sc->sc_rxring);
938 
939 	vr_fill_rx_ring(sc);
940 
941 	bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap.vrm_map,
942 	    0, sc->sc_listmap.vrm_map->dm_mapsize,
943 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
944 }
945 
946 void
947 vr_rxeoc(struct vr_softc *sc)
948 {
949 	struct ifnet		*ifp;
950 	int			i;
951 
952 	ifp = &sc->arpcom.ac_if;
953 
954 	ifp->if_ierrors++;
955 
956 	VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
957 	DELAY(10000);
958 
959 	for (i = 0x400;
960 	    i && (CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RX_ON);
961 	    i--)
962 		;       /* Wait for receiver to stop */
963 
964 	if (!i) {
965 		printf("%s: rx shutdown error!\n", sc->sc_dev.dv_xname);
966 		sc->vr_flags |= VR_F_RESTART;
967 		return;
968 	}
969 
970 	vr_rxeof(sc);
971 
972 	CSR_WRITE_4(sc, VR_RXADDR, sc->vr_cdata.vr_rx_cons->vr_paddr);
973 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
974 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
975 }
976 
977 /*
978  * A frame was downloaded to the chip. It's safe for us to clean up
979  * the list buffers.
980  */
981 
982 void
983 vr_txeof(struct vr_softc *sc)
984 {
985 	struct vr_chain		*cur_tx;
986 	struct ifnet		*ifp;
987 
988 	ifp = &sc->arpcom.ac_if;
989 
990 	/*
991 	 * Go through our tx list and free mbufs for those
992 	 * frames that have been transmitted.
993 	 */
994 	cur_tx = sc->vr_cdata.vr_tx_cons;
995 	while (cur_tx != sc->vr_cdata.vr_tx_prod) {
996 		u_int32_t		txstat, txctl;
997 		int			i;
998 
999 		txstat = letoh32(cur_tx->vr_ptr->vr_status);
1000 		txctl = letoh32(cur_tx->vr_ptr->vr_ctl);
1001 
1002 		if ((txstat & VR_TXSTAT_ABRT) ||
1003 		    (txstat & VR_TXSTAT_UDF)) {
1004 			for (i = 0x400;
1005 			    i && (CSR_READ_2(sc, VR_COMMAND) & VR_CMD_TX_ON);
1006 			    i--)
1007 				;	/* Wait for chip to shutdown */
1008 			if (!i) {
1009 				printf("%s: tx shutdown timeout\n",
1010 				    sc->sc_dev.dv_xname);
1011 				sc->vr_flags |= VR_F_RESTART;
1012 				break;
1013 			}
1014 			cur_tx->vr_ptr->vr_status = htole32(VR_TXSTAT_OWN);
1015 			CSR_WRITE_4(sc, VR_TXADDR, cur_tx->vr_paddr);
1016 			break;
1017 		}
1018 
1019 		if (txstat & VR_TXSTAT_OWN)
1020 			break;
1021 
1022 		sc->vr_cdata.vr_tx_cnt--;
1023 		/* Only the first descriptor in the chain is valid. */
1024 		if ((txctl & VR_TXCTL_FIRSTFRAG) == 0)
1025 			goto next;
1026 
1027 		if (txstat & VR_TXSTAT_ERRSUM) {
1028 			ifp->if_oerrors++;
1029 			if (txstat & VR_TXSTAT_DEFER)
1030 				ifp->if_collisions++;
1031 			if (txstat & VR_TXSTAT_LATECOLL)
1032 				ifp->if_collisions++;
1033 		}
1034 
1035 		ifp->if_collisions +=(txstat & VR_TXSTAT_COLLCNT) >> 3;
1036 
1037 		if (cur_tx->vr_map != NULL && cur_tx->vr_map->dm_nsegs > 0)
1038 			bus_dmamap_unload(sc->sc_dmat, cur_tx->vr_map);
1039 
1040 		m_freem(cur_tx->vr_mbuf);
1041 		cur_tx->vr_mbuf = NULL;
1042 		ifq_clr_oactive(&ifp->if_snd);
1043 
1044 next:
1045 		cur_tx = cur_tx->vr_nextdesc;
1046 	}
1047 
1048 	sc->vr_cdata.vr_tx_cons = cur_tx;
1049 	if (sc->vr_cdata.vr_tx_cnt == 0)
1050 		ifp->if_timer = 0;
1051 }
1052 
1053 void
1054 vr_tick(void *xsc)
1055 {
1056 	struct vr_softc *sc = xsc;
1057 	int s;
1058 
1059 	s = splnet();
1060 	if (sc->vr_flags & VR_F_RESTART) {
1061 		printf("%s: restarting\n", sc->sc_dev.dv_xname);
1062 		vr_init(sc);
1063 		sc->vr_flags &= ~VR_F_RESTART;
1064 	}
1065 
1066 	mii_tick(&sc->sc_mii);
1067 	timeout_add_sec(&sc->sc_to, 1);
1068 	splx(s);
1069 }
1070 
1071 void
1072 vr_rxtick(void *xsc)
1073 {
1074 	struct vr_softc *sc = xsc;
1075 	int s;
1076 
1077 	s = splnet();
1078 	if (if_rxr_inuse(&sc->sc_rxring) == 0) {
1079 		vr_fill_rx_ring(sc);
1080 		if (if_rxr_inuse(&sc->sc_rxring) == 0)
1081 			timeout_add(&sc->sc_rxto, 1);
1082 	}
1083 	splx(s);
1084 }
1085 
1086 int
1087 vr_intr(void *arg)
1088 {
1089 	struct vr_softc		*sc;
1090 	struct ifnet		*ifp;
1091 	u_int16_t		status;
1092 	int claimed = 0;
1093 
1094 	sc = arg;
1095 	ifp = &sc->arpcom.ac_if;
1096 
1097 	/* Suppress unwanted interrupts. */
1098 	if (!(ifp->if_flags & IFF_UP)) {
1099 		vr_stop(sc);
1100 		return 0;
1101 	}
1102 
1103 	status = CSR_READ_2(sc, VR_ISR);
1104 	if (status)
1105 		CSR_WRITE_2(sc, VR_ISR, status);
1106 
1107 	if (status & VR_INTRS) {
1108 		claimed = 1;
1109 
1110 		if (status & VR_ISR_RX_OK)
1111 			vr_rxeof(sc);
1112 
1113 		if (status & VR_ISR_RX_DROPPED) {
1114 #ifdef VR_DEBUG
1115 			printf("%s: rx packet lost\n", sc->sc_dev.dv_xname);
1116 #endif
1117 			ifp->if_ierrors++;
1118 		}
1119 
1120 		if ((status & VR_ISR_RX_ERR) || (status & VR_ISR_RX_NOBUF) ||
1121 		    (status & VR_ISR_RX_OFLOW)) {
1122 #ifdef VR_DEBUG
1123 			printf("%s: receive error (%04x)",
1124 			    sc->sc_dev.dv_xname, status);
1125 			if (status & VR_ISR_RX_NOBUF)
1126 				printf(" no buffers");
1127 			if (status & VR_ISR_RX_OFLOW)
1128 				printf(" overflow");
1129 			printf("\n");
1130 #endif
1131 			vr_rxeoc(sc);
1132 		}
1133 
1134 		if ((status & VR_ISR_BUSERR) || (status & VR_ISR_TX_UNDERRUN)) {
1135 			if (status & VR_ISR_BUSERR)
1136 				printf("%s: PCI bus error\n",
1137 				    sc->sc_dev.dv_xname);
1138 			if (status & VR_ISR_TX_UNDERRUN)
1139 				printf("%s: transmit underrun\n",
1140 				    sc->sc_dev.dv_xname);
1141 			vr_init(sc);
1142 			status = 0;
1143 		}
1144 
1145 		if ((status & VR_ISR_TX_OK) || (status & VR_ISR_TX_ABRT) ||
1146 		    (status & VR_ISR_TX_ABRT2) || (status & VR_ISR_UDFI)) {
1147 			vr_txeof(sc);
1148 			if ((status & VR_ISR_UDFI) ||
1149 			    (status & VR_ISR_TX_ABRT2) ||
1150 			    (status & VR_ISR_TX_ABRT)) {
1151 #ifdef VR_DEBUG
1152 				if (status & (VR_ISR_TX_ABRT | VR_ISR_TX_ABRT2))
1153 					printf("%s: transmit aborted\n",
1154 					    sc->sc_dev.dv_xname);
1155 				if (status & VR_ISR_UDFI)
1156 					printf("%s: transmit underflow\n",
1157 					    sc->sc_dev.dv_xname);
1158 #endif
1159 				ifp->if_oerrors++;
1160 				if (sc->vr_cdata.vr_tx_cons->vr_mbuf != NULL) {
1161 					VR_SETBIT16(sc, VR_COMMAND,
1162 					    VR_CMD_TX_ON);
1163 					VR_SETBIT16(sc, VR_COMMAND,
1164 					    VR_CMD_TX_GO);
1165 				}
1166 			}
1167 		}
1168 	}
1169 
1170 	if (!ifq_empty(&ifp->if_snd))
1171 		vr_start(ifp);
1172 
1173 	return (claimed);
1174 }
1175 
1176 /*
1177  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1178  * pointers to the fragment pointers.
1179  */
1180 int
1181 vr_encap(struct vr_softc *sc, struct vr_chain **cp, struct mbuf *m)
1182 {
1183 	struct vr_chain		*c = *cp;
1184 	struct vr_desc		*f = NULL;
1185 	u_int32_t		vr_ctl = 0, vr_status = 0, intdisable = 0;
1186 	bus_dmamap_t		txmap;
1187 	int			i, runt = 0;
1188 	int			error;
1189 
1190 	if (sc->vr_quirks & VR_Q_CSUM) {
1191 		if (m->m_pkthdr.csum_flags & M_IPV4_CSUM_OUT)
1192 			vr_ctl |= VR_TXCTL_IPCSUM;
1193 		if (m->m_pkthdr.csum_flags & M_TCP_CSUM_OUT)
1194 			vr_ctl |= VR_TXCTL_TCPCSUM;
1195 		if (m->m_pkthdr.csum_flags & M_UDP_CSUM_OUT)
1196 			vr_ctl |= VR_TXCTL_UDPCSUM;
1197 	}
1198 
1199 	if (sc->vr_quirks & VR_Q_NEEDALIGN) {
1200 		/* Deep copy for chips that need alignment */
1201 		error = EFBIG;
1202 	} else {
1203 		error = bus_dmamap_load_mbuf(sc->sc_dmat, c->vr_map, m,
1204 		    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
1205 	}
1206 
1207 	switch (error) {
1208 	case 0:
1209 		break;
1210 	case EFBIG:
1211 		if (m_defrag(m, M_DONTWAIT) == 0 &&
1212                     bus_dmamap_load_mbuf(sc->sc_dmat, c->vr_map, m,
1213                      BUS_DMA_NOWAIT) == 0)
1214                         break;
1215 
1216 		/* FALLTHROUGH */
1217         default:
1218 		return (ENOBUFS);
1219         }
1220 
1221 	bus_dmamap_sync(sc->sc_dmat, c->vr_map, 0, c->vr_map->dm_mapsize,
1222 	    BUS_DMASYNC_PREWRITE);
1223 	if (c->vr_map->dm_mapsize < VR_MIN_FRAMELEN)
1224 		runt = 1;
1225 
1226 #if NVLAN > 0
1227 	/*
1228 	 * Tell chip to insert VLAN tag if needed.
1229 	 * This chip expects the VLAN ID (0x0FFF) and the PCP (0xE000)
1230 	 * in only 15 bits without the gap at 0x1000 (reserved for DEI).
1231 	 * Therefore we need to de- / re-construct the VLAN header.
1232 	 */
1233 	if (m->m_flags & M_VLANTAG) {
1234 		u_int32_t vtag = m->m_pkthdr.ether_vtag;
1235 		vtag = EVL_VLANOFTAG(vtag) | EVL_PRIOFTAG(vtag) << 12;
1236 		vr_status |= vtag << VR_TXSTAT_PQSHIFT;
1237 		vr_ctl |= htole32(VR_TXCTL_INSERTTAG);
1238 	}
1239 #endif
1240 
1241 	/*
1242 	 * We only want TX completion interrupts on every Nth packet.
1243 	 * We need to set VR_TXNEXT_INTDISABLE on every descriptor except
1244 	 * for the last discriptor of every Nth packet, where we set
1245 	 * VR_TXCTL_FINT.  The former is in the specs for only some chips.
1246 	 * present: VT6102 VT6105M VT8235M
1247 	 * not present: VT86C100 6105LOM
1248 	 */
1249 	if (++sc->vr_cdata.vr_tx_pkts % VR_TX_INTR_THRESH != 0 &&
1250 	    sc->vr_quirks & VR_Q_INTDISABLE)
1251 		intdisable = VR_TXNEXT_INTDISABLE;
1252 
1253 	c->vr_mbuf = m;
1254 	txmap = c->vr_map;
1255 	for (i = 0; i < txmap->dm_nsegs; i++) {
1256 		if (i != 0)
1257 			*cp = c = c->vr_nextdesc;
1258 		f = c->vr_ptr;
1259 		f->vr_ctl = htole32(txmap->dm_segs[i].ds_len | VR_TXCTL_TLINK |
1260 		    vr_ctl);
1261 		if (i == 0)
1262 			f->vr_ctl |= htole32(VR_TXCTL_FIRSTFRAG);
1263 		f->vr_status = htole32(vr_status);
1264 		f->vr_data = htole32(txmap->dm_segs[i].ds_addr);
1265 		f->vr_next = htole32(c->vr_nextdesc->vr_paddr | intdisable);
1266 		sc->vr_cdata.vr_tx_cnt++;
1267 	}
1268 
1269 	/* Pad runt frames */
1270 	if (runt) {
1271 		*cp = c = c->vr_nextdesc;
1272 		f = c->vr_ptr;
1273 		f->vr_ctl = htole32((VR_MIN_FRAMELEN - txmap->dm_mapsize) |
1274 		    VR_TXCTL_TLINK | vr_ctl);
1275 		f->vr_status = htole32(vr_status);
1276 		f->vr_data = htole32(sc->sc_zeromap.vrm_map->dm_segs[0].ds_addr);
1277 		f->vr_next = htole32(c->vr_nextdesc->vr_paddr | intdisable);
1278 		sc->vr_cdata.vr_tx_cnt++;
1279 	}
1280 
1281 	/* Set EOP on the last descriptor */
1282 	f->vr_ctl |= htole32(VR_TXCTL_LASTFRAG);
1283 
1284 	if (sc->vr_cdata.vr_tx_pkts % VR_TX_INTR_THRESH == 0)
1285 		f->vr_ctl |= htole32(VR_TXCTL_FINT);
1286 
1287 	return (0);
1288 }
1289 
1290 /*
1291  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1292  * to the mbuf data regions directly in the transmit lists. We also save a
1293  * copy of the pointers since the transmit list fragment pointers are
1294  * physical addresses.
1295  */
1296 
1297 void
1298 vr_start(struct ifnet *ifp)
1299 {
1300 	struct vr_softc		*sc;
1301 	struct mbuf		*m;
1302 	struct vr_chain		*cur_tx, *head_tx;
1303 	unsigned int		 queued = 0;
1304 
1305 	sc = ifp->if_softc;
1306 
1307 	if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd))
1308 		return;
1309 
1310 	if (sc->vr_link == 0)
1311 		return;
1312 
1313 	cur_tx = sc->vr_cdata.vr_tx_prod;
1314 	for (;;) {
1315 		if (sc->vr_cdata.vr_tx_cnt + VR_MAXFRAGS >=
1316 		    VR_TX_LIST_CNT - 1) {
1317 			ifq_set_oactive(&ifp->if_snd);
1318 			break;
1319 		}
1320 
1321 		m = ifq_dequeue(&ifp->if_snd);
1322 		if (m == NULL)
1323 			break;
1324 
1325 		/* Pack the data into the descriptor. */
1326 		head_tx = cur_tx;
1327 		if (vr_encap(sc, &cur_tx, m)) {
1328 			m_freem(m);
1329 			ifp->if_oerrors++;
1330 			continue;
1331 		}
1332 		queued++;
1333 
1334 		/* Only set ownership bit on first descriptor */
1335 		head_tx->vr_ptr->vr_status |= htole32(VR_TXSTAT_OWN);
1336 
1337 #if NBPFILTER > 0
1338 		/*
1339 		 * If there's a BPF listener, bounce a copy of this frame
1340 		 * to him.
1341 		 */
1342 		if (ifp->if_bpf)
1343 			bpf_mtap_ether(ifp->if_bpf, m, BPF_DIRECTION_OUT);
1344 #endif
1345 		cur_tx = cur_tx->vr_nextdesc;
1346 	}
1347 	if (queued > 0) {
1348 		sc->vr_cdata.vr_tx_prod = cur_tx;
1349 
1350 		bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap.vrm_map, 0,
1351 		    sc->sc_listmap.vrm_map->dm_mapsize,
1352 		    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1353 
1354 		/* Tell the chip to start transmitting. */
1355 		VR_SETBIT16(sc, VR_COMMAND, /*VR_CMD_TX_ON|*/VR_CMD_TX_GO);
1356 
1357 		/* Set a timeout in case the chip goes out to lunch. */
1358 		ifp->if_timer = 5;
1359 	}
1360 }
1361 
1362 void
1363 vr_chipinit(struct vr_softc *sc)
1364 {
1365 	/*
1366 	 * Make sure it isn't suspended.
1367 	 */
1368 	if (pci_get_capability(sc->sc_pc, sc->sc_tag,
1369 	    PCI_CAP_PWRMGMT, NULL, NULL))
1370 		VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
1371 
1372 	/* Reset the adapter. */
1373 	vr_reset(sc);
1374 
1375 	/*
1376 	 * Turn on bit2 (MIION) in PCI configuration register 0x53 during
1377 	 * initialization and disable AUTOPOLL.
1378 	 */
1379 	pci_conf_write(sc->sc_pc, sc->sc_tag, VR_PCI_MODE,
1380 	    pci_conf_read(sc->sc_pc, sc->sc_tag, VR_PCI_MODE) |
1381 	    (VR_MODE3_MIION << 24));
1382 	VR_CLRBIT(sc, VR_MIICMD, VR_MIICMD_AUTOPOLL);
1383 }
1384 
1385 void
1386 vr_init(void *xsc)
1387 {
1388 	struct vr_softc		*sc = xsc;
1389 	struct ifnet		*ifp = &sc->arpcom.ac_if;
1390 	struct mii_data		*mii = &sc->sc_mii;
1391 	int			s, i;
1392 
1393 	s = splnet();
1394 
1395 	/*
1396 	 * Cancel pending I/O and free all RX/TX buffers.
1397 	 */
1398 	vr_stop(sc);
1399 	vr_chipinit(sc);
1400 
1401 	/*
1402 	 * Set our station address.
1403 	 */
1404 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1405 		CSR_WRITE_1(sc, VR_PAR0 + i, sc->arpcom.ac_enaddr[i]);
1406 
1407 	/* Set DMA size */
1408 	VR_CLRBIT(sc, VR_BCR0, VR_BCR0_DMA_LENGTH);
1409 	VR_SETBIT(sc, VR_BCR0, VR_BCR0_DMA_STORENFWD);
1410 
1411 	/*
1412 	 * BCR0 and BCR1 can override the RXCFG and TXCFG registers,
1413 	 * so we must set both.
1414 	 */
1415 	VR_CLRBIT(sc, VR_BCR0, VR_BCR0_RX_THRESH);
1416 	VR_SETBIT(sc, VR_BCR0, VR_BCR0_RXTHRESH128BYTES);
1417 
1418 	VR_CLRBIT(sc, VR_BCR1, VR_BCR1_TX_THRESH);
1419 	VR_SETBIT(sc, VR_BCR1, VR_BCR1_TXTHRESHSTORENFWD);
1420 
1421 	VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
1422 	VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_128BYTES);
1423 
1424 	VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
1425 	VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
1426 
1427 	if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)
1428 		VR_SETBIT(sc, VR_TXCFG, VR_TXCFG_TXTAGEN);
1429 
1430 	/* Init circular RX list. */
1431 	if (vr_list_rx_init(sc) == ENOBUFS) {
1432 		printf("%s: initialization failed: no memory for rx buffers\n",
1433 		    sc->sc_dev.dv_xname);
1434 		vr_stop(sc);
1435 		splx(s);
1436 		return;
1437 	}
1438 
1439 	/*
1440 	 * Init tx descriptors.
1441 	 */
1442 	if (vr_list_tx_init(sc) == ENOBUFS) {
1443 		printf("%s: initialization failed: no memory for tx buffers\n",
1444 		    sc->sc_dev.dv_xname);
1445 		vr_stop(sc);
1446 		splx(s);
1447 		return;
1448 	}
1449 
1450 	/*
1451 	 * Program promiscuous mode and multicast filters.
1452 	 */
1453 	vr_iff(sc);
1454 
1455 	/*
1456 	 * Load the address of the RX list.
1457 	 */
1458 	CSR_WRITE_4(sc, VR_RXADDR, sc->vr_cdata.vr_rx_cons->vr_paddr);
1459 
1460 	/* Enable receiver and transmitter. */
1461 	CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
1462 				    VR_CMD_TX_ON|VR_CMD_RX_ON|
1463 				    VR_CMD_RX_GO);
1464 
1465 	CSR_WRITE_4(sc, VR_TXADDR, sc->sc_listmap.vrm_map->dm_segs[0].ds_addr +
1466 	    offsetof(struct vr_list_data, vr_tx_list[0]));
1467 
1468 	/*
1469 	 * Enable interrupts.
1470 	 */
1471 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
1472 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1473 
1474 	/* Restore state of BMCR */
1475 	sc->vr_link = 1;
1476 	mii_mediachg(mii);
1477 
1478 	ifp->if_flags |= IFF_RUNNING;
1479 	ifq_clr_oactive(&ifp->if_snd);
1480 
1481 	if (!timeout_pending(&sc->sc_to))
1482 		timeout_add_sec(&sc->sc_to, 1);
1483 
1484 	splx(s);
1485 }
1486 
1487 /*
1488  * Set media options.
1489  */
1490 int
1491 vr_ifmedia_upd(struct ifnet *ifp)
1492 {
1493 	struct vr_softc		*sc = ifp->if_softc;
1494 
1495 	if (ifp->if_flags & IFF_UP)
1496 		vr_init(sc);
1497 
1498 	return (0);
1499 }
1500 
1501 /*
1502  * Report current media status.
1503  */
1504 void
1505 vr_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1506 {
1507 	struct vr_softc		*sc = ifp->if_softc;
1508 	struct mii_data		*mii = &sc->sc_mii;
1509 
1510 	mii_pollstat(mii);
1511 	ifmr->ifm_active = mii->mii_media_active;
1512 	ifmr->ifm_status = mii->mii_media_status;
1513 }
1514 
1515 int
1516 vr_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1517 {
1518 	struct vr_softc		*sc = ifp->if_softc;
1519 	struct ifreq		*ifr = (struct ifreq *) data;
1520 	int			s, error = 0;
1521 
1522 	s = splnet();
1523 
1524 	switch(command) {
1525 	case SIOCSIFADDR:
1526 		ifp->if_flags |= IFF_UP;
1527 		if (!(ifp->if_flags & IFF_RUNNING))
1528 			vr_init(sc);
1529 		break;
1530 
1531 	case SIOCSIFFLAGS:
1532 		if (ifp->if_flags & IFF_UP) {
1533 			if (ifp->if_flags & IFF_RUNNING)
1534 				error = ENETRESET;
1535 			else
1536 				vr_init(sc);
1537 		} else {
1538 			if (ifp->if_flags & IFF_RUNNING)
1539 				vr_stop(sc);
1540 		}
1541 		break;
1542 
1543 	case SIOCGIFMEDIA:
1544 	case SIOCSIFMEDIA:
1545 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
1546 		break;
1547 
1548 	case SIOCGIFRXR:
1549 		error = if_rxr_ioctl((struct if_rxrinfo *)ifr->ifr_data,
1550 		    NULL, MCLBYTES, &sc->sc_rxring);
1551  		break;
1552 
1553 	default:
1554 		error = ether_ioctl(ifp, &sc->arpcom, command, data);
1555 	}
1556 
1557 	if (error == ENETRESET) {
1558 		if (ifp->if_flags & IFF_RUNNING)
1559 			vr_iff(sc);
1560 		error = 0;
1561 	}
1562 
1563 	splx(s);
1564 	return(error);
1565 }
1566 
1567 void
1568 vr_watchdog(struct ifnet *ifp)
1569 {
1570 	struct vr_softc		*sc;
1571 
1572 	sc = ifp->if_softc;
1573 
1574 	/*
1575 	 * Since we're only asking for completion interrupts only every
1576 	 * few packets, occasionally the watchdog will fire when we have
1577 	 * some TX descriptors to reclaim, so check for that first.
1578 	 */
1579 	vr_txeof(sc);
1580 	if (sc->vr_cdata.vr_tx_cnt == 0)
1581 		return;
1582 
1583 	ifp->if_oerrors++;
1584 	printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
1585 	vr_init(sc);
1586 
1587 	if (!ifq_empty(&ifp->if_snd))
1588 		vr_start(ifp);
1589 }
1590 
1591 /*
1592  * Stop the adapter and free any mbufs allocated to the
1593  * RX and TX lists.
1594  */
1595 void
1596 vr_stop(struct vr_softc *sc)
1597 {
1598 	int		i;
1599 	struct ifnet	*ifp;
1600 	bus_dmamap_t	map;
1601 
1602 	ifp = &sc->arpcom.ac_if;
1603 	ifp->if_timer = 0;
1604 
1605 	timeout_del(&sc->sc_to);
1606 
1607 	ifp->if_flags &= ~IFF_RUNNING;
1608 	ifq_clr_oactive(&ifp->if_snd);
1609 
1610 	VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
1611 	VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
1612 
1613 	/* wait for xfers to shutdown */
1614 	for (i = VR_TIMEOUT; i > 0; i--) {
1615 		DELAY(10);
1616 		if (!(CSR_READ_2(sc, VR_COMMAND) & (VR_CMD_TX_ON|VR_CMD_RX_ON)))
1617 			break;
1618 	}
1619 #ifdef VR_DEBUG
1620 	if (i == 0)
1621 		printf("%s: rx shutdown error!\n", sc->sc_dev.dv_xname);
1622 #endif
1623 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
1624 	CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
1625 	CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
1626 
1627 	/*
1628 	 * Free data in the RX lists.
1629 	 */
1630 	for (i = 0; i < VR_RX_LIST_CNT; i++) {
1631 		if (sc->vr_cdata.vr_rx_chain[i].vr_mbuf != NULL) {
1632 			m_freem(sc->vr_cdata.vr_rx_chain[i].vr_mbuf);
1633 			sc->vr_cdata.vr_rx_chain[i].vr_mbuf = NULL;
1634 		}
1635 		map = sc->vr_cdata.vr_rx_chain[i].vr_map;
1636 		if (map != NULL) {
1637 			if (map->dm_nsegs > 0)
1638 				bus_dmamap_unload(sc->sc_dmat, map);
1639 			bus_dmamap_destroy(sc->sc_dmat, map);
1640 			sc->vr_cdata.vr_rx_chain[i].vr_map = NULL;
1641 		}
1642 	}
1643 	bzero(&sc->vr_ldata->vr_rx_list, sizeof(sc->vr_ldata->vr_rx_list));
1644 
1645 	/*
1646 	 * Free the TX list buffers.
1647 	 */
1648 	for (i = 0; i < VR_TX_LIST_CNT; i++) {
1649 		if (sc->vr_cdata.vr_tx_chain[i].vr_mbuf != NULL) {
1650 			m_freem(sc->vr_cdata.vr_tx_chain[i].vr_mbuf);
1651 			sc->vr_cdata.vr_tx_chain[i].vr_mbuf = NULL;
1652 			ifp->if_oerrors++;
1653 		}
1654 		map = sc->vr_cdata.vr_tx_chain[i].vr_map;
1655 		if (map != NULL) {
1656 			if (map->dm_nsegs > 0)
1657 				bus_dmamap_unload(sc->sc_dmat, map);
1658 			bus_dmamap_destroy(sc->sc_dmat, map);
1659 			sc->vr_cdata.vr_tx_chain[i].vr_map = NULL;
1660 		}
1661 	}
1662 	bzero(&sc->vr_ldata->vr_tx_list, sizeof(sc->vr_ldata->vr_tx_list));
1663 }
1664 
1665 #ifndef SMALL_KERNEL
1666 int
1667 vr_wol(struct ifnet *ifp, int enable)
1668 {
1669 	struct vr_softc *sc = ifp->if_softc;
1670 
1671 	/* Clear WOL configuration */
1672 	CSR_WRITE_1(sc, VR_WOLCRCLR, 0xFF);
1673 
1674 	/* Clear event status bits. */
1675 	CSR_WRITE_1(sc, VR_PWRCSRCLR, 0xFF);
1676 
1677 	/* Disable PME# assertion upon wake event. */
1678 	VR_CLRBIT(sc, VR_STICKHW, VR_STICKHW_WOL_ENB);
1679 	VR_SETBIT(sc, VR_WOLCFGCLR, VR_WOLCFG_PMEOVR);
1680 
1681 	if (enable) {
1682 		VR_SETBIT(sc, VR_WOLCRSET, VR_WOLCR_MAGIC);
1683 
1684 		/* Enable PME# assertion upon wake event. */
1685 		VR_SETBIT(sc, VR_STICKHW, VR_STICKHW_WOL_ENB);
1686 		VR_SETBIT(sc, VR_WOLCFGSET, VR_WOLCFG_PMEOVR);
1687 	}
1688 
1689 	return (0);
1690 }
1691 #endif
1692 
1693 int
1694 vr_alloc_mbuf(struct vr_softc *sc, struct vr_chain_onefrag *r)
1695 {
1696 	struct vr_desc	*d;
1697 	struct mbuf	*m;
1698 
1699 	if (r == NULL)
1700 		return (EINVAL);
1701 
1702 	m = MCLGETL(NULL, M_DONTWAIT, MCLBYTES);
1703 	if (!m)
1704 		return (ENOBUFS);
1705 
1706 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1707 	m_adj(m, sizeof(u_int64_t));
1708 
1709 	if (bus_dmamap_load_mbuf(sc->sc_dmat, r->vr_map, m, BUS_DMA_NOWAIT)) {
1710 		m_free(m);
1711 		return (ENOBUFS);
1712 	}
1713 
1714 	bus_dmamap_sync(sc->sc_dmat, r->vr_map, 0, r->vr_map->dm_mapsize,
1715 	    BUS_DMASYNC_PREREAD);
1716 
1717 	/* Reinitialize the RX descriptor */
1718 	r->vr_mbuf = m;
1719 	d = r->vr_ptr;
1720 	d->vr_data = htole32(r->vr_map->dm_segs[0].ds_addr);
1721 	if (sc->vr_quirks & VR_Q_BABYJUMBO)
1722 		d->vr_ctl = htole32(VR_RXCTL | VR_RXLEN_BABYJUMBO);
1723 	else
1724 		d->vr_ctl = htole32(VR_RXCTL | VR_RXLEN);
1725 
1726 	bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap.vrm_map, 0,
1727 	    sc->sc_listmap.vrm_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1728 
1729 	d->vr_status = htole32(VR_RXSTAT);
1730 
1731 	bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap.vrm_map, 0,
1732 	    sc->sc_listmap.vrm_map->dm_mapsize,
1733 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1734 
1735 	return (0);
1736 }
1737