1 /* $OpenBSD: rnd.c,v 1.221 2020/06/15 14:52:19 deraadt Exp $ */ 2 3 /* 4 * Copyright (c) 2011,2020 Theo de Raadt. 5 * Copyright (c) 2008 Damien Miller. 6 * Copyright (c) 1996, 1997, 2000-2002 Michael Shalayeff. 7 * Copyright (c) 2013 Markus Friedl. 8 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. 9 * All rights reserved. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, and the entire permission notice in its entirety, 16 * including the disclaimer of warranties. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. The name of the author may not be used to endorse or promote 21 * products derived from this software without specific prior 22 * written permission. 23 * 24 * ALTERNATIVELY, this product may be distributed under the terms of 25 * the GNU Public License, in which case the provisions of the GPL are 26 * required INSTEAD OF the above restrictions. (This clause is 27 * necessary due to a potential bad interaction between the GPL and 28 * the restrictions contained in a BSD-style copyright.) 29 * 30 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 31 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 32 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 33 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, 34 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 35 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 36 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 38 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 39 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED 40 * OF THE POSSIBILITY OF SUCH DAMAGE. 41 */ 42 43 /* 44 * The bootblocks pre-fill the kernel .openbsd.randomdata section with seed 45 * material (on-disk from previous boot, hopefully mixed with a hardware rng). 46 * The first arc4random(9) call initializes this seed material as a chacha 47 * state. Calls can be done early in kernel bootstrap code -- early use is 48 * encouraged. 49 * 50 * After the kernel timeout subsystem is initialized, random_start() prepares 51 * the entropy collection mechanism enqueue_randomness() and timeout-driven 52 * mixing into the chacha state. The first submissions come from device 53 * probes, later on interrupt-time submissions are more common. Entropy 54 * data (and timing information) get mixed over the entropy input ring 55 * rnd_event_space[] -- the goal is to collect damage. 56 * 57 * Based upon timeouts, a selection of the entropy ring rnd_event_space[] 58 * CRC bit-distributed and XOR mixed into entropy_pool[]. 59 * 60 * From time to time, entropy_pool[] is SHA512-whitened, mixed with time 61 * information again, XOR'd with the inner and outer states of the existing 62 * chacha state, to create a new chacha state. 63 * 64 * During early boot (until cold=0), enqueue operations are immediately 65 * dequeued, and mixed into the chacha. 66 */ 67 68 #include <sys/param.h> 69 #include <sys/event.h> 70 #include <sys/ioctl.h> 71 #include <sys/malloc.h> 72 #include <sys/timeout.h> 73 #include <sys/atomic.h> 74 #include <sys/task.h> 75 #include <sys/msgbuf.h> 76 #include <sys/mount.h> 77 #include <sys/syscallargs.h> 78 79 #include <crypto/sha2.h> 80 81 #define KEYSTREAM_ONLY 82 #include <crypto/chacha_private.h> 83 84 #include <uvm/uvm_extern.h> 85 86 /* 87 * For the purposes of better mixing, we use the CRC-32 polynomial as 88 * well to make a twisted Generalized Feedback Shift Register 89 * 90 * (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR generators. ACM 91 * Transactions on Modeling and Computer Simulation 2(3):179-194. 92 * Also see M. Matsumoto & Y. Kurita, 1994. Twisted GFSR generators 93 * II. ACM Transactions on Modeling and Computer Simulation 4:254-266) 94 */ 95 96 /* 97 * Stirring polynomials over GF(2) for various pool sizes. Used in 98 * add_entropy_words() below. 99 * 100 * The polynomial terms are chosen to be evenly spaced (minimum RMS 101 * distance from evenly spaced; except for the last tap, which is 1 to 102 * get the twisting happening as fast as possible. 103 * 104 * The resultant polynomial is: 105 * 2^POOLWORDS + 2^POOL_TAP1 + 2^POOL_TAP2 + 2^POOL_TAP3 + 2^POOL_TAP4 + 1 106 */ 107 #define POOLWORDS 2048 108 #define POOLBYTES (POOLWORDS*4) 109 #define POOLMASK (POOLWORDS - 1) 110 #define POOL_TAP1 1638 111 #define POOL_TAP2 1231 112 #define POOL_TAP3 819 113 #define POOL_TAP4 411 114 115 /* 116 * Raw entropy collection from device drivers; at interrupt context or not. 117 * enqueue_randomness() is used to submit data into the entropy input ring. 118 */ 119 120 #define QEVLEN 128 /* must be a power of 2 */ 121 #define QEVCONSUME 8 /* how many events to consume a time */ 122 123 #define KEYSZ 32 124 #define IVSZ 8 125 #define BLOCKSZ 64 126 #define RSBUFSZ (16*BLOCKSZ) 127 #define EBUFSIZE KEYSZ + IVSZ 128 129 struct rand_event { 130 u_int re_time; 131 u_int re_val; 132 } rnd_event_space[QEVLEN]; 133 134 u_int rnd_event_cons; 135 u_int rnd_event_prod; 136 int rnd_cold = 1; 137 int rnd_slowextract = 1; 138 139 void rnd_reinit(void *v); /* timeout to start reinit */ 140 void rnd_init(void *); /* actually do the reinit */ 141 142 static u_int32_t entropy_pool[POOLWORDS]; 143 u_int32_t entropy_pool0[POOLWORDS] __attribute__((section(".openbsd.randomdata"))); 144 145 void dequeue_randomness(void *); 146 void add_entropy_words(const u_int32_t *, u_int); 147 void extract_entropy(u_int8_t *) 148 __attribute__((__bounded__(__minbytes__,1,EBUFSIZE))); 149 150 struct timeout rnd_timeout = TIMEOUT_INITIALIZER(dequeue_randomness, NULL); 151 152 int filt_randomread(struct knote *, long); 153 void filt_randomdetach(struct knote *); 154 int filt_randomwrite(struct knote *, long); 155 156 static void _rs_seed(u_char *, size_t); 157 static void _rs_clearseed(const void *p, size_t s); 158 159 const struct filterops randomread_filtops = { 160 .f_flags = FILTEROP_ISFD, 161 .f_attach = NULL, 162 .f_detach = filt_randomdetach, 163 .f_event = filt_randomread, 164 }; 165 166 const struct filterops randomwrite_filtops = { 167 .f_flags = FILTEROP_ISFD, 168 .f_attach = NULL, 169 .f_detach = filt_randomdetach, 170 .f_event = filt_randomwrite, 171 }; 172 173 /* 174 * This function mixes entropy and timing into the entropy input ring. 175 */ 176 void 177 enqueue_randomness(u_int val) 178 { 179 struct rand_event *rep; 180 int e; 181 182 e = (atomic_inc_int_nv(&rnd_event_prod) - 1) & (QEVLEN-1); 183 rep = &rnd_event_space[e]; 184 rep->re_time += cpu_rnd_messybits(); 185 rep->re_val += val; 186 187 if (rnd_cold) { 188 dequeue_randomness(NULL); 189 rnd_init(NULL); 190 if (!cold) 191 rnd_cold = 0; 192 } else if (!timeout_pending(&rnd_timeout) && 193 (rnd_event_prod - rnd_event_cons) > QEVCONSUME) { 194 rnd_slowextract = min(rnd_slowextract * 2, 5000); 195 timeout_add_msec(&rnd_timeout, rnd_slowextract * 10); 196 } 197 } 198 199 /* 200 * This function merges entropy ring information into the buffer using 201 * a polynomial to spread the bits. 202 */ 203 void 204 add_entropy_words(const u_int32_t *buf, u_int n) 205 { 206 /* derived from IEEE 802.3 CRC-32 */ 207 static const u_int32_t twist_table[8] = { 208 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158, 209 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 210 }; 211 static u_int entropy_add_ptr; 212 static u_char entropy_input_rotate; 213 214 for (; n--; buf++) { 215 u_int32_t w = (*buf << entropy_input_rotate) | 216 (*buf >> ((32 - entropy_input_rotate) & 31)); 217 u_int i = entropy_add_ptr = 218 (entropy_add_ptr - 1) & POOLMASK; 219 /* 220 * Normally, we add 7 bits of rotation to the pool. 221 * At the beginning of the pool, add an extra 7 bits 222 * rotation, so that successive passes spread the 223 * input bits across the pool evenly. 224 */ 225 entropy_input_rotate = 226 (entropy_input_rotate + (i ? 7 : 14)) & 31; 227 228 /* XOR pool contents corresponding to polynomial terms */ 229 w ^= entropy_pool[(i + POOL_TAP1) & POOLMASK] ^ 230 entropy_pool[(i + POOL_TAP2) & POOLMASK] ^ 231 entropy_pool[(i + POOL_TAP3) & POOLMASK] ^ 232 entropy_pool[(i + POOL_TAP4) & POOLMASK] ^ 233 entropy_pool[(i + 1) & POOLMASK] ^ 234 entropy_pool[i]; /* + 2^POOLWORDS */ 235 236 entropy_pool[i] = (w >> 3) ^ twist_table[w & 7]; 237 } 238 } 239 240 /* 241 * Pulls entropy out of the queue and merges it into the poll with the 242 * CRC. This takes a mix of fresh entries from the producer end of the 243 * queue and entries from the consumer end of the queue which are 244 * likely to have collected more damage. 245 */ 246 /* ARGSUSED */ 247 void 248 dequeue_randomness(void *v) 249 { 250 u_int32_t buf[2]; 251 u_int startp, startc, i; 252 253 if (!rnd_cold) 254 timeout_del(&rnd_timeout); 255 256 /* Some very new damage */ 257 startp = rnd_event_prod - QEVCONSUME; 258 for (i = 0; i < QEVCONSUME; i++) { 259 u_int e = (startp + i) & (QEVLEN-1); 260 261 buf[0] = rnd_event_space[e].re_time; 262 buf[1] = rnd_event_space[e].re_val; 263 add_entropy_words(buf, 2); 264 } 265 /* and some probably more damaged */ 266 startc = rnd_event_cons; 267 for (i = 0; i < QEVCONSUME; i++) { 268 u_int e = (startc + i) & (QEVLEN-1); 269 270 buf[0] = rnd_event_space[e].re_time; 271 buf[1] = rnd_event_space[e].re_val; 272 add_entropy_words(buf, 2); 273 } 274 rnd_event_cons = startp + QEVCONSUME; 275 } 276 277 /* 278 * Grabs a chunk from the entropy_pool[] and slams it through SHA512 when 279 * requested. 280 */ 281 void 282 extract_entropy(u_int8_t *buf) 283 { 284 static u_int32_t extract_pool[POOLWORDS]; 285 u_char digest[SHA512_DIGEST_LENGTH]; 286 SHA2_CTX shactx; 287 288 #if SHA512_DIGEST_LENGTH < EBUFSIZE 289 #error "need more bigger hash output" 290 #endif 291 292 /* 293 * INTENTIONALLY not protected by any lock. Races during 294 * memcpy() result in acceptable input data; races during 295 * SHA512Update() would create nasty data dependencies. We 296 * do not rely on this as a benefit, but if it happens, cool. 297 */ 298 memcpy(extract_pool, entropy_pool, sizeof(extract_pool)); 299 300 /* Hash the pool to get the output */ 301 SHA512Init(&shactx); 302 SHA512Update(&shactx, (u_int8_t *)extract_pool, sizeof(extract_pool)); 303 SHA512Final(digest, &shactx); 304 305 /* Copy data to destination buffer */ 306 memcpy(buf, digest, EBUFSIZE); 307 308 /* 309 * Modify pool so next hash will produce different results. 310 * During boot-time enqueue/dequeue stage, avoid recursion. 311 */ 312 if (!rnd_cold) 313 enqueue_randomness(extract_pool[0]); 314 dequeue_randomness(NULL); 315 316 /* Wipe data from memory */ 317 explicit_bzero(extract_pool, sizeof(extract_pool)); 318 explicit_bzero(digest, sizeof(digest)); 319 } 320 321 /* random keystream by ChaCha */ 322 323 struct mutex rndlock = MUTEX_INITIALIZER(IPL_HIGH); 324 struct timeout rndreinit_timeout = TIMEOUT_INITIALIZER(rnd_reinit, NULL); 325 struct task rnd_task = TASK_INITIALIZER(rnd_init, NULL); 326 327 static chacha_ctx rs; /* chacha context for random keystream */ 328 /* keystream blocks (also chacha seed from boot) */ 329 static u_char rs_buf[RSBUFSZ]; 330 u_char rs_buf0[RSBUFSZ] __attribute__((section(".openbsd.randomdata"))); 331 static size_t rs_have; /* valid bytes at end of rs_buf */ 332 static size_t rs_count; /* bytes till reseed */ 333 334 void 335 suspend_randomness(void) 336 { 337 struct timespec ts; 338 339 getnanotime(&ts); 340 enqueue_randomness(ts.tv_sec); 341 enqueue_randomness(ts.tv_nsec); 342 343 dequeue_randomness(NULL); 344 rs_count = 0; 345 arc4random_buf(entropy_pool, sizeof(entropy_pool)); 346 } 347 348 void 349 resume_randomness(char *buf, size_t buflen) 350 { 351 struct timespec ts; 352 353 if (buf && buflen) 354 _rs_seed(buf, buflen); 355 getnanotime(&ts); 356 enqueue_randomness(ts.tv_sec); 357 enqueue_randomness(ts.tv_nsec); 358 359 dequeue_randomness(NULL); 360 rs_count = 0; 361 } 362 363 static inline void _rs_rekey(u_char *dat, size_t datlen); 364 365 static inline void 366 _rs_init(u_char *buf, size_t n) 367 { 368 KASSERT(n >= KEYSZ + IVSZ); 369 chacha_keysetup(&rs, buf, KEYSZ * 8); 370 chacha_ivsetup(&rs, buf + KEYSZ, NULL); 371 } 372 373 static void 374 _rs_seed(u_char *buf, size_t n) 375 { 376 _rs_rekey(buf, n); 377 378 /* invalidate rs_buf */ 379 rs_have = 0; 380 memset(rs_buf, 0, sizeof(rs_buf)); 381 382 rs_count = 1600000; 383 } 384 385 static void 386 _rs_stir(int do_lock) 387 { 388 struct timespec ts; 389 u_int8_t buf[EBUFSIZE], *p; 390 int i; 391 392 /* 393 * Use SHA512 PRNG data and a system timespec; early in the boot 394 * process this is the best we can do -- some architectures do 395 * not collect entropy very well during this time, but may have 396 * clock information which is better than nothing. 397 */ 398 extract_entropy(buf); 399 400 nanotime(&ts); 401 for (p = (u_int8_t *)&ts, i = 0; i < sizeof(ts); i++) 402 buf[i] ^= p[i]; 403 404 if (do_lock) 405 mtx_enter(&rndlock); 406 _rs_seed(buf, sizeof(buf)); 407 if (do_lock) 408 mtx_leave(&rndlock); 409 explicit_bzero(buf, sizeof(buf)); 410 411 /* encourage fast-dequeue again */ 412 rnd_slowextract = 1; 413 } 414 415 static inline void 416 _rs_stir_if_needed(size_t len) 417 { 418 static int rs_initialized; 419 420 if (!rs_initialized) { 421 memcpy(entropy_pool, entropy_pool0, sizeof(entropy_pool)); 422 memcpy(rs_buf, rs_buf0, sizeof(rs_buf)); 423 /* seeds cannot be cleaned yet, random_start() will do so */ 424 _rs_init(rs_buf, KEYSZ + IVSZ); 425 rs_count = 1024 * 1024 * 1024; /* until main() runs */ 426 rs_initialized = 1; 427 } else if (rs_count <= len) 428 _rs_stir(0); 429 else 430 rs_count -= len; 431 } 432 433 static void 434 _rs_clearseed(const void *p, size_t s) 435 { 436 struct kmem_dyn_mode kd_avoidalias; 437 vaddr_t va = trunc_page((vaddr_t)p); 438 vsize_t off = (vaddr_t)p - va; 439 vsize_t len; 440 vaddr_t rwva; 441 paddr_t pa; 442 443 while (s > 0) { 444 pmap_extract(pmap_kernel(), va, &pa); 445 446 memset(&kd_avoidalias, 0, sizeof(kd_avoidalias)); 447 kd_avoidalias.kd_prefer = pa; 448 kd_avoidalias.kd_waitok = 1; 449 rwva = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, &kp_none, 450 &kd_avoidalias); 451 if (!rwva) 452 panic("_rs_clearseed"); 453 454 pmap_kenter_pa(rwva, pa, PROT_READ | PROT_WRITE); 455 pmap_update(pmap_kernel()); 456 457 len = MIN(s, PAGE_SIZE - off); 458 explicit_bzero((void *)(rwva + off), len); 459 460 pmap_kremove(rwva, PAGE_SIZE); 461 km_free((void *)rwva, PAGE_SIZE, &kv_any, &kp_none); 462 463 va += PAGE_SIZE; 464 s -= len; 465 off = 0; 466 } 467 } 468 469 static inline void 470 _rs_rekey(u_char *dat, size_t datlen) 471 { 472 #ifndef KEYSTREAM_ONLY 473 memset(rs_buf, 0, sizeof(rs_buf)); 474 #endif 475 /* fill rs_buf with the keystream */ 476 chacha_encrypt_bytes(&rs, rs_buf, rs_buf, sizeof(rs_buf)); 477 /* mix in optional user provided data */ 478 if (dat) { 479 size_t i, m; 480 481 m = MIN(datlen, KEYSZ + IVSZ); 482 for (i = 0; i < m; i++) 483 rs_buf[i] ^= dat[i]; 484 } 485 /* immediately reinit for backtracking resistance */ 486 _rs_init(rs_buf, KEYSZ + IVSZ); 487 memset(rs_buf, 0, KEYSZ + IVSZ); 488 rs_have = sizeof(rs_buf) - KEYSZ - IVSZ; 489 } 490 491 static inline void 492 _rs_random_buf(void *_buf, size_t n) 493 { 494 u_char *buf = (u_char *)_buf; 495 size_t m; 496 497 _rs_stir_if_needed(n); 498 while (n > 0) { 499 if (rs_have > 0) { 500 m = MIN(n, rs_have); 501 memcpy(buf, rs_buf + sizeof(rs_buf) - rs_have, m); 502 memset(rs_buf + sizeof(rs_buf) - rs_have, 0, m); 503 buf += m; 504 n -= m; 505 rs_have -= m; 506 } 507 if (rs_have == 0) 508 _rs_rekey(NULL, 0); 509 } 510 } 511 512 static inline void 513 _rs_random_u32(u_int32_t *val) 514 { 515 _rs_stir_if_needed(sizeof(*val)); 516 if (rs_have < sizeof(*val)) 517 _rs_rekey(NULL, 0); 518 memcpy(val, rs_buf + sizeof(rs_buf) - rs_have, sizeof(*val)); 519 memset(rs_buf + sizeof(rs_buf) - rs_have, 0, sizeof(*val)); 520 rs_have -= sizeof(*val); 521 } 522 523 /* Return one word of randomness from a ChaCha20 generator */ 524 u_int32_t 525 arc4random(void) 526 { 527 u_int32_t ret; 528 529 mtx_enter(&rndlock); 530 _rs_random_u32(&ret); 531 mtx_leave(&rndlock); 532 return ret; 533 } 534 535 /* 536 * Fill a buffer of arbitrary length with ChaCha20-derived randomness. 537 */ 538 void 539 arc4random_buf(void *buf, size_t n) 540 { 541 mtx_enter(&rndlock); 542 _rs_random_buf(buf, n); 543 mtx_leave(&rndlock); 544 } 545 546 /* 547 * Allocate a new ChaCha20 context for the caller to use. 548 */ 549 struct arc4random_ctx * 550 arc4random_ctx_new() 551 { 552 char keybuf[KEYSZ + IVSZ]; 553 554 chacha_ctx *ctx = malloc(sizeof(chacha_ctx), M_TEMP, M_WAITOK); 555 arc4random_buf(keybuf, KEYSZ + IVSZ); 556 chacha_keysetup(ctx, keybuf, KEYSZ * 8); 557 chacha_ivsetup(ctx, keybuf + KEYSZ, NULL); 558 explicit_bzero(keybuf, sizeof(keybuf)); 559 return (struct arc4random_ctx *)ctx; 560 } 561 562 /* 563 * Free a ChaCha20 context created by arc4random_ctx_new() 564 */ 565 void 566 arc4random_ctx_free(struct arc4random_ctx *ctx) 567 { 568 explicit_bzero(ctx, sizeof(chacha_ctx)); 569 free(ctx, M_TEMP, sizeof(chacha_ctx)); 570 } 571 572 /* 573 * Use a given ChaCha20 context to fill a buffer 574 */ 575 void 576 arc4random_ctx_buf(struct arc4random_ctx *ctx, void *buf, size_t n) 577 { 578 #ifndef KEYSTREAM_ONLY 579 memset(buf, 0, n); 580 #endif 581 chacha_encrypt_bytes((chacha_ctx *)ctx, buf, buf, n); 582 } 583 584 /* 585 * Calculate a uniformly distributed random number less than upper_bound 586 * avoiding "modulo bias". 587 * 588 * Uniformity is achieved by generating new random numbers until the one 589 * returned is outside the range [0, 2**32 % upper_bound). This 590 * guarantees the selected random number will be inside 591 * [2**32 % upper_bound, 2**32) which maps back to [0, upper_bound) 592 * after reduction modulo upper_bound. 593 */ 594 u_int32_t 595 arc4random_uniform(u_int32_t upper_bound) 596 { 597 u_int32_t r, min; 598 599 if (upper_bound < 2) 600 return 0; 601 602 /* 2**32 % x == (2**32 - x) % x */ 603 min = -upper_bound % upper_bound; 604 605 /* 606 * This could theoretically loop forever but each retry has 607 * p > 0.5 (worst case, usually far better) of selecting a 608 * number inside the range we need, so it should rarely need 609 * to re-roll. 610 */ 611 for (;;) { 612 r = arc4random(); 613 if (r >= min) 614 break; 615 } 616 617 return r % upper_bound; 618 } 619 620 /* ARGSUSED */ 621 void 622 rnd_init(void *null) 623 { 624 _rs_stir(1); 625 } 626 627 /* 628 * Called by timeout to mark arc4 for stirring, 629 */ 630 void 631 rnd_reinit(void *v) 632 { 633 task_add(systq, &rnd_task); 634 /* 10 minutes, per dm@'s suggestion */ 635 timeout_add_sec(&rndreinit_timeout, 10 * 60); 636 } 637 638 /* 639 * Start periodic services inside the random subsystem, which pull 640 * entropy forward, hash it, and re-seed the random stream as needed. 641 */ 642 void 643 random_start(int goodseed) 644 { 645 extern char etext[]; 646 647 #if !defined(NO_PROPOLICE) 648 extern long __guard_local; 649 650 if (__guard_local == 0) 651 printf("warning: no entropy supplied by boot loader\n"); 652 #endif 653 654 _rs_clearseed(entropy_pool0, sizeof(entropy_pool0)); 655 _rs_clearseed(rs_buf0, sizeof(rs_buf0)); 656 657 /* Message buffer may contain data from previous boot */ 658 if (msgbufp->msg_magic == MSG_MAGIC) 659 add_entropy_words((u_int32_t *)msgbufp->msg_bufc, 660 msgbufp->msg_bufs / sizeof(u_int32_t)); 661 add_entropy_words((u_int32_t *)etext - 32*1024, 662 8192/sizeof(u_int32_t)); 663 664 dequeue_randomness(NULL); 665 rnd_init(NULL); 666 rnd_reinit(NULL); 667 668 if (goodseed) 669 printf("random: good seed from bootblocks\n"); 670 else { 671 /* XXX kernel should work harder here */ 672 printf("random: boothowto does not indicate good seed\n"); 673 } 674 } 675 676 int 677 randomopen(dev_t dev, int flag, int mode, struct proc *p) 678 { 679 return 0; 680 } 681 682 int 683 randomclose(dev_t dev, int flag, int mode, struct proc *p) 684 { 685 return 0; 686 } 687 688 /* 689 * Maximum number of bytes to serve directly from the main ChaCha 690 * pool. Larger requests are served from a discrete ChaCha instance keyed 691 * from the main pool. 692 */ 693 #define RND_MAIN_MAX_BYTES 2048 694 695 int 696 randomread(dev_t dev, struct uio *uio, int ioflag) 697 { 698 struct arc4random_ctx *lctx = NULL; 699 size_t total = uio->uio_resid; 700 u_char *buf; 701 int ret = 0; 702 703 if (uio->uio_resid == 0) 704 return 0; 705 706 buf = malloc(POOLBYTES, M_TEMP, M_WAITOK); 707 if (total > RND_MAIN_MAX_BYTES) 708 lctx = arc4random_ctx_new(); 709 710 while (ret == 0 && uio->uio_resid > 0) { 711 size_t n = ulmin(POOLBYTES, uio->uio_resid); 712 713 if (lctx != NULL) 714 arc4random_ctx_buf(lctx, buf, n); 715 else 716 arc4random_buf(buf, n); 717 ret = uiomove(buf, n, uio); 718 if (ret == 0 && uio->uio_resid > 0) 719 yield(); 720 } 721 if (lctx != NULL) 722 arc4random_ctx_free(lctx); 723 explicit_bzero(buf, POOLBYTES); 724 free(buf, M_TEMP, POOLBYTES); 725 return ret; 726 } 727 728 int 729 randomwrite(dev_t dev, struct uio *uio, int flags) 730 { 731 int ret = 0, newdata = 0; 732 u_int32_t *buf; 733 734 if (uio->uio_resid == 0) 735 return 0; 736 737 buf = malloc(POOLBYTES, M_TEMP, M_WAITOK); 738 739 while (ret == 0 && uio->uio_resid > 0) { 740 size_t n = ulmin(POOLBYTES, uio->uio_resid); 741 742 ret = uiomove(buf, n, uio); 743 if (ret != 0) 744 break; 745 while (n % sizeof(u_int32_t)) 746 ((u_int8_t *)buf)[n++] = 0; 747 add_entropy_words(buf, n / 4); 748 if (uio->uio_resid > 0) 749 yield(); 750 newdata = 1; 751 } 752 753 if (newdata) 754 rnd_init(NULL); 755 756 explicit_bzero(buf, POOLBYTES); 757 free(buf, M_TEMP, POOLBYTES); 758 return ret; 759 } 760 761 int 762 randomkqfilter(dev_t dev, struct knote *kn) 763 { 764 switch (kn->kn_filter) { 765 case EVFILT_READ: 766 kn->kn_fop = &randomread_filtops; 767 break; 768 case EVFILT_WRITE: 769 kn->kn_fop = &randomwrite_filtops; 770 break; 771 default: 772 return (EINVAL); 773 } 774 775 return (0); 776 } 777 778 void 779 filt_randomdetach(struct knote *kn) 780 { 781 } 782 783 int 784 filt_randomread(struct knote *kn, long hint) 785 { 786 kn->kn_data = RND_MAIN_MAX_BYTES; 787 return (1); 788 } 789 790 int 791 filt_randomwrite(struct knote *kn, long hint) 792 { 793 kn->kn_data = POOLBYTES; 794 return (1); 795 } 796 797 int 798 randomioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p) 799 { 800 switch (cmd) { 801 case FIOASYNC: 802 /* No async flag in softc so this is a no-op. */ 803 break; 804 case FIONBIO: 805 /* Handled in the upper FS layer. */ 806 break; 807 default: 808 return ENOTTY; 809 } 810 return 0; 811 } 812 813 int 814 sys_getentropy(struct proc *p, void *v, register_t *retval) 815 { 816 struct sys_getentropy_args /* { 817 syscallarg(void *) buf; 818 syscallarg(size_t) nbyte; 819 } */ *uap = v; 820 char buf[256]; 821 int error; 822 823 if (SCARG(uap, nbyte) > sizeof(buf)) 824 return (EIO); 825 arc4random_buf(buf, SCARG(uap, nbyte)); 826 if ((error = copyout(buf, SCARG(uap, buf), SCARG(uap, nbyte))) != 0) 827 return (error); 828 explicit_bzero(buf, sizeof(buf)); 829 retval[0] = 0; 830 return (0); 831 } 832