1 /* $OpenBSD: rnd.c,v 1.228 2024/06/14 10:17:05 claudio Exp $ */ 2 3 /* 4 * Copyright (c) 2011,2020 Theo de Raadt. 5 * Copyright (c) 2008 Damien Miller. 6 * Copyright (c) 1996, 1997, 2000-2002 Michael Shalayeff. 7 * Copyright (c) 2013 Markus Friedl. 8 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. 9 * All rights reserved. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, and the entire permission notice in its entirety, 16 * including the disclaimer of warranties. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. The name of the author may not be used to endorse or promote 21 * products derived from this software without specific prior 22 * written permission. 23 * 24 * ALTERNATIVELY, this product may be distributed under the terms of 25 * the GNU Public License, in which case the provisions of the GPL are 26 * required INSTEAD OF the above restrictions. (This clause is 27 * necessary due to a potential bad interaction between the GPL and 28 * the restrictions contained in a BSD-style copyright.) 29 * 30 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 31 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 32 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 33 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, 34 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 35 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 36 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 38 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 39 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED 40 * OF THE POSSIBILITY OF SUCH DAMAGE. 41 */ 42 43 /* 44 * The bootblocks pre-fill the kernel .openbsd.randomdata section with seed 45 * material (on-disk from previous boot, hopefully mixed with a hardware rng). 46 * The first arc4random(9) call initializes this seed material as a chacha 47 * state. Calls can be done early in kernel bootstrap code -- early use is 48 * encouraged. 49 * 50 * After the kernel timeout subsystem is initialized, random_start() prepares 51 * the entropy collection mechanism enqueue_randomness() and timeout-driven 52 * mixing into the chacha state. The first submissions come from device 53 * probes, later on interrupt-time submissions are more common. Entropy 54 * data (and timing information) get mixed over the entropy input ring 55 * rnd_event_space[] -- the goal is to collect damage. 56 * 57 * Based upon timeouts, a selection of the entropy ring rnd_event_space[] 58 * CRC bit-distributed and XOR mixed into entropy_pool[]. 59 * 60 * From time to time, entropy_pool[] is SHA512-whitened, mixed with time 61 * information again, XOR'd with the inner and outer states of the existing 62 * chacha state, to create a new chacha state. 63 * 64 * During early boot (until cold=0), enqueue operations are immediately 65 * dequeued, and mixed into the chacha. 66 */ 67 68 #include <sys/param.h> 69 #include <sys/event.h> 70 #include <sys/ioctl.h> 71 #include <sys/malloc.h> 72 #include <sys/timeout.h> 73 #include <sys/atomic.h> 74 #include <sys/task.h> 75 #include <sys/msgbuf.h> 76 #include <sys/mount.h> 77 #include <sys/syscallargs.h> 78 79 #include <crypto/sha2.h> 80 81 #define KEYSTREAM_ONLY 82 #include <crypto/chacha_private.h> 83 84 #include <uvm/uvm_extern.h> 85 86 /* 87 * For the purposes of better mixing, we use the CRC-32 polynomial as 88 * well to make a twisted Generalized Feedback Shift Register 89 * 90 * (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR generators. ACM 91 * Transactions on Modeling and Computer Simulation 2(3):179-194. 92 * Also see M. Matsumoto & Y. Kurita, 1994. Twisted GFSR generators 93 * II. ACM Transactions on Modeling and Computer Simulation 4:254-266) 94 */ 95 96 /* 97 * Stirring polynomial over GF(2). Used in add_entropy_words() below. 98 * 99 * The polynomial terms are chosen to be evenly spaced (minimum RMS 100 * distance from evenly spaced; except for the last tap, which is 1 to 101 * get the twisting happening as fast as possible. 102 * 103 * The resultant polynomial is: 104 * 2^POOLWORDS + 2^POOL_TAP1 + 2^POOL_TAP2 + 2^POOL_TAP3 + 2^POOL_TAP4 + 1 105 */ 106 #define POOLWORDS 2048 107 #define POOLBYTES (POOLWORDS*4) 108 #define POOLMASK (POOLWORDS - 1) 109 #define POOL_TAP1 1638 110 #define POOL_TAP2 1231 111 #define POOL_TAP3 819 112 #define POOL_TAP4 411 113 114 /* 115 * Raw entropy collection from device drivers; at interrupt context or not. 116 * enqueue_randomness() is used to submit data into the entropy input ring. 117 */ 118 119 #define QEVLEN 128 /* must be a power of 2 */ 120 #define QEVCONSUME 8 /* how many events to consume a time */ 121 122 #define KEYSZ 32 123 #define IVSZ 8 124 #define BLOCKSZ 64 125 #define RSBUFSZ (16*BLOCKSZ) 126 #define EBUFSIZE KEYSZ + IVSZ 127 128 struct rand_event { 129 u_int re_time; 130 u_int re_val; 131 } rnd_event_space[QEVLEN]; 132 133 u_int rnd_event_cons; 134 u_int rnd_event_prod; 135 int rnd_cold = 1; 136 int rnd_slowextract = 1; 137 138 void rnd_reinit(void *v); /* timeout to start reinit */ 139 void rnd_init(void *); /* actually do the reinit */ 140 141 static u_int32_t entropy_pool[POOLWORDS]; 142 u_int32_t entropy_pool0[POOLWORDS] __attribute__((section(".openbsd.randomdata"))); 143 144 void dequeue_randomness(void *); 145 void add_entropy_words(const u_int32_t *, u_int); 146 void extract_entropy(u_int8_t *) 147 __attribute__((__bounded__(__minbytes__,1,EBUFSIZE))); 148 149 struct timeout rnd_timeout = TIMEOUT_INITIALIZER(dequeue_randomness, NULL); 150 151 int filt_randomread(struct knote *, long); 152 void filt_randomdetach(struct knote *); 153 int filt_randomwrite(struct knote *, long); 154 155 static void _rs_seed(u_char *, size_t); 156 static void _rs_clearseed(const void *p, size_t s); 157 158 const struct filterops randomread_filtops = { 159 .f_flags = FILTEROP_ISFD, 160 .f_attach = NULL, 161 .f_detach = filt_randomdetach, 162 .f_event = filt_randomread, 163 }; 164 165 const struct filterops randomwrite_filtops = { 166 .f_flags = FILTEROP_ISFD, 167 .f_attach = NULL, 168 .f_detach = filt_randomdetach, 169 .f_event = filt_randomwrite, 170 }; 171 172 /* 173 * This function mixes entropy and timing into the entropy input ring. 174 */ 175 static void 176 add_event_data(u_int val) 177 { 178 struct rand_event *rep; 179 int e; 180 181 e = (atomic_inc_int_nv(&rnd_event_prod) - 1) & (QEVLEN-1); 182 rep = &rnd_event_space[e]; 183 rep->re_time += cpu_rnd_messybits(); 184 rep->re_val += val; 185 } 186 187 void 188 enqueue_randomness(u_int val) 189 { 190 add_event_data(val); 191 192 if (rnd_cold) { 193 dequeue_randomness(NULL); 194 rnd_init(NULL); 195 if (!cold) 196 rnd_cold = 0; 197 } else if (!timeout_pending(&rnd_timeout) && 198 (rnd_event_prod - rnd_event_cons) > QEVCONSUME) { 199 rnd_slowextract = min(rnd_slowextract * 2, 5000); 200 timeout_add_msec(&rnd_timeout, rnd_slowextract * 10); 201 } 202 } 203 204 /* 205 * This function merges entropy ring information into the buffer using 206 * a polynomial to spread the bits. 207 */ 208 void 209 add_entropy_words(const u_int32_t *buf, u_int n) 210 { 211 /* derived from IEEE 802.3 CRC-32 */ 212 static const u_int32_t twist_table[8] = { 213 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158, 214 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 215 }; 216 static u_int entropy_add_ptr; 217 static u_char entropy_input_rotate; 218 219 for (; n--; buf++) { 220 u_int32_t w = (*buf << entropy_input_rotate) | 221 (*buf >> ((32 - entropy_input_rotate) & 31)); 222 u_int i = entropy_add_ptr = 223 (entropy_add_ptr - 1) & POOLMASK; 224 /* 225 * Normally, we add 7 bits of rotation to the pool. 226 * At the beginning of the pool, add an extra 7 bits 227 * rotation, so that successive passes spread the 228 * input bits across the pool evenly. 229 */ 230 entropy_input_rotate = 231 (entropy_input_rotate + (i ? 7 : 14)) & 31; 232 233 /* XOR pool contents corresponding to polynomial terms */ 234 w ^= entropy_pool[(i + POOL_TAP1) & POOLMASK] ^ 235 entropy_pool[(i + POOL_TAP2) & POOLMASK] ^ 236 entropy_pool[(i + POOL_TAP3) & POOLMASK] ^ 237 entropy_pool[(i + POOL_TAP4) & POOLMASK] ^ 238 entropy_pool[(i + 1) & POOLMASK] ^ 239 entropy_pool[i]; /* + 2^POOLWORDS */ 240 241 entropy_pool[i] = (w >> 3) ^ twist_table[w & 7]; 242 } 243 } 244 245 /* 246 * Pulls entropy out of the queue and merges it into the pool with the 247 * CRC. This takes a mix of fresh entries from the producer end of the 248 * queue and entries from the consumer end of the queue which are 249 * likely to have collected more damage. 250 */ 251 void 252 dequeue_randomness(void *v) 253 { 254 u_int32_t buf[2]; 255 u_int startp, startc, i; 256 257 /* Some very new damage */ 258 startp = rnd_event_prod - QEVCONSUME; 259 for (i = 0; i < QEVCONSUME; i++) { 260 u_int e = (startp + i) & (QEVLEN-1); 261 262 buf[0] = rnd_event_space[e].re_time; 263 buf[1] = rnd_event_space[e].re_val; 264 add_entropy_words(buf, 2); 265 } 266 /* and some probably more damaged */ 267 startc = atomic_add_int_nv(&rnd_event_cons, QEVCONSUME) - QEVCONSUME; 268 for (i = 0; i < QEVCONSUME; i++) { 269 u_int e = (startc + i) & (QEVLEN-1); 270 271 buf[0] = rnd_event_space[e].re_time; 272 buf[1] = rnd_event_space[e].re_val; 273 add_entropy_words(buf, 2); 274 } 275 } 276 277 /* 278 * Grabs a chunk from the entropy_pool[] and slams it through SHA512 when 279 * requested. 280 */ 281 void 282 extract_entropy(u_int8_t *buf) 283 { 284 static u_int32_t extract_pool[POOLWORDS]; 285 u_char digest[SHA512_DIGEST_LENGTH]; 286 SHA2_CTX shactx; 287 288 #if SHA512_DIGEST_LENGTH < EBUFSIZE 289 #error "need more bigger hash output" 290 #endif 291 292 /* 293 * INTENTIONALLY not protected by any lock. Races during 294 * memcpy() result in acceptable input data; races during 295 * SHA512Update() would create nasty data dependencies. We 296 * do not rely on this as a benefit, but if it happens, cool. 297 */ 298 memcpy(extract_pool, entropy_pool, sizeof(extract_pool)); 299 300 /* Hash the pool to get the output */ 301 SHA512Init(&shactx); 302 SHA512Update(&shactx, (u_int8_t *)extract_pool, sizeof(extract_pool)); 303 SHA512Final(digest, &shactx); 304 305 /* Copy data to destination buffer */ 306 memcpy(buf, digest, EBUFSIZE); 307 308 /* 309 * Modify pool so next hash will produce different results. 310 */ 311 add_event_data(extract_pool[0]); 312 dequeue_randomness(NULL); 313 314 /* Wipe data from memory */ 315 explicit_bzero(extract_pool, sizeof(extract_pool)); 316 explicit_bzero(digest, sizeof(digest)); 317 } 318 319 /* random keystream by ChaCha */ 320 321 struct mutex rndlock = MUTEX_INITIALIZER(IPL_HIGH); 322 struct timeout rndreinit_timeout = TIMEOUT_INITIALIZER(rnd_reinit, NULL); 323 struct task rnd_task = TASK_INITIALIZER(rnd_init, NULL); 324 325 static chacha_ctx rs; /* chacha context for random keystream */ 326 /* keystream blocks (also chacha seed from boot) */ 327 static u_char rs_buf[RSBUFSZ]; 328 u_char rs_buf0[RSBUFSZ] __attribute__((section(".openbsd.randomdata"))); 329 static size_t rs_have; /* valid bytes at end of rs_buf */ 330 static size_t rs_count; /* bytes till reseed */ 331 332 void 333 suspend_randomness(void) 334 { 335 struct timespec ts; 336 337 getnanotime(&ts); 338 enqueue_randomness(ts.tv_sec); 339 enqueue_randomness(ts.tv_nsec); 340 341 dequeue_randomness(NULL); 342 rs_count = 0; 343 arc4random_buf(entropy_pool, sizeof(entropy_pool)); 344 } 345 346 void 347 resume_randomness(char *buf, size_t buflen) 348 { 349 struct timespec ts; 350 351 if (buf && buflen) 352 _rs_seed(buf, buflen); 353 getnanotime(&ts); 354 enqueue_randomness(ts.tv_sec); 355 enqueue_randomness(ts.tv_nsec); 356 357 dequeue_randomness(NULL); 358 rs_count = 0; 359 } 360 361 static inline void _rs_rekey(u_char *dat, size_t datlen); 362 363 static inline void 364 _rs_init(u_char *buf, size_t n) 365 { 366 KASSERT(n >= KEYSZ + IVSZ); 367 chacha_keysetup(&rs, buf, KEYSZ * 8); 368 chacha_ivsetup(&rs, buf + KEYSZ, NULL); 369 } 370 371 static void 372 _rs_seed(u_char *buf, size_t n) 373 { 374 _rs_rekey(buf, n); 375 376 /* invalidate rs_buf */ 377 rs_have = 0; 378 memset(rs_buf, 0, sizeof(rs_buf)); 379 380 rs_count = 1600000; 381 } 382 383 static void 384 _rs_stir(int do_lock) 385 { 386 struct timespec ts; 387 u_int8_t buf[EBUFSIZE], *p; 388 int i; 389 390 /* 391 * Use SHA512 PRNG data and a system timespec; early in the boot 392 * process this is the best we can do -- some architectures do 393 * not collect entropy very well during this time, but may have 394 * clock information which is better than nothing. 395 */ 396 extract_entropy(buf); 397 398 nanotime(&ts); 399 for (p = (u_int8_t *)&ts, i = 0; i < sizeof(ts); i++) 400 buf[i] ^= p[i]; 401 402 if (do_lock) 403 mtx_enter(&rndlock); 404 _rs_seed(buf, sizeof(buf)); 405 if (do_lock) 406 mtx_leave(&rndlock); 407 explicit_bzero(buf, sizeof(buf)); 408 409 /* encourage fast-dequeue again */ 410 rnd_slowextract = 1; 411 } 412 413 static inline void 414 _rs_stir_if_needed(size_t len) 415 { 416 static int rs_initialized; 417 418 if (!rs_initialized) { 419 memcpy(entropy_pool, entropy_pool0, sizeof(entropy_pool)); 420 memcpy(rs_buf, rs_buf0, sizeof(rs_buf)); 421 /* seeds cannot be cleaned yet, random_start() will do so */ 422 _rs_init(rs_buf, KEYSZ + IVSZ); 423 rs_count = 1024 * 1024 * 1024; /* until main() runs */ 424 rs_initialized = 1; 425 } else if (rs_count <= len) 426 _rs_stir(0); 427 else 428 rs_count -= len; 429 } 430 431 static void 432 _rs_clearseed(const void *p, size_t s) 433 { 434 struct kmem_dyn_mode kd_avoidalias; 435 vaddr_t va = trunc_page((vaddr_t)p); 436 vsize_t off = (vaddr_t)p - va; 437 vsize_t len; 438 vaddr_t rwva; 439 paddr_t pa; 440 441 while (s > 0) { 442 pmap_extract(pmap_kernel(), va, &pa); 443 444 memset(&kd_avoidalias, 0, sizeof(kd_avoidalias)); 445 kd_avoidalias.kd_prefer = pa; 446 kd_avoidalias.kd_waitok = 1; 447 rwva = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, &kp_none, 448 &kd_avoidalias); 449 if (!rwva) 450 panic("_rs_clearseed"); 451 452 pmap_kenter_pa(rwva, pa, PROT_READ | PROT_WRITE); 453 pmap_update(pmap_kernel()); 454 455 len = MIN(s, PAGE_SIZE - off); 456 explicit_bzero((void *)(rwva + off), len); 457 458 pmap_kremove(rwva, PAGE_SIZE); 459 km_free((void *)rwva, PAGE_SIZE, &kv_any, &kp_none); 460 461 va += PAGE_SIZE; 462 s -= len; 463 off = 0; 464 } 465 } 466 467 static inline void 468 _rs_rekey(u_char *dat, size_t datlen) 469 { 470 #ifndef KEYSTREAM_ONLY 471 memset(rs_buf, 0, sizeof(rs_buf)); 472 #endif 473 /* fill rs_buf with the keystream */ 474 chacha_encrypt_bytes(&rs, rs_buf, rs_buf, sizeof(rs_buf)); 475 /* mix in optional user provided data */ 476 if (dat) { 477 size_t i, m; 478 479 m = MIN(datlen, KEYSZ + IVSZ); 480 for (i = 0; i < m; i++) 481 rs_buf[i] ^= dat[i]; 482 } 483 /* immediately reinit for backtracking resistance */ 484 _rs_init(rs_buf, KEYSZ + IVSZ); 485 memset(rs_buf, 0, KEYSZ + IVSZ); 486 rs_have = sizeof(rs_buf) - KEYSZ - IVSZ; 487 } 488 489 static inline void 490 _rs_random_buf(void *_buf, size_t n) 491 { 492 u_char *buf = (u_char *)_buf; 493 size_t m; 494 495 _rs_stir_if_needed(n); 496 while (n > 0) { 497 if (rs_have > 0) { 498 m = MIN(n, rs_have); 499 memcpy(buf, rs_buf + sizeof(rs_buf) - rs_have, m); 500 memset(rs_buf + sizeof(rs_buf) - rs_have, 0, m); 501 buf += m; 502 n -= m; 503 rs_have -= m; 504 } 505 if (rs_have == 0) 506 _rs_rekey(NULL, 0); 507 } 508 } 509 510 static inline void 511 _rs_random_u32(u_int32_t *val) 512 { 513 _rs_stir_if_needed(sizeof(*val)); 514 if (rs_have < sizeof(*val)) 515 _rs_rekey(NULL, 0); 516 memcpy(val, rs_buf + sizeof(rs_buf) - rs_have, sizeof(*val)); 517 memset(rs_buf + sizeof(rs_buf) - rs_have, 0, sizeof(*val)); 518 rs_have -= sizeof(*val); 519 } 520 521 /* Return one word of randomness from a ChaCha20 generator */ 522 u_int32_t 523 arc4random(void) 524 { 525 u_int32_t ret; 526 527 mtx_enter(&rndlock); 528 _rs_random_u32(&ret); 529 mtx_leave(&rndlock); 530 return ret; 531 } 532 533 /* 534 * Fill a buffer of arbitrary length with ChaCha20-derived randomness. 535 */ 536 void 537 arc4random_buf(void *buf, size_t n) 538 { 539 mtx_enter(&rndlock); 540 _rs_random_buf(buf, n); 541 mtx_leave(&rndlock); 542 } 543 544 /* 545 * Allocate a new ChaCha20 context for the caller to use. 546 */ 547 struct arc4random_ctx * 548 arc4random_ctx_new(void) 549 { 550 char keybuf[KEYSZ + IVSZ]; 551 552 chacha_ctx *ctx = malloc(sizeof(chacha_ctx), M_TEMP, M_WAITOK); 553 arc4random_buf(keybuf, KEYSZ + IVSZ); 554 chacha_keysetup(ctx, keybuf, KEYSZ * 8); 555 chacha_ivsetup(ctx, keybuf + KEYSZ, NULL); 556 explicit_bzero(keybuf, sizeof(keybuf)); 557 return (struct arc4random_ctx *)ctx; 558 } 559 560 /* 561 * Free a ChaCha20 context created by arc4random_ctx_new() 562 */ 563 void 564 arc4random_ctx_free(struct arc4random_ctx *ctx) 565 { 566 explicit_bzero(ctx, sizeof(chacha_ctx)); 567 free(ctx, M_TEMP, sizeof(chacha_ctx)); 568 } 569 570 /* 571 * Use a given ChaCha20 context to fill a buffer 572 */ 573 void 574 arc4random_ctx_buf(struct arc4random_ctx *ctx, void *buf, size_t n) 575 { 576 #ifndef KEYSTREAM_ONLY 577 memset(buf, 0, n); 578 #endif 579 chacha_encrypt_bytes((chacha_ctx *)ctx, buf, buf, n); 580 } 581 582 /* 583 * Calculate a uniformly distributed random number less than upper_bound 584 * avoiding "modulo bias". 585 * 586 * Uniformity is achieved by generating new random numbers until the one 587 * returned is outside the range [0, 2**32 % upper_bound). This 588 * guarantees the selected random number will be inside 589 * [2**32 % upper_bound, 2**32) which maps back to [0, upper_bound) 590 * after reduction modulo upper_bound. 591 */ 592 u_int32_t 593 arc4random_uniform(u_int32_t upper_bound) 594 { 595 u_int32_t r, min; 596 597 if (upper_bound < 2) 598 return 0; 599 600 /* 2**32 % x == (2**32 - x) % x */ 601 min = -upper_bound % upper_bound; 602 603 /* 604 * This could theoretically loop forever but each retry has 605 * p > 0.5 (worst case, usually far better) of selecting a 606 * number inside the range we need, so it should rarely need 607 * to re-roll. 608 */ 609 for (;;) { 610 r = arc4random(); 611 if (r >= min) 612 break; 613 } 614 615 return r % upper_bound; 616 } 617 618 void 619 rnd_init(void *null) 620 { 621 _rs_stir(1); 622 } 623 624 /* 625 * Called by timeout to mark arc4 for stirring, 626 */ 627 void 628 rnd_reinit(void *v) 629 { 630 task_add(systq, &rnd_task); 631 /* 10 minutes, per dm@'s suggestion */ 632 timeout_add_sec(&rndreinit_timeout, 10 * 60); 633 } 634 635 /* 636 * Start periodic services inside the random subsystem, which pull 637 * entropy forward, hash it, and re-seed the random stream as needed. 638 */ 639 void 640 random_start(int goodseed) 641 { 642 extern char etext[]; 643 644 #if !defined(NO_PROPOLICE) 645 extern long __guard_local; 646 647 if (__guard_local == 0) 648 printf("warning: no entropy supplied by boot loader\n"); 649 #endif 650 651 _rs_clearseed(entropy_pool0, sizeof(entropy_pool0)); 652 _rs_clearseed(rs_buf0, sizeof(rs_buf0)); 653 654 /* Message buffer may contain data from previous boot */ 655 if (msgbufp->msg_magic == MSG_MAGIC) 656 add_entropy_words((u_int32_t *)msgbufp->msg_bufc, 657 msgbufp->msg_bufs / sizeof(u_int32_t)); 658 add_entropy_words((u_int32_t *)etext - 32*1024, 659 8192/sizeof(u_int32_t)); 660 661 dequeue_randomness(NULL); 662 rnd_init(NULL); 663 rnd_reinit(NULL); 664 665 if (goodseed) 666 printf("random: good seed from bootblocks\n"); 667 else { 668 /* XXX kernel should work harder here */ 669 printf("random: boothowto does not indicate good seed\n"); 670 } 671 } 672 673 int 674 randomopen(dev_t dev, int flag, int mode, struct proc *p) 675 { 676 return 0; 677 } 678 679 int 680 randomclose(dev_t dev, int flag, int mode, struct proc *p) 681 { 682 return 0; 683 } 684 685 /* 686 * Maximum number of bytes to serve directly from the main ChaCha 687 * pool. Larger requests are served from a discrete ChaCha instance keyed 688 * from the main pool. 689 */ 690 #define RND_MAIN_MAX_BYTES 2048 691 692 int 693 randomread(dev_t dev, struct uio *uio, int ioflag) 694 { 695 struct arc4random_ctx *lctx = NULL; 696 size_t total = uio->uio_resid; 697 u_char *buf; 698 int ret = 0; 699 700 if (uio->uio_resid == 0) 701 return 0; 702 703 buf = malloc(POOLBYTES, M_TEMP, M_WAITOK); 704 if (total > RND_MAIN_MAX_BYTES) 705 lctx = arc4random_ctx_new(); 706 707 while (ret == 0 && uio->uio_resid > 0) { 708 size_t n = ulmin(POOLBYTES, uio->uio_resid); 709 710 if (lctx != NULL) 711 arc4random_ctx_buf(lctx, buf, n); 712 else 713 arc4random_buf(buf, n); 714 ret = uiomove(buf, n, uio); 715 if (ret == 0 && uio->uio_resid > 0) 716 yield(); 717 } 718 if (lctx != NULL) 719 arc4random_ctx_free(lctx); 720 explicit_bzero(buf, POOLBYTES); 721 free(buf, M_TEMP, POOLBYTES); 722 return ret; 723 } 724 725 int 726 randomwrite(dev_t dev, struct uio *uio, int flags) 727 { 728 int ret = 0, newdata = 0; 729 u_int32_t *buf; 730 731 if (uio->uio_resid == 0) 732 return 0; 733 734 buf = malloc(POOLBYTES, M_TEMP, M_WAITOK); 735 736 while (ret == 0 && uio->uio_resid > 0) { 737 size_t n = ulmin(POOLBYTES, uio->uio_resid); 738 739 ret = uiomove(buf, n, uio); 740 if (ret != 0) 741 break; 742 while (n % sizeof(u_int32_t)) 743 ((u_int8_t *)buf)[n++] = 0; 744 add_entropy_words(buf, n / 4); 745 if (uio->uio_resid > 0) 746 yield(); 747 newdata = 1; 748 } 749 750 if (newdata) 751 rnd_init(NULL); 752 753 explicit_bzero(buf, POOLBYTES); 754 free(buf, M_TEMP, POOLBYTES); 755 return ret; 756 } 757 758 int 759 randomkqfilter(dev_t dev, struct knote *kn) 760 { 761 switch (kn->kn_filter) { 762 case EVFILT_READ: 763 kn->kn_fop = &randomread_filtops; 764 break; 765 case EVFILT_WRITE: 766 kn->kn_fop = &randomwrite_filtops; 767 break; 768 default: 769 return (EINVAL); 770 } 771 772 return (0); 773 } 774 775 void 776 filt_randomdetach(struct knote *kn) 777 { 778 } 779 780 int 781 filt_randomread(struct knote *kn, long hint) 782 { 783 kn->kn_data = RND_MAIN_MAX_BYTES; 784 return (1); 785 } 786 787 int 788 filt_randomwrite(struct knote *kn, long hint) 789 { 790 kn->kn_data = POOLBYTES; 791 return (1); 792 } 793 794 int 795 randomioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p) 796 { 797 switch (cmd) { 798 case FIOASYNC: 799 /* No async flag in softc so this is a no-op. */ 800 break; 801 case FIONBIO: 802 /* Handled in the upper FS layer. */ 803 break; 804 default: 805 return ENOTTY; 806 } 807 return 0; 808 } 809 810 int 811 sys_getentropy(struct proc *p, void *v, register_t *retval) 812 { 813 struct sys_getentropy_args /* { 814 syscallarg(void *) buf; 815 syscallarg(size_t) nbyte; 816 } */ *uap = v; 817 char buf[256]; 818 int error; 819 820 if (SCARG(uap, nbyte) > sizeof(buf)) 821 return (EIO); 822 arc4random_buf(buf, SCARG(uap, nbyte)); 823 if ((error = copyout(buf, SCARG(uap, buf), SCARG(uap, nbyte))) != 0) 824 return (error); 825 explicit_bzero(buf, sizeof(buf)); 826 *retval = 0; 827 return (0); 828 } 829