1 /* $OpenBSD: if_wpi.c,v 1.157 2022/04/21 21:03:03 stsp Exp $ */ 2 3 /*- 4 * Copyright (c) 2006-2008 5 * Damien Bergamini <damien.bergamini@free.fr> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 /* 21 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters. 22 */ 23 24 #include "bpfilter.h" 25 26 #include <sys/param.h> 27 #include <sys/sockio.h> 28 #include <sys/mbuf.h> 29 #include <sys/kernel.h> 30 #include <sys/rwlock.h> 31 #include <sys/socket.h> 32 #include <sys/systm.h> 33 #include <sys/malloc.h> 34 #include <sys/conf.h> 35 #include <sys/device.h> 36 #include <sys/task.h> 37 #include <sys/endian.h> 38 39 #include <machine/bus.h> 40 #include <machine/intr.h> 41 42 #include <dev/pci/pcireg.h> 43 #include <dev/pci/pcivar.h> 44 #include <dev/pci/pcidevs.h> 45 46 #if NBPFILTER > 0 47 #include <net/bpf.h> 48 #endif 49 #include <net/if.h> 50 #include <net/if_dl.h> 51 #include <net/if_media.h> 52 53 #include <netinet/in.h> 54 #include <netinet/if_ether.h> 55 56 #include <net80211/ieee80211_var.h> 57 #include <net80211/ieee80211_amrr.h> 58 #include <net80211/ieee80211_radiotap.h> 59 60 #include <dev/pci/if_wpireg.h> 61 #include <dev/pci/if_wpivar.h> 62 63 static const struct pci_matchid wpi_devices[] = { 64 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 }, 65 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2 } 66 }; 67 68 int wpi_match(struct device *, void *, void *); 69 void wpi_attach(struct device *, struct device *, void *); 70 #if NBPFILTER > 0 71 void wpi_radiotap_attach(struct wpi_softc *); 72 #endif 73 int wpi_detach(struct device *, int); 74 int wpi_activate(struct device *, int); 75 void wpi_wakeup(struct wpi_softc *); 76 void wpi_init_task(void *); 77 int wpi_nic_lock(struct wpi_softc *); 78 int wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int); 79 int wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *, 80 void **, bus_size_t, bus_size_t); 81 void wpi_dma_contig_free(struct wpi_dma_info *); 82 int wpi_alloc_shared(struct wpi_softc *); 83 void wpi_free_shared(struct wpi_softc *); 84 int wpi_alloc_fwmem(struct wpi_softc *); 85 void wpi_free_fwmem(struct wpi_softc *); 86 int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 87 void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 88 void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 89 int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, 90 int); 91 void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 92 void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 93 int wpi_read_eeprom(struct wpi_softc *); 94 void wpi_read_eeprom_channels(struct wpi_softc *, int); 95 void wpi_read_eeprom_group(struct wpi_softc *, int); 96 struct ieee80211_node *wpi_node_alloc(struct ieee80211com *); 97 void wpi_newassoc(struct ieee80211com *, struct ieee80211_node *, 98 int); 99 int wpi_media_change(struct ifnet *); 100 int wpi_newstate(struct ieee80211com *, enum ieee80211_state, int); 101 void wpi_iter_func(void *, struct ieee80211_node *); 102 void wpi_calib_timeout(void *); 103 int wpi_ccmp_decap(struct wpi_softc *, struct mbuf *, 104 struct ieee80211_key *); 105 void wpi_rx_done(struct wpi_softc *, struct wpi_rx_desc *, 106 struct wpi_rx_data *, struct mbuf_list *); 107 void wpi_tx_done(struct wpi_softc *, struct wpi_rx_desc *); 108 void wpi_cmd_done(struct wpi_softc *, struct wpi_rx_desc *); 109 void wpi_notif_intr(struct wpi_softc *); 110 void wpi_fatal_intr(struct wpi_softc *); 111 int wpi_intr(void *); 112 int wpi_tx(struct wpi_softc *, struct mbuf *, 113 struct ieee80211_node *); 114 void wpi_start(struct ifnet *); 115 void wpi_watchdog(struct ifnet *); 116 int wpi_ioctl(struct ifnet *, u_long, caddr_t); 117 int wpi_cmd(struct wpi_softc *, int, const void *, int, int); 118 int wpi_mrr_setup(struct wpi_softc *); 119 void wpi_updateedca(struct ieee80211com *); 120 void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t); 121 int wpi_set_timing(struct wpi_softc *, struct ieee80211_node *); 122 void wpi_power_calibration(struct wpi_softc *); 123 int wpi_set_txpower(struct wpi_softc *, int); 124 int wpi_get_power_index(struct wpi_softc *, 125 struct wpi_power_group *, struct ieee80211_channel *, int); 126 int wpi_set_pslevel(struct wpi_softc *, int, int, int); 127 int wpi_config(struct wpi_softc *); 128 int wpi_scan(struct wpi_softc *, uint16_t); 129 int wpi_auth(struct wpi_softc *); 130 int wpi_run(struct wpi_softc *); 131 int wpi_set_key(struct ieee80211com *, struct ieee80211_node *, 132 struct ieee80211_key *); 133 void wpi_delete_key(struct ieee80211com *, struct ieee80211_node *, 134 struct ieee80211_key *); 135 int wpi_post_alive(struct wpi_softc *); 136 int wpi_load_bootcode(struct wpi_softc *, const uint8_t *, int); 137 int wpi_load_firmware(struct wpi_softc *); 138 int wpi_read_firmware(struct wpi_softc *); 139 int wpi_clock_wait(struct wpi_softc *); 140 int wpi_apm_init(struct wpi_softc *); 141 void wpi_apm_stop_master(struct wpi_softc *); 142 void wpi_apm_stop(struct wpi_softc *); 143 void wpi_nic_config(struct wpi_softc *); 144 int wpi_hw_init(struct wpi_softc *); 145 void wpi_hw_stop(struct wpi_softc *); 146 int wpi_init(struct ifnet *); 147 void wpi_stop(struct ifnet *, int); 148 149 #ifdef WPI_DEBUG 150 #define DPRINTF(x) do { if (wpi_debug > 0) printf x; } while (0) 151 #define DPRINTFN(n, x) do { if (wpi_debug >= (n)) printf x; } while (0) 152 int wpi_debug = 0; 153 #else 154 #define DPRINTF(x) 155 #define DPRINTFN(n, x) 156 #endif 157 158 struct cfdriver wpi_cd = { 159 NULL, "wpi", DV_IFNET 160 }; 161 162 const struct cfattach wpi_ca = { 163 sizeof (struct wpi_softc), wpi_match, wpi_attach, wpi_detach, 164 wpi_activate 165 }; 166 167 int 168 wpi_match(struct device *parent, void *match, void *aux) 169 { 170 return pci_matchbyid((struct pci_attach_args *)aux, wpi_devices, 171 nitems(wpi_devices)); 172 } 173 174 void 175 wpi_attach(struct device *parent, struct device *self, void *aux) 176 { 177 struct wpi_softc *sc = (struct wpi_softc *)self; 178 struct ieee80211com *ic = &sc->sc_ic; 179 struct ifnet *ifp = &ic->ic_if; 180 struct pci_attach_args *pa = aux; 181 const char *intrstr; 182 pci_intr_handle_t ih; 183 pcireg_t memtype, reg; 184 int i, error; 185 186 sc->sc_pct = pa->pa_pc; 187 sc->sc_pcitag = pa->pa_tag; 188 sc->sc_dmat = pa->pa_dmat; 189 190 /* 191 * Get the offset of the PCI Express Capability Structure in PCI 192 * Configuration Space (the vendor driver hard-codes it as E0h.) 193 */ 194 error = pci_get_capability(sc->sc_pct, sc->sc_pcitag, 195 PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL); 196 if (error == 0) { 197 printf(": PCIe capability structure not found!\n"); 198 return; 199 } 200 201 /* Clear device-specific "PCI retry timeout" register (41h). */ 202 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40); 203 reg &= ~0xff00; 204 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg); 205 206 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WPI_PCI_BAR0); 207 error = pci_mapreg_map(pa, WPI_PCI_BAR0, memtype, 0, &sc->sc_st, 208 &sc->sc_sh, NULL, &sc->sc_sz, 0); 209 if (error != 0) { 210 printf(": can't map mem space\n"); 211 return; 212 } 213 214 /* Install interrupt handler. */ 215 if (pci_intr_map_msi(pa, &ih) != 0 && pci_intr_map(pa, &ih) != 0) { 216 printf(": can't map interrupt\n"); 217 return; 218 } 219 intrstr = pci_intr_string(sc->sc_pct, ih); 220 sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc, 221 sc->sc_dev.dv_xname); 222 if (sc->sc_ih == NULL) { 223 printf(": can't establish interrupt"); 224 if (intrstr != NULL) 225 printf(" at %s", intrstr); 226 printf("\n"); 227 return; 228 } 229 printf(": %s", intrstr); 230 231 /* Power ON adapter. */ 232 if ((error = wpi_apm_init(sc)) != 0) { 233 printf(": could not power ON adapter\n"); 234 return; 235 } 236 237 /* Read MAC address, channels, etc from EEPROM. */ 238 if ((error = wpi_read_eeprom(sc)) != 0) { 239 printf(": could not read EEPROM\n"); 240 return; 241 } 242 243 /* Allocate DMA memory for firmware transfers. */ 244 if ((error = wpi_alloc_fwmem(sc)) != 0) { 245 printf(": could not allocate memory for firmware\n"); 246 return; 247 } 248 249 /* Allocate shared area. */ 250 if ((error = wpi_alloc_shared(sc)) != 0) { 251 printf(": could not allocate shared area\n"); 252 goto fail1; 253 } 254 255 /* Allocate TX rings. */ 256 for (i = 0; i < WPI_NTXQUEUES; i++) { 257 if ((error = wpi_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) { 258 printf(": could not allocate TX ring %d\n", i); 259 goto fail2; 260 } 261 } 262 263 /* Allocate RX ring. */ 264 if ((error = wpi_alloc_rx_ring(sc, &sc->rxq)) != 0) { 265 printf(": could not allocate Rx ring\n"); 266 goto fail2; 267 } 268 269 /* Power OFF adapter. */ 270 wpi_apm_stop(sc); 271 /* Clear pending interrupts. */ 272 WPI_WRITE(sc, WPI_INT, 0xffffffff); 273 274 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 275 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 276 ic->ic_state = IEEE80211_S_INIT; 277 278 /* Set device capabilities. */ 279 ic->ic_caps = 280 IEEE80211_C_WEP | /* WEP */ 281 IEEE80211_C_RSN | /* WPA/RSN */ 282 IEEE80211_C_SCANALL | /* device scans all channels at once */ 283 IEEE80211_C_SCANALLBAND | /* driver scans all bands at once */ 284 IEEE80211_C_MONITOR | /* monitor mode supported */ 285 IEEE80211_C_SHSLOT | /* short slot time supported */ 286 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 287 IEEE80211_C_PMGT; /* power saving supported */ 288 289 /* Set supported rates. */ 290 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b; 291 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g; 292 if (sc->sc_flags & WPI_FLAG_HAS_5GHZ) { 293 ic->ic_sup_rates[IEEE80211_MODE_11A] = 294 ieee80211_std_rateset_11a; 295 } 296 297 /* IBSS channel undefined for now. */ 298 ic->ic_ibss_chan = &ic->ic_channels[0]; 299 300 ifp->if_softc = sc; 301 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 302 ifp->if_ioctl = wpi_ioctl; 303 ifp->if_start = wpi_start; 304 ifp->if_watchdog = wpi_watchdog; 305 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ); 306 307 if_attach(ifp); 308 ieee80211_ifattach(ifp); 309 ic->ic_node_alloc = wpi_node_alloc; 310 ic->ic_newassoc = wpi_newassoc; 311 ic->ic_updateedca = wpi_updateedca; 312 ic->ic_set_key = wpi_set_key; 313 ic->ic_delete_key = wpi_delete_key; 314 315 /* Override 802.11 state transition machine. */ 316 sc->sc_newstate = ic->ic_newstate; 317 ic->ic_newstate = wpi_newstate; 318 ieee80211_media_init(ifp, wpi_media_change, ieee80211_media_status); 319 320 sc->amrr.amrr_min_success_threshold = 1; 321 sc->amrr.amrr_max_success_threshold = 15; 322 323 #if NBPFILTER > 0 324 wpi_radiotap_attach(sc); 325 #endif 326 timeout_set(&sc->calib_to, wpi_calib_timeout, sc); 327 rw_init(&sc->sc_rwlock, "wpilock"); 328 task_set(&sc->init_task, wpi_init_task, sc); 329 return; 330 331 /* Free allocated memory if something failed during attachment. */ 332 fail2: while (--i >= 0) 333 wpi_free_tx_ring(sc, &sc->txq[i]); 334 wpi_free_shared(sc); 335 fail1: wpi_free_fwmem(sc); 336 } 337 338 #if NBPFILTER > 0 339 /* 340 * Attach the interface to 802.11 radiotap. 341 */ 342 void 343 wpi_radiotap_attach(struct wpi_softc *sc) 344 { 345 bpfattach(&sc->sc_drvbpf, &sc->sc_ic.ic_if, DLT_IEEE802_11_RADIO, 346 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN); 347 348 sc->sc_rxtap_len = sizeof sc->sc_rxtapu; 349 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 350 sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT); 351 352 sc->sc_txtap_len = sizeof sc->sc_txtapu; 353 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 354 sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT); 355 } 356 #endif 357 358 int 359 wpi_detach(struct device *self, int flags) 360 { 361 struct wpi_softc *sc = (struct wpi_softc *)self; 362 struct ifnet *ifp = &sc->sc_ic.ic_if; 363 int qid; 364 365 timeout_del(&sc->calib_to); 366 task_del(systq, &sc->init_task); 367 368 /* Uninstall interrupt handler. */ 369 if (sc->sc_ih != NULL) 370 pci_intr_disestablish(sc->sc_pct, sc->sc_ih); 371 372 /* Free DMA resources. */ 373 wpi_free_rx_ring(sc, &sc->rxq); 374 for (qid = 0; qid < WPI_NTXQUEUES; qid++) 375 wpi_free_tx_ring(sc, &sc->txq[qid]); 376 wpi_free_shared(sc); 377 wpi_free_fwmem(sc); 378 379 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz); 380 381 ieee80211_ifdetach(ifp); 382 if_detach(ifp); 383 384 return 0; 385 } 386 387 int 388 wpi_activate(struct device *self, int act) 389 { 390 struct wpi_softc *sc = (struct wpi_softc *)self; 391 struct ifnet *ifp = &sc->sc_ic.ic_if; 392 393 switch (act) { 394 case DVACT_SUSPEND: 395 if (ifp->if_flags & IFF_RUNNING) 396 wpi_stop(ifp, 0); 397 break; 398 case DVACT_WAKEUP: 399 wpi_wakeup(sc); 400 break; 401 } 402 403 return 0; 404 } 405 406 void 407 wpi_wakeup(struct wpi_softc *sc) 408 { 409 pcireg_t reg; 410 411 /* Clear device-specific "PCI retry timeout" register (41h). */ 412 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40); 413 reg &= ~0xff00; 414 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg); 415 416 wpi_init_task(sc); 417 } 418 419 void 420 wpi_init_task(void *arg1) 421 { 422 struct wpi_softc *sc = arg1; 423 struct ifnet *ifp = &sc->sc_ic.ic_if; 424 int s; 425 426 rw_enter_write(&sc->sc_rwlock); 427 s = splnet(); 428 429 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == IFF_UP) 430 wpi_init(ifp); 431 432 splx(s); 433 rw_exit_write(&sc->sc_rwlock); 434 } 435 436 int 437 wpi_nic_lock(struct wpi_softc *sc) 438 { 439 int ntries; 440 441 /* Request exclusive access to NIC. */ 442 WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ); 443 444 /* Spin until we actually get the lock. */ 445 for (ntries = 0; ntries < 1000; ntries++) { 446 if ((WPI_READ(sc, WPI_GP_CNTRL) & 447 (WPI_GP_CNTRL_MAC_ACCESS_ENA | WPI_GP_CNTRL_SLEEP)) == 448 WPI_GP_CNTRL_MAC_ACCESS_ENA) 449 return 0; 450 DELAY(10); 451 } 452 return ETIMEDOUT; 453 } 454 455 static __inline void 456 wpi_nic_unlock(struct wpi_softc *sc) 457 { 458 WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ); 459 } 460 461 static __inline uint32_t 462 wpi_prph_read(struct wpi_softc *sc, uint32_t addr) 463 { 464 WPI_WRITE(sc, WPI_PRPH_RADDR, WPI_PRPH_DWORD | addr); 465 WPI_BARRIER_READ_WRITE(sc); 466 return WPI_READ(sc, WPI_PRPH_RDATA); 467 } 468 469 static __inline void 470 wpi_prph_write(struct wpi_softc *sc, uint32_t addr, uint32_t data) 471 { 472 WPI_WRITE(sc, WPI_PRPH_WADDR, WPI_PRPH_DWORD | addr); 473 WPI_BARRIER_WRITE(sc); 474 WPI_WRITE(sc, WPI_PRPH_WDATA, data); 475 } 476 477 static __inline void 478 wpi_prph_setbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask) 479 { 480 wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) | mask); 481 } 482 483 static __inline void 484 wpi_prph_clrbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask) 485 { 486 wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) & ~mask); 487 } 488 489 static __inline void 490 wpi_prph_write_region_4(struct wpi_softc *sc, uint32_t addr, 491 const uint32_t *data, int count) 492 { 493 for (; count > 0; count--, data++, addr += 4) 494 wpi_prph_write(sc, addr, *data); 495 } 496 497 #ifdef WPI_DEBUG 498 499 static __inline uint32_t 500 wpi_mem_read(struct wpi_softc *sc, uint32_t addr) 501 { 502 WPI_WRITE(sc, WPI_MEM_RADDR, addr); 503 WPI_BARRIER_READ_WRITE(sc); 504 return WPI_READ(sc, WPI_MEM_RDATA); 505 } 506 507 static __inline void 508 wpi_mem_write(struct wpi_softc *sc, uint32_t addr, uint32_t data) 509 { 510 WPI_WRITE(sc, WPI_MEM_WADDR, addr); 511 WPI_BARRIER_WRITE(sc); 512 WPI_WRITE(sc, WPI_MEM_WDATA, data); 513 } 514 515 static __inline void 516 wpi_mem_read_region_4(struct wpi_softc *sc, uint32_t addr, uint32_t *data, 517 int count) 518 { 519 for (; count > 0; count--, addr += 4) 520 *data++ = wpi_mem_read(sc, addr); 521 } 522 523 #endif 524 525 int 526 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int count) 527 { 528 uint8_t *out = data; 529 uint32_t val; 530 int error, ntries; 531 532 if ((error = wpi_nic_lock(sc)) != 0) 533 return error; 534 535 for (; count > 0; count -= 2, addr++) { 536 WPI_WRITE(sc, WPI_EEPROM, addr << 2); 537 WPI_CLRBITS(sc, WPI_EEPROM, WPI_EEPROM_CMD); 538 539 for (ntries = 0; ntries < 10; ntries++) { 540 val = WPI_READ(sc, WPI_EEPROM); 541 if (val & WPI_EEPROM_READ_VALID) 542 break; 543 DELAY(5); 544 } 545 if (ntries == 10) { 546 printf("%s: could not read EEPROM\n", 547 sc->sc_dev.dv_xname); 548 return ETIMEDOUT; 549 } 550 *out++ = val >> 16; 551 if (count > 1) 552 *out++ = val >> 24; 553 } 554 555 wpi_nic_unlock(sc); 556 return 0; 557 } 558 559 int 560 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma, void **kvap, 561 bus_size_t size, bus_size_t alignment) 562 { 563 int nsegs, error; 564 565 dma->tag = tag; 566 dma->size = size; 567 568 error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT, 569 &dma->map); 570 if (error != 0) 571 goto fail; 572 573 error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs, 574 BUS_DMA_NOWAIT | BUS_DMA_ZERO); 575 if (error != 0) 576 goto fail; 577 578 error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, 579 BUS_DMA_NOWAIT | BUS_DMA_COHERENT); 580 if (error != 0) 581 goto fail; 582 583 error = bus_dmamap_load_raw(tag, dma->map, &dma->seg, 1, size, 584 BUS_DMA_NOWAIT); 585 if (error != 0) 586 goto fail; 587 588 bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE); 589 590 dma->paddr = dma->map->dm_segs[0].ds_addr; 591 if (kvap != NULL) 592 *kvap = dma->vaddr; 593 594 return 0; 595 596 fail: wpi_dma_contig_free(dma); 597 return error; 598 } 599 600 void 601 wpi_dma_contig_free(struct wpi_dma_info *dma) 602 { 603 if (dma->map != NULL) { 604 if (dma->vaddr != NULL) { 605 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, 606 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 607 bus_dmamap_unload(dma->tag, dma->map); 608 bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size); 609 bus_dmamem_free(dma->tag, &dma->seg, 1); 610 dma->vaddr = NULL; 611 } 612 bus_dmamap_destroy(dma->tag, dma->map); 613 dma->map = NULL; 614 } 615 } 616 617 int 618 wpi_alloc_shared(struct wpi_softc *sc) 619 { 620 /* Shared buffer must be aligned on a 4KB boundary. */ 621 return wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma, 622 (void **)&sc->shared, sizeof (struct wpi_shared), 4096); 623 } 624 625 void 626 wpi_free_shared(struct wpi_softc *sc) 627 { 628 wpi_dma_contig_free(&sc->shared_dma); 629 } 630 631 int 632 wpi_alloc_fwmem(struct wpi_softc *sc) 633 { 634 /* Allocate enough contiguous space to store text and data. */ 635 return wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL, 636 WPI_FW_TEXT_MAXSZ + WPI_FW_DATA_MAXSZ, 16); 637 } 638 639 void 640 wpi_free_fwmem(struct wpi_softc *sc) 641 { 642 wpi_dma_contig_free(&sc->fw_dma); 643 } 644 645 int 646 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 647 { 648 bus_size_t size; 649 int i, error; 650 651 ring->cur = 0; 652 653 /* Allocate RX descriptors (16KB aligned.) */ 654 size = WPI_RX_RING_COUNT * sizeof (uint32_t); 655 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, 656 (void **)&ring->desc, size, 16 * 1024); 657 if (error != 0) { 658 printf("%s: could not allocate RX ring DMA memory\n", 659 sc->sc_dev.dv_xname); 660 goto fail; 661 } 662 663 /* 664 * Allocate and map RX buffers. 665 */ 666 for (i = 0; i < WPI_RX_RING_COUNT; i++) { 667 struct wpi_rx_data *data = &ring->data[i]; 668 669 error = bus_dmamap_create(sc->sc_dmat, WPI_RBUF_SIZE, 1, 670 WPI_RBUF_SIZE, 0, BUS_DMA_NOWAIT, &data->map); 671 if (error != 0) { 672 printf("%s: could not create RX buf DMA map\n", 673 sc->sc_dev.dv_xname); 674 goto fail; 675 } 676 677 data->m = MCLGETL(NULL, M_DONTWAIT, WPI_RBUF_SIZE); 678 if (data->m == NULL) { 679 printf("%s: could not allocate RX mbuf\n", 680 sc->sc_dev.dv_xname); 681 error = ENOBUFS; 682 goto fail; 683 } 684 685 error = bus_dmamap_load(sc->sc_dmat, data->map, 686 mtod(data->m, void *), WPI_RBUF_SIZE, NULL, 687 BUS_DMA_NOWAIT | BUS_DMA_READ); 688 if (error != 0) { 689 printf("%s: can't map mbuf (error %d)\n", 690 sc->sc_dev.dv_xname, error); 691 goto fail; 692 } 693 694 /* Set physical address of RX buffer. */ 695 ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr); 696 } 697 698 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size, 699 BUS_DMASYNC_PREWRITE); 700 701 return 0; 702 703 fail: wpi_free_rx_ring(sc, ring); 704 return error; 705 } 706 707 void 708 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 709 { 710 int ntries; 711 712 if (wpi_nic_lock(sc) == 0) { 713 WPI_WRITE(sc, WPI_FH_RX_CONFIG, 0); 714 for (ntries = 0; ntries < 100; ntries++) { 715 if (WPI_READ(sc, WPI_FH_RX_STATUS) & 716 WPI_FH_RX_STATUS_IDLE) 717 break; 718 DELAY(10); 719 } 720 wpi_nic_unlock(sc); 721 } 722 ring->cur = 0; 723 } 724 725 void 726 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 727 { 728 int i; 729 730 wpi_dma_contig_free(&ring->desc_dma); 731 732 for (i = 0; i < WPI_RX_RING_COUNT; i++) { 733 struct wpi_rx_data *data = &ring->data[i]; 734 735 if (data->m != NULL) { 736 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 737 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD); 738 bus_dmamap_unload(sc->sc_dmat, data->map); 739 m_freem(data->m); 740 } 741 if (data->map != NULL) 742 bus_dmamap_destroy(sc->sc_dmat, data->map); 743 } 744 } 745 746 int 747 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int qid) 748 { 749 bus_addr_t paddr; 750 bus_size_t size; 751 int i, error; 752 753 ring->qid = qid; 754 ring->queued = 0; 755 ring->cur = 0; 756 757 /* Allocate TX descriptors (16KB aligned.) */ 758 size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_desc); 759 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, 760 (void **)&ring->desc, size, 16 * 1024); 761 if (error != 0) { 762 printf("%s: could not allocate TX ring DMA memory\n", 763 sc->sc_dev.dv_xname); 764 goto fail; 765 } 766 767 /* Update shared area with ring physical address. */ 768 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr); 769 bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0, 770 sizeof (struct wpi_shared), BUS_DMASYNC_PREWRITE); 771 772 /* 773 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need 774 * to allocate commands space for other rings. 775 * XXX Do we really need to allocate descriptors for other rings? 776 */ 777 if (qid > 4) 778 return 0; 779 780 size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_cmd); 781 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma, 782 (void **)&ring->cmd, size, 4); 783 if (error != 0) { 784 printf("%s: could not allocate TX cmd DMA memory\n", 785 sc->sc_dev.dv_xname); 786 goto fail; 787 } 788 789 paddr = ring->cmd_dma.paddr; 790 for (i = 0; i < WPI_TX_RING_COUNT; i++) { 791 struct wpi_tx_data *data = &ring->data[i]; 792 793 data->cmd_paddr = paddr; 794 paddr += sizeof (struct wpi_tx_cmd); 795 796 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 797 WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT, 798 &data->map); 799 if (error != 0) { 800 printf("%s: could not create TX buf DMA map\n", 801 sc->sc_dev.dv_xname); 802 goto fail; 803 } 804 } 805 return 0; 806 807 fail: wpi_free_tx_ring(sc, ring); 808 return error; 809 } 810 811 void 812 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 813 { 814 int i; 815 816 for (i = 0; i < WPI_TX_RING_COUNT; i++) { 817 struct wpi_tx_data *data = &ring->data[i]; 818 819 if (data->m != NULL) { 820 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 821 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 822 bus_dmamap_unload(sc->sc_dmat, data->map); 823 m_freem(data->m); 824 data->m = NULL; 825 } 826 } 827 /* Clear TX descriptors. */ 828 memset(ring->desc, 0, ring->desc_dma.size); 829 sc->qfullmsk &= ~(1 << ring->qid); 830 ring->queued = 0; 831 ring->cur = 0; 832 } 833 834 void 835 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 836 { 837 int i; 838 839 wpi_dma_contig_free(&ring->desc_dma); 840 wpi_dma_contig_free(&ring->cmd_dma); 841 842 for (i = 0; i < WPI_TX_RING_COUNT; i++) { 843 struct wpi_tx_data *data = &ring->data[i]; 844 845 if (data->m != NULL) { 846 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 847 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 848 bus_dmamap_unload(sc->sc_dmat, data->map); 849 m_freem(data->m); 850 } 851 if (data->map != NULL) 852 bus_dmamap_destroy(sc->sc_dmat, data->map); 853 } 854 } 855 856 int 857 wpi_read_eeprom(struct wpi_softc *sc) 858 { 859 struct ieee80211com *ic = &sc->sc_ic; 860 char domain[4]; 861 int i; 862 863 if ((WPI_READ(sc, WPI_EEPROM_GP) & 0x6) == 0) { 864 printf("%s: bad EEPROM signature\n", sc->sc_dev.dv_xname); 865 return EIO; 866 } 867 /* Clear HW ownership of EEPROM. */ 868 WPI_CLRBITS(sc, WPI_EEPROM_GP, WPI_EEPROM_GP_IF_OWNER); 869 870 wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1); 871 wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2); 872 wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1); 873 874 DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, letoh16(sc->rev), 875 sc->type)); 876 877 /* Read and print regulatory domain (4 ASCII characters.) */ 878 wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4); 879 printf(", %.4s", domain); 880 881 /* Read and print MAC address. */ 882 wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6); 883 printf(", address %s\n", ether_sprintf(ic->ic_myaddr)); 884 885 /* Read the list of authorized channels. */ 886 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++) 887 wpi_read_eeprom_channels(sc, i); 888 889 /* Read the list of TX power groups. */ 890 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++) 891 wpi_read_eeprom_group(sc, i); 892 893 return 0; 894 } 895 896 void 897 wpi_read_eeprom_channels(struct wpi_softc *sc, int n) 898 { 899 struct ieee80211com *ic = &sc->sc_ic; 900 const struct wpi_chan_band *band = &wpi_bands[n]; 901 struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND]; 902 int chan, i; 903 904 wpi_read_prom_data(sc, band->addr, channels, 905 band->nchan * sizeof (struct wpi_eeprom_chan)); 906 907 for (i = 0; i < band->nchan; i++) { 908 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) 909 continue; 910 911 chan = band->chan[i]; 912 913 if (n == 0) { /* 2GHz band */ 914 ic->ic_channels[chan].ic_freq = 915 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ); 916 ic->ic_channels[chan].ic_flags = 917 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 918 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 919 920 } else { /* 5GHz band */ 921 /* 922 * Some adapters support channels 7, 8, 11 and 12 923 * both in the 2GHz and 4.9GHz bands. 924 * Because of limitations in our net80211 layer, 925 * we don't support them in the 4.9GHz band. 926 */ 927 if (chan <= 14) 928 continue; 929 930 ic->ic_channels[chan].ic_freq = 931 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ); 932 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A; 933 /* We have at least one valid 5GHz channel. */ 934 sc->sc_flags |= WPI_FLAG_HAS_5GHZ; 935 } 936 937 /* Is active scan allowed on this channel? */ 938 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) { 939 ic->ic_channels[chan].ic_flags |= 940 IEEE80211_CHAN_PASSIVE; 941 } 942 943 /* Save maximum allowed TX power for this channel. */ 944 sc->maxpwr[chan] = channels[i].maxpwr; 945 946 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n", 947 chan, channels[i].flags, sc->maxpwr[chan])); 948 } 949 } 950 951 void 952 wpi_read_eeprom_group(struct wpi_softc *sc, int n) 953 { 954 struct wpi_power_group *group = &sc->groups[n]; 955 struct wpi_eeprom_group rgroup; 956 int i; 957 958 wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup, 959 sizeof rgroup); 960 961 /* Save TX power group information. */ 962 group->chan = rgroup.chan; 963 group->maxpwr = rgroup.maxpwr; 964 /* Retrieve temperature at which the samples were taken. */ 965 group->temp = (int16_t)letoh16(rgroup.temp); 966 967 DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n, 968 group->chan, group->maxpwr, group->temp)); 969 970 for (i = 0; i < WPI_SAMPLES_COUNT; i++) { 971 group->samples[i].index = rgroup.samples[i].index; 972 group->samples[i].power = rgroup.samples[i].power; 973 974 DPRINTF(("\tsample %d: index=%d power=%d\n", i, 975 group->samples[i].index, group->samples[i].power)); 976 } 977 } 978 979 struct ieee80211_node * 980 wpi_node_alloc(struct ieee80211com *ic) 981 { 982 return malloc(sizeof (struct wpi_node), M_DEVBUF, M_NOWAIT | M_ZERO); 983 } 984 985 void 986 wpi_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew) 987 { 988 struct wpi_softc *sc = ic->ic_if.if_softc; 989 struct wpi_node *wn = (void *)ni; 990 uint8_t rate; 991 int ridx, i; 992 993 ieee80211_amrr_node_init(&sc->amrr, &wn->amn); 994 /* Start at lowest available bit-rate, AMRR will raise. */ 995 ni->ni_txrate = 0; 996 997 for (i = 0; i < ni->ni_rates.rs_nrates; i++) { 998 rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL; 999 /* Map 802.11 rate to HW rate index. */ 1000 for (ridx = 0; ridx <= WPI_RIDX_MAX; ridx++) 1001 if (wpi_rates[ridx].rate == rate) 1002 break; 1003 wn->ridx[i] = ridx; 1004 } 1005 } 1006 1007 int 1008 wpi_media_change(struct ifnet *ifp) 1009 { 1010 struct wpi_softc *sc = ifp->if_softc; 1011 struct ieee80211com *ic = &sc->sc_ic; 1012 uint8_t rate, ridx; 1013 int error; 1014 1015 error = ieee80211_media_change(ifp); 1016 if (error != ENETRESET) 1017 return error; 1018 1019 if (ic->ic_fixed_rate != -1) { 1020 rate = ic->ic_sup_rates[ic->ic_curmode]. 1021 rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL; 1022 /* Map 802.11 rate to HW rate index. */ 1023 for (ridx = 0; ridx <= WPI_RIDX_MAX; ridx++) 1024 if (wpi_rates[ridx].rate == rate) 1025 break; 1026 sc->fixed_ridx = ridx; 1027 } 1028 1029 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 1030 (IFF_UP | IFF_RUNNING)) { 1031 wpi_stop(ifp, 0); 1032 error = wpi_init(ifp); 1033 } 1034 return error; 1035 } 1036 1037 int 1038 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 1039 { 1040 struct ifnet *ifp = &ic->ic_if; 1041 struct wpi_softc *sc = ifp->if_softc; 1042 int error; 1043 1044 timeout_del(&sc->calib_to); 1045 1046 switch (nstate) { 1047 case IEEE80211_S_SCAN: 1048 /* Make the link LED blink while we're scanning. */ 1049 wpi_set_led(sc, WPI_LED_LINK, 20, 2); 1050 1051 if ((error = wpi_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) { 1052 printf("%s: could not initiate scan\n", 1053 sc->sc_dev.dv_xname); 1054 return error; 1055 } 1056 if (ifp->if_flags & IFF_DEBUG) 1057 printf("%s: %s -> %s\n", ifp->if_xname, 1058 ieee80211_state_name[ic->ic_state], 1059 ieee80211_state_name[nstate]); 1060 ieee80211_set_link_state(ic, LINK_STATE_DOWN); 1061 ieee80211_node_cleanup(ic, ic->ic_bss); 1062 ic->ic_state = nstate; 1063 return 0; 1064 1065 case IEEE80211_S_ASSOC: 1066 if (ic->ic_state != IEEE80211_S_RUN) 1067 break; 1068 /* FALLTHROUGH */ 1069 case IEEE80211_S_AUTH: 1070 /* Reset state to handle reassociations correctly. */ 1071 sc->rxon.associd = 0; 1072 sc->rxon.filter &= ~htole32(WPI_FILTER_BSS); 1073 1074 if ((error = wpi_auth(sc)) != 0) { 1075 printf("%s: could not move to auth state\n", 1076 sc->sc_dev.dv_xname); 1077 return error; 1078 } 1079 break; 1080 1081 case IEEE80211_S_RUN: 1082 if ((error = wpi_run(sc)) != 0) { 1083 printf("%s: could not move to run state\n", 1084 sc->sc_dev.dv_xname); 1085 return error; 1086 } 1087 break; 1088 1089 case IEEE80211_S_INIT: 1090 break; 1091 } 1092 1093 return sc->sc_newstate(ic, nstate, arg); 1094 } 1095 1096 void 1097 wpi_iter_func(void *arg, struct ieee80211_node *ni) 1098 { 1099 struct wpi_softc *sc = arg; 1100 struct wpi_node *wn = (struct wpi_node *)ni; 1101 1102 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn); 1103 } 1104 1105 void 1106 wpi_calib_timeout(void *arg) 1107 { 1108 struct wpi_softc *sc = arg; 1109 struct ieee80211com *ic = &sc->sc_ic; 1110 int s; 1111 1112 s = splnet(); 1113 /* Automatic rate control triggered every 500ms. */ 1114 if (ic->ic_fixed_rate == -1) { 1115 if (ic->ic_opmode == IEEE80211_M_STA) 1116 wpi_iter_func(sc, ic->ic_bss); 1117 else 1118 ieee80211_iterate_nodes(ic, wpi_iter_func, sc); 1119 } 1120 1121 /* Force automatic TX power calibration every 60 secs. */ 1122 if (++sc->calib_cnt >= 120) { 1123 wpi_power_calibration(sc); 1124 sc->calib_cnt = 0; 1125 } 1126 splx(s); 1127 1128 /* Automatic rate control triggered every 500ms. */ 1129 timeout_add_msec(&sc->calib_to, 500); 1130 } 1131 1132 int 1133 wpi_ccmp_decap(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_key *k) 1134 { 1135 struct ieee80211com *ic = &sc->sc_ic; 1136 struct ieee80211_frame *wh; 1137 uint64_t pn, *prsc; 1138 uint8_t *ivp; 1139 uint8_t tid; 1140 int hdrlen; 1141 1142 wh = mtod(m, struct ieee80211_frame *); 1143 hdrlen = ieee80211_get_hdrlen(wh); 1144 ivp = (uint8_t *)wh + hdrlen; 1145 1146 /* Check that ExtIV bit is set. */ 1147 if (!(ivp[3] & IEEE80211_WEP_EXTIV)) { 1148 DPRINTF(("CCMP decap ExtIV not set\n")); 1149 return 1; 1150 } 1151 tid = ieee80211_has_qos(wh) ? 1152 ieee80211_get_qos(wh) & IEEE80211_QOS_TID : 0; 1153 prsc = &k->k_rsc[tid]; 1154 1155 /* Extract the 48-bit PN from the CCMP header. */ 1156 pn = (uint64_t)ivp[0] | 1157 (uint64_t)ivp[1] << 8 | 1158 (uint64_t)ivp[4] << 16 | 1159 (uint64_t)ivp[5] << 24 | 1160 (uint64_t)ivp[6] << 32 | 1161 (uint64_t)ivp[7] << 40; 1162 if (pn <= *prsc) { 1163 DPRINTF(("CCMP replayed\n")); 1164 ic->ic_stats.is_ccmp_replays++; 1165 return 1; 1166 } 1167 /* Last seen packet number is updated in ieee80211_inputm(). */ 1168 1169 /* Strip MIC. IV will be stripped by ieee80211_inputm(). */ 1170 m_adj(m, -IEEE80211_CCMP_MICLEN); 1171 return 0; 1172 } 1173 1174 void 1175 wpi_rx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc, 1176 struct wpi_rx_data *data, struct mbuf_list *ml) 1177 { 1178 struct ieee80211com *ic = &sc->sc_ic; 1179 struct ifnet *ifp = &ic->ic_if; 1180 struct wpi_rx_ring *ring = &sc->rxq; 1181 struct wpi_rx_stat *stat; 1182 struct wpi_rx_head *head; 1183 struct wpi_rx_tail *tail; 1184 struct ieee80211_frame *wh; 1185 struct ieee80211_rxinfo rxi; 1186 struct ieee80211_node *ni; 1187 struct mbuf *m, *m1; 1188 uint32_t flags; 1189 int error; 1190 1191 bus_dmamap_sync(sc->sc_dmat, data->map, 0, WPI_RBUF_SIZE, 1192 BUS_DMASYNC_POSTREAD); 1193 stat = (struct wpi_rx_stat *)(desc + 1); 1194 1195 if (stat->len > WPI_STAT_MAXLEN) { 1196 printf("%s: invalid RX statistic header\n", 1197 sc->sc_dev.dv_xname); 1198 ifp->if_ierrors++; 1199 return; 1200 } 1201 head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len); 1202 tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + letoh16(head->len)); 1203 flags = letoh32(tail->flags); 1204 1205 /* Discard frames with a bad FCS early. */ 1206 if ((flags & WPI_RX_NOERROR) != WPI_RX_NOERROR) { 1207 DPRINTFN(2, ("rx tail flags error %x\n", flags)); 1208 ifp->if_ierrors++; 1209 return; 1210 } 1211 /* Discard frames that are too short. */ 1212 if (letoh16(head->len) < sizeof (*wh)) { 1213 DPRINTF(("frame too short: %d\n", letoh16(head->len))); 1214 ic->ic_stats.is_rx_tooshort++; 1215 ifp->if_ierrors++; 1216 return; 1217 } 1218 1219 m1 = MCLGETL(NULL, M_DONTWAIT, WPI_RBUF_SIZE); 1220 if (m1 == NULL) { 1221 ic->ic_stats.is_rx_nombuf++; 1222 ifp->if_ierrors++; 1223 return; 1224 } 1225 bus_dmamap_unload(sc->sc_dmat, data->map); 1226 1227 error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *), 1228 WPI_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ); 1229 if (error != 0) { 1230 m_freem(m1); 1231 1232 /* Try to reload the old mbuf. */ 1233 error = bus_dmamap_load(sc->sc_dmat, data->map, 1234 mtod(data->m, void *), WPI_RBUF_SIZE, NULL, 1235 BUS_DMA_NOWAIT | BUS_DMA_READ); 1236 if (error != 0) { 1237 panic("%s: could not load old RX mbuf", 1238 sc->sc_dev.dv_xname); 1239 } 1240 /* Physical address may have changed. */ 1241 ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr); 1242 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 1243 ring->cur * sizeof (uint32_t), sizeof (uint32_t), 1244 BUS_DMASYNC_PREWRITE); 1245 ifp->if_ierrors++; 1246 return; 1247 } 1248 1249 m = data->m; 1250 data->m = m1; 1251 /* Update RX descriptor. */ 1252 ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr); 1253 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 1254 ring->cur * sizeof (uint32_t), sizeof (uint32_t), 1255 BUS_DMASYNC_PREWRITE); 1256 1257 /* Finalize mbuf. */ 1258 m->m_data = (caddr_t)(head + 1); 1259 m->m_pkthdr.len = m->m_len = letoh16(head->len); 1260 1261 /* Grab a reference to the source node. */ 1262 wh = mtod(m, struct ieee80211_frame *); 1263 ni = ieee80211_find_rxnode(ic, wh); 1264 1265 memset(&rxi, 0, sizeof(rxi)); 1266 if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) && 1267 !IEEE80211_IS_MULTICAST(wh->i_addr1) && 1268 (ni->ni_flags & IEEE80211_NODE_RXPROT) && 1269 ni->ni_pairwise_key.k_cipher == IEEE80211_CIPHER_CCMP) { 1270 if ((flags & WPI_RX_CIPHER_MASK) != WPI_RX_CIPHER_CCMP) { 1271 ic->ic_stats.is_ccmp_dec_errs++; 1272 ifp->if_ierrors++; 1273 m_freem(m); 1274 ieee80211_release_node(ic, ni); 1275 return; 1276 } 1277 /* Check whether decryption was successful or not. */ 1278 if ((flags & WPI_RX_DECRYPT_MASK) != WPI_RX_DECRYPT_OK) { 1279 DPRINTF(("CCMP decryption failed 0x%x\n", flags)); 1280 ic->ic_stats.is_ccmp_dec_errs++; 1281 ifp->if_ierrors++; 1282 m_freem(m); 1283 ieee80211_release_node(ic, ni); 1284 return; 1285 } 1286 if (wpi_ccmp_decap(sc, m, &ni->ni_pairwise_key) != 0) { 1287 ifp->if_ierrors++; 1288 m_freem(m); 1289 ieee80211_release_node(ic, ni); 1290 return; 1291 } 1292 rxi.rxi_flags |= IEEE80211_RXI_HWDEC; 1293 } 1294 1295 #if NBPFILTER > 0 1296 if (sc->sc_drvbpf != NULL) { 1297 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap; 1298 1299 tap->wr_flags = 0; 1300 if (letoh16(head->flags) & 0x4) 1301 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 1302 tap->wr_chan_freq = 1303 htole16(ic->ic_channels[head->chan].ic_freq); 1304 tap->wr_chan_flags = 1305 htole16(ic->ic_channels[head->chan].ic_flags); 1306 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET); 1307 tap->wr_dbm_antnoise = (int8_t)letoh16(stat->noise); 1308 tap->wr_tsft = tail->tstamp; 1309 tap->wr_antenna = (letoh16(head->flags) >> 4) & 0xf; 1310 switch (head->rate) { 1311 /* CCK rates. */ 1312 case 10: tap->wr_rate = 2; break; 1313 case 20: tap->wr_rate = 4; break; 1314 case 55: tap->wr_rate = 11; break; 1315 case 110: tap->wr_rate = 22; break; 1316 /* OFDM rates. */ 1317 case 0xd: tap->wr_rate = 12; break; 1318 case 0xf: tap->wr_rate = 18; break; 1319 case 0x5: tap->wr_rate = 24; break; 1320 case 0x7: tap->wr_rate = 36; break; 1321 case 0x9: tap->wr_rate = 48; break; 1322 case 0xb: tap->wr_rate = 72; break; 1323 case 0x1: tap->wr_rate = 96; break; 1324 case 0x3: tap->wr_rate = 108; break; 1325 /* Unknown rate: should not happen. */ 1326 default: tap->wr_rate = 0; 1327 } 1328 1329 bpf_mtap_hdr(sc->sc_drvbpf, tap, sc->sc_rxtap_len, 1330 m, BPF_DIRECTION_IN); 1331 } 1332 #endif 1333 1334 /* Send the frame to the 802.11 layer. */ 1335 rxi.rxi_rssi = stat->rssi; 1336 ieee80211_inputm(ifp, m, ni, &rxi, ml); 1337 1338 /* Node is no longer needed. */ 1339 ieee80211_release_node(ic, ni); 1340 } 1341 1342 void 1343 wpi_tx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc) 1344 { 1345 struct ieee80211com *ic = &sc->sc_ic; 1346 struct ifnet *ifp = &ic->ic_if; 1347 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3]; 1348 struct wpi_tx_data *data = &ring->data[desc->idx]; 1349 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1); 1350 struct wpi_node *wn = (struct wpi_node *)data->ni; 1351 1352 /* Update rate control statistics. */ 1353 wn->amn.amn_txcnt++; 1354 if (stat->retrycnt > 0) 1355 wn->amn.amn_retrycnt++; 1356 1357 if ((letoh32(stat->status) & 0xff) != 1) 1358 ifp->if_oerrors++; 1359 1360 /* Unmap and free mbuf. */ 1361 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, 1362 BUS_DMASYNC_POSTWRITE); 1363 bus_dmamap_unload(sc->sc_dmat, data->map); 1364 m_freem(data->m); 1365 data->m = NULL; 1366 ieee80211_release_node(ic, data->ni); 1367 data->ni = NULL; 1368 1369 sc->sc_tx_timer = 0; 1370 if (--ring->queued < WPI_TX_RING_LOMARK) { 1371 sc->qfullmsk &= ~(1 << ring->qid); 1372 if (sc->qfullmsk == 0 && ifq_is_oactive(&ifp->if_snd)) { 1373 ifq_clr_oactive(&ifp->if_snd); 1374 (*ifp->if_start)(ifp); 1375 } 1376 } 1377 } 1378 1379 void 1380 wpi_cmd_done(struct wpi_softc *sc, struct wpi_rx_desc *desc) 1381 { 1382 struct wpi_tx_ring *ring = &sc->txq[4]; 1383 struct wpi_tx_data *data; 1384 1385 if ((desc->qid & 7) != 4) 1386 return; /* Not a command ack. */ 1387 1388 data = &ring->data[desc->idx]; 1389 1390 /* If the command was mapped in an mbuf, free it. */ 1391 if (data->m != NULL) { 1392 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 1393 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1394 bus_dmamap_unload(sc->sc_dmat, data->map); 1395 m_freem(data->m); 1396 data->m = NULL; 1397 } 1398 wakeup(&ring->cmd[desc->idx]); 1399 } 1400 1401 void 1402 wpi_notif_intr(struct wpi_softc *sc) 1403 { 1404 struct mbuf_list ml = MBUF_LIST_INITIALIZER(); 1405 struct ieee80211com *ic = &sc->sc_ic; 1406 struct ifnet *ifp = &ic->ic_if; 1407 uint32_t hw; 1408 1409 bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0, 1410 sizeof (struct wpi_shared), BUS_DMASYNC_POSTREAD); 1411 1412 hw = letoh32(sc->shared->next); 1413 while (sc->rxq.cur != hw) { 1414 struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur]; 1415 struct wpi_rx_desc *desc; 1416 1417 bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc), 1418 BUS_DMASYNC_POSTREAD); 1419 desc = mtod(data->m, struct wpi_rx_desc *); 1420 1421 DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d " 1422 "len=%d\n", desc->qid, desc->idx, desc->flags, desc->type, 1423 letoh32(desc->len))); 1424 1425 if (!(desc->qid & 0x80)) /* Reply to a command. */ 1426 wpi_cmd_done(sc, desc); 1427 1428 switch (desc->type) { 1429 case WPI_RX_DONE: 1430 /* An 802.11 frame has been received. */ 1431 wpi_rx_done(sc, desc, data, &ml); 1432 break; 1433 1434 case WPI_TX_DONE: 1435 /* An 802.11 frame has been transmitted. */ 1436 wpi_tx_done(sc, desc); 1437 break; 1438 1439 case WPI_UC_READY: 1440 { 1441 struct wpi_ucode_info *uc = 1442 (struct wpi_ucode_info *)(desc + 1); 1443 1444 /* The microcontroller is ready. */ 1445 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 1446 sizeof (*uc), BUS_DMASYNC_POSTREAD); 1447 DPRINTF(("microcode alive notification version %x " 1448 "alive %x\n", letoh32(uc->version), 1449 letoh32(uc->valid))); 1450 1451 if (letoh32(uc->valid) != 1) { 1452 printf("%s: microcontroller initialization " 1453 "failed\n", sc->sc_dev.dv_xname); 1454 } 1455 if (uc->subtype != WPI_UCODE_INIT) { 1456 /* Save the address of the error log. */ 1457 sc->errptr = letoh32(uc->errptr); 1458 } 1459 break; 1460 } 1461 case WPI_STATE_CHANGED: 1462 { 1463 uint32_t *status = (uint32_t *)(desc + 1); 1464 1465 /* Enabled/disabled notification. */ 1466 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 1467 sizeof (*status), BUS_DMASYNC_POSTREAD); 1468 DPRINTF(("state changed to %x\n", letoh32(*status))); 1469 1470 if (letoh32(*status) & 1) { 1471 /* The radio button has to be pushed. */ 1472 printf("%s: Radio transmitter is off\n", 1473 sc->sc_dev.dv_xname); 1474 /* Turn the interface down. */ 1475 wpi_stop(ifp, 1); 1476 return; /* No further processing. */ 1477 } 1478 break; 1479 } 1480 case WPI_START_SCAN: 1481 { 1482 struct wpi_start_scan *scan = 1483 (struct wpi_start_scan *)(desc + 1); 1484 1485 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 1486 sizeof (*scan), BUS_DMASYNC_POSTREAD); 1487 DPRINTFN(2, ("scanning channel %d status %x\n", 1488 scan->chan, letoh32(scan->status))); 1489 1490 /* Fix current channel. */ 1491 ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan]; 1492 break; 1493 } 1494 case WPI_STOP_SCAN: 1495 { 1496 struct wpi_stop_scan *scan = 1497 (struct wpi_stop_scan *)(desc + 1); 1498 1499 bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), 1500 sizeof (*scan), BUS_DMASYNC_POSTREAD); 1501 DPRINTF(("scan finished nchan=%d status=%d chan=%d\n", 1502 scan->nchan, scan->status, scan->chan)); 1503 1504 if (scan->status == 1 && scan->chan <= 14 && 1505 (sc->sc_flags & WPI_FLAG_HAS_5GHZ)) { 1506 /* 1507 * We just finished scanning 2GHz channels, 1508 * start scanning 5GHz ones. 1509 */ 1510 if (wpi_scan(sc, IEEE80211_CHAN_5GHZ) == 0) 1511 break; 1512 } 1513 ieee80211_end_scan(ifp); 1514 break; 1515 } 1516 } 1517 1518 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT; 1519 } 1520 if_input(&ic->ic_if, &ml); 1521 1522 /* Tell the firmware what we have processed. */ 1523 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1; 1524 WPI_WRITE(sc, WPI_FH_RX_WPTR, hw & ~7); 1525 } 1526 1527 #ifdef WPI_DEBUG 1528 /* 1529 * Dump the error log of the firmware when a firmware panic occurs. Although 1530 * we can't debug the firmware because it is neither open source nor free, it 1531 * can help us to identify certain classes of problems. 1532 */ 1533 void 1534 wpi_fatal_intr(struct wpi_softc *sc) 1535 { 1536 #define N(a) (sizeof (a) / sizeof ((a)[0])) 1537 struct wpi_fwdump dump; 1538 uint32_t i, offset, count; 1539 1540 /* Check that the error log address is valid. */ 1541 if (sc->errptr < WPI_FW_DATA_BASE || 1542 sc->errptr + sizeof (dump) > 1543 WPI_FW_DATA_BASE + WPI_FW_DATA_MAXSZ) { 1544 printf("%s: bad firmware error log address 0x%08x\n", 1545 sc->sc_dev.dv_xname, sc->errptr); 1546 return; 1547 } 1548 1549 if (wpi_nic_lock(sc) != 0) { 1550 printf("%s: could not read firmware error log\n", 1551 sc->sc_dev.dv_xname); 1552 return; 1553 } 1554 /* Read number of entries in the log. */ 1555 count = wpi_mem_read(sc, sc->errptr); 1556 if (count == 0 || count * sizeof (dump) > WPI_FW_DATA_MAXSZ) { 1557 printf("%s: invalid count field (count=%u)\n", 1558 sc->sc_dev.dv_xname, count); 1559 wpi_nic_unlock(sc); 1560 return; 1561 } 1562 /* Skip "count" field. */ 1563 offset = sc->errptr + sizeof (uint32_t); 1564 printf("firmware error log (count=%u):\n", count); 1565 for (i = 0; i < count; i++) { 1566 wpi_mem_read_region_4(sc, offset, (uint32_t *)&dump, 1567 sizeof (dump) / sizeof (uint32_t)); 1568 1569 printf(" error type = \"%s\" (0x%08X)\n", 1570 (dump.desc < N(wpi_fw_errmsg)) ? 1571 wpi_fw_errmsg[dump.desc] : "UNKNOWN", 1572 dump.desc); 1573 printf(" error data = 0x%08X\n", 1574 dump.data); 1575 printf(" branch link = 0x%08X%08X\n", 1576 dump.blink[0], dump.blink[1]); 1577 printf(" interrupt link = 0x%08X%08X\n", 1578 dump.ilink[0], dump.ilink[1]); 1579 printf(" time = %u\n", dump.time); 1580 1581 offset += sizeof (dump); 1582 } 1583 wpi_nic_unlock(sc); 1584 /* Dump driver status (TX and RX rings) while we're here. */ 1585 printf("driver status:\n"); 1586 for (i = 0; i < 6; i++) { 1587 struct wpi_tx_ring *ring = &sc->txq[i]; 1588 printf(" tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n", 1589 i, ring->qid, ring->cur, ring->queued); 1590 } 1591 printf(" rx ring: cur=%d\n", sc->rxq.cur); 1592 printf(" 802.11 state %d\n", sc->sc_ic.ic_state); 1593 #undef N 1594 } 1595 #endif 1596 1597 int 1598 wpi_intr(void *arg) 1599 { 1600 struct wpi_softc *sc = arg; 1601 struct ifnet *ifp = &sc->sc_ic.ic_if; 1602 uint32_t r1, r2; 1603 1604 /* Disable interrupts. */ 1605 WPI_WRITE(sc, WPI_MASK, 0); 1606 1607 r1 = WPI_READ(sc, WPI_INT); 1608 r2 = WPI_READ(sc, WPI_FH_INT); 1609 1610 if (r1 == 0 && r2 == 0) { 1611 if (ifp->if_flags & IFF_UP) 1612 WPI_WRITE(sc, WPI_MASK, WPI_INT_MASK); 1613 return 0; /* Interrupt not for us. */ 1614 } 1615 if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) 1616 return 0; /* Hardware gone! */ 1617 1618 /* Acknowledge interrupts. */ 1619 WPI_WRITE(sc, WPI_INT, r1); 1620 WPI_WRITE(sc, WPI_FH_INT, r2); 1621 1622 if (r1 & (WPI_INT_SW_ERR | WPI_INT_HW_ERR)) { 1623 printf("%s: fatal firmware error\n", sc->sc_dev.dv_xname); 1624 /* Dump firmware error log and stop. */ 1625 #ifdef WPI_DEBUG 1626 wpi_fatal_intr(sc); 1627 #endif 1628 wpi_stop(ifp, 1); 1629 task_add(systq, &sc->init_task); 1630 return 1; 1631 } 1632 if ((r1 & (WPI_INT_FH_RX | WPI_INT_SW_RX)) || 1633 (r2 & WPI_FH_INT_RX)) 1634 wpi_notif_intr(sc); 1635 1636 if (r1 & WPI_INT_ALIVE) 1637 wakeup(sc); /* Firmware is alive. */ 1638 1639 /* Re-enable interrupts. */ 1640 if (ifp->if_flags & IFF_UP) 1641 WPI_WRITE(sc, WPI_MASK, WPI_INT_MASK); 1642 1643 return 1; 1644 } 1645 1646 int 1647 wpi_tx(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_node *ni) 1648 { 1649 struct ieee80211com *ic = &sc->sc_ic; 1650 struct wpi_node *wn = (void *)ni; 1651 struct wpi_tx_ring *ring; 1652 struct wpi_tx_desc *desc; 1653 struct wpi_tx_data *data; 1654 struct wpi_tx_cmd *cmd; 1655 struct wpi_cmd_data *tx; 1656 const struct wpi_rate *rinfo; 1657 struct ieee80211_frame *wh; 1658 struct ieee80211_key *k = NULL; 1659 enum ieee80211_edca_ac ac; 1660 uint32_t flags; 1661 uint16_t qos; 1662 u_int hdrlen; 1663 uint8_t *ivp, tid, ridx, type; 1664 int i, totlen, hasqos, error; 1665 1666 wh = mtod(m, struct ieee80211_frame *); 1667 hdrlen = ieee80211_get_hdrlen(wh); 1668 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 1669 1670 /* Select EDCA Access Category and TX ring for this frame. */ 1671 if ((hasqos = ieee80211_has_qos(wh))) { 1672 qos = ieee80211_get_qos(wh); 1673 tid = qos & IEEE80211_QOS_TID; 1674 ac = ieee80211_up_to_ac(ic, tid); 1675 } else { 1676 tid = 0; 1677 ac = EDCA_AC_BE; 1678 } 1679 1680 ring = &sc->txq[ac]; 1681 desc = &ring->desc[ring->cur]; 1682 data = &ring->data[ring->cur]; 1683 1684 /* Choose a TX rate index. */ 1685 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 1686 type != IEEE80211_FC0_TYPE_DATA) { 1687 ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ? 1688 WPI_RIDX_OFDM6 : WPI_RIDX_CCK1; 1689 } else if (ic->ic_fixed_rate != -1) { 1690 ridx = sc->fixed_ridx; 1691 } else 1692 ridx = wn->ridx[ni->ni_txrate]; 1693 rinfo = &wpi_rates[ridx]; 1694 1695 #if NBPFILTER > 0 1696 if (sc->sc_drvbpf != NULL) { 1697 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap; 1698 1699 tap->wt_flags = 0; 1700 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq); 1701 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags); 1702 tap->wt_rate = rinfo->rate; 1703 if ((ic->ic_flags & IEEE80211_F_WEPON) && 1704 (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)) 1705 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 1706 1707 bpf_mtap_hdr(sc->sc_drvbpf, tap, sc->sc_txtap_len, 1708 m, BPF_DIRECTION_OUT); 1709 } 1710 #endif 1711 1712 totlen = m->m_pkthdr.len; 1713 1714 /* Encrypt the frame if need be. */ 1715 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 1716 /* Retrieve key for TX. */ 1717 k = ieee80211_get_txkey(ic, wh, ni); 1718 if (k->k_cipher != IEEE80211_CIPHER_CCMP) { 1719 /* Do software encryption. */ 1720 if ((m = ieee80211_encrypt(ic, m, k)) == NULL) 1721 return ENOBUFS; 1722 /* 802.11 header may have moved. */ 1723 wh = mtod(m, struct ieee80211_frame *); 1724 totlen = m->m_pkthdr.len; 1725 1726 } else /* HW appends CCMP MIC. */ 1727 totlen += IEEE80211_CCMP_HDRLEN; 1728 } 1729 1730 /* Prepare TX firmware command. */ 1731 cmd = &ring->cmd[ring->cur]; 1732 cmd->code = WPI_CMD_TX_DATA; 1733 cmd->flags = 0; 1734 cmd->qid = ring->qid; 1735 cmd->idx = ring->cur; 1736 1737 tx = (struct wpi_cmd_data *)cmd->data; 1738 /* NB: No need to clear tx, all fields are reinitialized here. */ 1739 1740 flags = 0; 1741 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1742 /* Unicast frame, check if an ACK is expected. */ 1743 if (!hasqos || (qos & IEEE80211_QOS_ACK_POLICY_MASK) != 1744 IEEE80211_QOS_ACK_POLICY_NOACK) 1745 flags |= WPI_TX_NEED_ACK; 1746 } 1747 1748 /* Check if frame must be protected using RTS/CTS or CTS-to-self. */ 1749 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1750 /* NB: Group frames are sent using CCK in 802.11b/g. */ 1751 if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) { 1752 flags |= WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP; 1753 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) && 1754 ridx <= WPI_RIDX_OFDM54) { 1755 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 1756 flags |= WPI_TX_NEED_CTS | WPI_TX_FULL_TXOP; 1757 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 1758 flags |= WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP; 1759 } 1760 } 1761 1762 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 1763 type != IEEE80211_FC0_TYPE_DATA) 1764 tx->id = WPI_ID_BROADCAST; 1765 else 1766 tx->id = wn->id; 1767 1768 if (type == IEEE80211_FC0_TYPE_MGT) { 1769 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1770 1771 #ifndef IEEE80211_STA_ONLY 1772 /* Tell HW to set timestamp in probe responses. */ 1773 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1774 flags |= WPI_TX_INSERT_TSTAMP; 1775 #endif 1776 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 1777 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 1778 tx->timeout = htole16(3); 1779 else 1780 tx->timeout = htole16(2); 1781 } else 1782 tx->timeout = htole16(0); 1783 1784 tx->len = htole16(totlen); 1785 tx->tid = tid; 1786 tx->rts_ntries = 7; 1787 tx->data_ntries = 15; 1788 tx->ofdm_mask = 0xff; 1789 tx->cck_mask = 0x0f; 1790 tx->lifetime = htole32(WPI_LIFETIME_INFINITE); 1791 tx->plcp = rinfo->plcp; 1792 1793 /* Copy 802.11 header in TX command. */ 1794 memcpy((uint8_t *)(tx + 1), wh, hdrlen); 1795 1796 if (k != NULL && k->k_cipher == IEEE80211_CIPHER_CCMP) { 1797 /* Trim 802.11 header and prepend CCMP IV. */ 1798 m_adj(m, hdrlen - IEEE80211_CCMP_HDRLEN); 1799 ivp = mtod(m, uint8_t *); 1800 k->k_tsc++; 1801 ivp[0] = k->k_tsc; 1802 ivp[1] = k->k_tsc >> 8; 1803 ivp[2] = 0; 1804 ivp[3] = k->k_id << 6 | IEEE80211_WEP_EXTIV; 1805 ivp[4] = k->k_tsc >> 16; 1806 ivp[5] = k->k_tsc >> 24; 1807 ivp[6] = k->k_tsc >> 32; 1808 ivp[7] = k->k_tsc >> 40; 1809 1810 tx->security = WPI_CIPHER_CCMP; 1811 memcpy(tx->key, k->k_key, k->k_len); 1812 } else { 1813 /* Trim 802.11 header. */ 1814 m_adj(m, hdrlen); 1815 tx->security = 0; 1816 } 1817 tx->flags = htole32(flags); 1818 1819 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m, 1820 BUS_DMA_NOWAIT | BUS_DMA_WRITE); 1821 if (error != 0 && error != EFBIG) { 1822 printf("%s: can't map mbuf (error %d)\n", 1823 sc->sc_dev.dv_xname, error); 1824 m_freem(m); 1825 return error; 1826 } 1827 if (error != 0) { 1828 /* Too many DMA segments, linearize mbuf. */ 1829 if (m_defrag(m, M_DONTWAIT)) { 1830 m_freem(m); 1831 return ENOBUFS; 1832 } 1833 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m, 1834 BUS_DMA_NOWAIT | BUS_DMA_WRITE); 1835 if (error != 0) { 1836 printf("%s: can't map mbuf (error %d)\n", 1837 sc->sc_dev.dv_xname, error); 1838 m_freem(m); 1839 return error; 1840 } 1841 } 1842 1843 data->m = m; 1844 data->ni = ni; 1845 1846 DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n", 1847 ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs)); 1848 1849 /* Fill TX descriptor. */ 1850 desc->flags = htole32(WPI_PAD32(m->m_pkthdr.len) << 28 | 1851 (1 + data->map->dm_nsegs) << 24); 1852 /* First DMA segment is used by the TX command. */ 1853 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 1854 ring->cur * sizeof (struct wpi_tx_cmd)); 1855 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data) + 1856 ((hdrlen + 3) & ~3)); 1857 /* Other DMA segments are for data payload. */ 1858 for (i = 1; i <= data->map->dm_nsegs; i++) { 1859 desc->segs[i].addr = 1860 htole32(data->map->dm_segs[i - 1].ds_addr); 1861 desc->segs[i].len = 1862 htole32(data->map->dm_segs[i - 1].ds_len); 1863 } 1864 1865 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, 1866 BUS_DMASYNC_PREWRITE); 1867 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map, 1868 (caddr_t)cmd - ring->cmd_dma.vaddr, sizeof (*cmd), 1869 BUS_DMASYNC_PREWRITE); 1870 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 1871 (caddr_t)desc - ring->desc_dma.vaddr, sizeof (*desc), 1872 BUS_DMASYNC_PREWRITE); 1873 1874 /* Kick TX ring. */ 1875 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT; 1876 WPI_WRITE(sc, WPI_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); 1877 1878 /* Mark TX ring as full if we reach a certain threshold. */ 1879 if (++ring->queued > WPI_TX_RING_HIMARK) 1880 sc->qfullmsk |= 1 << ring->qid; 1881 1882 return 0; 1883 } 1884 1885 void 1886 wpi_start(struct ifnet *ifp) 1887 { 1888 struct wpi_softc *sc = ifp->if_softc; 1889 struct ieee80211com *ic = &sc->sc_ic; 1890 struct ieee80211_node *ni; 1891 struct mbuf *m; 1892 1893 if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd)) 1894 return; 1895 1896 for (;;) { 1897 if (sc->qfullmsk != 0) { 1898 ifq_set_oactive(&ifp->if_snd); 1899 break; 1900 } 1901 /* Send pending management frames first. */ 1902 m = mq_dequeue(&ic->ic_mgtq); 1903 if (m != NULL) { 1904 ni = m->m_pkthdr.ph_cookie; 1905 goto sendit; 1906 } 1907 if (ic->ic_state != IEEE80211_S_RUN) 1908 break; 1909 1910 /* Encapsulate and send data frames. */ 1911 m = ifq_dequeue(&ifp->if_snd); 1912 if (m == NULL) 1913 break; 1914 #if NBPFILTER > 0 1915 if (ifp->if_bpf != NULL) 1916 bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT); 1917 #endif 1918 if ((m = ieee80211_encap(ifp, m, &ni)) == NULL) 1919 continue; 1920 sendit: 1921 #if NBPFILTER > 0 1922 if (ic->ic_rawbpf != NULL) 1923 bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT); 1924 #endif 1925 if (wpi_tx(sc, m, ni) != 0) { 1926 ieee80211_release_node(ic, ni); 1927 ifp->if_oerrors++; 1928 continue; 1929 } 1930 1931 sc->sc_tx_timer = 5; 1932 ifp->if_timer = 1; 1933 } 1934 } 1935 1936 void 1937 wpi_watchdog(struct ifnet *ifp) 1938 { 1939 struct wpi_softc *sc = ifp->if_softc; 1940 1941 ifp->if_timer = 0; 1942 1943 if (sc->sc_tx_timer > 0) { 1944 if (--sc->sc_tx_timer == 0) { 1945 printf("%s: device timeout\n", sc->sc_dev.dv_xname); 1946 wpi_stop(ifp, 1); 1947 ifp->if_oerrors++; 1948 return; 1949 } 1950 ifp->if_timer = 1; 1951 } 1952 1953 ieee80211_watchdog(ifp); 1954 } 1955 1956 int 1957 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1958 { 1959 struct wpi_softc *sc = ifp->if_softc; 1960 struct ieee80211com *ic = &sc->sc_ic; 1961 int s, error = 0; 1962 1963 error = rw_enter(&sc->sc_rwlock, RW_WRITE | RW_INTR); 1964 if (error) 1965 return error; 1966 s = splnet(); 1967 1968 switch (cmd) { 1969 case SIOCSIFADDR: 1970 ifp->if_flags |= IFF_UP; 1971 /* FALLTHROUGH */ 1972 case SIOCSIFFLAGS: 1973 if (ifp->if_flags & IFF_UP) { 1974 if (!(ifp->if_flags & IFF_RUNNING)) 1975 error = wpi_init(ifp); 1976 } else { 1977 if (ifp->if_flags & IFF_RUNNING) 1978 wpi_stop(ifp, 1); 1979 } 1980 break; 1981 1982 case SIOCS80211POWER: 1983 error = ieee80211_ioctl(ifp, cmd, data); 1984 if (error != ENETRESET) 1985 break; 1986 if (ic->ic_state == IEEE80211_S_RUN) { 1987 if (ic->ic_flags & IEEE80211_F_PMGTON) 1988 error = wpi_set_pslevel(sc, 0, 3, 0); 1989 else /* back to CAM */ 1990 error = wpi_set_pslevel(sc, 0, 0, 0); 1991 } else { 1992 /* Defer until transition to IEEE80211_S_RUN. */ 1993 error = 0; 1994 } 1995 break; 1996 1997 default: 1998 error = ieee80211_ioctl(ifp, cmd, data); 1999 } 2000 2001 if (error == ENETRESET) { 2002 error = 0; 2003 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 2004 (IFF_UP | IFF_RUNNING)) { 2005 wpi_stop(ifp, 0); 2006 error = wpi_init(ifp); 2007 } 2008 } 2009 2010 splx(s); 2011 rw_exit_write(&sc->sc_rwlock); 2012 return error; 2013 } 2014 2015 /* 2016 * Send a command to the firmware. 2017 */ 2018 int 2019 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async) 2020 { 2021 struct wpi_tx_ring *ring = &sc->txq[4]; 2022 struct wpi_tx_desc *desc; 2023 struct wpi_tx_data *data; 2024 struct wpi_tx_cmd *cmd; 2025 struct mbuf *m; 2026 bus_addr_t paddr; 2027 int totlen, error; 2028 2029 desc = &ring->desc[ring->cur]; 2030 data = &ring->data[ring->cur]; 2031 totlen = 4 + size; 2032 2033 if (size > sizeof cmd->data) { 2034 /* Command is too large to fit in a descriptor. */ 2035 if (totlen > MCLBYTES) 2036 return EINVAL; 2037 MGETHDR(m, M_DONTWAIT, MT_DATA); 2038 if (m == NULL) 2039 return ENOMEM; 2040 if (totlen > MHLEN) { 2041 MCLGET(m, M_DONTWAIT); 2042 if (!(m->m_flags & M_EXT)) { 2043 m_freem(m); 2044 return ENOMEM; 2045 } 2046 } 2047 cmd = mtod(m, struct wpi_tx_cmd *); 2048 error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen, 2049 NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE); 2050 if (error != 0) { 2051 m_freem(m); 2052 return error; 2053 } 2054 data->m = m; 2055 paddr = data->map->dm_segs[0].ds_addr; 2056 } else { 2057 cmd = &ring->cmd[ring->cur]; 2058 paddr = data->cmd_paddr; 2059 } 2060 2061 cmd->code = code; 2062 cmd->flags = 0; 2063 cmd->qid = ring->qid; 2064 cmd->idx = ring->cur; 2065 memcpy(cmd->data, buf, size); 2066 2067 desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24); 2068 desc->segs[0].addr = htole32(paddr); 2069 desc->segs[0].len = htole32(totlen); 2070 2071 if (size > sizeof cmd->data) { 2072 bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen, 2073 BUS_DMASYNC_PREWRITE); 2074 } else { 2075 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map, 2076 (caddr_t)cmd - ring->cmd_dma.vaddr, totlen, 2077 BUS_DMASYNC_PREWRITE); 2078 } 2079 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 2080 (caddr_t)desc - ring->desc_dma.vaddr, sizeof (*desc), 2081 BUS_DMASYNC_PREWRITE); 2082 2083 /* Kick command ring. */ 2084 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT; 2085 WPI_WRITE(sc, WPI_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); 2086 2087 return async ? 0 : tsleep_nsec(cmd, PCATCH, "wpicmd", SEC_TO_NSEC(1)); 2088 } 2089 2090 /* 2091 * Configure HW multi-rate retries. 2092 */ 2093 int 2094 wpi_mrr_setup(struct wpi_softc *sc) 2095 { 2096 struct ieee80211com *ic = &sc->sc_ic; 2097 struct wpi_mrr_setup mrr; 2098 int i, error; 2099 2100 /* CCK rates (not used with 802.11a). */ 2101 for (i = WPI_RIDX_CCK1; i <= WPI_RIDX_CCK11; i++) { 2102 mrr.rates[i].flags = 0; 2103 mrr.rates[i].plcp = wpi_rates[i].plcp; 2104 /* Fallback to the immediate lower CCK rate (if any.) */ 2105 mrr.rates[i].next = 2106 (i == WPI_RIDX_CCK1) ? WPI_RIDX_CCK1 : i - 1; 2107 /* Try one time at this rate before falling back to "next". */ 2108 mrr.rates[i].ntries = 1; 2109 } 2110 /* OFDM rates (not used with 802.11b). */ 2111 for (i = WPI_RIDX_OFDM6; i <= WPI_RIDX_OFDM54; i++) { 2112 mrr.rates[i].flags = 0; 2113 mrr.rates[i].plcp = wpi_rates[i].plcp; 2114 /* Fallback to the immediate lower rate (if any.) */ 2115 /* We allow fallback from OFDM/6 to CCK/2 in 11b/g mode. */ 2116 mrr.rates[i].next = (i == WPI_RIDX_OFDM6) ? 2117 ((ic->ic_curmode == IEEE80211_MODE_11A) ? 2118 WPI_RIDX_OFDM6 : WPI_RIDX_CCK2) : 2119 i - 1; 2120 /* Try one time at this rate before falling back to "next". */ 2121 mrr.rates[i].ntries = 1; 2122 } 2123 /* Setup MRR for control frames. */ 2124 mrr.which = htole32(WPI_MRR_CTL); 2125 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 2126 if (error != 0) { 2127 printf("%s: could not setup MRR for control frames\n", 2128 sc->sc_dev.dv_xname); 2129 return error; 2130 } 2131 /* Setup MRR for data frames. */ 2132 mrr.which = htole32(WPI_MRR_DATA); 2133 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 2134 if (error != 0) { 2135 printf("%s: could not setup MRR for data frames\n", 2136 sc->sc_dev.dv_xname); 2137 return error; 2138 } 2139 return 0; 2140 } 2141 2142 void 2143 wpi_updateedca(struct ieee80211com *ic) 2144 { 2145 #define WPI_EXP2(x) ((1 << (x)) - 1) /* CWmin = 2^ECWmin - 1 */ 2146 struct wpi_softc *sc = ic->ic_softc; 2147 struct wpi_edca_params cmd; 2148 int aci; 2149 2150 memset(&cmd, 0, sizeof cmd); 2151 cmd.flags = htole32(WPI_EDCA_UPDATE); 2152 for (aci = 0; aci < EDCA_NUM_AC; aci++) { 2153 const struct ieee80211_edca_ac_params *ac = 2154 &ic->ic_edca_ac[aci]; 2155 cmd.ac[aci].aifsn = ac->ac_aifsn; 2156 cmd.ac[aci].cwmin = htole16(WPI_EXP2(ac->ac_ecwmin)); 2157 cmd.ac[aci].cwmax = htole16(WPI_EXP2(ac->ac_ecwmax)); 2158 cmd.ac[aci].txoplimit = 2159 htole16(IEEE80211_TXOP_TO_US(ac->ac_txoplimit)); 2160 } 2161 (void)wpi_cmd(sc, WPI_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1); 2162 #undef WPI_EXP2 2163 } 2164 2165 void 2166 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on) 2167 { 2168 struct wpi_cmd_led led; 2169 2170 led.which = which; 2171 led.unit = htole32(100000); /* on/off in unit of 100ms */ 2172 led.off = off; 2173 led.on = on; 2174 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1); 2175 } 2176 2177 int 2178 wpi_set_timing(struct wpi_softc *sc, struct ieee80211_node *ni) 2179 { 2180 struct wpi_cmd_timing cmd; 2181 uint64_t val, mod; 2182 2183 memset(&cmd, 0, sizeof cmd); 2184 memcpy(&cmd.tstamp, ni->ni_tstamp, sizeof (uint64_t)); 2185 cmd.bintval = htole16(ni->ni_intval); 2186 cmd.lintval = htole16(10); 2187 2188 /* Compute remaining time until next beacon. */ 2189 val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */ 2190 mod = letoh64(cmd.tstamp) % val; 2191 cmd.binitval = htole32((uint32_t)(val - mod)); 2192 2193 DPRINTF(("timing bintval=%u, tstamp=%llu, init=%u\n", 2194 ni->ni_intval, letoh64(cmd.tstamp), (uint32_t)(val - mod))); 2195 2196 return wpi_cmd(sc, WPI_CMD_TIMING, &cmd, sizeof cmd, 1); 2197 } 2198 2199 /* 2200 * This function is called periodically (every minute) to adjust TX power 2201 * based on temperature variation. 2202 */ 2203 void 2204 wpi_power_calibration(struct wpi_softc *sc) 2205 { 2206 int temp; 2207 2208 temp = (int)WPI_READ(sc, WPI_UCODE_GP2); 2209 /* Sanity-check temperature. */ 2210 if (temp < -260 || temp > 25) { 2211 /* This can't be correct, ignore. */ 2212 DPRINTF(("out-of-range temperature reported: %d\n", temp)); 2213 return; 2214 } 2215 DPRINTF(("temperature %d->%d\n", sc->temp, temp)); 2216 /* Adjust TX power if need be (delta > 6). */ 2217 if (abs(temp - sc->temp) > 6) { 2218 /* Record temperature of last calibration. */ 2219 sc->temp = temp; 2220 (void)wpi_set_txpower(sc, 1); 2221 } 2222 } 2223 2224 /* 2225 * Set TX power for current channel (each rate has its own power settings). 2226 */ 2227 int 2228 wpi_set_txpower(struct wpi_softc *sc, int async) 2229 { 2230 struct ieee80211com *ic = &sc->sc_ic; 2231 struct ieee80211_channel *ch; 2232 struct wpi_power_group *group; 2233 struct wpi_cmd_txpower cmd; 2234 u_int chan; 2235 int idx, i; 2236 2237 /* Retrieve current channel from last RXON. */ 2238 chan = sc->rxon.chan; 2239 DPRINTF(("setting TX power for channel %d\n", chan)); 2240 ch = &ic->ic_channels[chan]; 2241 2242 /* Find the TX power group to which this channel belongs. */ 2243 if (IEEE80211_IS_CHAN_5GHZ(ch)) { 2244 for (group = &sc->groups[1]; group < &sc->groups[4]; group++) 2245 if (chan <= group->chan) 2246 break; 2247 } else 2248 group = &sc->groups[0]; 2249 2250 memset(&cmd, 0, sizeof cmd); 2251 cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1; 2252 cmd.chan = htole16(chan); 2253 2254 /* Set TX power for all OFDM and CCK rates. */ 2255 for (i = 0; i <= WPI_RIDX_MAX ; i++) { 2256 /* Retrieve TX power for this channel/rate. */ 2257 idx = wpi_get_power_index(sc, group, ch, i); 2258 2259 cmd.rates[i].plcp = wpi_rates[i].plcp; 2260 2261 if (IEEE80211_IS_CHAN_5GHZ(ch)) { 2262 cmd.rates[i].rf_gain = wpi_rf_gain_5ghz[idx]; 2263 cmd.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx]; 2264 } else { 2265 cmd.rates[i].rf_gain = wpi_rf_gain_2ghz[idx]; 2266 cmd.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx]; 2267 } 2268 DPRINTF(("chan %d/rate %d: power index %d\n", chan, 2269 wpi_rates[i].rate, idx)); 2270 } 2271 return wpi_cmd(sc, WPI_CMD_TXPOWER, &cmd, sizeof cmd, async); 2272 } 2273 2274 /* 2275 * Determine TX power index for a given channel/rate combination. 2276 * This takes into account the regulatory information from EEPROM and the 2277 * current temperature. 2278 */ 2279 int 2280 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group, 2281 struct ieee80211_channel *c, int ridx) 2282 { 2283 /* Fixed-point arithmetic division using a n-bit fractional part. */ 2284 #define fdivround(a, b, n) \ 2285 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n)) 2286 2287 /* Linear interpolation. */ 2288 #define interpolate(x, x1, y1, x2, y2, n) \ 2289 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n)) 2290 2291 struct ieee80211com *ic = &sc->sc_ic; 2292 struct wpi_power_sample *sample; 2293 int pwr, idx; 2294 u_int chan; 2295 2296 /* Get channel number. */ 2297 chan = ieee80211_chan2ieee(ic, c); 2298 2299 /* Default TX power is group maximum TX power minus 3dB. */ 2300 pwr = group->maxpwr / 2; 2301 2302 /* Decrease TX power for highest OFDM rates to reduce distortion. */ 2303 switch (ridx) { 2304 case WPI_RIDX_OFDM36: 2305 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5; 2306 break; 2307 case WPI_RIDX_OFDM48: 2308 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10; 2309 break; 2310 case WPI_RIDX_OFDM54: 2311 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12; 2312 break; 2313 } 2314 2315 /* Never exceed the channel maximum allowed TX power. */ 2316 pwr = MIN(pwr, sc->maxpwr[chan]); 2317 2318 /* Retrieve TX power index into gain tables from samples. */ 2319 for (sample = group->samples; sample < &group->samples[3]; sample++) 2320 if (pwr > sample[1].power) 2321 break; 2322 /* Fixed-point linear interpolation using a 19-bit fractional part. */ 2323 idx = interpolate(pwr, sample[0].power, sample[0].index, 2324 sample[1].power, sample[1].index, 19); 2325 2326 /*- 2327 * Adjust power index based on current temperature: 2328 * - if cooler than factory-calibrated: decrease output power 2329 * - if warmer than factory-calibrated: increase output power 2330 */ 2331 idx -= (sc->temp - group->temp) * 11 / 100; 2332 2333 /* Decrease TX power for CCK rates (-5dB). */ 2334 if (ridx >= WPI_RIDX_CCK1) 2335 idx += 10; 2336 2337 /* Make sure idx stays in a valid range. */ 2338 if (idx < 0) 2339 idx = 0; 2340 else if (idx > WPI_MAX_PWR_INDEX) 2341 idx = WPI_MAX_PWR_INDEX; 2342 return idx; 2343 2344 #undef interpolate 2345 #undef fdivround 2346 } 2347 2348 /* 2349 * Set STA mode power saving level (between 0 and 5). 2350 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving. 2351 */ 2352 int 2353 wpi_set_pslevel(struct wpi_softc *sc, int dtim, int level, int async) 2354 { 2355 struct wpi_pmgt_cmd cmd; 2356 const struct wpi_pmgt *pmgt; 2357 uint32_t max, skip_dtim; 2358 pcireg_t reg; 2359 int i; 2360 2361 /* Select which PS parameters to use. */ 2362 if (dtim <= 10) 2363 pmgt = &wpi_pmgt[0][level]; 2364 else 2365 pmgt = &wpi_pmgt[1][level]; 2366 2367 memset(&cmd, 0, sizeof cmd); 2368 if (level != 0) /* not CAM */ 2369 cmd.flags |= htole16(WPI_PS_ALLOW_SLEEP); 2370 /* Retrieve PCIe Active State Power Management (ASPM). */ 2371 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 2372 sc->sc_cap_off + PCI_PCIE_LCSR); 2373 if (!(reg & PCI_PCIE_LCSR_ASPM_L0S)) /* L0s Entry disabled. */ 2374 cmd.flags |= htole16(WPI_PS_PCI_PMGT); 2375 cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024); 2376 cmd.txtimeout = htole32(pmgt->txtimeout * 1024); 2377 2378 if (dtim == 0) { 2379 dtim = 1; 2380 skip_dtim = 0; 2381 } else 2382 skip_dtim = pmgt->skip_dtim; 2383 if (skip_dtim != 0) { 2384 cmd.flags |= htole16(WPI_PS_SLEEP_OVER_DTIM); 2385 max = pmgt->intval[4]; 2386 if (max == (uint32_t)-1) 2387 max = dtim * (skip_dtim + 1); 2388 else if (max > dtim) 2389 max = (max / dtim) * dtim; 2390 } else 2391 max = dtim; 2392 for (i = 0; i < 5; i++) 2393 cmd.intval[i] = htole32(MIN(max, pmgt->intval[i])); 2394 2395 DPRINTF(("setting power saving level to %d\n", level)); 2396 return wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async); 2397 } 2398 2399 int 2400 wpi_config(struct wpi_softc *sc) 2401 { 2402 struct ieee80211com *ic = &sc->sc_ic; 2403 struct ifnet *ifp = &ic->ic_if; 2404 struct wpi_bluetooth bluetooth; 2405 struct wpi_node_info node; 2406 int error; 2407 2408 /* Set power saving level to CAM during initialization. */ 2409 if ((error = wpi_set_pslevel(sc, 0, 0, 0)) != 0) { 2410 printf("%s: could not set power saving level\n", 2411 sc->sc_dev.dv_xname); 2412 return error; 2413 } 2414 2415 /* Configure bluetooth coexistence. */ 2416 memset(&bluetooth, 0, sizeof bluetooth); 2417 bluetooth.flags = WPI_BT_COEX_MODE_4WIRE; 2418 bluetooth.lead_time = WPI_BT_LEAD_TIME_DEF; 2419 bluetooth.max_kill = WPI_BT_MAX_KILL_DEF; 2420 error = wpi_cmd(sc, WPI_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0); 2421 if (error != 0) { 2422 printf("%s: could not configure bluetooth coexistence\n", 2423 sc->sc_dev.dv_xname); 2424 return error; 2425 } 2426 2427 /* Configure adapter. */ 2428 memset(&sc->rxon, 0, sizeof (struct wpi_rxon)); 2429 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl)); 2430 IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr); 2431 /* Set default channel. */ 2432 sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan); 2433 sc->rxon.flags = htole32(WPI_RXON_TSF); 2434 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) 2435 sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ); 2436 switch (ic->ic_opmode) { 2437 case IEEE80211_M_STA: 2438 sc->rxon.mode = WPI_MODE_STA; 2439 sc->rxon.filter = htole32(WPI_FILTER_MULTICAST); 2440 break; 2441 case IEEE80211_M_MONITOR: 2442 sc->rxon.mode = WPI_MODE_MONITOR; 2443 sc->rxon.filter = htole32(WPI_FILTER_MULTICAST | 2444 WPI_FILTER_CTL | WPI_FILTER_PROMISC); 2445 break; 2446 default: 2447 /* Should not get there. */ 2448 break; 2449 } 2450 sc->rxon.cck_mask = 0x0f; /* not yet negotiated */ 2451 sc->rxon.ofdm_mask = 0xff; /* not yet negotiated */ 2452 DPRINTF(("setting configuration\n")); 2453 error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon, sizeof (struct wpi_rxon), 2454 0); 2455 if (error != 0) { 2456 printf("%s: RXON command failed\n", sc->sc_dev.dv_xname); 2457 return error; 2458 } 2459 2460 /* Configuration has changed, set TX power accordingly. */ 2461 if ((error = wpi_set_txpower(sc, 0)) != 0) { 2462 printf("%s: could not set TX power\n", sc->sc_dev.dv_xname); 2463 return error; 2464 } 2465 2466 /* Add broadcast node. */ 2467 memset(&node, 0, sizeof node); 2468 IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr); 2469 node.id = WPI_ID_BROADCAST; 2470 node.plcp = wpi_rates[WPI_RIDX_CCK1].plcp; 2471 node.action = htole32(WPI_ACTION_SET_RATE); 2472 node.antenna = WPI_ANTENNA_BOTH; 2473 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0); 2474 if (error != 0) { 2475 printf("%s: could not add broadcast node\n", 2476 sc->sc_dev.dv_xname); 2477 return error; 2478 } 2479 2480 if ((error = wpi_mrr_setup(sc)) != 0) { 2481 printf("%s: could not setup MRR\n", sc->sc_dev.dv_xname); 2482 return error; 2483 } 2484 return 0; 2485 } 2486 2487 int 2488 wpi_scan(struct wpi_softc *sc, uint16_t flags) 2489 { 2490 struct ieee80211com *ic = &sc->sc_ic; 2491 struct wpi_scan_hdr *hdr; 2492 struct wpi_cmd_data *tx; 2493 struct wpi_scan_essid *essid; 2494 struct wpi_scan_chan *chan; 2495 struct ieee80211_frame *wh; 2496 struct ieee80211_rateset *rs; 2497 struct ieee80211_channel *c; 2498 uint8_t *buf, *frm; 2499 int buflen, error; 2500 2501 buf = malloc(WPI_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO); 2502 if (buf == NULL) { 2503 printf("%s: could not allocate buffer for scan command\n", 2504 sc->sc_dev.dv_xname); 2505 return ENOMEM; 2506 } 2507 hdr = (struct wpi_scan_hdr *)buf; 2508 /* 2509 * Move to the next channel if no frames are received within 10ms 2510 * after sending the probe request. 2511 */ 2512 hdr->quiet_time = htole16(10); /* timeout in milliseconds */ 2513 hdr->quiet_threshold = htole16(1); /* min # of packets */ 2514 2515 tx = (struct wpi_cmd_data *)(hdr + 1); 2516 tx->flags = htole32(WPI_TX_AUTO_SEQ); 2517 tx->id = WPI_ID_BROADCAST; 2518 tx->lifetime = htole32(WPI_LIFETIME_INFINITE); 2519 2520 if (flags & IEEE80211_CHAN_5GHZ) { 2521 hdr->crc_threshold = htole16(1); 2522 /* Send probe requests at 6Mbps. */ 2523 tx->plcp = wpi_rates[WPI_RIDX_OFDM6].plcp; 2524 rs = &ic->ic_sup_rates[IEEE80211_MODE_11A]; 2525 } else { 2526 hdr->flags = htole32(WPI_RXON_24GHZ | WPI_RXON_AUTO); 2527 /* Send probe requests at 1Mbps. */ 2528 tx->plcp = wpi_rates[WPI_RIDX_CCK1].plcp; 2529 rs = &ic->ic_sup_rates[IEEE80211_MODE_11G]; 2530 } 2531 2532 essid = (struct wpi_scan_essid *)(tx + 1); 2533 if (ic->ic_des_esslen != 0) { 2534 essid[0].id = IEEE80211_ELEMID_SSID; 2535 essid[0].len = ic->ic_des_esslen; 2536 memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen); 2537 } 2538 /* 2539 * Build a probe request frame. Most of the following code is a 2540 * copy & paste of what is done in net80211. 2541 */ 2542 wh = (struct ieee80211_frame *)(essid + 4); 2543 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 2544 IEEE80211_FC0_SUBTYPE_PROBE_REQ; 2545 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2546 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr); 2547 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr); 2548 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr); 2549 *(uint16_t *)&wh->i_dur[0] = 0; /* filled by HW */ 2550 *(uint16_t *)&wh->i_seq[0] = 0; /* filled by HW */ 2551 2552 frm = (uint8_t *)(wh + 1); 2553 frm = ieee80211_add_ssid(frm, NULL, 0); 2554 frm = ieee80211_add_rates(frm, rs); 2555 if (rs->rs_nrates > IEEE80211_RATE_SIZE) 2556 frm = ieee80211_add_xrates(frm, rs); 2557 2558 /* Set length of probe request. */ 2559 tx->len = htole16(frm - (uint8_t *)wh); 2560 2561 chan = (struct wpi_scan_chan *)frm; 2562 for (c = &ic->ic_channels[1]; 2563 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) { 2564 if ((c->ic_flags & flags) != flags) 2565 continue; 2566 2567 chan->chan = ieee80211_chan2ieee(ic, c); 2568 DPRINTFN(2, ("adding channel %d\n", chan->chan)); 2569 chan->flags = 0; 2570 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) 2571 chan->flags |= WPI_CHAN_ACTIVE; 2572 if (ic->ic_des_esslen != 0) 2573 chan->flags |= WPI_CHAN_NPBREQS(1); 2574 chan->dsp_gain = 0x6e; 2575 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2576 chan->rf_gain = 0x3b; 2577 chan->active = htole16(24); 2578 chan->passive = htole16(110); 2579 } else { 2580 chan->rf_gain = 0x28; 2581 chan->active = htole16(36); 2582 chan->passive = htole16(120); 2583 } 2584 hdr->nchan++; 2585 chan++; 2586 } 2587 2588 buflen = (uint8_t *)chan - buf; 2589 hdr->len = htole16(buflen); 2590 2591 DPRINTF(("sending scan command nchan=%d\n", hdr->nchan)); 2592 error = wpi_cmd(sc, WPI_CMD_SCAN, buf, buflen, 1); 2593 free(buf, M_DEVBUF, WPI_SCAN_MAXSZ); 2594 return error; 2595 } 2596 2597 int 2598 wpi_auth(struct wpi_softc *sc) 2599 { 2600 struct ieee80211com *ic = &sc->sc_ic; 2601 struct ieee80211_node *ni = ic->ic_bss; 2602 struct wpi_node_info node; 2603 int error; 2604 2605 /* Update adapter configuration. */ 2606 IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid); 2607 sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan); 2608 sc->rxon.flags = htole32(WPI_RXON_TSF); 2609 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) 2610 sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ); 2611 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2612 sc->rxon.flags |= htole32(WPI_RXON_SHSLOT); 2613 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 2614 sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE); 2615 switch (ic->ic_curmode) { 2616 case IEEE80211_MODE_11A: 2617 sc->rxon.cck_mask = 0; 2618 sc->rxon.ofdm_mask = 0x15; 2619 break; 2620 case IEEE80211_MODE_11B: 2621 sc->rxon.cck_mask = 0x03; 2622 sc->rxon.ofdm_mask = 0; 2623 break; 2624 default: /* Assume 802.11b/g. */ 2625 sc->rxon.cck_mask = 0x0f; 2626 sc->rxon.ofdm_mask = 0x15; 2627 } 2628 DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan, 2629 sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask)); 2630 error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon, sizeof (struct wpi_rxon), 2631 1); 2632 if (error != 0) { 2633 printf("%s: RXON command failed\n", sc->sc_dev.dv_xname); 2634 return error; 2635 } 2636 2637 /* Configuration has changed, set TX power accordingly. */ 2638 if ((error = wpi_set_txpower(sc, 1)) != 0) { 2639 printf("%s: could not set TX power\n", sc->sc_dev.dv_xname); 2640 return error; 2641 } 2642 /* 2643 * Reconfiguring RXON clears the firmware nodes table so we must 2644 * add the broadcast node again. 2645 */ 2646 memset(&node, 0, sizeof node); 2647 IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr); 2648 node.id = WPI_ID_BROADCAST; 2649 node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2650 wpi_rates[WPI_RIDX_OFDM6].plcp : wpi_rates[WPI_RIDX_CCK1].plcp; 2651 node.action = htole32(WPI_ACTION_SET_RATE); 2652 node.antenna = WPI_ANTENNA_BOTH; 2653 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1); 2654 if (error != 0) { 2655 printf("%s: could not add broadcast node\n", 2656 sc->sc_dev.dv_xname); 2657 return error; 2658 } 2659 return 0; 2660 } 2661 2662 int 2663 wpi_run(struct wpi_softc *sc) 2664 { 2665 struct ieee80211com *ic = &sc->sc_ic; 2666 struct ieee80211_node *ni = ic->ic_bss; 2667 struct wpi_node_info node; 2668 int error; 2669 2670 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 2671 /* Link LED blinks while monitoring. */ 2672 wpi_set_led(sc, WPI_LED_LINK, 5, 5); 2673 return 0; 2674 } 2675 if ((error = wpi_set_timing(sc, ni)) != 0) { 2676 printf("%s: could not set timing\n", sc->sc_dev.dv_xname); 2677 return error; 2678 } 2679 2680 /* Update adapter configuration. */ 2681 sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd)); 2682 /* Short preamble and slot time are negotiated when associating. */ 2683 sc->rxon.flags &= ~htole32(WPI_RXON_SHPREAMBLE | WPI_RXON_SHSLOT); 2684 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2685 sc->rxon.flags |= htole32(WPI_RXON_SHSLOT); 2686 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 2687 sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE); 2688 sc->rxon.filter |= htole32(WPI_FILTER_BSS); 2689 DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags)); 2690 error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon, sizeof (struct wpi_rxon), 2691 1); 2692 if (error != 0) { 2693 printf("%s: RXON command failed\n", sc->sc_dev.dv_xname); 2694 return error; 2695 } 2696 2697 /* Configuration has changed, set TX power accordingly. */ 2698 if ((error = wpi_set_txpower(sc, 1)) != 0) { 2699 printf("%s: could not set TX power\n", sc->sc_dev.dv_xname); 2700 return error; 2701 } 2702 2703 /* Fake a join to init the TX rate. */ 2704 ((struct wpi_node *)ni)->id = WPI_ID_BSS; 2705 wpi_newassoc(ic, ni, 1); 2706 2707 /* Add BSS node. */ 2708 memset(&node, 0, sizeof node); 2709 IEEE80211_ADDR_COPY(node.macaddr, ni->ni_bssid); 2710 node.id = WPI_ID_BSS; 2711 node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2712 wpi_rates[WPI_RIDX_OFDM6].plcp : wpi_rates[WPI_RIDX_CCK1].plcp; 2713 node.action = htole32(WPI_ACTION_SET_RATE); 2714 node.antenna = WPI_ANTENNA_BOTH; 2715 DPRINTF(("adding BSS node\n")); 2716 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1); 2717 if (error != 0) { 2718 printf("%s: could not add BSS node\n", sc->sc_dev.dv_xname); 2719 return error; 2720 } 2721 2722 /* Start periodic calibration timer. */ 2723 sc->calib_cnt = 0; 2724 timeout_add_msec(&sc->calib_to, 500); 2725 2726 /* Link LED always on while associated. */ 2727 wpi_set_led(sc, WPI_LED_LINK, 0, 1); 2728 2729 /* Enable power-saving mode if requested by user. */ 2730 if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON) 2731 (void)wpi_set_pslevel(sc, 0, 3, 1); 2732 2733 return 0; 2734 } 2735 2736 /* 2737 * We support CCMP hardware encryption/decryption of unicast frames only. 2738 * HW support for TKIP really sucks. We should let TKIP die anyway. 2739 */ 2740 int 2741 wpi_set_key(struct ieee80211com *ic, struct ieee80211_node *ni, 2742 struct ieee80211_key *k) 2743 { 2744 struct wpi_softc *sc = ic->ic_softc; 2745 struct wpi_node *wn = (void *)ni; 2746 struct wpi_node_info node; 2747 uint16_t kflags; 2748 2749 if ((k->k_flags & IEEE80211_KEY_GROUP) || 2750 k->k_cipher != IEEE80211_CIPHER_CCMP) 2751 return ieee80211_set_key(ic, ni, k); 2752 2753 kflags = WPI_KFLAG_CCMP | WPI_KFLAG_KID(k->k_id); 2754 memset(&node, 0, sizeof node); 2755 node.id = wn->id; 2756 node.control = WPI_NODE_UPDATE; 2757 node.flags = WPI_FLAG_SET_KEY; 2758 node.kflags = htole16(kflags); 2759 memcpy(node.key, k->k_key, k->k_len); 2760 DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id)); 2761 return wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1); 2762 } 2763 2764 void 2765 wpi_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni, 2766 struct ieee80211_key *k) 2767 { 2768 struct wpi_softc *sc = ic->ic_softc; 2769 struct wpi_node *wn = (void *)ni; 2770 struct wpi_node_info node; 2771 2772 if ((k->k_flags & IEEE80211_KEY_GROUP) || 2773 k->k_cipher != IEEE80211_CIPHER_CCMP) { 2774 /* See comment about other ciphers above. */ 2775 ieee80211_delete_key(ic, ni, k); 2776 return; 2777 } 2778 if (ic->ic_state != IEEE80211_S_RUN) 2779 return; /* Nothing to do. */ 2780 memset(&node, 0, sizeof node); 2781 node.id = wn->id; 2782 node.control = WPI_NODE_UPDATE; 2783 node.flags = WPI_FLAG_SET_KEY; 2784 node.kflags = 0; 2785 DPRINTF(("delete keys for node %d\n", node.id)); 2786 (void)wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1); 2787 } 2788 2789 int 2790 wpi_post_alive(struct wpi_softc *sc) 2791 { 2792 int ntries, error; 2793 2794 /* Check (again) that the radio is not disabled. */ 2795 if ((error = wpi_nic_lock(sc)) != 0) 2796 return error; 2797 /* NB: Runtime firmware must be up and running. */ 2798 if (!(wpi_prph_read(sc, WPI_APMG_RFKILL) & 1)) { 2799 printf("%s: radio is disabled by hardware switch\n", 2800 sc->sc_dev.dv_xname); 2801 wpi_nic_unlock(sc); 2802 return EPERM; /* :-) */ 2803 } 2804 wpi_nic_unlock(sc); 2805 2806 /* Wait for thermal sensor to calibrate. */ 2807 for (ntries = 0; ntries < 1000; ntries++) { 2808 if ((sc->temp = (int)WPI_READ(sc, WPI_UCODE_GP2)) != 0) 2809 break; 2810 DELAY(10); 2811 } 2812 if (ntries == 1000) { 2813 printf("%s: timeout waiting for thermal sensor calibration\n", 2814 sc->sc_dev.dv_xname); 2815 return ETIMEDOUT; 2816 } 2817 DPRINTF(("temperature %d\n", sc->temp)); 2818 return 0; 2819 } 2820 2821 /* 2822 * The firmware boot code is small and is intended to be copied directly into 2823 * the NIC internal memory (no DMA transfer.) 2824 */ 2825 int 2826 wpi_load_bootcode(struct wpi_softc *sc, const uint8_t *ucode, int size) 2827 { 2828 int error, ntries; 2829 2830 size /= sizeof (uint32_t); 2831 2832 if ((error = wpi_nic_lock(sc)) != 0) 2833 return error; 2834 2835 /* Copy microcode image into NIC memory. */ 2836 wpi_prph_write_region_4(sc, WPI_BSM_SRAM_BASE, 2837 (const uint32_t *)ucode, size); 2838 2839 wpi_prph_write(sc, WPI_BSM_WR_MEM_SRC, 0); 2840 wpi_prph_write(sc, WPI_BSM_WR_MEM_DST, WPI_FW_TEXT_BASE); 2841 wpi_prph_write(sc, WPI_BSM_WR_DWCOUNT, size); 2842 2843 /* Start boot load now. */ 2844 wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START); 2845 2846 /* Wait for transfer to complete. */ 2847 for (ntries = 0; ntries < 1000; ntries++) { 2848 if (!(wpi_prph_read(sc, WPI_BSM_WR_CTRL) & 2849 WPI_BSM_WR_CTRL_START)) 2850 break; 2851 DELAY(10); 2852 } 2853 if (ntries == 1000) { 2854 printf("%s: could not load boot firmware\n", 2855 sc->sc_dev.dv_xname); 2856 wpi_nic_unlock(sc); 2857 return ETIMEDOUT; 2858 } 2859 2860 /* Enable boot after power up. */ 2861 wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START_EN); 2862 2863 wpi_nic_unlock(sc); 2864 return 0; 2865 } 2866 2867 int 2868 wpi_load_firmware(struct wpi_softc *sc) 2869 { 2870 struct wpi_fw_info *fw = &sc->fw; 2871 struct wpi_dma_info *dma = &sc->fw_dma; 2872 int error; 2873 2874 /* Copy initialization sections into pre-allocated DMA-safe memory. */ 2875 memcpy(dma->vaddr, fw->init.data, fw->init.datasz); 2876 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz, 2877 BUS_DMASYNC_PREWRITE); 2878 memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, 2879 fw->init.text, fw->init.textsz); 2880 bus_dmamap_sync(sc->sc_dmat, dma->map, WPI_FW_DATA_MAXSZ, 2881 fw->init.textsz, BUS_DMASYNC_PREWRITE); 2882 2883 /* Tell adapter where to find initialization sections. */ 2884 if ((error = wpi_nic_lock(sc)) != 0) 2885 return error; 2886 wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr); 2887 wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->init.datasz); 2888 wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR, 2889 dma->paddr + WPI_FW_DATA_MAXSZ); 2890 wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE, fw->init.textsz); 2891 wpi_nic_unlock(sc); 2892 2893 /* Load firmware boot code. */ 2894 error = wpi_load_bootcode(sc, fw->boot.text, fw->boot.textsz); 2895 if (error != 0) { 2896 printf("%s: could not load boot firmware\n", 2897 sc->sc_dev.dv_xname); 2898 return error; 2899 } 2900 /* Now press "execute". */ 2901 WPI_WRITE(sc, WPI_RESET, 0); 2902 2903 /* Wait at most one second for first alive notification. */ 2904 if ((error = tsleep_nsec(sc, PCATCH, "wpiinit", SEC_TO_NSEC(1))) != 0) { 2905 printf("%s: timeout waiting for adapter to initialize\n", 2906 sc->sc_dev.dv_xname); 2907 return error; 2908 } 2909 2910 /* Copy runtime sections into pre-allocated DMA-safe memory. */ 2911 memcpy(dma->vaddr, fw->main.data, fw->main.datasz); 2912 bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz, 2913 BUS_DMASYNC_PREWRITE); 2914 memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, 2915 fw->main.text, fw->main.textsz); 2916 bus_dmamap_sync(sc->sc_dmat, dma->map, WPI_FW_DATA_MAXSZ, 2917 fw->main.textsz, BUS_DMASYNC_PREWRITE); 2918 2919 /* Tell adapter where to find runtime sections. */ 2920 if ((error = wpi_nic_lock(sc)) != 0) 2921 return error; 2922 wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr); 2923 wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->main.datasz); 2924 wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR, 2925 dma->paddr + WPI_FW_DATA_MAXSZ); 2926 wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE, 2927 WPI_FW_UPDATED | fw->main.textsz); 2928 wpi_nic_unlock(sc); 2929 2930 return 0; 2931 } 2932 2933 int 2934 wpi_read_firmware(struct wpi_softc *sc) 2935 { 2936 struct wpi_fw_info *fw = &sc->fw; 2937 const struct wpi_firmware_hdr *hdr; 2938 int error; 2939 2940 /* Read firmware image from filesystem. */ 2941 if ((error = loadfirmware("wpi-3945abg", &fw->data, &fw->datalen)) != 0) { 2942 printf("%s: error, %d, could not read firmware %s\n", 2943 sc->sc_dev.dv_xname, error, "wpi-3945abg"); 2944 return error; 2945 } 2946 if (fw->datalen < sizeof (*hdr)) { 2947 printf("%s: truncated firmware header: %zu bytes\n", 2948 sc->sc_dev.dv_xname, fw->datalen); 2949 free(fw->data, M_DEVBUF, fw->datalen); 2950 return EINVAL; 2951 } 2952 /* Extract firmware header information. */ 2953 hdr = (struct wpi_firmware_hdr *)fw->data; 2954 fw->main.textsz = letoh32(hdr->main_textsz); 2955 fw->main.datasz = letoh32(hdr->main_datasz); 2956 fw->init.textsz = letoh32(hdr->init_textsz); 2957 fw->init.datasz = letoh32(hdr->init_datasz); 2958 fw->boot.textsz = letoh32(hdr->boot_textsz); 2959 fw->boot.datasz = 0; 2960 2961 /* Sanity-check firmware header. */ 2962 if (fw->main.textsz > WPI_FW_TEXT_MAXSZ || 2963 fw->main.datasz > WPI_FW_DATA_MAXSZ || 2964 fw->init.textsz > WPI_FW_TEXT_MAXSZ || 2965 fw->init.datasz > WPI_FW_DATA_MAXSZ || 2966 fw->boot.textsz > WPI_FW_BOOT_TEXT_MAXSZ || 2967 (fw->boot.textsz & 3) != 0) { 2968 printf("%s: invalid firmware header\n", sc->sc_dev.dv_xname); 2969 free(fw->data, M_DEVBUF, fw->datalen); 2970 return EINVAL; 2971 } 2972 2973 /* Check that all firmware sections fit. */ 2974 if (fw->datalen < sizeof (*hdr) + fw->main.textsz + fw->main.datasz + 2975 fw->init.textsz + fw->init.datasz + fw->boot.textsz) { 2976 printf("%s: firmware file too short: %zu bytes\n", 2977 sc->sc_dev.dv_xname, fw->datalen); 2978 free(fw->data, M_DEVBUF, fw->datalen); 2979 return EINVAL; 2980 } 2981 2982 /* Get pointers to firmware sections. */ 2983 fw->main.text = (const uint8_t *)(hdr + 1); 2984 fw->main.data = fw->main.text + fw->main.textsz; 2985 fw->init.text = fw->main.data + fw->main.datasz; 2986 fw->init.data = fw->init.text + fw->init.textsz; 2987 fw->boot.text = fw->init.data + fw->init.datasz; 2988 2989 return 0; 2990 } 2991 2992 int 2993 wpi_clock_wait(struct wpi_softc *sc) 2994 { 2995 int ntries; 2996 2997 /* Set "initialization complete" bit. */ 2998 WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE); 2999 3000 /* Wait for clock stabilization. */ 3001 for (ntries = 0; ntries < 25000; ntries++) { 3002 if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_MAC_CLOCK_READY) 3003 return 0; 3004 DELAY(100); 3005 } 3006 printf("%s: timeout waiting for clock stabilization\n", 3007 sc->sc_dev.dv_xname); 3008 return ETIMEDOUT; 3009 } 3010 3011 int 3012 wpi_apm_init(struct wpi_softc *sc) 3013 { 3014 int error; 3015 3016 WPI_SETBITS(sc, WPI_ANA_PLL, WPI_ANA_PLL_INIT); 3017 /* Disable L0s. */ 3018 WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_L1A_NO_L0S_RX); 3019 3020 if ((error = wpi_clock_wait(sc)) != 0) 3021 return error; 3022 3023 if ((error = wpi_nic_lock(sc)) != 0) 3024 return error; 3025 /* Enable DMA. */ 3026 wpi_prph_write(sc, WPI_APMG_CLK_ENA, 3027 WPI_APMG_CLK_DMA_CLK_RQT | WPI_APMG_CLK_BSM_CLK_RQT); 3028 DELAY(20); 3029 /* Disable L1. */ 3030 wpi_prph_setbits(sc, WPI_APMG_PCI_STT, WPI_APMG_PCI_STT_L1A_DIS); 3031 wpi_nic_unlock(sc); 3032 3033 return 0; 3034 } 3035 3036 void 3037 wpi_apm_stop_master(struct wpi_softc *sc) 3038 { 3039 int ntries; 3040 3041 WPI_SETBITS(sc, WPI_RESET, WPI_RESET_STOP_MASTER); 3042 3043 if ((WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_PS_MASK) == 3044 WPI_GP_CNTRL_MAC_PS) 3045 return; /* Already asleep. */ 3046 3047 for (ntries = 0; ntries < 100; ntries++) { 3048 if (WPI_READ(sc, WPI_RESET) & WPI_RESET_MASTER_DISABLED) 3049 return; 3050 DELAY(10); 3051 } 3052 printf("%s: timeout waiting for master\n", sc->sc_dev.dv_xname); 3053 } 3054 3055 void 3056 wpi_apm_stop(struct wpi_softc *sc) 3057 { 3058 wpi_apm_stop_master(sc); 3059 WPI_SETBITS(sc, WPI_RESET, WPI_RESET_SW); 3060 } 3061 3062 void 3063 wpi_nic_config(struct wpi_softc *sc) 3064 { 3065 pcireg_t reg; 3066 uint8_t rev; 3067 3068 /* Voodoo from the reference driver. */ 3069 reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG); 3070 rev = PCI_REVISION(reg); 3071 if ((rev & 0xc0) == 0x40) 3072 WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MB); 3073 else if (!(rev & 0x80)) 3074 WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MM); 3075 3076 if (sc->cap == 0x80) 3077 WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_SKU_MRC); 3078 3079 if ((letoh16(sc->rev) & 0xf0) == 0xd0) 3080 WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D); 3081 else 3082 WPI_CLRBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D); 3083 3084 if (sc->type > 1) 3085 WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_TYPE_B); 3086 } 3087 3088 int 3089 wpi_hw_init(struct wpi_softc *sc) 3090 { 3091 int chnl, ntries, error; 3092 3093 /* Clear pending interrupts. */ 3094 WPI_WRITE(sc, WPI_INT, 0xffffffff); 3095 3096 if ((error = wpi_apm_init(sc)) != 0) { 3097 printf("%s: could not power ON adapter\n", 3098 sc->sc_dev.dv_xname); 3099 return error; 3100 } 3101 3102 /* Select VMAIN power source. */ 3103 if ((error = wpi_nic_lock(sc)) != 0) 3104 return error; 3105 wpi_prph_clrbits(sc, WPI_APMG_PS, WPI_APMG_PS_PWR_SRC_MASK); 3106 wpi_nic_unlock(sc); 3107 /* Spin until VMAIN gets selected. */ 3108 for (ntries = 0; ntries < 5000; ntries++) { 3109 if (WPI_READ(sc, WPI_GPIO_IN) & WPI_GPIO_IN_VMAIN) 3110 break; 3111 DELAY(10); 3112 } 3113 if (ntries == 5000) { 3114 printf("%s: timeout selecting power source\n", 3115 sc->sc_dev.dv_xname); 3116 return ETIMEDOUT; 3117 } 3118 3119 /* Perform adapter initialization. */ 3120 (void)wpi_nic_config(sc); 3121 3122 /* Initialize RX ring. */ 3123 if ((error = wpi_nic_lock(sc)) != 0) 3124 return error; 3125 /* Set physical address of RX ring. */ 3126 WPI_WRITE(sc, WPI_FH_RX_BASE, sc->rxq.desc_dma.paddr); 3127 /* Set physical address of RX read pointer. */ 3128 WPI_WRITE(sc, WPI_FH_RX_RPTR_ADDR, sc->shared_dma.paddr + 3129 offsetof(struct wpi_shared, next)); 3130 WPI_WRITE(sc, WPI_FH_RX_WPTR, 0); 3131 /* Enable RX. */ 3132 WPI_WRITE(sc, WPI_FH_RX_CONFIG, 3133 WPI_FH_RX_CONFIG_DMA_ENA | 3134 WPI_FH_RX_CONFIG_RDRBD_ENA | 3135 WPI_FH_RX_CONFIG_WRSTATUS_ENA | 3136 WPI_FH_RX_CONFIG_MAXFRAG | 3137 WPI_FH_RX_CONFIG_NRBD(WPI_RX_RING_COUNT_LOG) | 3138 WPI_FH_RX_CONFIG_IRQ_DST_HOST | 3139 WPI_FH_RX_CONFIG_IRQ_RBTH(1)); 3140 (void)WPI_READ(sc, WPI_FH_RSSR_TBL); /* barrier */ 3141 WPI_WRITE(sc, WPI_FH_RX_WPTR, (WPI_RX_RING_COUNT - 1) & ~7); 3142 wpi_nic_unlock(sc); 3143 3144 /* Initialize TX rings. */ 3145 if ((error = wpi_nic_lock(sc)) != 0) 3146 return error; 3147 wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 2); /* bypass mode */ 3148 wpi_prph_write(sc, WPI_ALM_SCHED_ARASTAT, 1); /* enable RA0 */ 3149 /* Enable all 6 TX rings. */ 3150 wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0x3f); 3151 wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE1, 0x10000); 3152 wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE2, 0x30002); 3153 wpi_prph_write(sc, WPI_ALM_SCHED_TXF4MF, 4); 3154 wpi_prph_write(sc, WPI_ALM_SCHED_TXF5MF, 5); 3155 /* Set physical address of TX rings. */ 3156 WPI_WRITE(sc, WPI_FH_TX_BASE, sc->shared_dma.paddr); 3157 WPI_WRITE(sc, WPI_FH_MSG_CONFIG, 0xffff05a5); 3158 3159 /* Enable all DMA channels. */ 3160 for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) { 3161 WPI_WRITE(sc, WPI_FH_CBBC_CTRL(chnl), 0); 3162 WPI_WRITE(sc, WPI_FH_CBBC_BASE(chnl), 0); 3163 WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0x80200008); 3164 } 3165 wpi_nic_unlock(sc); 3166 (void)WPI_READ(sc, WPI_FH_TX_BASE); /* barrier */ 3167 3168 /* Clear "radio off" and "commands blocked" bits. */ 3169 WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL); 3170 WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_CMD_BLOCKED); 3171 3172 /* Clear pending interrupts. */ 3173 WPI_WRITE(sc, WPI_INT, 0xffffffff); 3174 /* Enable interrupts. */ 3175 WPI_WRITE(sc, WPI_MASK, WPI_INT_MASK); 3176 3177 /* _Really_ make sure "radio off" bit is cleared! */ 3178 WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL); 3179 WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL); 3180 3181 if ((error = wpi_load_firmware(sc)) != 0) { 3182 printf("%s: could not load firmware\n", sc->sc_dev.dv_xname); 3183 return error; 3184 } 3185 /* Wait at most one second for firmware alive notification. */ 3186 if ((error = tsleep_nsec(sc, PCATCH, "wpiinit", SEC_TO_NSEC(1))) != 0) { 3187 printf("%s: timeout waiting for adapter to initialize\n", 3188 sc->sc_dev.dv_xname); 3189 return error; 3190 } 3191 /* Do post-firmware initialization. */ 3192 return wpi_post_alive(sc); 3193 } 3194 3195 void 3196 wpi_hw_stop(struct wpi_softc *sc) 3197 { 3198 int chnl, qid, ntries; 3199 uint32_t tmp; 3200 3201 WPI_WRITE(sc, WPI_RESET, WPI_RESET_NEVO); 3202 3203 /* Disable interrupts. */ 3204 WPI_WRITE(sc, WPI_MASK, 0); 3205 WPI_WRITE(sc, WPI_INT, 0xffffffff); 3206 WPI_WRITE(sc, WPI_FH_INT, 0xffffffff); 3207 3208 /* Make sure we no longer hold the NIC lock. */ 3209 wpi_nic_unlock(sc); 3210 3211 if (wpi_nic_lock(sc) == 0) { 3212 /* Stop TX scheduler. */ 3213 wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 0); 3214 wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0); 3215 3216 /* Stop all DMA channels. */ 3217 for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) { 3218 WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0); 3219 for (ntries = 0; ntries < 100; ntries++) { 3220 tmp = WPI_READ(sc, WPI_FH_TX_STATUS); 3221 if ((tmp & WPI_FH_TX_STATUS_IDLE(chnl)) == 3222 WPI_FH_TX_STATUS_IDLE(chnl)) 3223 break; 3224 DELAY(10); 3225 } 3226 } 3227 wpi_nic_unlock(sc); 3228 } 3229 3230 /* Stop RX ring. */ 3231 wpi_reset_rx_ring(sc, &sc->rxq); 3232 3233 /* Reset all TX rings. */ 3234 for (qid = 0; qid < WPI_NTXQUEUES; qid++) 3235 wpi_reset_tx_ring(sc, &sc->txq[qid]); 3236 3237 if (wpi_nic_lock(sc) == 0) { 3238 wpi_prph_write(sc, WPI_APMG_CLK_DIS, WPI_APMG_CLK_DMA_CLK_RQT); 3239 wpi_nic_unlock(sc); 3240 } 3241 DELAY(5); 3242 /* Power OFF adapter. */ 3243 wpi_apm_stop(sc); 3244 } 3245 3246 int 3247 wpi_init(struct ifnet *ifp) 3248 { 3249 struct wpi_softc *sc = ifp->if_softc; 3250 struct ieee80211com *ic = &sc->sc_ic; 3251 int error; 3252 3253 #ifdef notyet 3254 /* Check that the radio is not disabled by hardware switch. */ 3255 if (!(WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL)) { 3256 printf("%s: radio is disabled by hardware switch\n", 3257 sc->sc_dev.dv_xname); 3258 error = EPERM; /* :-) */ 3259 goto fail; 3260 } 3261 #endif 3262 /* Read firmware images from the filesystem. */ 3263 if ((error = wpi_read_firmware(sc)) != 0) { 3264 printf("%s: could not read firmware\n", sc->sc_dev.dv_xname); 3265 goto fail; 3266 } 3267 3268 /* Initialize hardware and upload firmware. */ 3269 error = wpi_hw_init(sc); 3270 free(sc->fw.data, M_DEVBUF, sc->fw.datalen); 3271 if (error != 0) { 3272 printf("%s: could not initialize hardware\n", 3273 sc->sc_dev.dv_xname); 3274 goto fail; 3275 } 3276 3277 /* Configure adapter now that it is ready. */ 3278 if ((error = wpi_config(sc)) != 0) { 3279 printf("%s: could not configure device\n", 3280 sc->sc_dev.dv_xname); 3281 goto fail; 3282 } 3283 3284 ifq_clr_oactive(&ifp->if_snd); 3285 ifp->if_flags |= IFF_RUNNING; 3286 3287 if (ic->ic_opmode != IEEE80211_M_MONITOR) 3288 ieee80211_begin_scan(ifp); 3289 else 3290 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 3291 3292 return 0; 3293 3294 fail: wpi_stop(ifp, 1); 3295 return error; 3296 } 3297 3298 void 3299 wpi_stop(struct ifnet *ifp, int disable) 3300 { 3301 struct wpi_softc *sc = ifp->if_softc; 3302 struct ieee80211com *ic = &sc->sc_ic; 3303 3304 ifp->if_timer = sc->sc_tx_timer = 0; 3305 ifp->if_flags &= ~IFF_RUNNING; 3306 ifq_clr_oactive(&ifp->if_snd); 3307 3308 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 3309 3310 /* Power OFF hardware. */ 3311 wpi_hw_stop(sc); 3312 } 3313