xref: /openbsd/sys/dev/usb/if_otus.c (revision d415bd75)
1 /*	$OpenBSD: if_otus.c,v 1.72 2023/03/08 04:43:08 guenther Exp $	*/
2 
3 /*-
4  * Copyright (c) 2009 Damien Bergamini <damien.bergamini@free.fr>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 /*
20  * Driver for Atheros AR9001U chipset.
21  */
22 
23 #include "bpfilter.h"
24 
25 #include <sys/param.h>
26 #include <sys/sockio.h>
27 #include <sys/mbuf.h>
28 #include <sys/kernel.h>
29 #include <sys/socket.h>
30 #include <sys/systm.h>
31 #include <sys/timeout.h>
32 #include <sys/conf.h>
33 #include <sys/device.h>
34 #include <sys/endian.h>
35 
36 #include <machine/intr.h>
37 
38 #if NBPFILTER > 0
39 #include <net/bpf.h>
40 #endif
41 #include <net/if.h>
42 #include <net/if_dl.h>
43 #include <net/if_media.h>
44 
45 #include <netinet/in.h>
46 #include <netinet/if_ether.h>
47 
48 #include <net80211/ieee80211_var.h>
49 #include <net80211/ieee80211_amrr.h>
50 #include <net80211/ieee80211_radiotap.h>
51 
52 #include <dev/usb/usb.h>
53 #include <dev/usb/usbdi.h>
54 #include <dev/usb/usbdi_util.h>
55 #include <dev/usb/usbdevs.h>
56 
57 #include <dev/usb/if_otusreg.h>
58 
59 #ifdef OTUS_DEBUG
60 #define DPRINTF(x)	do { if (otus_debug) printf x; } while (0)
61 #define DPRINTFN(n, x)	do { if (otus_debug >= (n)) printf x; } while (0)
62 int otus_debug = 1;
63 #else
64 #define DPRINTF(x)
65 #define DPRINTFN(n, x)
66 #endif
67 
68 static const struct usb_devno otus_devs[] = {
69 	{ USB_VENDOR_ACCTON,		USB_PRODUCT_ACCTON_WN7512 },
70 	{ USB_VENDOR_ATHEROS2,		USB_PRODUCT_ATHEROS2_3CRUSBN275 },
71 	{ USB_VENDOR_ATHEROS2,		USB_PRODUCT_ATHEROS2_TG121N },
72 	{ USB_VENDOR_ATHEROS2,		USB_PRODUCT_ATHEROS2_AR9170 },
73 	{ USB_VENDOR_ATHEROS2,		USB_PRODUCT_ATHEROS2_WN612 },
74 	{ USB_VENDOR_ATHEROS2,		USB_PRODUCT_ATHEROS2_WN821NV2 },
75 	{ USB_VENDOR_AVM,		USB_PRODUCT_AVM_FRITZWLAN },
76 	{ USB_VENDOR_CACE,		USB_PRODUCT_CACE_AIRPCAPNX },
77 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWA130D1 },
78 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWA160A1 },
79 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWA160A2 },
80 	{ USB_VENDOR_IODATA,		USB_PRODUCT_IODATA_WNGDNUS2 },
81 	{ USB_VENDOR_NEC,		USB_PRODUCT_NEC_WL300NUG },
82 	{ USB_VENDOR_NETGEAR,		USB_PRODUCT_NETGEAR_WN111V2 },
83 	{ USB_VENDOR_NETGEAR,		USB_PRODUCT_NETGEAR_WNA1000 },
84 	{ USB_VENDOR_NETGEAR,		USB_PRODUCT_NETGEAR_WNDA3100 },
85 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GW_US300 },
86 	{ USB_VENDOR_WISTRONNEWEB,	USB_PRODUCT_WISTRONNEWEB_O8494 },
87 	{ USB_VENDOR_WISTRONNEWEB,	USB_PRODUCT_WISTRONNEWEB_WNC0600 },
88 	{ USB_VENDOR_ZCOM,		USB_PRODUCT_ZCOM_UB81 },
89 	{ USB_VENDOR_ZCOM,		USB_PRODUCT_ZCOM_UB82 },
90 	{ USB_VENDOR_ZYDAS,		USB_PRODUCT_ZYDAS_ZD1221 },
91 	{ USB_VENDOR_ZYXEL,		USB_PRODUCT_ZYXEL_NWD271N }
92 };
93 
94 int		otus_match(struct device *, void *, void *);
95 void		otus_attach(struct device *, struct device *, void *);
96 int		otus_detach(struct device *, int);
97 void		otus_attachhook(struct device *);
98 void		otus_get_chanlist(struct otus_softc *);
99 int		otus_load_firmware(struct otus_softc *, const char *,
100 		    uint32_t);
101 int		otus_open_pipes(struct otus_softc *);
102 void		otus_close_pipes(struct otus_softc *);
103 int		otus_alloc_tx_cmd(struct otus_softc *);
104 void		otus_free_tx_cmd(struct otus_softc *);
105 int		otus_alloc_tx_data_list(struct otus_softc *);
106 void		otus_free_tx_data_list(struct otus_softc *);
107 int		otus_alloc_rx_data_list(struct otus_softc *);
108 void		otus_free_rx_data_list(struct otus_softc *);
109 void		otus_next_scan(void *);
110 void		otus_task(void *);
111 void		otus_do_async(struct otus_softc *,
112 		    void (*)(struct otus_softc *, void *), void *, int);
113 int		otus_newstate(struct ieee80211com *, enum ieee80211_state,
114 		    int);
115 void		otus_newstate_cb(struct otus_softc *, void *);
116 int		otus_cmd(struct otus_softc *, uint8_t, const void *, int,
117 		    void *);
118 void		otus_write(struct otus_softc *, uint32_t, uint32_t);
119 int		otus_write_barrier(struct otus_softc *);
120 struct		ieee80211_node *otus_node_alloc(struct ieee80211com *);
121 int		otus_media_change(struct ifnet *);
122 int		otus_read_eeprom(struct otus_softc *);
123 void		otus_newassoc(struct ieee80211com *, struct ieee80211_node *,
124 		    int);
125 void		otus_intr(struct usbd_xfer *, void *, usbd_status);
126 void		otus_cmd_rxeof(struct otus_softc *, uint8_t *, int);
127 void		otus_sub_rxeof(struct otus_softc *, uint8_t *, int,
128 		    struct mbuf_list *);
129 void		otus_rxeof(struct usbd_xfer *, void *, usbd_status);
130 void		otus_txeof(struct usbd_xfer *, void *, usbd_status);
131 int		otus_tx(struct otus_softc *, struct mbuf *,
132 		    struct ieee80211_node *);
133 void		otus_start(struct ifnet *);
134 void		otus_watchdog(struct ifnet *);
135 int		otus_ioctl(struct ifnet *, u_long, caddr_t);
136 int		otus_set_multi(struct otus_softc *);
137 void		otus_updateedca(struct ieee80211com *);
138 void		otus_updateedca_cb(struct otus_softc *, void *);
139 void		otus_updateslot(struct ieee80211com *);
140 void		otus_updateslot_cb(struct otus_softc *, void *);
141 int		otus_init_mac(struct otus_softc *);
142 uint32_t	otus_phy_get_def(struct otus_softc *, uint32_t);
143 int		otus_set_board_values(struct otus_softc *,
144 		    struct ieee80211_channel *);
145 int		otus_program_phy(struct otus_softc *,
146 		    struct ieee80211_channel *);
147 int		otus_set_rf_bank4(struct otus_softc *,
148 		    struct ieee80211_channel *);
149 void		otus_get_delta_slope(uint32_t, uint32_t *, uint32_t *);
150 int		otus_set_chan(struct otus_softc *, struct ieee80211_channel *,
151 		    int);
152 int		otus_set_key(struct ieee80211com *, struct ieee80211_node *,
153 		    struct ieee80211_key *);
154 void		otus_set_key_cb(struct otus_softc *, void *);
155 void		otus_delete_key(struct ieee80211com *, struct ieee80211_node *,
156 		    struct ieee80211_key *);
157 void		otus_delete_key_cb(struct otus_softc *, void *);
158 void		otus_calibrate_to(void *);
159 int		otus_set_bssid(struct otus_softc *, const uint8_t *);
160 int		otus_set_macaddr(struct otus_softc *, const uint8_t *);
161 void		otus_led_newstate_type1(struct otus_softc *);
162 void		otus_led_newstate_type2(struct otus_softc *);
163 void		otus_led_newstate_type3(struct otus_softc *);
164 int		otus_init(struct ifnet *);
165 void		otus_stop(struct ifnet *);
166 
167 struct cfdriver otus_cd = {
168 	NULL, "otus", DV_IFNET
169 };
170 
171 const struct cfattach otus_ca = {
172 	sizeof (struct otus_softc), otus_match, otus_attach, otus_detach
173 };
174 
175 int
176 otus_match(struct device *parent, void *match, void *aux)
177 {
178 	struct usb_attach_arg *uaa = aux;
179 
180 	if (uaa->iface == NULL || uaa->configno != 1)
181 		return UMATCH_NONE;
182 
183 	return (usb_lookup(otus_devs, uaa->vendor, uaa->product) != NULL) ?
184 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
185 }
186 
187 void
188 otus_attach(struct device *parent, struct device *self, void *aux)
189 {
190 	struct otus_softc *sc = (struct otus_softc *)self;
191 	struct usb_attach_arg *uaa = aux;
192 	int error;
193 
194 	sc->sc_udev = uaa->device;
195 
196 	usb_init_task(&sc->sc_task, otus_task, sc, USB_TASK_TYPE_GENERIC);
197 	timeout_set(&sc->scan_to, otus_next_scan, sc);
198 	timeout_set(&sc->calib_to, otus_calibrate_to, sc);
199 
200 	sc->amrr.amrr_min_success_threshold =  1;
201 	sc->amrr.amrr_max_success_threshold = 10;
202 
203 	/* Get the first interface handle. */
204 	error = usbd_device2interface_handle(sc->sc_udev, 0, &sc->sc_iface);
205 	if (error != 0) {
206 		printf("%s: could not get interface handle\n",
207 		    sc->sc_dev.dv_xname);
208 		return;
209 	}
210 
211 	if ((error = otus_open_pipes(sc)) != 0) {
212 		printf("%s: could not open pipes\n", sc->sc_dev.dv_xname);
213 		return;
214 	}
215 
216 	config_mountroot(self, otus_attachhook);
217 }
218 
219 int
220 otus_detach(struct device *self, int flags)
221 {
222 	struct otus_softc *sc = (struct otus_softc *)self;
223 	struct ifnet *ifp = &sc->sc_ic.ic_if;
224 	int s;
225 
226 	s = splusb();
227 
228 	if (timeout_initialized(&sc->scan_to))
229 		timeout_del(&sc->scan_to);
230 	if (timeout_initialized(&sc->calib_to))
231 		timeout_del(&sc->calib_to);
232 
233 	/* Wait for all queued asynchronous commands to complete. */
234 	usb_rem_wait_task(sc->sc_udev, &sc->sc_task);
235 
236 	usbd_ref_wait(sc->sc_udev);
237 
238 	if (ifp->if_softc != NULL) {
239 		ifp->if_flags &= ~IFF_RUNNING;
240 		ifq_clr_oactive(&ifp->if_snd);
241 		ieee80211_ifdetach(ifp);
242 		if_detach(ifp);
243 	}
244 
245 	otus_close_pipes(sc);
246 
247 	splx(s);
248 
249 	return 0;
250 }
251 
252 void
253 otus_attachhook(struct device *self)
254 {
255 	struct otus_softc *sc = (struct otus_softc *)self;
256 	struct ieee80211com *ic = &sc->sc_ic;
257 	struct ifnet *ifp = &ic->ic_if;
258 	usb_device_request_t req;
259 	uint32_t in, out;
260 	int error;
261 
262 	error = otus_load_firmware(sc, "otus-init", AR_FW_INIT_ADDR);
263 	if (error != 0) {
264 		printf("%s: could not load %s firmware\n",
265 		    sc->sc_dev.dv_xname, "init");
266 		return;
267 	}
268 
269 	usbd_delay_ms(sc->sc_udev, 1000);
270 
271 	error = otus_load_firmware(sc, "otus-main", AR_FW_MAIN_ADDR);
272 	if (error != 0) {
273 		printf("%s: could not load %s firmware\n",
274 		    sc->sc_dev.dv_xname, "main");
275 		return;
276 	}
277 
278 	/* Tell device that firmware transfer is complete. */
279 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
280 	req.bRequest = AR_FW_DOWNLOAD_COMPLETE;
281 	USETW(req.wValue, 0);
282 	USETW(req.wIndex, 0);
283 	USETW(req.wLength, 0);
284 	if (usbd_do_request(sc->sc_udev, &req, NULL) != 0) {
285 		printf("%s: firmware initialization failed\n",
286 		    sc->sc_dev.dv_xname);
287 		return;
288 	}
289 
290 	/* Send an ECHO command to check that everything is settled. */
291 	in = 0xbadc0ffe;
292 	if (otus_cmd(sc, AR_CMD_ECHO, &in, sizeof in, &out) != 0) {
293 		printf("%s: echo command failed\n", sc->sc_dev.dv_xname);
294 		return;
295 	}
296 	if (in != out) {
297 		printf("%s: echo reply mismatch: 0x%08x!=0x%08x\n",
298 		    sc->sc_dev.dv_xname, in, out);
299 		return;
300 	}
301 
302 	/* Read entire EEPROM. */
303 	if (otus_read_eeprom(sc) != 0) {
304 		printf("%s: could not read EEPROM\n", sc->sc_dev.dv_xname);
305 		return;
306 	}
307 
308 	sc->txmask = sc->eeprom.baseEepHeader.txMask;
309 	sc->rxmask = sc->eeprom.baseEepHeader.rxMask;
310 	sc->capflags = sc->eeprom.baseEepHeader.opCapFlags;
311 	IEEE80211_ADDR_COPY(ic->ic_myaddr, sc->eeprom.baseEepHeader.macAddr);
312 	sc->sc_led_newstate = otus_led_newstate_type3;	/* XXX */
313 
314 	printf("%s: MAC/BBP AR9170, RF AR%X, MIMO %dT%dR, address %s\n",
315 	    sc->sc_dev.dv_xname, (sc->capflags & AR5416_OPFLAGS_11A) ?
316 	        0x9104 : ((sc->txmask == 0x5) ? 0x9102 : 0x9101),
317 	    (sc->txmask == 0x5) ? 2 : 1, (sc->rxmask == 0x5) ? 2 : 1,
318 	    ether_sprintf(ic->ic_myaddr));
319 
320 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
321 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
322 	ic->ic_state = IEEE80211_S_INIT;
323 
324 	/* Set device capabilities. */
325 	ic->ic_caps =
326 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
327 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
328 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
329 	    IEEE80211_C_WEP |		/* WEP */
330 	    IEEE80211_C_RSN;		/* WPA/RSN */
331 
332 	if (sc->eeprom.baseEepHeader.opCapFlags & AR5416_OPFLAGS_11G) {
333 		/* Set supported .11b and .11g rates. */
334 		ic->ic_sup_rates[IEEE80211_MODE_11B] =
335 		    ieee80211_std_rateset_11b;
336 		ic->ic_sup_rates[IEEE80211_MODE_11G] =
337 		    ieee80211_std_rateset_11g;
338 	}
339 	if (sc->eeprom.baseEepHeader.opCapFlags & AR5416_OPFLAGS_11A) {
340 		/* Set supported .11a rates. */
341 		ic->ic_sup_rates[IEEE80211_MODE_11A] =
342 		    ieee80211_std_rateset_11a;
343 	}
344 
345 	/* Build the list of supported channels. */
346 	otus_get_chanlist(sc);
347 
348 	ifp->if_softc = sc;
349 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
350 	ifp->if_ioctl = otus_ioctl;
351 	ifp->if_start = otus_start;
352 	ifp->if_watchdog = otus_watchdog;
353 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
354 
355 	if_attach(ifp);
356 	ieee80211_ifattach(ifp);
357 	ic->ic_node_alloc = otus_node_alloc;
358 	ic->ic_newassoc = otus_newassoc;
359 	ic->ic_updateslot = otus_updateslot;
360 	ic->ic_updateedca = otus_updateedca;
361 #ifdef notyet
362 	ic->ic_set_key = otus_set_key;
363 	ic->ic_delete_key = otus_delete_key;
364 #endif
365 	/* Override state transition machine. */
366 	sc->sc_newstate = ic->ic_newstate;
367 	ic->ic_newstate = otus_newstate;
368 	ieee80211_media_init(ifp, otus_media_change, ieee80211_media_status);
369 
370 #if NBPFILTER > 0
371 	bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO,
372 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN);
373 
374 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
375 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
376 	sc->sc_rxtap.wr_ihdr.it_present = htole32(OTUS_RX_RADIOTAP_PRESENT);
377 
378 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
379 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
380 	sc->sc_txtap.wt_ihdr.it_present = htole32(OTUS_TX_RADIOTAP_PRESENT);
381 #endif
382 }
383 
384 void
385 otus_get_chanlist(struct otus_softc *sc)
386 {
387 	struct ieee80211com *ic = &sc->sc_ic;
388 	uint16_t domain;
389 	uint8_t chan;
390 	int i;
391 
392 	/* XXX regulatory domain. */
393 	domain = letoh16(sc->eeprom.baseEepHeader.regDmn[0]);
394 	DPRINTF(("regdomain=0x%04x\n", domain));
395 
396 	if (sc->eeprom.baseEepHeader.opCapFlags & AR5416_OPFLAGS_11G) {
397 		for (i = 0; i < 14; i++) {
398 			chan = ar_chans[i];
399 			ic->ic_channels[chan].ic_freq =
400 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
401 			ic->ic_channels[chan].ic_flags =
402 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
403 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
404 		}
405 	}
406 	if (sc->eeprom.baseEepHeader.opCapFlags & AR5416_OPFLAGS_11A) {
407 		for (i = 14; i < nitems(ar_chans); i++) {
408 			chan = ar_chans[i];
409 			ic->ic_channels[chan].ic_freq =
410 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
411 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
412 		}
413 	}
414 }
415 
416 int
417 otus_load_firmware(struct otus_softc *sc, const char *name, uint32_t addr)
418 {
419 	usb_device_request_t req;
420 	size_t fwsize, size;
421 	u_char *fw, *ptr;
422 	int mlen, error;
423 
424 	/* Read firmware image from the filesystem. */
425 	if ((error = loadfirmware(name, &fw, &fwsize)) != 0) {
426 		printf("%s: failed loadfirmware of file %s (error %d)\n",
427 		    sc->sc_dev.dv_xname, name, error);
428 		return error;
429 	}
430 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
431 	req.bRequest = AR_FW_DOWNLOAD;
432 	USETW(req.wIndex, 0);
433 
434 	ptr = fw;
435 	size = fwsize;
436 	addr >>= 8;
437 	while (size > 0) {
438 		mlen = MIN(size, 4096);
439 
440 		USETW(req.wValue, addr);
441 		USETW(req.wLength, mlen);
442 		if (usbd_do_request(sc->sc_udev, &req, ptr) != 0) {
443 			error = EIO;
444 			break;
445 		}
446 		addr += mlen >> 8;
447 		ptr  += mlen;
448 		size -= mlen;
449 	}
450 	free(fw, M_DEVBUF, fwsize);
451 	return error;
452 }
453 
454 int
455 otus_open_pipes(struct otus_softc *sc)
456 {
457 	usb_endpoint_descriptor_t *ed;
458 	int i, isize, error;
459 
460 	error = usbd_open_pipe(sc->sc_iface, AR_EPT_BULK_RX_NO, 0,
461 	    &sc->data_rx_pipe);
462 	if (error != 0) {
463 		printf("%s: could not open Rx bulk pipe\n",
464 		    sc->sc_dev.dv_xname);
465 		goto fail;
466 	}
467 
468 	ed = usbd_get_endpoint_descriptor(sc->sc_iface, AR_EPT_INTR_RX_NO);
469 	if (ed == NULL) {
470 		printf("%s: could not retrieve Rx intr pipe descriptor\n",
471 		    sc->sc_dev.dv_xname);
472 		goto fail;
473 	}
474 	isize = UGETW(ed->wMaxPacketSize);
475 	if (isize == 0) {
476 		printf("%s: invalid Rx intr pipe descriptor\n",
477 		    sc->sc_dev.dv_xname);
478 		goto fail;
479 	}
480 	sc->ibuf = malloc(isize, M_USBDEV, M_NOWAIT);
481 	if (sc->ibuf == NULL) {
482 		printf("%s: could not allocate Rx intr buffer\n",
483 		    sc->sc_dev.dv_xname);
484 		goto fail;
485 	}
486 	sc->ibuflen = isize;
487 	error = usbd_open_pipe_intr(sc->sc_iface, AR_EPT_INTR_RX_NO,
488 	    USBD_SHORT_XFER_OK, &sc->cmd_rx_pipe, sc, sc->ibuf, isize,
489 	    otus_intr, USBD_DEFAULT_INTERVAL);
490 	if (error != 0) {
491 		printf("%s: could not open Rx intr pipe\n",
492 		    sc->sc_dev.dv_xname);
493 		goto fail;
494 	}
495 
496 	error = usbd_open_pipe(sc->sc_iface, AR_EPT_BULK_TX_NO, 0,
497 	    &sc->data_tx_pipe);
498 	if (error != 0) {
499 		printf("%s: could not open Tx bulk pipe\n",
500 		    sc->sc_dev.dv_xname);
501 		goto fail;
502 	}
503 
504 	error = usbd_open_pipe(sc->sc_iface, AR_EPT_INTR_TX_NO, 0,
505 	    &sc->cmd_tx_pipe);
506 	if (error != 0) {
507 		printf("%s: could not open Tx intr pipe\n",
508 		    sc->sc_dev.dv_xname);
509 		goto fail;
510 	}
511 
512 	if (otus_alloc_tx_cmd(sc) != 0) {
513 		printf("%s: could not allocate command xfer\n",
514 		    sc->sc_dev.dv_xname);
515 		goto fail;
516 	}
517 
518 	if (otus_alloc_tx_data_list(sc) != 0) {
519 		printf("%s: could not allocate Tx xfers\n",
520 		    sc->sc_dev.dv_xname);
521 		goto fail;
522 	}
523 
524 	if (otus_alloc_rx_data_list(sc) != 0) {
525 		printf("%s: could not allocate Rx xfers\n",
526 		    sc->sc_dev.dv_xname);
527 		goto fail;
528 	}
529 
530 	for (i = 0; i < OTUS_RX_DATA_LIST_COUNT; i++) {
531 		struct otus_rx_data *data = &sc->rx_data[i];
532 
533 		usbd_setup_xfer(data->xfer, sc->data_rx_pipe, data, data->buf,
534 		    OTUS_RXBUFSZ, USBD_SHORT_XFER_OK | USBD_NO_COPY,
535 		    USBD_NO_TIMEOUT, otus_rxeof);
536 		error = usbd_transfer(data->xfer);
537 		if (error != USBD_IN_PROGRESS && error != 0) {
538 			printf("%s: could not queue Rx xfer\n",
539 			    sc->sc_dev.dv_xname);
540 			goto fail;
541 		}
542 	}
543 	return 0;
544 
545  fail:	otus_close_pipes(sc);
546 	return error;
547 }
548 
549 void
550 otus_close_pipes(struct otus_softc *sc)
551 {
552 	otus_free_tx_cmd(sc);
553 	otus_free_tx_data_list(sc);
554 	otus_free_rx_data_list(sc);
555 
556 	if (sc->data_rx_pipe != NULL)
557 		usbd_close_pipe(sc->data_rx_pipe);
558 	if (sc->cmd_rx_pipe != NULL)
559 		usbd_close_pipe(sc->cmd_rx_pipe);
560 	if (sc->ibuf != NULL)
561 		free(sc->ibuf, M_USBDEV, sc->ibuflen);
562 	if (sc->data_tx_pipe != NULL)
563 		usbd_close_pipe(sc->data_tx_pipe);
564 	if (sc->cmd_tx_pipe != NULL)
565 		usbd_close_pipe(sc->cmd_tx_pipe);
566 }
567 
568 int
569 otus_alloc_tx_cmd(struct otus_softc *sc)
570 {
571 	struct otus_tx_cmd *cmd = &sc->tx_cmd;
572 
573 	cmd->xfer = usbd_alloc_xfer(sc->sc_udev);
574 	if (cmd->xfer == NULL) {
575 		printf("%s: could not allocate xfer\n",
576 		    sc->sc_dev.dv_xname);
577 		return ENOMEM;
578 	}
579 	cmd->buf = usbd_alloc_buffer(cmd->xfer, OTUS_MAX_TXCMDSZ);
580 	if (cmd->buf == NULL) {
581 		printf("%s: could not allocate xfer buffer\n",
582 		    sc->sc_dev.dv_xname);
583 		usbd_free_xfer(cmd->xfer);
584 		cmd->xfer = NULL;
585 		return ENOMEM;
586 	}
587 	return 0;
588 }
589 
590 void
591 otus_free_tx_cmd(struct otus_softc *sc)
592 {
593 	/* Make sure no transfers are pending. */
594 	usbd_abort_pipe(sc->cmd_tx_pipe);
595 
596 	if (sc->tx_cmd.xfer != NULL)
597 		usbd_free_xfer(sc->tx_cmd.xfer);
598 }
599 
600 int
601 otus_alloc_tx_data_list(struct otus_softc *sc)
602 {
603 	struct otus_tx_data *data;
604 	int i, error;
605 
606 	for (i = 0; i < OTUS_TX_DATA_LIST_COUNT; i++) {
607 		data = &sc->tx_data[i];
608 
609 		data->sc = sc;  /* Backpointer for callbacks. */
610 
611 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
612 		if (data->xfer == NULL) {
613 			printf("%s: could not allocate xfer\n",
614 			    sc->sc_dev.dv_xname);
615 			error = ENOMEM;
616 			goto fail;
617 		}
618 		data->buf = usbd_alloc_buffer(data->xfer, OTUS_TXBUFSZ);
619 		if (data->buf == NULL) {
620 			printf("%s: could not allocate xfer buffer\n",
621 			    sc->sc_dev.dv_xname);
622 			error = ENOMEM;
623 			goto fail;
624 		}
625 	}
626 	return 0;
627 
628 fail:	otus_free_tx_data_list(sc);
629 	return error;
630 }
631 
632 void
633 otus_free_tx_data_list(struct otus_softc *sc)
634 {
635 	int i;
636 
637 	/* Make sure no transfers are pending. */
638 	usbd_abort_pipe(sc->data_tx_pipe);
639 
640 	for (i = 0; i < OTUS_TX_DATA_LIST_COUNT; i++)
641 		if (sc->tx_data[i].xfer != NULL)
642 			usbd_free_xfer(sc->tx_data[i].xfer);
643 }
644 
645 int
646 otus_alloc_rx_data_list(struct otus_softc *sc)
647 {
648 	struct otus_rx_data *data;
649 	int i, error;
650 
651 	for (i = 0; i < OTUS_RX_DATA_LIST_COUNT; i++) {
652 		data = &sc->rx_data[i];
653 
654 		data->sc = sc;	/* Backpointer for callbacks. */
655 
656 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
657 		if (data->xfer == NULL) {
658 			printf("%s: could not allocate xfer\n",
659 			    sc->sc_dev.dv_xname);
660 			error = ENOMEM;
661 			goto fail;
662 		}
663 		data->buf = usbd_alloc_buffer(data->xfer, OTUS_RXBUFSZ);
664 		if (data->buf == NULL) {
665 			printf("%s: could not allocate xfer buffer\n",
666 			    sc->sc_dev.dv_xname);
667 			error = ENOMEM;
668 			goto fail;
669 		}
670 	}
671 	return 0;
672 
673 fail:	otus_free_rx_data_list(sc);
674 	return error;
675 }
676 
677 void
678 otus_free_rx_data_list(struct otus_softc *sc)
679 {
680 	int i;
681 
682 	/* Make sure no transfers are pending. */
683 	usbd_abort_pipe(sc->data_rx_pipe);
684 
685 	for (i = 0; i < OTUS_RX_DATA_LIST_COUNT; i++)
686 		if (sc->rx_data[i].xfer != NULL)
687 			usbd_free_xfer(sc->rx_data[i].xfer);
688 }
689 
690 void
691 otus_next_scan(void *arg)
692 {
693 	struct otus_softc *sc = arg;
694 	struct ieee80211com *ic = &sc->sc_ic;
695 	struct ifnet *ifp = &ic->ic_if;
696 
697 	if (usbd_is_dying(sc->sc_udev))
698 		return;
699 
700 	usbd_ref_incr(sc->sc_udev);
701 
702 	if (sc->sc_ic.ic_state == IEEE80211_S_SCAN &&
703 	    (ifp->if_flags & IFF_RUNNING))
704 		ieee80211_next_scan(&sc->sc_ic.ic_if);
705 
706 	usbd_ref_decr(sc->sc_udev);
707 }
708 
709 void
710 otus_task(void *arg)
711 {
712 	struct otus_softc *sc = arg;
713 	struct otus_host_cmd_ring *ring = &sc->cmdq;
714 	struct otus_host_cmd *cmd;
715 	int s;
716 
717 	/* Process host commands. */
718 	s = splusb();
719 	while (ring->next != ring->cur) {
720 		cmd = &ring->cmd[ring->next];
721 		splx(s);
722 		/* Callback. */
723 		cmd->cb(sc, cmd->data);
724 		s = splusb();
725 		ring->queued--;
726 		ring->next = (ring->next + 1) % OTUS_HOST_CMD_RING_COUNT;
727 	}
728 	splx(s);
729 }
730 
731 void
732 otus_do_async(struct otus_softc *sc, void (*cb)(struct otus_softc *, void *),
733     void *arg, int len)
734 {
735 	struct otus_host_cmd_ring *ring = &sc->cmdq;
736 	struct otus_host_cmd *cmd;
737 	int s;
738 
739 	s = splusb();
740 	cmd = &ring->cmd[ring->cur];
741 	cmd->cb = cb;
742 	KASSERT(len <= sizeof (cmd->data));
743 	memcpy(cmd->data, arg, len);
744 	ring->cur = (ring->cur + 1) % OTUS_HOST_CMD_RING_COUNT;
745 
746 	/* If there is no pending command already, schedule a task. */
747 	if (++ring->queued == 1)
748 		usb_add_task(sc->sc_udev, &sc->sc_task);
749 	splx(s);
750 }
751 
752 int
753 otus_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
754 {
755 	struct otus_softc *sc = ic->ic_softc;
756 	struct otus_cmd_newstate cmd;
757 
758 	/* Do it in a process context. */
759 	cmd.state = nstate;
760 	cmd.arg = arg;
761 	otus_do_async(sc, otus_newstate_cb, &cmd, sizeof cmd);
762 	return 0;
763 }
764 
765 void
766 otus_newstate_cb(struct otus_softc *sc, void *arg)
767 {
768 	struct otus_cmd_newstate *cmd = arg;
769 	struct ieee80211com *ic = &sc->sc_ic;
770 	struct ieee80211_node *ni;
771 	int s;
772 
773 	s = splnet();
774 
775 	switch (cmd->state) {
776 	case IEEE80211_S_INIT:
777 		break;
778 
779 	case IEEE80211_S_SCAN:
780 		(void)otus_set_chan(sc, ic->ic_bss->ni_chan, 0);
781 		if (!usbd_is_dying(sc->sc_udev))
782 			timeout_add_msec(&sc->scan_to, 200);
783 		break;
784 
785 	case IEEE80211_S_AUTH:
786 	case IEEE80211_S_ASSOC:
787 		(void)otus_set_chan(sc, ic->ic_bss->ni_chan, 0);
788 		break;
789 
790 	case IEEE80211_S_RUN:
791 		(void)otus_set_chan(sc, ic->ic_bss->ni_chan, 1);
792 
793 		ni = ic->ic_bss;
794 
795 		if (ic->ic_opmode == IEEE80211_M_STA) {
796 			otus_updateslot(ic);
797 			otus_set_bssid(sc, ni->ni_bssid);
798 
799 			/* Fake a join to init the Tx rate. */
800 			otus_newassoc(ic, ni, 1);
801 
802 			/* Start calibration timer. */
803 			if (!usbd_is_dying(sc->sc_udev))
804 				timeout_add_sec(&sc->calib_to, 1);
805 		}
806 		break;
807 	}
808 
809 	sc->sc_led_newstate(sc);
810 	(void)sc->sc_newstate(ic, cmd->state, cmd->arg);
811 
812 	splx(s);
813 }
814 
815 int
816 otus_cmd(struct otus_softc *sc, uint8_t code, const void *idata, int ilen,
817     void *odata)
818 {
819 	struct otus_tx_cmd *cmd = &sc->tx_cmd;
820 	struct ar_cmd_hdr *hdr;
821 	int s, xferlen, error;
822 
823 	/* Always bulk-out a multiple of 4 bytes. */
824 	xferlen = (sizeof (*hdr) + ilen + 3) & ~3;
825 
826 	hdr = (struct ar_cmd_hdr *)cmd->buf;
827 	hdr->code  = code;
828 	hdr->len   = ilen;
829 	hdr->token = ++cmd->token;	/* Don't care about endianness. */
830 	memcpy((uint8_t *)&hdr[1], idata, ilen);
831 
832 	DPRINTFN(2, ("sending command code=0x%02x len=%d token=%d\n",
833 	    code, ilen, hdr->token));
834 
835 	s = splusb();
836 	cmd->odata = odata;
837 	cmd->done = 0;
838 
839 	usbd_setup_xfer(cmd->xfer, sc->cmd_tx_pipe, cmd, cmd->buf, xferlen,
840 	    USBD_FORCE_SHORT_XFER | USBD_NO_COPY | USBD_SYNCHRONOUS,
841 	    OTUS_CMD_TIMEOUT, NULL);
842 	error = usbd_transfer(cmd->xfer);
843 	if (error != 0) {
844 		splx(s);
845 		printf("%s: could not send command 0x%x (error=%s)\n",
846 		    sc->sc_dev.dv_xname, code, usbd_errstr(error));
847 		return EIO;
848 	}
849 	if (!cmd->done)
850 		error = tsleep_nsec(cmd, PCATCH, "otuscmd", SEC_TO_NSEC(1));
851 	cmd->odata = NULL;	/* In case answer is received too late. */
852 	splx(s);
853 	if (error != 0) {
854 		printf("%s: timeout waiting for command 0x%02x reply\n",
855 		    sc->sc_dev.dv_xname, code);
856 	}
857 	return error;
858 }
859 
860 void
861 otus_write(struct otus_softc *sc, uint32_t reg, uint32_t val)
862 {
863 	sc->write_buf[sc->write_idx].reg = htole32(reg);
864 	sc->write_buf[sc->write_idx].val = htole32(val);
865 
866 	if (++sc->write_idx > AR_MAX_WRITE_IDX)
867 		(void)otus_write_barrier(sc);
868 }
869 
870 int
871 otus_write_barrier(struct otus_softc *sc)
872 {
873 	int error;
874 
875 	if (sc->write_idx == 0)
876 		return 0;	/* Nothing to flush. */
877 
878 	error = otus_cmd(sc, AR_CMD_WREG, sc->write_buf,
879 	    sizeof (sc->write_buf[0]) * sc->write_idx, NULL);
880 	sc->write_idx = 0;
881 	return error;
882 }
883 
884 struct ieee80211_node *
885 otus_node_alloc(struct ieee80211com *ic)
886 {
887 	return malloc(sizeof (struct otus_node), M_USBDEV, M_NOWAIT | M_ZERO);
888 }
889 
890 int
891 otus_media_change(struct ifnet *ifp)
892 {
893 	struct otus_softc *sc = ifp->if_softc;
894 	struct ieee80211com *ic = &sc->sc_ic;
895 	uint8_t rate, ridx;
896 	int error;
897 
898 	error = ieee80211_media_change(ifp);
899 	if (error != ENETRESET)
900 		return error;
901 
902 	if (ic->ic_fixed_rate != -1) {
903 		rate = ic->ic_sup_rates[ic->ic_curmode].
904 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
905 		for (ridx = 0; ridx <= OTUS_RIDX_MAX; ridx++)
906 			if (otus_rates[ridx].rate == rate)
907 				break;
908 		sc->fixed_ridx = ridx;
909 	}
910 
911 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
912 		error = otus_init(ifp);
913 
914 	return error;
915 }
916 
917 int
918 otus_read_eeprom(struct otus_softc *sc)
919 {
920 	uint32_t regs[8], reg;
921 	uint8_t *eep;
922 	int i, j, error;
923 
924 	/* Read EEPROM by blocks of 32 bytes. */
925 	eep = (uint8_t *)&sc->eeprom;
926 	reg = AR_EEPROM_OFFSET;
927 	for (i = 0; i < sizeof (sc->eeprom) / 32; i++) {
928 		for (j = 0; j < 8; j++, reg += 4)
929 			regs[j] = htole32(reg);
930 		error = otus_cmd(sc, AR_CMD_RREG, regs, sizeof regs, eep);
931 		if (error != 0)
932 			break;
933 		eep += 32;
934 	}
935 	return error;
936 }
937 
938 void
939 otus_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
940 {
941 	struct otus_softc *sc = ic->ic_softc;
942 	struct otus_node *on = (void *)ni;
943 	struct ieee80211_rateset *rs = &ni->ni_rates;
944 	uint8_t rate;
945 	int ridx, i;
946 
947 	DPRINTF(("new assoc isnew=%d addr=%s\n",
948 	    isnew, ether_sprintf(ni->ni_macaddr)));
949 
950 	ieee80211_amrr_node_init(&sc->amrr, &on->amn);
951 	/* Start at lowest available bit-rate, AMRR will raise. */
952 	ni->ni_txrate = 0;
953 
954 	for (i = 0; i < rs->rs_nrates; i++) {
955 		rate = rs->rs_rates[i] & IEEE80211_RATE_VAL;
956 		/* Convert 802.11 rate to hardware rate index. */
957 		for (ridx = 0; ridx <= OTUS_RIDX_MAX; ridx++)
958 			if (otus_rates[ridx].rate == rate)
959 				break;
960 		on->ridx[i] = ridx;
961 		DPRINTF(("rate=0x%02x ridx=%d\n",
962 		    rs->rs_rates[i], on->ridx[i]));
963 	}
964 }
965 
966 void
967 otus_intr(struct usbd_xfer *xfer, void *priv, usbd_status status)
968 {
969 #if 0
970 	struct otus_softc *sc = priv;
971 	int len;
972 
973 	/*
974 	 * The Rx intr pipe is unused with current firmware.  Notifications
975 	 * and replies to commands are sent through the Rx bulk pipe instead
976 	 * (with a magic PLCP header.)
977 	 */
978 	if (__predict_false(status != USBD_NORMAL_COMPLETION)) {
979 		DPRINTF(("intr status=%d\n", status));
980 		if (status == USBD_STALLED)
981 			usbd_clear_endpoint_stall_async(sc->cmd_rx_pipe);
982 		return;
983 	}
984 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
985 
986 	otus_cmd_rxeof(sc, sc->ibuf, len);
987 #endif
988 }
989 
990 void
991 otus_cmd_rxeof(struct otus_softc *sc, uint8_t *buf, int len)
992 {
993 	struct ieee80211com *ic = &sc->sc_ic;
994 	struct otus_tx_cmd *cmd;
995 	struct ar_cmd_hdr *hdr;
996 	int s;
997 
998 	if (__predict_false(len < sizeof (*hdr))) {
999 		DPRINTF(("cmd too small %d\n", len));
1000 		return;
1001 	}
1002 	hdr = (struct ar_cmd_hdr *)buf;
1003 	if (__predict_false(sizeof (*hdr) + hdr->len > len ||
1004 	    sizeof (*hdr) + hdr->len > 64)) {
1005 		DPRINTF(("cmd too large %d\n", hdr->len));
1006 		return;
1007 	}
1008 
1009 	if ((hdr->code & 0xc0) != 0xc0) {
1010 		DPRINTFN(2, ("received reply code=0x%02x len=%d token=%d\n",
1011 		    hdr->code, hdr->len, hdr->token));
1012 		cmd = &sc->tx_cmd;
1013 		if (__predict_false(hdr->token != cmd->token))
1014 			return;
1015 		/* Copy answer into caller's supplied buffer. */
1016 		if (cmd->odata != NULL)
1017 			memcpy(cmd->odata, &hdr[1], hdr->len);
1018 		cmd->done = 1;
1019 		wakeup(cmd);
1020 		return;
1021 	}
1022 
1023 	/* Received unsolicited notification. */
1024 	DPRINTF(("received notification code=0x%02x len=%d\n",
1025 	    hdr->code, hdr->len));
1026 	switch (hdr->code & 0x3f) {
1027 	case AR_EVT_BEACON:
1028 		break;
1029 	case AR_EVT_TX_COMP:
1030 	{
1031 		struct ar_evt_tx_comp *tx = (struct ar_evt_tx_comp *)&hdr[1];
1032 		struct ieee80211_node *ni;
1033 		struct otus_node *on;
1034 
1035 		DPRINTF(("tx completed %s status=%d phy=0x%x\n",
1036 		    ether_sprintf(tx->macaddr), letoh16(tx->status),
1037 		    letoh32(tx->phy)));
1038 		s = splnet();
1039 #ifdef notyet
1040 #ifndef IEEE80211_STA_ONLY
1041 		if (ic->ic_opmode != IEEE80211_M_STA) {
1042 			ni = ieee80211_find_node(ic, tx->macaddr);
1043 			if (__predict_false(ni == NULL)) {
1044 				splx(s);
1045 				break;
1046 			}
1047 		} else
1048 #endif
1049 #endif
1050 			ni = ic->ic_bss;
1051 		/* Update rate control statistics. */
1052 		on = (void *)ni;
1053 		/* NB: we do not set the TX_MAC_RATE_PROBING flag. */
1054 		if (__predict_true(tx->status != 0))
1055 			on->amn.amn_retrycnt++;
1056 		splx(s);
1057 		break;
1058 	}
1059 	case AR_EVT_TBTT:
1060 		break;
1061 	}
1062 }
1063 
1064 void
1065 otus_sub_rxeof(struct otus_softc *sc, uint8_t *buf, int len,
1066     struct mbuf_list *ml)
1067 {
1068 	struct ieee80211com *ic = &sc->sc_ic;
1069 	struct ifnet *ifp = &ic->ic_if;
1070 	struct ieee80211_rxinfo rxi;
1071 	struct ieee80211_node *ni;
1072 	struct ar_rx_tail *tail;
1073 	struct ieee80211_frame *wh;
1074 	struct mbuf *m;
1075 	uint8_t *plcp;
1076 	int s, mlen, align;
1077 
1078 	if (__predict_false(len < AR_PLCP_HDR_LEN)) {
1079 		DPRINTF(("sub-xfer too short %d\n", len));
1080 		return;
1081 	}
1082 	plcp = buf;
1083 
1084 	/* All bits in the PLCP header are set to 1 for non-MPDU. */
1085 	if (memcmp(plcp, AR_PLCP_HDR_INTR, AR_PLCP_HDR_LEN) == 0) {
1086 		otus_cmd_rxeof(sc, plcp + AR_PLCP_HDR_LEN,
1087 		    len - AR_PLCP_HDR_LEN);
1088 		return;
1089 	}
1090 
1091 	/* Received MPDU. */
1092 	if (__predict_false(len < AR_PLCP_HDR_LEN + sizeof (*tail))) {
1093 		DPRINTF(("MPDU too short %d\n", len));
1094 		ifp->if_ierrors++;
1095 		return;
1096 	}
1097 	tail = (struct ar_rx_tail *)(plcp + len - sizeof (*tail));
1098 
1099 	/* Discard error frames. */
1100 	if (__predict_false(tail->error != 0)) {
1101 		DPRINTF(("error frame 0x%02x\n", tail->error));
1102 		if (tail->error & AR_RX_ERROR_FCS) {
1103 			DPRINTFN(3, ("bad FCS\n"));
1104 		} else if (tail->error & AR_RX_ERROR_MMIC) {
1105 			/* Report Michael MIC failures to net80211. */
1106 			ic->ic_stats.is_rx_locmicfail++;
1107 			ieee80211_michael_mic_failure(ic, 0);
1108 		}
1109 		ifp->if_ierrors++;
1110 		return;
1111 	}
1112 	/* Compute MPDU's length. */
1113 	mlen = len - AR_PLCP_HDR_LEN - sizeof (*tail);
1114 	/* Make sure there's room for an 802.11 header + FCS. */
1115 	if (__predict_false(mlen < IEEE80211_MIN_LEN)) {
1116 		ifp->if_ierrors++;
1117 		return;
1118 	}
1119 	mlen -= IEEE80211_CRC_LEN;	/* strip 802.11 FCS */
1120 	if (mlen > MCLBYTES) {
1121 		DPRINTF(("frame too large: %d\n", mlen));
1122 		ifp->if_ierrors++;
1123 		return;
1124 	}
1125 
1126 	wh = (struct ieee80211_frame *)(plcp + AR_PLCP_HDR_LEN);
1127 	/* Provide a 32-bit aligned protocol header to the stack. */
1128 	align = (ieee80211_has_qos(wh) ^ ieee80211_has_addr4(wh)) ? 2 : 0;
1129 
1130 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1131 	if (__predict_false(m == NULL)) {
1132 		ifp->if_ierrors++;
1133 		return;
1134 	}
1135 	if (align + mlen > MHLEN) {
1136 		MCLGET(m, M_DONTWAIT);
1137 		if (__predict_false(!(m->m_flags & M_EXT))) {
1138 			ifp->if_ierrors++;
1139 			m_freem(m);
1140 			return;
1141 		}
1142 	}
1143 	/* Finalize mbuf. */
1144 	m->m_data += align;
1145 	memcpy(mtod(m, caddr_t), wh, mlen);
1146 	m->m_pkthdr.len = m->m_len = mlen;
1147 
1148 #if NBPFILTER > 0
1149 	if (__predict_false(sc->sc_drvbpf != NULL)) {
1150 		struct otus_rx_radiotap_header *tap = &sc->sc_rxtap;
1151 		struct mbuf mb;
1152 
1153 		tap->wr_flags = 0;
1154 		tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
1155 		tap->wr_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
1156 		tap->wr_antsignal = tail->rssi;
1157 		tap->wr_rate = 2;	/* In case it can't be found below. */
1158 		switch (tail->status & AR_RX_STATUS_MT_MASK) {
1159 		case AR_RX_STATUS_MT_CCK:
1160 			switch (plcp[0]) {
1161 			case  10: tap->wr_rate =   2; break;
1162 			case  20: tap->wr_rate =   4; break;
1163 			case  55: tap->wr_rate =  11; break;
1164 			case 110: tap->wr_rate =  22; break;
1165 			}
1166 			if (tail->status & AR_RX_STATUS_SHPREAMBLE)
1167 				tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1168 			break;
1169 		case AR_RX_STATUS_MT_OFDM:
1170 			switch (plcp[0] & 0xf) {
1171 			case 0xb: tap->wr_rate =  12; break;
1172 			case 0xf: tap->wr_rate =  18; break;
1173 			case 0xa: tap->wr_rate =  24; break;
1174 			case 0xe: tap->wr_rate =  36; break;
1175 			case 0x9: tap->wr_rate =  48; break;
1176 			case 0xd: tap->wr_rate =  72; break;
1177 			case 0x8: tap->wr_rate =  96; break;
1178 			case 0xc: tap->wr_rate = 108; break;
1179 			}
1180 			break;
1181 		}
1182 		mb.m_data = (caddr_t)tap;
1183 		mb.m_len = sc->sc_rxtap_len;
1184 		mb.m_next = m;
1185 		mb.m_nextpkt = NULL;
1186 		mb.m_type = 0;
1187 		mb.m_flags = 0;
1188 		bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN);
1189 	}
1190 #endif
1191 
1192 	s = splnet();
1193 	ni = ieee80211_find_rxnode(ic, wh);
1194 	memset(&rxi, 0, sizeof(rxi));
1195 	rxi.rxi_rssi = tail->rssi;
1196 	ieee80211_inputm(ifp, m, ni, &rxi, ml);
1197 
1198 	/* Node is no longer needed. */
1199 	ieee80211_release_node(ic, ni);
1200 	splx(s);
1201 }
1202 
1203 void
1204 otus_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
1205 {
1206 	struct mbuf_list ml = MBUF_LIST_INITIALIZER();
1207 	struct otus_rx_data *data = priv;
1208 	struct otus_softc *sc = data->sc;
1209 	caddr_t buf = data->buf;
1210 	struct ar_rx_head *head;
1211 	uint16_t hlen;
1212 	int len;
1213 
1214 	if (__predict_false(status != USBD_NORMAL_COMPLETION)) {
1215 		DPRINTF(("RX status=%d\n", status));
1216 		if (status == USBD_STALLED)
1217 			usbd_clear_endpoint_stall_async(sc->data_rx_pipe);
1218 		if (status != USBD_CANCELLED)
1219 			goto resubmit;
1220 		return;
1221 	}
1222 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
1223 
1224 	while (len >= sizeof (*head)) {
1225 		head = (struct ar_rx_head *)buf;
1226 		if (__predict_false(head->tag != htole16(AR_RX_HEAD_TAG))) {
1227 			DPRINTF(("tag not valid 0x%x\n", letoh16(head->tag)));
1228 			break;
1229 		}
1230 		hlen = letoh16(head->len);
1231 		if (__predict_false(sizeof (*head) + hlen > len)) {
1232 			DPRINTF(("xfer too short %d/%d\n", len, hlen));
1233 			break;
1234 		}
1235 		/* Process sub-xfer. */
1236 		otus_sub_rxeof(sc, (uint8_t *)&head[1], hlen, &ml);
1237 
1238 		/* Next sub-xfer is aligned on a 32-bit boundary. */
1239 		hlen = (sizeof (*head) + hlen + 3) & ~3;
1240 		buf += hlen;
1241 		len -= hlen;
1242 	}
1243 	if_input(&sc->sc_ic.ic_if, &ml);
1244 
1245  resubmit:
1246 	usbd_setup_xfer(xfer, sc->data_rx_pipe, data, data->buf, OTUS_RXBUFSZ,
1247 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, otus_rxeof);
1248 	(void)usbd_transfer(data->xfer);
1249 }
1250 
1251 void
1252 otus_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
1253 {
1254 	struct otus_tx_data *data = priv;
1255 	struct otus_softc *sc = data->sc;
1256 	struct ieee80211com *ic = &sc->sc_ic;
1257 	struct ifnet *ifp = &ic->ic_if;
1258 	int s;
1259 
1260 	s = splnet();
1261 	sc->tx_queued--;
1262 	if (__predict_false(status != USBD_NORMAL_COMPLETION)) {
1263 		DPRINTF(("TX status=%d\n", status));
1264 		if (status == USBD_STALLED)
1265 			usbd_clear_endpoint_stall_async(sc->data_tx_pipe);
1266 		ifp->if_oerrors++;
1267 		splx(s);
1268 		return;
1269 	}
1270 	sc->sc_tx_timer = 0;
1271 	ifq_clr_oactive(&ifp->if_snd);
1272 	otus_start(ifp);
1273 	splx(s);
1274 }
1275 
1276 int
1277 otus_tx(struct otus_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
1278 {
1279 	struct ieee80211com *ic = &sc->sc_ic;
1280 	struct otus_node *on = (void *)ni;
1281 	struct otus_tx_data *data;
1282 	struct ieee80211_frame *wh;
1283 	struct ieee80211_key *k;
1284 	struct ar_tx_head *head;
1285 	uint32_t phyctl;
1286 	uint16_t macctl, qos;
1287 	uint8_t tid, qid;
1288 	int error, ridx, hasqos, xferlen;
1289 
1290 	wh = mtod(m, struct ieee80211_frame *);
1291 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1292 		k = ieee80211_get_txkey(ic, wh, ni);
1293 		if ((m = ieee80211_encrypt(ic, m, k)) == NULL)
1294 			return ENOBUFS;
1295 		wh = mtod(m, struct ieee80211_frame *);
1296 	}
1297 
1298 	if ((hasqos = ieee80211_has_qos(wh))) {
1299 		qos = ieee80211_get_qos(wh);
1300 		tid = qos & IEEE80211_QOS_TID;
1301 		qid = ieee80211_up_to_ac(ic, tid);
1302 	} else {
1303 		qos = 0;
1304 		qid = EDCA_AC_BE;
1305 	}
1306 
1307 	/* Pickup a rate index. */
1308 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1309 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_DATA)
1310 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
1311 		    OTUS_RIDX_OFDM6 : OTUS_RIDX_CCK1;
1312 	else if (ic->ic_fixed_rate != -1)
1313 		ridx = sc->fixed_ridx;
1314 	else
1315 		ridx = on->ridx[ni->ni_txrate];
1316 
1317 	phyctl = 0;
1318 	macctl = AR_TX_MAC_BACKOFF | AR_TX_MAC_HW_DUR | AR_TX_MAC_QID(qid);
1319 
1320 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1321 	    (hasqos && ((qos & IEEE80211_QOS_ACK_POLICY_MASK) ==
1322 	     IEEE80211_QOS_ACK_POLICY_NOACK)))
1323 		macctl |= AR_TX_MAC_NOACK;
1324 
1325 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1326 		if (m->m_pkthdr.len + IEEE80211_CRC_LEN >= ic->ic_rtsthreshold)
1327 			macctl |= AR_TX_MAC_RTS;
1328 		else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1329 		    ridx >= OTUS_RIDX_OFDM6) {
1330 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
1331 				macctl |= AR_TX_MAC_CTS;
1332 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
1333 				macctl |= AR_TX_MAC_RTS;
1334 		}
1335 	}
1336 
1337 	phyctl |= AR_TX_PHY_MCS(otus_rates[ridx].mcs);
1338 	if (ridx >= OTUS_RIDX_OFDM6) {
1339 		phyctl |= AR_TX_PHY_MT_OFDM;
1340 		if (ridx <= OTUS_RIDX_OFDM24)
1341 			phyctl |= AR_TX_PHY_ANTMSK(sc->txmask);
1342 		else
1343 			phyctl |= AR_TX_PHY_ANTMSK(1);
1344 	} else {	/* CCK */
1345 		phyctl |= AR_TX_PHY_MT_CCK;
1346 		phyctl |= AR_TX_PHY_ANTMSK(sc->txmask);
1347 	}
1348 
1349 	/* Update rate control stats for frames that are ACK'ed. */
1350 	if (!(macctl & AR_TX_MAC_NOACK))
1351 		((struct otus_node *)ni)->amn.amn_txcnt++;
1352 
1353 	data = &sc->tx_data[sc->tx_cur];
1354 	/* Fill Tx descriptor. */
1355 	head = (struct ar_tx_head *)data->buf;
1356 	head->len = htole16(m->m_pkthdr.len + IEEE80211_CRC_LEN);
1357 	head->macctl = htole16(macctl);
1358 	head->phyctl = htole32(phyctl);
1359 
1360 #if NBPFILTER > 0
1361 	if (__predict_false(sc->sc_drvbpf != NULL)) {
1362 		struct otus_tx_radiotap_header *tap = &sc->sc_txtap;
1363 		struct mbuf mb;
1364 
1365 		tap->wt_flags = 0;
1366 		tap->wt_rate = otus_rates[ridx].rate;
1367 		tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
1368 		tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
1369 
1370 		mb.m_data = (caddr_t)tap;
1371 		mb.m_len = sc->sc_txtap_len;
1372 		mb.m_next = m;
1373 		mb.m_nextpkt = NULL;
1374 		mb.m_type = 0;
1375 		mb.m_flags = 0;
1376 		bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT);
1377 	}
1378 #endif
1379 
1380 	xferlen = sizeof (*head) + m->m_pkthdr.len;
1381 	m_copydata(m, 0, m->m_pkthdr.len, &head[1]);
1382 	m_freem(m);
1383 
1384 	DPRINTFN(5, ("tx queued=%d len=%d mac=0x%04x phy=0x%08x rate=%d\n",
1385 	    sc->tx_queued, head->len, head->macctl, head->phyctl,
1386 	    otus_rates[ridx].rate));
1387 	usbd_setup_xfer(data->xfer, sc->data_tx_pipe, data, data->buf, xferlen,
1388 	    USBD_FORCE_SHORT_XFER | USBD_NO_COPY, OTUS_TX_TIMEOUT, otus_txeof);
1389 	error = usbd_transfer(data->xfer);
1390 	if (__predict_false(error != USBD_IN_PROGRESS && error != 0))
1391 		return error;
1392 
1393 	ieee80211_release_node(ic, ni);
1394 
1395 	sc->tx_queued++;
1396 	sc->tx_cur = (sc->tx_cur + 1) % OTUS_TX_DATA_LIST_COUNT;
1397 
1398 	return 0;
1399 }
1400 
1401 void
1402 otus_start(struct ifnet *ifp)
1403 {
1404 	struct otus_softc *sc = ifp->if_softc;
1405 	struct ieee80211com *ic = &sc->sc_ic;
1406 	struct ieee80211_node *ni;
1407 	struct mbuf *m;
1408 
1409 	if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd))
1410 		return;
1411 
1412 	for (;;) {
1413 		if (sc->tx_queued >= OTUS_TX_DATA_LIST_COUNT) {
1414 			ifq_set_oactive(&ifp->if_snd);
1415 			break;
1416 		}
1417 		/* Send pending management frames first. */
1418 		m = mq_dequeue(&ic->ic_mgtq);
1419 		if (m != NULL) {
1420 			ni = m->m_pkthdr.ph_cookie;
1421 			goto sendit;
1422 		}
1423 		if (ic->ic_state != IEEE80211_S_RUN)
1424 			break;
1425 
1426 		/* Encapsulate and send data frames. */
1427 		m = ifq_dequeue(&ifp->if_snd);
1428 		if (m == NULL)
1429 			break;
1430 #if NBPFILTER > 0
1431 		if (ifp->if_bpf != NULL)
1432 			bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT);
1433 #endif
1434 		if ((m = ieee80211_encap(ifp, m, &ni)) == NULL)
1435 			continue;
1436 sendit:
1437 #if NBPFILTER > 0
1438 		if (ic->ic_rawbpf != NULL)
1439 			bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT);
1440 #endif
1441 		if (otus_tx(sc, m, ni) != 0) {
1442 			ieee80211_release_node(ic, ni);
1443 			ifp->if_oerrors++;
1444 			continue;
1445 		}
1446 
1447 		sc->sc_tx_timer = 5;
1448 		ifp->if_timer = 1;
1449 	}
1450 }
1451 
1452 void
1453 otus_watchdog(struct ifnet *ifp)
1454 {
1455 	struct otus_softc *sc = ifp->if_softc;
1456 
1457 	ifp->if_timer = 0;
1458 
1459 	if (sc->sc_tx_timer > 0) {
1460 		if (--sc->sc_tx_timer == 0) {
1461 			printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1462 			/* otus_init(ifp); XXX needs a process context! */
1463 			ifp->if_oerrors++;
1464 			return;
1465 		}
1466 		ifp->if_timer = 1;
1467 	}
1468 	ieee80211_watchdog(ifp);
1469 }
1470 
1471 int
1472 otus_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1473 {
1474 	struct otus_softc *sc = ifp->if_softc;
1475 	struct ieee80211com *ic = &sc->sc_ic;
1476 	int s, error = 0;
1477 
1478 	if (usbd_is_dying(sc->sc_udev))
1479 		return ENXIO;
1480 
1481 	usbd_ref_incr(sc->sc_udev);
1482 
1483 	s = splnet();
1484 
1485 	switch (cmd) {
1486 	case SIOCSIFADDR:
1487 		ifp->if_flags |= IFF_UP;
1488 		/* FALLTHROUGH */
1489 	case SIOCSIFFLAGS:
1490 		if (ifp->if_flags & IFF_UP) {
1491 			if ((ifp->if_flags & IFF_RUNNING) &&
1492 			    ((ifp->if_flags ^ sc->sc_if_flags) &
1493 			     (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1494 				otus_set_multi(sc);
1495 			} else if (!(ifp->if_flags & IFF_RUNNING))
1496 				otus_init(ifp);
1497 
1498 		} else if (ifp->if_flags & IFF_RUNNING)
1499 			otus_stop(ifp);
1500 
1501 		sc->sc_if_flags = ifp->if_flags;
1502 		break;
1503 	case SIOCS80211CHANNEL:
1504 		error = ieee80211_ioctl(ifp, cmd, data);
1505 		if (error == ENETRESET &&
1506 		    ic->ic_opmode == IEEE80211_M_MONITOR) {
1507 			if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1508 			    (IFF_UP | IFF_RUNNING))
1509 				otus_set_chan(sc, ic->ic_ibss_chan, 0);
1510 			error = 0;
1511 		}
1512 		break;
1513 	default:
1514 		error = ieee80211_ioctl(ifp, cmd, data);
1515 	}
1516 
1517 	if (error == ENETRESET) {
1518 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1519 		    (IFF_UP | IFF_RUNNING))
1520 			otus_init(ifp);
1521 		error = 0;
1522 	}
1523 
1524 	splx(s);
1525 
1526 	usbd_ref_decr(sc->sc_udev);
1527 
1528 	return error;
1529 }
1530 
1531 int
1532 otus_set_multi(struct otus_softc *sc)
1533 {
1534 	struct arpcom *ac = &sc->sc_ic.ic_ac;
1535 	struct ifnet *ifp = &ac->ac_if;
1536 	struct ether_multi *enm;
1537 	struct ether_multistep step;
1538 	uint32_t lo, hi;
1539 	uint8_t bit;
1540 
1541 	if (ac->ac_multirangecnt > 0)
1542 		ifp->if_flags |= IFF_ALLMULTI;
1543 
1544 	if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1545 		lo = hi = 0xffffffff;
1546 		goto done;
1547 	}
1548 	lo = hi = 0;
1549 	ETHER_FIRST_MULTI(step, ac, enm);
1550 	while (enm != NULL) {
1551 		bit = enm->enm_addrlo[5] >> 2;
1552 		if (bit < 32)
1553 			lo |= 1 << bit;
1554 		else
1555 			hi |= 1 << (bit - 32);
1556 		ETHER_NEXT_MULTI(step, enm);
1557 	}
1558  done:
1559 	hi |= 1U << 31;	/* Make sure the broadcast bit is set. */
1560 	otus_write(sc, AR_MAC_REG_GROUP_HASH_TBL_L, lo);
1561 	otus_write(sc, AR_MAC_REG_GROUP_HASH_TBL_H, hi);
1562 	return otus_write_barrier(sc);
1563 }
1564 
1565 void
1566 otus_updateedca(struct ieee80211com *ic)
1567 {
1568 	/* Do it in a process context. */
1569 	otus_do_async(ic->ic_softc, otus_updateedca_cb, NULL, 0);
1570 }
1571 
1572 void
1573 otus_updateedca_cb(struct otus_softc *sc, void *arg)
1574 {
1575 #define EXP2(val)	((1 << (val)) - 1)
1576 #define AIFS(val)	((val) * 9 + 10)
1577 	struct ieee80211com *ic = &sc->sc_ic;
1578 	const struct ieee80211_edca_ac_params *edca;
1579 	int s;
1580 
1581 	s = splnet();
1582 
1583 	edca = (ic->ic_flags & IEEE80211_F_QOS) ?
1584 	    ic->ic_edca_ac : otus_edca_def;
1585 
1586 	/* Set CWmin/CWmax values. */
1587 	otus_write(sc, AR_MAC_REG_AC0_CW,
1588 	    EXP2(edca[EDCA_AC_BE].ac_ecwmax) << 16 |
1589 	    EXP2(edca[EDCA_AC_BE].ac_ecwmin));
1590 	otus_write(sc, AR_MAC_REG_AC1_CW,
1591 	    EXP2(edca[EDCA_AC_BK].ac_ecwmax) << 16 |
1592 	    EXP2(edca[EDCA_AC_BK].ac_ecwmin));
1593 	otus_write(sc, AR_MAC_REG_AC2_CW,
1594 	    EXP2(edca[EDCA_AC_VI].ac_ecwmax) << 16 |
1595 	    EXP2(edca[EDCA_AC_VI].ac_ecwmin));
1596 	otus_write(sc, AR_MAC_REG_AC3_CW,
1597 	    EXP2(edca[EDCA_AC_VO].ac_ecwmax) << 16 |
1598 	    EXP2(edca[EDCA_AC_VO].ac_ecwmin));
1599 	otus_write(sc, AR_MAC_REG_AC4_CW,		/* Special TXQ. */
1600 	    EXP2(edca[EDCA_AC_VO].ac_ecwmax) << 16 |
1601 	    EXP2(edca[EDCA_AC_VO].ac_ecwmin));
1602 
1603 	/* Set AIFSN values. */
1604 	otus_write(sc, AR_MAC_REG_AC1_AC0_AIFS,
1605 	    AIFS(edca[EDCA_AC_VI].ac_aifsn) << 24 |
1606 	    AIFS(edca[EDCA_AC_BK].ac_aifsn) << 12 |
1607 	    AIFS(edca[EDCA_AC_BE].ac_aifsn));
1608 	otus_write(sc, AR_MAC_REG_AC3_AC2_AIFS,
1609 	    AIFS(edca[EDCA_AC_VO].ac_aifsn) << 16 |	/* Special TXQ. */
1610 	    AIFS(edca[EDCA_AC_VO].ac_aifsn) <<  4 |
1611 	    AIFS(edca[EDCA_AC_VI].ac_aifsn) >>  8);
1612 
1613 	/* Set TXOP limit. */
1614 	otus_write(sc, AR_MAC_REG_AC1_AC0_TXOP,
1615 	    edca[EDCA_AC_BK].ac_txoplimit << 16 |
1616 	    edca[EDCA_AC_BE].ac_txoplimit);
1617 	otus_write(sc, AR_MAC_REG_AC3_AC2_TXOP,
1618 	    edca[EDCA_AC_VO].ac_txoplimit << 16 |
1619 	    edca[EDCA_AC_VI].ac_txoplimit);
1620 
1621 	splx(s);
1622 
1623 	(void)otus_write_barrier(sc);
1624 #undef AIFS
1625 #undef EXP2
1626 }
1627 
1628 void
1629 otus_updateslot(struct ieee80211com *ic)
1630 {
1631 	/* Do it in a process context. */
1632 	otus_do_async(ic->ic_softc, otus_updateslot_cb, NULL, 0);
1633 }
1634 
1635 void
1636 otus_updateslot_cb(struct otus_softc *sc, void *arg)
1637 {
1638 	uint32_t slottime;
1639 
1640 	slottime = (sc->sc_ic.ic_flags & IEEE80211_F_SHSLOT) ?
1641 	    IEEE80211_DUR_DS_SHSLOT: IEEE80211_DUR_DS_SLOT;
1642 	otus_write(sc, AR_MAC_REG_SLOT_TIME, slottime << 10);
1643 	(void)otus_write_barrier(sc);
1644 }
1645 
1646 int
1647 otus_init_mac(struct otus_softc *sc)
1648 {
1649 	int error;
1650 
1651 	otus_write(sc, AR_MAC_REG_ACK_EXTENSION, 0x40);
1652 	otus_write(sc, AR_MAC_REG_RETRY_MAX, 0);
1653 	otus_write(sc, AR_MAC_REG_SNIFFER, 0x2000000);
1654 	otus_write(sc, AR_MAC_REG_RX_THRESHOLD, 0xc1f80);
1655 	otus_write(sc, AR_MAC_REG_RX_PE_DELAY, 0x70);
1656 	otus_write(sc, AR_MAC_REG_EIFS_AND_SIFS, 0xa144000);
1657 	otus_write(sc, AR_MAC_REG_SLOT_TIME, 9 << 10);
1658 	otus_write(sc, 0x1c3b2c, 0x19000000);
1659 	/* NAV protects ACK only (in TXOP). */
1660 	otus_write(sc, 0x1c3b38, 0x201);
1661 	/* Set beacon Tx power to 0x7. */
1662 	otus_write(sc, AR_MAC_REG_BCN_HT1, 0x8000170);
1663 	otus_write(sc, AR_MAC_REG_BACKOFF_PROTECT, 0x105);
1664 	otus_write(sc, 0x1c3b9c, 0x10000a);
1665 	/* Filter any control frames, BAR is bit 24. */
1666 	otus_write(sc, 0x1c368c, 0x0500ffff);
1667 	otus_write(sc, 0x1c3c40, 0x1);
1668 	otus_write(sc, AR_MAC_REG_BASIC_RATE, 0x150f);
1669 	otus_write(sc, AR_MAC_REG_MANDATORY_RATE, 0x150f);
1670 	otus_write(sc, AR_MAC_REG_RTS_CTS_RATE, 0x10b01bb);
1671 	otus_write(sc, 0x1c3694, 0x4003c1e);
1672 	/* Enable LED0 and LED1. */
1673 	otus_write(sc, 0x1d0100, 0x3);
1674 	otus_write(sc, 0x1d0104, 0x3);
1675 	/* Switch MAC to OTUS interface. */
1676 	otus_write(sc, 0x1c3600, 0x3);
1677 	otus_write(sc, 0x1c3c50, 0xffff);
1678 	otus_write(sc, 0x1c3680, 0xf00008);
1679 	/* Disable Rx timeout (workaround). */
1680 	otus_write(sc, 0x1c362c, 0);
1681 
1682 	/* Set USB Rx stream mode maximum frame number to 2. */
1683 	otus_write(sc, 0x1e1110, 0x4);
1684 	/* Set USB Rx stream mode timeout to 10us. */
1685 	otus_write(sc, 0x1e1114, 0x80);
1686 
1687 	/* Set clock frequency to 88/80MHz. */
1688 	otus_write(sc, 0x1d4008, 0x73);
1689 	/* Set WLAN DMA interrupt mode: generate intr per packet. */
1690 	otus_write(sc, 0x1c3d7c, 0x110011);
1691 	otus_write(sc, 0x1c3bb0, 0x4);
1692 	otus_write(sc, AR_MAC_REG_TXOP_NOT_ENOUGH_INDICATION, 0x141e0f48);
1693 
1694 	/* Disable HW decryption for now. */
1695 	otus_write(sc, 0x1c3678, 0x78);
1696 
1697 	if ((error = otus_write_barrier(sc)) != 0)
1698 		return error;
1699 
1700 	/* Set default EDCA parameters. */
1701 	otus_updateedca_cb(sc, NULL);
1702 
1703 	return 0;
1704 }
1705 
1706 /*
1707  * Return default value for PHY register based on current operating mode.
1708  */
1709 uint32_t
1710 otus_phy_get_def(struct otus_softc *sc, uint32_t reg)
1711 {
1712 	int i;
1713 
1714 	for (i = 0; i < nitems(ar5416_phy_regs); i++)
1715 		if (AR_PHY(ar5416_phy_regs[i]) == reg)
1716 			return sc->phy_vals[i];
1717 	return 0;	/* Register not found. */
1718 }
1719 
1720 /*
1721  * Update PHY's programming based on vendor-specific data stored in EEPROM.
1722  * This is for FEM-type devices only.
1723  */
1724 int
1725 otus_set_board_values(struct otus_softc *sc, struct ieee80211_channel *c)
1726 {
1727 	const struct ModalEepHeader *eep;
1728 	uint32_t tmp, offset;
1729 
1730 	if (IEEE80211_IS_CHAN_5GHZ(c))
1731 		eep = &sc->eeprom.modalHeader[0];
1732 	else
1733 		eep = &sc->eeprom.modalHeader[1];
1734 
1735 	/* Offset of chain 2. */
1736 	offset = 2 * 0x1000;
1737 
1738 	tmp = letoh32(eep->antCtrlCommon);
1739 	otus_write(sc, AR_PHY_SWITCH_COM, tmp);
1740 
1741 	tmp = letoh32(eep->antCtrlChain[0]);
1742 	otus_write(sc, AR_PHY_SWITCH_CHAIN_0, tmp);
1743 
1744 	tmp = letoh32(eep->antCtrlChain[1]);
1745 	otus_write(sc, AR_PHY_SWITCH_CHAIN_0 + offset, tmp);
1746 
1747 	if (1 /* sc->sc_sco == AR_SCO_SCN */) {
1748 		tmp = otus_phy_get_def(sc, AR_PHY_SETTLING);
1749 		tmp &= ~(0x7f << 7);
1750 		tmp |= (eep->switchSettling & 0x7f) << 7;
1751 		otus_write(sc, AR_PHY_SETTLING, tmp);
1752 	}
1753 
1754 	tmp = otus_phy_get_def(sc, AR_PHY_DESIRED_SZ);
1755 	tmp &= ~0xffff;
1756 	tmp |= eep->pgaDesiredSize << 8 | eep->adcDesiredSize;
1757 	otus_write(sc, AR_PHY_DESIRED_SZ, tmp);
1758 
1759 	tmp = eep->txEndToXpaOff << 24 | eep->txEndToXpaOff << 16 |
1760 	      eep->txFrameToXpaOn << 8 | eep->txFrameToXpaOn;
1761 	otus_write(sc, AR_PHY_RF_CTL4, tmp);
1762 
1763 	tmp = otus_phy_get_def(sc, AR_PHY_RF_CTL3);
1764 	tmp &= ~(0xff << 16);
1765 	tmp |= eep->txEndToRxOn << 16;
1766 	otus_write(sc, AR_PHY_RF_CTL3, tmp);
1767 
1768 	tmp = otus_phy_get_def(sc, AR_PHY_CCA);
1769 	tmp &= ~(0x7f << 12);
1770 	tmp |= (eep->thresh62 & 0x7f) << 12;
1771 	otus_write(sc, AR_PHY_CCA, tmp);
1772 
1773 	tmp = otus_phy_get_def(sc, AR_PHY_RXGAIN);
1774 	tmp &= ~(0x3f << 12);
1775 	tmp |= (eep->txRxAttenCh[0] & 0x3f) << 12;
1776 	otus_write(sc, AR_PHY_RXGAIN, tmp);
1777 
1778 	tmp = otus_phy_get_def(sc, AR_PHY_RXGAIN + offset);
1779 	tmp &= ~(0x3f << 12);
1780 	tmp |= (eep->txRxAttenCh[1] & 0x3f) << 12;
1781 	otus_write(sc, AR_PHY_RXGAIN + offset, tmp);
1782 
1783 	tmp = otus_phy_get_def(sc, AR_PHY_GAIN_2GHZ);
1784 	tmp &= ~(0x3f << 18);
1785 	tmp |= (eep->rxTxMarginCh[0] & 0x3f) << 18;
1786 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
1787 		tmp &= ~(0xf << 10);
1788 		tmp |= (eep->bswMargin[0] & 0xf) << 10;
1789 	}
1790 	otus_write(sc, AR_PHY_GAIN_2GHZ, tmp);
1791 
1792 	tmp = otus_phy_get_def(sc, AR_PHY_GAIN_2GHZ + offset);
1793 	tmp &= ~(0x3f << 18);
1794 	tmp |= (eep->rxTxMarginCh[1] & 0x3f) << 18;
1795 	otus_write(sc, AR_PHY_GAIN_2GHZ + offset, tmp);
1796 
1797 	tmp = otus_phy_get_def(sc, AR_PHY_TIMING_CTRL4);
1798 	tmp &= ~(0x3f << 5 | 0x1f);
1799 	tmp |= (eep->iqCalICh[0] & 0x3f) << 5 | (eep->iqCalQCh[0] & 0x1f);
1800 	otus_write(sc, AR_PHY_TIMING_CTRL4, tmp);
1801 
1802 	tmp = otus_phy_get_def(sc, AR_PHY_TIMING_CTRL4 + offset);
1803 	tmp &= ~(0x3f << 5 | 0x1f);
1804 	tmp |= (eep->iqCalICh[1] & 0x3f) << 5 | (eep->iqCalQCh[1] & 0x1f);
1805 	otus_write(sc, AR_PHY_TIMING_CTRL4 + offset, tmp);
1806 
1807 	tmp = otus_phy_get_def(sc, AR_PHY_TPCRG1);
1808 	tmp &= ~(0xf << 16);
1809 	tmp |= (eep->xpd & 0xf) << 16;
1810 	otus_write(sc, AR_PHY_TPCRG1, tmp);
1811 
1812 	return otus_write_barrier(sc);
1813 }
1814 
1815 int
1816 otus_program_phy(struct otus_softc *sc, struct ieee80211_channel *c)
1817 {
1818 	const uint32_t *vals;
1819 	int error, i;
1820 
1821 	/* Select PHY programming based on band and bandwidth. */
1822 	if (IEEE80211_IS_CHAN_2GHZ(c))
1823 		vals = ar5416_phy_vals_2ghz_20mhz;
1824 	else
1825 		vals = ar5416_phy_vals_5ghz_20mhz;
1826 	for (i = 0; i < nitems(ar5416_phy_regs); i++)
1827 		otus_write(sc, AR_PHY(ar5416_phy_regs[i]), vals[i]);
1828 	sc->phy_vals = vals;
1829 
1830 	if (sc->eeprom.baseEepHeader.deviceType == 0x80)	/* FEM */
1831 		if ((error = otus_set_board_values(sc, c)) != 0)
1832 			return error;
1833 
1834 	/* Initial Tx power settings. */
1835 	otus_write(sc, AR_PHY_POWER_TX_RATE_MAX, 0x7f);
1836 	otus_write(sc, AR_PHY_POWER_TX_RATE1, 0x3f3f3f3f);
1837 	otus_write(sc, AR_PHY_POWER_TX_RATE2, 0x3f3f3f3f);
1838 	otus_write(sc, AR_PHY_POWER_TX_RATE3, 0x3f3f3f3f);
1839 	otus_write(sc, AR_PHY_POWER_TX_RATE4, 0x3f3f3f3f);
1840 	otus_write(sc, AR_PHY_POWER_TX_RATE5, 0x3f3f3f3f);
1841 	otus_write(sc, AR_PHY_POWER_TX_RATE6, 0x3f3f3f3f);
1842 	otus_write(sc, AR_PHY_POWER_TX_RATE7, 0x3f3f3f3f);
1843 	otus_write(sc, AR_PHY_POWER_TX_RATE8, 0x3f3f3f3f);
1844 	otus_write(sc, AR_PHY_POWER_TX_RATE9, 0x3f3f3f3f);
1845 
1846 	if (IEEE80211_IS_CHAN_2GHZ(c))
1847 		otus_write(sc, 0x1d4014, 0x5163);
1848 	else
1849 		otus_write(sc, 0x1d4014, 0x5143);
1850 
1851 	return otus_write_barrier(sc);
1852 }
1853 
1854 static __inline uint8_t
1855 otus_reverse_bits(uint8_t v)
1856 {
1857 	v = ((v >> 1) & 0x55) | ((v & 0x55) << 1);
1858 	v = ((v >> 2) & 0x33) | ((v & 0x33) << 2);
1859 	v = ((v >> 4) & 0x0f) | ((v & 0x0f) << 4);
1860 	return v;
1861 }
1862 
1863 int
1864 otus_set_rf_bank4(struct otus_softc *sc, struct ieee80211_channel *c)
1865 {
1866 	uint8_t chansel, d0, d1;
1867 	uint16_t data;
1868 	int error;
1869 
1870 	d0 = 0;
1871 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
1872 		chansel = (c->ic_freq - 4800) / 5;
1873 		if (chansel & 1)
1874 			d0 |= AR_BANK4_AMODE_REFSEL(2);
1875 		else
1876 			d0 |= AR_BANK4_AMODE_REFSEL(1);
1877 	} else {
1878 		d0 |= AR_BANK4_AMODE_REFSEL(2);
1879 		if (c->ic_freq == 2484) {	/* CH 14 */
1880 			d0 |= AR_BANK4_BMODE_LF_SYNTH_FREQ;
1881 			chansel = 10 + (c->ic_freq - 2274) / 5;
1882 		} else
1883 			chansel = 16 + (c->ic_freq - 2272) / 5;
1884 		chansel <<= 2;
1885 	}
1886 	d0 |= AR_BANK4_ADDR(1) | AR_BANK4_CHUP;
1887 	d1 = otus_reverse_bits(chansel);
1888 
1889 	/* Write bits 0-4 of d0 and d1. */
1890 	data = (d1 & 0x1f) << 5 | (d0 & 0x1f);
1891 	otus_write(sc, AR_PHY(44), data);
1892 	/* Write bits 5-7 of d0 and d1. */
1893 	data = (d1 >> 5) << 5 | (d0 >> 5);
1894 	otus_write(sc, AR_PHY(58), data);
1895 
1896 	if ((error = otus_write_barrier(sc)) == 0)
1897 		usbd_delay_ms(sc->sc_udev, 10);
1898 	return error;
1899 }
1900 
1901 void
1902 otus_get_delta_slope(uint32_t coeff, uint32_t *exponent, uint32_t *mantissa)
1903 {
1904 #define COEFF_SCALE_SHIFT	24
1905 	uint32_t exp, man;
1906 
1907 	/* exponent = 14 - floor(log2(coeff)) */
1908 	for (exp = 31; exp > 0; exp--)
1909 		if (coeff & (1 << exp))
1910 			break;
1911 	KASSERT(exp != 0);
1912 	exp = 14 - (exp - COEFF_SCALE_SHIFT);
1913 
1914 	/* mantissa = floor(coeff * 2^exponent + 0.5) */
1915 	man = coeff + (1 << (COEFF_SCALE_SHIFT - exp - 1));
1916 
1917 	*mantissa = man >> (COEFF_SCALE_SHIFT - exp);
1918 	*exponent = exp - 16;
1919 #undef COEFF_SCALE_SHIFT
1920 }
1921 
1922 int
1923 otus_set_chan(struct otus_softc *sc, struct ieee80211_channel *c, int assoc)
1924 {
1925 	struct ieee80211com *ic = &sc->sc_ic;
1926 	struct ar_cmd_frequency cmd;
1927 	struct ar_rsp_frequency rsp;
1928 	const uint32_t *vals;
1929 	uint32_t coeff, exp, man, tmp;
1930 	uint8_t code;
1931 	int error, chan, i;
1932 
1933 	chan = ieee80211_chan2ieee(ic, c);
1934 	DPRINTF(("setting channel %d (%dMHz)\n", chan, c->ic_freq));
1935 
1936 	tmp = IEEE80211_IS_CHAN_2GHZ(c) ? 0x105 : 0x104;
1937 	otus_write(sc, AR_MAC_REG_DYNAMIC_SIFS_ACK, tmp);
1938 	if ((error = otus_write_barrier(sc)) != 0)
1939 		return error;
1940 
1941 	/* Disable BB Heavy Clip. */
1942 	otus_write(sc, AR_PHY_HEAVY_CLIP_ENABLE, 0x200);
1943 	if ((error = otus_write_barrier(sc)) != 0)
1944 		return error;
1945 
1946 	/* XXX Is that FREQ_START ? */
1947 	error = otus_cmd(sc, AR_CMD_FREQ_STRAT, NULL, 0, NULL);
1948 	if (error != 0)
1949 		return error;
1950 
1951 	/* Reprogram PHY and RF on channel band or bandwidth changes. */
1952 	if (sc->bb_reset || c->ic_flags != sc->sc_curchan->ic_flags) {
1953 		DPRINTF(("band switch\n"));
1954 
1955 		/* Cold/Warm reset BB/ADDA. */
1956 		otus_write(sc, 0x1d4004, sc->bb_reset ? 0x800 : 0x400);
1957 		if ((error = otus_write_barrier(sc)) != 0)
1958 			return error;
1959 		otus_write(sc, 0x1d4004, 0);
1960 		if ((error = otus_write_barrier(sc)) != 0)
1961 			return error;
1962 		sc->bb_reset = 0;
1963 
1964 		if ((error = otus_program_phy(sc, c)) != 0) {
1965 			printf("%s: could not program PHY\n",
1966 			    sc->sc_dev.dv_xname);
1967 			return error;
1968 		}
1969 
1970 		/* Select RF programming based on band. */
1971 		if (IEEE80211_IS_CHAN_5GHZ(c))
1972 			vals = ar5416_banks_vals_5ghz;
1973 		else
1974 			vals = ar5416_banks_vals_2ghz;
1975 		for (i = 0; i < nitems(ar5416_banks_regs); i++)
1976 			otus_write(sc, AR_PHY(ar5416_banks_regs[i]), vals[i]);
1977 		if ((error = otus_write_barrier(sc)) != 0) {
1978 			printf("%s: could not program RF\n",
1979 			    sc->sc_dev.dv_xname);
1980 			return error;
1981 		}
1982 		code = AR_CMD_RF_INIT;
1983 	} else {
1984 		code = AR_CMD_FREQUENCY;
1985 	}
1986 
1987 	if ((error = otus_set_rf_bank4(sc, c)) != 0)
1988 		return error;
1989 
1990 	tmp = (sc->txmask == 0x5) ? 0x340 : 0x240;
1991 	otus_write(sc, AR_PHY_TURBO, tmp);
1992 	if ((error = otus_write_barrier(sc)) != 0)
1993 		return error;
1994 
1995 	/* Send firmware command to set channel. */
1996 	cmd.freq = htole32((uint32_t)c->ic_freq * 1000);
1997 	cmd.dynht2040 = htole32(0);
1998 	cmd.htena = htole32(1);
1999 	/* Set Delta Slope (exponent and mantissa). */
2000 	coeff = (100 << 24) / c->ic_freq;
2001 	otus_get_delta_slope(coeff, &exp, &man);
2002 	cmd.dsc_exp = htole32(exp);
2003 	cmd.dsc_man = htole32(man);
2004 	DPRINTF(("ds coeff=%u exp=%u man=%u\n", coeff, exp, man));
2005 	/* For Short GI, coeff is 9/10 that of normal coeff. */
2006 	coeff = (9 * coeff) / 10;
2007 	otus_get_delta_slope(coeff, &exp, &man);
2008 	cmd.dsc_shgi_exp = htole32(exp);
2009 	cmd.dsc_shgi_man = htole32(man);
2010 	DPRINTF(("ds shgi coeff=%u exp=%u man=%u\n", coeff, exp, man));
2011 	/* Set wait time for AGC and noise calibration (100 or 200ms). */
2012 	cmd.check_loop_count = assoc ? htole32(2000) : htole32(1000);
2013 	DPRINTF(("%s\n", (code == AR_CMD_RF_INIT) ? "RF_INIT" : "FREQUENCY"));
2014 	error = otus_cmd(sc, code, &cmd, sizeof cmd, &rsp);
2015 	if (error != 0)
2016 		return error;
2017 	if ((rsp.status & htole32(AR_CAL_ERR_AGC | AR_CAL_ERR_NF_VAL)) != 0) {
2018 		DPRINTF(("status=0x%x\n", letoh32(rsp.status)));
2019 		/* Force cold reset on next channel. */
2020 		sc->bb_reset = 1;
2021 	}
2022 #ifdef OTUS_DEBUG
2023 	if (otus_debug) {
2024 		printf("calibration status=0x%x\n", letoh32(rsp.status));
2025 		for (i = 0; i < 2; i++) {	/* 2 Rx chains */
2026 			/* Sign-extend 9-bit NF values. */
2027 			printf("noisefloor chain %d=%d\n", i,
2028 			    (((int32_t)letoh32(rsp.nf[i])) << 4) >> 23);
2029 			printf("noisefloor ext chain %d=%d\n", i,
2030 			    ((int32_t)letoh32(rsp.nf_ext[i])) >> 23);
2031 		}
2032 	}
2033 #endif
2034 	sc->sc_curchan = c;
2035 	return 0;
2036 }
2037 
2038 #ifdef notyet
2039 int
2040 otus_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
2041     struct ieee80211_key *k)
2042 {
2043 	struct otus_softc *sc = ic->ic_softc;
2044 	struct otus_cmd_key cmd;
2045 
2046 	/* Defer setting of WEP keys until interface is brought up. */
2047 	if ((ic->ic_if.if_flags & (IFF_UP | IFF_RUNNING)) !=
2048 	    (IFF_UP | IFF_RUNNING))
2049 		return 0;
2050 
2051 	/* Do it in a process context. */
2052 	cmd.key = *k;
2053 	cmd.ni = *ni;
2054 	otus_do_async(sc, otus_set_key_cb, &cmd, sizeof cmd);
2055 	sc->sc_key_tasks++
2056 	return EBUSY;
2057 }
2058 
2059 void
2060 otus_set_key_cb(struct otus_softc *sc, void *arg)
2061 {
2062 	struct otus_cmd_key *cmd = arg;
2063 	struct ieee80211_key *k = &cmd->key;
2064 	struct ar_cmd_ekey key;
2065 	uint16_t cipher;
2066 	int error;
2067 
2068 	sc->sc_keys_tasks--;
2069 
2070 	memset(&key, 0, sizeof key);
2071 	if (k->k_flags & IEEE80211_KEY_GROUP) {
2072 		key.uid = htole16(k->k_id);
2073 		IEEE80211_ADDR_COPY(key.macaddr, sc->sc_ic.ic_myaddr);
2074 		key.macaddr[0] |= 0x80;
2075 	} else {
2076 		key.uid = htole16(OTUS_UID(cmd->associd));
2077 		IEEE80211_ADDR_COPY(key.macaddr, ni->ni_macaddr);
2078 	}
2079 	key.kix = htole16(0);
2080 	/* Map net80211 cipher to hardware. */
2081 	switch (k->k_cipher) {
2082 	case IEEE80211_CIPHER_WEP40:
2083 		cipher = AR_CIPHER_WEP64;
2084 		break;
2085 	case IEEE80211_CIPHER_WEP104:
2086 		cipher = AR_CIPHER_WEP128;
2087 		break;
2088 	case IEEE80211_CIPHER_TKIP:
2089 		cipher = AR_CIPHER_TKIP;
2090 		break;
2091 	case IEEE80211_CIPHER_CCMP:
2092 		cipher = AR_CIPHER_AES;
2093 		break;
2094 	default:
2095 		IEEE80211_SEND_MGMT(ic, cmd->ni, IEEE80211_FC0_SUBTYPE_DEAUTH,
2096 		    IEEE80211_REASON_AUTH_LEAVE);
2097 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2098 		return;
2099 	}
2100 	key.cipher = htole16(cipher);
2101 	memcpy(key.key, k->k_key, MIN(k->k_len, 16));
2102 	error = otus_cmd(sc, AR_CMD_EKEY, &key, sizeof key, NULL);
2103 	if (error != 0 || k->k_cipher != IEEE80211_CIPHER_TKIP) {
2104 		IEEE80211_SEND_MGMT(ic, cmd->ni, IEEE80211_FC0_SUBTYPE_DEAUTH,
2105 		    IEEE80211_REASON_AUTH_LEAVE);
2106 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2107 		return;
2108 	}
2109 
2110 	/* TKIP: set Tx/Rx MIC Key. */
2111 	key.kix = htole16(1);
2112 	memcpy(key.key, k->k_key + 16, 16);
2113 	(void)otus_cmd(sc, AR_CMD_EKEY, &key, sizeof key, NULL);
2114 
2115 	if (sc->sc_key_tasks == 0) {
2116 		DPRINTF(("marking port %s valid\n",
2117 		    ether_sprintf(cmd->ni->ni_macaddr)));
2118 		cmd->ni->ni_port_valid = 1;
2119 		ieee80211_set_link_state(ic, LINK_STATE_UP);
2120 	}
2121 }
2122 
2123 void
2124 otus_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
2125     struct ieee80211_key *k)
2126 {
2127 	struct otus_softc *sc = ic->ic_softc;
2128 	struct otus_cmd_key cmd;
2129 
2130 	if (!(ic->ic_if.if_flags & IFF_RUNNING) ||
2131 	    ic->ic_state != IEEE80211_S_RUN)
2132 		return;	/* Nothing to do. */
2133 
2134 	/* Do it in a process context. */
2135 	cmd.key = *k;
2136 	cmd.associd = (ni != NULL) ? ni->ni_associd : 0;
2137 	otus_do_async(sc, otus_delete_key_cb, &cmd, sizeof cmd);
2138 }
2139 
2140 void
2141 otus_delete_key_cb(struct otus_softc *sc, void *arg)
2142 {
2143 	struct otus_cmd_key *cmd = arg;
2144 	struct ieee80211_key *k = &cmd->key;
2145 	uint32_t uid;
2146 
2147 	if (k->k_flags & IEEE80211_KEY_GROUP)
2148 		uid = htole32(k->k_id);
2149 	else
2150 		uid = htole32(OTUS_UID(cmd->associd));
2151 	(void)otus_cmd(sc, AR_CMD_DKEY, &uid, sizeof uid, NULL);
2152 }
2153 #endif
2154 
2155 void
2156 otus_calibrate_to(void *arg)
2157 {
2158 	struct otus_softc *sc = arg;
2159 	struct ieee80211com *ic = &sc->sc_ic;
2160 	struct ieee80211_node *ni;
2161 	int s;
2162 
2163 	if (usbd_is_dying(sc->sc_udev))
2164 		return;
2165 
2166 	usbd_ref_incr(sc->sc_udev);
2167 
2168 	s = splnet();
2169 	ni = ic->ic_bss;
2170 	ieee80211_amrr_choose(&sc->amrr, ni, &((struct otus_node *)ni)->amn);
2171 	splx(s);
2172 
2173 	if (!usbd_is_dying(sc->sc_udev))
2174 		timeout_add_sec(&sc->calib_to, 1);
2175 
2176 	usbd_ref_decr(sc->sc_udev);
2177 }
2178 
2179 int
2180 otus_set_bssid(struct otus_softc *sc, const uint8_t *bssid)
2181 {
2182 	otus_write(sc, AR_MAC_REG_BSSID_L,
2183 	    bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24);
2184 	otus_write(sc, AR_MAC_REG_BSSID_H,
2185 	    bssid[4] | bssid[5] << 8);
2186 	return otus_write_barrier(sc);
2187 }
2188 
2189 int
2190 otus_set_macaddr(struct otus_softc *sc, const uint8_t *addr)
2191 {
2192 	otus_write(sc, AR_MAC_REG_MAC_ADDR_L,
2193 	    addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24);
2194 	otus_write(sc, AR_MAC_REG_MAC_ADDR_H,
2195 	    addr[4] | addr[5] << 8);
2196 	return otus_write_barrier(sc);
2197 }
2198 
2199 /* Default single-LED. */
2200 void
2201 otus_led_newstate_type1(struct otus_softc *sc)
2202 {
2203 	/* TBD */
2204 }
2205 
2206 /* NETGEAR, dual-LED. */
2207 void
2208 otus_led_newstate_type2(struct otus_softc *sc)
2209 {
2210 	/* TBD */
2211 }
2212 
2213 /* NETGEAR, single-LED/3 colors (blue, red, purple.) */
2214 void
2215 otus_led_newstate_type3(struct otus_softc *sc)
2216 {
2217 	struct ieee80211com *ic = &sc->sc_ic;
2218 	uint32_t state = sc->led_state;
2219 
2220 	if (ic->ic_state == IEEE80211_S_INIT) {
2221 		state = 0;	/* LED off. */
2222 	} else if (ic->ic_state == IEEE80211_S_RUN) {
2223 		/* Associated, LED always on. */
2224 		if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan))
2225 			state = AR_LED0_ON;	/* 2GHz=>Red. */
2226 		else
2227 			state = AR_LED1_ON;	/* 5GHz=>Blue. */
2228 	} else {
2229 		/* Scanning, blink LED. */
2230 		state ^= AR_LED0_ON | AR_LED1_ON;
2231 		if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan))
2232 			state &= ~AR_LED1_ON;
2233 		else
2234 			state &= ~AR_LED0_ON;
2235 	}
2236 	if (state != sc->led_state) {
2237 		otus_write(sc, 0x1d0104, state);
2238 		if (otus_write_barrier(sc) == 0)
2239 			sc->led_state = state;
2240 	}
2241 }
2242 
2243 int
2244 otus_init(struct ifnet *ifp)
2245 {
2246 	struct otus_softc *sc = ifp->if_softc;
2247 	struct ieee80211com *ic = &sc->sc_ic;
2248 	int error;
2249 
2250 	/* Init host command ring. */
2251 	sc->cmdq.cur = sc->cmdq.next = sc->cmdq.queued = 0;
2252 
2253 	if ((error = otus_init_mac(sc)) != 0) {
2254 		printf("%s: could not initialize MAC\n", sc->sc_dev.dv_xname);
2255 		return error;
2256 	}
2257 
2258 	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
2259 	(void)otus_set_macaddr(sc, ic->ic_myaddr);
2260 
2261 	switch (ic->ic_opmode) {
2262 #ifdef notyet
2263 #ifndef IEEE80211_STA_ONLY
2264 	case IEEE80211_M_HOSTAP:
2265 		otus_write(sc, 0x1c3700, 0x0f0000a1);
2266 		otus_write(sc, 0x1c3c40, 0x1);
2267 		break;
2268 	case IEEE80211_M_IBSS:
2269 		otus_write(sc, 0x1c3700, 0x0f000000);
2270 		otus_write(sc, 0x1c3c40, 0x1);
2271 		break;
2272 #endif
2273 #endif
2274 	case IEEE80211_M_STA:
2275 		otus_write(sc, 0x1c3700, 0x0f000002);
2276 		otus_write(sc, 0x1c3c40, 0x1);
2277 		break;
2278 	default:
2279 		break;
2280 	}
2281 	otus_write(sc, AR_MAC_REG_SNIFFER,
2282 	    (ic->ic_opmode == IEEE80211_M_MONITOR) ? 0x2000001 : 0x2000000);
2283 	(void)otus_write_barrier(sc);
2284 
2285 	sc->bb_reset = 1;	/* Force cold reset. */
2286 	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2287 	if ((error = otus_set_chan(sc, ic->ic_ibss_chan, 0)) != 0) {
2288 		printf("%s: could not set channel\n", sc->sc_dev.dv_xname);
2289 		return error;
2290 	}
2291 
2292 	/* Start Rx. */
2293 	otus_write(sc, AR_MAC_REG_DMA_TRIGGER, AR_DMA_TRIGGER_RXQ);
2294 	(void)otus_write_barrier(sc);
2295 
2296 	ifp->if_flags |= IFF_RUNNING;
2297 	ifq_clr_oactive(&ifp->if_snd);
2298 
2299 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2300 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2301 	else
2302 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2303 
2304 	return 0;
2305 }
2306 
2307 void
2308 otus_stop(struct ifnet *ifp)
2309 {
2310 	struct otus_softc *sc = ifp->if_softc;
2311 	struct ieee80211com *ic = &sc->sc_ic;
2312 	int s;
2313 
2314 	sc->sc_tx_timer = 0;
2315 	ifp->if_timer = 0;
2316 	ifp->if_flags &= ~IFF_RUNNING;
2317 	ifq_clr_oactive(&ifp->if_snd);
2318 
2319 	timeout_del(&sc->scan_to);
2320 	timeout_del(&sc->calib_to);
2321 
2322 	s = splusb();
2323 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2324 	/* Wait for all queued asynchronous commands to complete. */
2325 	usb_wait_task(sc->sc_udev, &sc->sc_task);
2326 	splx(s);
2327 
2328 	/* Stop Rx. */
2329 	otus_write(sc, AR_MAC_REG_DMA_TRIGGER, 0);
2330 	(void)otus_write_barrier(sc);
2331 
2332 	sc->tx_queued = 0;
2333 }
2334