xref: /openbsd/sys/dev/usb/if_rum.c (revision 404b540a)
1 /*	$OpenBSD: if_rum.c,v 1.87 2009/10/13 19:33:17 pirofti Exp $	*/
2 
3 /*-
4  * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr>
5  * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*-
21  * Ralink Technology RT2501USB/RT2601USB chipset driver
22  * http://www.ralinktech.com.tw/
23  */
24 
25 #include "bpfilter.h"
26 
27 #include <sys/param.h>
28 #include <sys/sockio.h>
29 #include <sys/sysctl.h>
30 #include <sys/mbuf.h>
31 #include <sys/kernel.h>
32 #include <sys/socket.h>
33 #include <sys/systm.h>
34 #include <sys/timeout.h>
35 #include <sys/conf.h>
36 #include <sys/device.h>
37 
38 #include <machine/bus.h>
39 #include <machine/endian.h>
40 #include <machine/intr.h>
41 
42 #if NBPFILTER > 0
43 #include <net/bpf.h>
44 #endif
45 #include <net/if.h>
46 #include <net/if_arp.h>
47 #include <net/if_dl.h>
48 #include <net/if_media.h>
49 #include <net/if_types.h>
50 
51 #include <netinet/in.h>
52 #include <netinet/in_systm.h>
53 #include <netinet/in_var.h>
54 #include <netinet/if_ether.h>
55 #include <netinet/ip.h>
56 
57 #include <net80211/ieee80211_var.h>
58 #include <net80211/ieee80211_amrr.h>
59 #include <net80211/ieee80211_radiotap.h>
60 
61 #include <dev/usb/usb.h>
62 #include <dev/usb/usbdi.h>
63 #include <dev/usb/usbdi_util.h>
64 #include <dev/usb/usbdevs.h>
65 
66 #include <dev/usb/if_rumreg.h>
67 #include <dev/usb/if_rumvar.h>
68 
69 #ifdef USB_DEBUG
70 #define RUM_DEBUG
71 #endif
72 
73 #ifdef RUM_DEBUG
74 #define DPRINTF(x)	do { if (rum_debug) printf x; } while (0)
75 #define DPRINTFN(n, x)	do { if (rum_debug >= (n)) printf x; } while (0)
76 int rum_debug = 0;
77 #else
78 #define DPRINTF(x)
79 #define DPRINTFN(n, x)
80 #endif
81 
82 /* various supported device vendors/products */
83 static const struct usb_devno rum_devs[] = {
84 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_HWU54DM },
85 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_2 },
86 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_3 },
87 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_4 },
88 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_WUG2700 },
89 	{ USB_VENDOR_AMIT,		USB_PRODUCT_AMIT_CGWLUSB2GO },
90 	{ USB_VENDOR_ASUS,		USB_PRODUCT_ASUS_RT2573_1 },
91 	{ USB_VENDOR_ASUS,		USB_PRODUCT_ASUS_RT2573_2 },
92 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050A },
93 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D9050V3 },
94 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D9050C },
95 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB200 },
96 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
97 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GR },
98 	{ USB_VENDOR_CONCEPTRONIC2,	USB_PRODUCT_CONCEPTRONIC2_C54RU2 },
99 	{ USB_VENDOR_CONCEPTRONIC2,	USB_PRODUCT_CONCEPTRONIC2_RT2573 },
100 	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GL },
101 	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GPX },
102 	{ USB_VENDOR_DICKSMITH,		USB_PRODUCT_DICKSMITH_CWD854F },
103 	{ USB_VENDOR_DICKSMITH,		USB_PRODUCT_DICKSMITH_RT2573 },
104 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWA111 },
105 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWA110 },
106 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWLG122C1 },
107 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_WUA1340 },
108 	{ USB_VENDOR_EDIMAX,		USB_PRODUCT_EDIMAX_EW7318 },
109 	{ USB_VENDOR_EDIMAX,		USB_PRODUCT_EDIMAX_EW7618 },
110 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWB01GS },
111 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWI05GS },
112 	{ USB_VENDOR_GIGASET,		USB_PRODUCT_GIGASET_RT2573 },
113 	{ USB_VENDOR_GOODWAY,		USB_PRODUCT_GOODWAY_RT2573 },
114 	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254LB },
115 	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP },
116 	{ USB_VENDOR_HUAWEI3COM,	USB_PRODUCT_HUAWEI3COM_WUB320G },
117 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_G54HP },
118 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_SG54HP },
119 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_SG54HG },
120 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_1 },
121 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_2 },
122 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_3 },
123 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_4 },
124 	{ USB_VENDOR_NOVATECH,		USB_PRODUCT_NOVATECH_RT2573 },
125 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUS54HP },
126 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUS54MINI2 },
127 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUSMM },
128 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573 },
129 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573_2 },
130 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573_3 },
131 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2573 },
132 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2573_2 },
133 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2671 },
134 	{ USB_VENDOR_SITECOMEU,		USB_PRODUCT_SITECOMEU_WL113R2 },
135 	{ USB_VENDOR_SITECOMEU,		USB_PRODUCT_SITECOMEU_WL172 },
136 	{ USB_VENDOR_SURECOM,		USB_PRODUCT_SURECOM_RT2573 },
137 	{ USB_VENDOR_SPARKLAN,		USB_PRODUCT_SPARKLAN_RT2573 },
138 	{ USB_VENDOR_ZYXEL,		USB_PRODUCT_ZYXEL_RT2573 }
139 };
140 
141 void		rum_attachhook(void *);
142 int		rum_alloc_tx_list(struct rum_softc *);
143 void		rum_free_tx_list(struct rum_softc *);
144 int		rum_alloc_rx_list(struct rum_softc *);
145 void		rum_free_rx_list(struct rum_softc *);
146 int		rum_media_change(struct ifnet *);
147 void		rum_next_scan(void *);
148 void		rum_task(void *);
149 int		rum_newstate(struct ieee80211com *, enum ieee80211_state, int);
150 void		rum_txeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
151 void		rum_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
152 #if NBPFILTER > 0
153 uint8_t		rum_rxrate(const struct rum_rx_desc *);
154 #endif
155 int		rum_ack_rate(struct ieee80211com *, int);
156 uint16_t	rum_txtime(int, int, uint32_t);
157 uint8_t		rum_plcp_signal(int);
158 void		rum_setup_tx_desc(struct rum_softc *, struct rum_tx_desc *,
159 		    uint32_t, uint16_t, int, int);
160 int		rum_tx_data(struct rum_softc *, struct mbuf *,
161 		    struct ieee80211_node *);
162 void		rum_start(struct ifnet *);
163 void		rum_watchdog(struct ifnet *);
164 int		rum_ioctl(struct ifnet *, u_long, caddr_t);
165 void		rum_eeprom_read(struct rum_softc *, uint16_t, void *, int);
166 uint32_t	rum_read(struct rum_softc *, uint16_t);
167 void		rum_read_multi(struct rum_softc *, uint16_t, void *, int);
168 void		rum_write(struct rum_softc *, uint16_t, uint32_t);
169 void		rum_write_multi(struct rum_softc *, uint16_t, void *, size_t);
170 void		rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
171 uint8_t		rum_bbp_read(struct rum_softc *, uint8_t);
172 void		rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
173 void		rum_select_antenna(struct rum_softc *);
174 void		rum_enable_mrr(struct rum_softc *);
175 void		rum_set_txpreamble(struct rum_softc *);
176 void		rum_set_basicrates(struct rum_softc *);
177 void		rum_select_band(struct rum_softc *,
178 		    struct ieee80211_channel *);
179 void		rum_set_chan(struct rum_softc *, struct ieee80211_channel *);
180 void		rum_enable_tsf_sync(struct rum_softc *);
181 void		rum_update_slot(struct rum_softc *);
182 void		rum_set_bssid(struct rum_softc *, const uint8_t *);
183 void		rum_set_macaddr(struct rum_softc *, const uint8_t *);
184 void		rum_update_promisc(struct rum_softc *);
185 const char	*rum_get_rf(int);
186 void		rum_read_eeprom(struct rum_softc *);
187 int		rum_bbp_init(struct rum_softc *);
188 int		rum_init(struct ifnet *);
189 void		rum_stop(struct ifnet *, int);
190 int		rum_load_microcode(struct rum_softc *, const u_char *, size_t);
191 #ifndef IEEE80211_STA_ONLY
192 int		rum_prepare_beacon(struct rum_softc *);
193 #endif
194 void		rum_newassoc(struct ieee80211com *, struct ieee80211_node *,
195 		    int);
196 void		rum_amrr_start(struct rum_softc *, struct ieee80211_node *);
197 void		rum_amrr_timeout(void *);
198 void		rum_amrr_update(usbd_xfer_handle, usbd_private_handle,
199 		    usbd_status status);
200 
201 static const struct {
202 	uint32_t	reg;
203 	uint32_t	val;
204 } rum_def_mac[] = {
205 	RT2573_DEF_MAC
206 };
207 
208 static const struct {
209 	uint8_t	reg;
210 	uint8_t	val;
211 } rum_def_bbp[] = {
212 	RT2573_DEF_BBP
213 };
214 
215 static const struct rfprog {
216 	uint8_t		chan;
217 	uint32_t	r1, r2, r3, r4;
218 }  rum_rf5226[] = {
219 	RT2573_RF5226
220 }, rum_rf5225[] = {
221 	RT2573_RF5225
222 };
223 
224 int rum_match(struct device *, void *, void *);
225 void rum_attach(struct device *, struct device *, void *);
226 int rum_detach(struct device *, int);
227 int rum_activate(struct device *, int);
228 
229 struct cfdriver rum_cd = {
230 	NULL, "rum", DV_IFNET
231 };
232 
233 const struct cfattach rum_ca = {
234 	sizeof(struct rum_softc),
235 	rum_match,
236 	rum_attach,
237 	rum_detach,
238 	rum_activate,
239 };
240 
241 int
242 rum_match(struct device *parent, void *match, void *aux)
243 {
244 	struct usb_attach_arg *uaa = aux;
245 
246 	if (uaa->iface != NULL)
247 		return UMATCH_NONE;
248 
249 	return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ?
250 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
251 }
252 
253 void
254 rum_attachhook(void *xsc)
255 {
256 	struct rum_softc *sc = xsc;
257 	const char *name = "rum-rt2573";
258 	u_char *ucode;
259 	size_t size;
260 	int error;
261 
262 	if ((error = loadfirmware(name, &ucode, &size)) != 0) {
263 		printf("%s: failed loadfirmware of file %s (error %d)\n",
264 		    sc->sc_dev.dv_xname, name, error);
265 		return;
266 	}
267 
268 	if (rum_load_microcode(sc, ucode, size) != 0) {
269 		printf("%s: could not load 8051 microcode\n",
270 		    sc->sc_dev.dv_xname);
271 	}
272 
273 	free(ucode, M_DEVBUF);
274 }
275 
276 void
277 rum_attach(struct device *parent, struct device *self, void *aux)
278 {
279 	struct rum_softc *sc = (struct rum_softc *)self;
280 	struct usb_attach_arg *uaa = aux;
281 	struct ieee80211com *ic = &sc->sc_ic;
282 	struct ifnet *ifp = &ic->ic_if;
283 	usb_interface_descriptor_t *id;
284 	usb_endpoint_descriptor_t *ed;
285 	usbd_status error;
286 	int i, ntries;
287 	uint32_t tmp;
288 
289 	sc->sc_udev = uaa->device;
290 
291 	if (usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0) != 0) {
292 		printf("%s: could not set configuration no\n",
293 		    sc->sc_dev.dv_xname);
294 		return;
295 	}
296 
297 	/* get the first interface handle */
298 	error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
299 	    &sc->sc_iface);
300 	if (error != 0) {
301 		printf("%s: could not get interface handle\n",
302 		    sc->sc_dev.dv_xname);
303 		return;
304 	}
305 
306 	/*
307 	 * Find endpoints.
308 	 */
309 	id = usbd_get_interface_descriptor(sc->sc_iface);
310 
311 	sc->sc_rx_no = sc->sc_tx_no = -1;
312 	for (i = 0; i < id->bNumEndpoints; i++) {
313 		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
314 		if (ed == NULL) {
315 			printf("%s: no endpoint descriptor for iface %d\n",
316 			    sc->sc_dev.dv_xname, i);
317 			return;
318 		}
319 
320 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
321 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
322 			sc->sc_rx_no = ed->bEndpointAddress;
323 		else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
324 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
325 			sc->sc_tx_no = ed->bEndpointAddress;
326 	}
327 	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
328 		printf("%s: missing endpoint\n", sc->sc_dev.dv_xname);
329 		return;
330 	}
331 
332 	usb_init_task(&sc->sc_task, rum_task, sc);
333 	timeout_set(&sc->scan_to, rum_next_scan, sc);
334 
335 	sc->amrr.amrr_min_success_threshold =  1;
336 	sc->amrr.amrr_max_success_threshold = 10;
337 	timeout_set(&sc->amrr_to, rum_amrr_timeout, sc);
338 
339 	/* retrieve RT2573 rev. no */
340 	for (ntries = 0; ntries < 1000; ntries++) {
341 		if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
342 			break;
343 		DELAY(1000);
344 	}
345 	if (ntries == 1000) {
346 		printf("%s: timeout waiting for chip to settle\n",
347 		    sc->sc_dev.dv_xname);
348 		return;
349 	}
350 
351 	/* retrieve MAC address and various other things from EEPROM */
352 	rum_read_eeprom(sc);
353 
354 	printf("%s: MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n",
355 	    sc->sc_dev.dv_xname, sc->macbbp_rev, tmp,
356 	    rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr));
357 
358 	if (rootvp == NULL)
359 		mountroothook_establish(rum_attachhook, sc);
360 	else
361 		rum_attachhook(sc);
362 
363 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
364 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
365 	ic->ic_state = IEEE80211_S_INIT;
366 
367 	/* set device capabilities */
368 	ic->ic_caps =
369 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
370 #ifndef IEEE80211_STA_ONLY
371 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
372 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
373 #endif
374 	    IEEE80211_C_TXPMGT |	/* tx power management */
375 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
376 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
377 	    IEEE80211_C_WEP |		/* s/w WEP */
378 	    IEEE80211_C_RSN;		/* WPA/RSN */
379 
380 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
381 		/* set supported .11a rates */
382 		ic->ic_sup_rates[IEEE80211_MODE_11A] =
383 		    ieee80211_std_rateset_11a;
384 
385 		/* set supported .11a channels */
386 		for (i = 34; i <= 46; i += 4) {
387 			ic->ic_channels[i].ic_freq =
388 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
389 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
390 		}
391 		for (i = 36; i <= 64; i += 4) {
392 			ic->ic_channels[i].ic_freq =
393 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
394 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
395 		}
396 		for (i = 100; i <= 140; i += 4) {
397 			ic->ic_channels[i].ic_freq =
398 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
399 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
400 		}
401 		for (i = 149; i <= 165; i += 4) {
402 			ic->ic_channels[i].ic_freq =
403 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
404 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
405 		}
406 	}
407 
408 	/* set supported .11b and .11g rates */
409 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
410 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
411 
412 	/* set supported .11b and .11g channels (1 through 14) */
413 	for (i = 1; i <= 14; i++) {
414 		ic->ic_channels[i].ic_freq =
415 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
416 		ic->ic_channels[i].ic_flags =
417 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
418 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
419 	}
420 
421 	ifp->if_softc = sc;
422 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
423 	ifp->if_init = rum_init;
424 	ifp->if_ioctl = rum_ioctl;
425 	ifp->if_start = rum_start;
426 	ifp->if_watchdog = rum_watchdog;
427 	IFQ_SET_READY(&ifp->if_snd);
428 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
429 
430 	if_attach(ifp);
431 	ieee80211_ifattach(ifp);
432 	ic->ic_newassoc = rum_newassoc;
433 
434 	/* override state transition machine */
435 	sc->sc_newstate = ic->ic_newstate;
436 	ic->ic_newstate = rum_newstate;
437 	ieee80211_media_init(ifp, rum_media_change, ieee80211_media_status);
438 
439 #if NBPFILTER > 0
440 	bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO,
441 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN);
442 
443 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
444 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
445 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
446 
447 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
448 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
449 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
450 #endif
451 
452 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
453 	    &sc->sc_dev);
454 }
455 
456 int
457 rum_detach(struct device *self, int flags)
458 {
459 	struct rum_softc *sc = (struct rum_softc *)self;
460 	struct ifnet *ifp = &sc->sc_ic.ic_if;
461 	int s;
462 
463 	s = splusb();
464 
465 	ieee80211_ifdetach(ifp);	/* free all nodes */
466 	if_detach(ifp);
467 
468 	usb_rem_task(sc->sc_udev, &sc->sc_task);
469 	timeout_del(&sc->scan_to);
470 	timeout_del(&sc->amrr_to);
471 
472 	if (sc->amrr_xfer != NULL) {
473 		usbd_free_xfer(sc->amrr_xfer);
474 		sc->amrr_xfer = NULL;
475 	}
476 	if (sc->sc_rx_pipeh != NULL) {
477 		usbd_abort_pipe(sc->sc_rx_pipeh);
478 		usbd_close_pipe(sc->sc_rx_pipeh);
479 	}
480 	if (sc->sc_tx_pipeh != NULL) {
481 		usbd_abort_pipe(sc->sc_tx_pipeh);
482 		usbd_close_pipe(sc->sc_tx_pipeh);
483 	}
484 
485 	rum_free_rx_list(sc);
486 	rum_free_tx_list(sc);
487 
488 	splx(s);
489 
490 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
491 	    &sc->sc_dev);
492 
493 	return 0;
494 }
495 
496 int
497 rum_alloc_tx_list(struct rum_softc *sc)
498 {
499 	int i, error;
500 
501 	sc->tx_cur = sc->tx_queued = 0;
502 
503 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
504 		struct rum_tx_data *data = &sc->tx_data[i];
505 
506 		data->sc = sc;
507 
508 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
509 		if (data->xfer == NULL) {
510 			printf("%s: could not allocate tx xfer\n",
511 			    sc->sc_dev.dv_xname);
512 			error = ENOMEM;
513 			goto fail;
514 		}
515 		data->buf = usbd_alloc_buffer(data->xfer,
516 		    RT2573_TX_DESC_SIZE + IEEE80211_MAX_LEN);
517 		if (data->buf == NULL) {
518 			printf("%s: could not allocate tx buffer\n",
519 			    sc->sc_dev.dv_xname);
520 			error = ENOMEM;
521 			goto fail;
522 		}
523 		/* clean Tx descriptor */
524 		bzero(data->buf, RT2573_TX_DESC_SIZE);
525 	}
526 
527 	return 0;
528 
529 fail:	rum_free_tx_list(sc);
530 	return error;
531 }
532 
533 void
534 rum_free_tx_list(struct rum_softc *sc)
535 {
536 	int i;
537 
538 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
539 		struct rum_tx_data *data = &sc->tx_data[i];
540 
541 		if (data->xfer != NULL) {
542 			usbd_free_xfer(data->xfer);
543 			data->xfer = NULL;
544 		}
545 		/*
546 		 * The node has already been freed at that point so don't call
547 		 * ieee80211_release_node() here.
548 		 */
549 		data->ni = NULL;
550 	}
551 }
552 
553 int
554 rum_alloc_rx_list(struct rum_softc *sc)
555 {
556 	int i, error;
557 
558 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
559 		struct rum_rx_data *data = &sc->rx_data[i];
560 
561 		data->sc = sc;
562 
563 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
564 		if (data->xfer == NULL) {
565 			printf("%s: could not allocate rx xfer\n",
566 			    sc->sc_dev.dv_xname);
567 			error = ENOMEM;
568 			goto fail;
569 		}
570 		if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
571 			printf("%s: could not allocate rx buffer\n",
572 			    sc->sc_dev.dv_xname);
573 			error = ENOMEM;
574 			goto fail;
575 		}
576 
577 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
578 		if (data->m == NULL) {
579 			printf("%s: could not allocate rx mbuf\n",
580 			    sc->sc_dev.dv_xname);
581 			error = ENOMEM;
582 			goto fail;
583 		}
584 		MCLGET(data->m, M_DONTWAIT);
585 		if (!(data->m->m_flags & M_EXT)) {
586 			printf("%s: could not allocate rx mbuf cluster\n",
587 			    sc->sc_dev.dv_xname);
588 			error = ENOMEM;
589 			goto fail;
590 		}
591 		data->buf = mtod(data->m, uint8_t *);
592 	}
593 
594 	return 0;
595 
596 fail:	rum_free_rx_list(sc);
597 	return error;
598 }
599 
600 void
601 rum_free_rx_list(struct rum_softc *sc)
602 {
603 	int i;
604 
605 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
606 		struct rum_rx_data *data = &sc->rx_data[i];
607 
608 		if (data->xfer != NULL) {
609 			usbd_free_xfer(data->xfer);
610 			data->xfer = NULL;
611 		}
612 		if (data->m != NULL) {
613 			m_freem(data->m);
614 			data->m = NULL;
615 		}
616 	}
617 }
618 
619 int
620 rum_media_change(struct ifnet *ifp)
621 {
622 	int error;
623 
624 	error = ieee80211_media_change(ifp);
625 	if (error != ENETRESET)
626 		return error;
627 
628 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
629 		rum_init(ifp);
630 
631 	return 0;
632 }
633 
634 /*
635  * This function is called periodically (every 200ms) during scanning to
636  * switch from one channel to another.
637  */
638 void
639 rum_next_scan(void *arg)
640 {
641 	struct rum_softc *sc = arg;
642 	struct ieee80211com *ic = &sc->sc_ic;
643 	struct ifnet *ifp = &ic->ic_if;
644 
645 	if (ic->ic_state == IEEE80211_S_SCAN)
646 		ieee80211_next_scan(ifp);
647 }
648 
649 void
650 rum_task(void *arg)
651 {
652 	struct rum_softc *sc = arg;
653 	struct ieee80211com *ic = &sc->sc_ic;
654 	enum ieee80211_state ostate;
655 	struct ieee80211_node *ni;
656 	uint32_t tmp;
657 
658 	ostate = ic->ic_state;
659 
660 	switch (sc->sc_state) {
661 	case IEEE80211_S_INIT:
662 		if (ostate == IEEE80211_S_RUN) {
663 			/* abort TSF synchronization */
664 			tmp = rum_read(sc, RT2573_TXRX_CSR9);
665 			rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
666 		}
667 		break;
668 
669 	case IEEE80211_S_SCAN:
670 		rum_set_chan(sc, ic->ic_bss->ni_chan);
671 		timeout_add_msec(&sc->scan_to, 200);
672 		break;
673 
674 	case IEEE80211_S_AUTH:
675 		rum_set_chan(sc, ic->ic_bss->ni_chan);
676 		break;
677 
678 	case IEEE80211_S_ASSOC:
679 		rum_set_chan(sc, ic->ic_bss->ni_chan);
680 		break;
681 
682 	case IEEE80211_S_RUN:
683 		rum_set_chan(sc, ic->ic_bss->ni_chan);
684 
685 		ni = ic->ic_bss;
686 
687 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
688 			rum_update_slot(sc);
689 			rum_enable_mrr(sc);
690 			rum_set_txpreamble(sc);
691 			rum_set_basicrates(sc);
692 			rum_set_bssid(sc, ni->ni_bssid);
693 		}
694 
695 #ifndef IEEE80211_STA_ONLY
696 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
697 		    ic->ic_opmode == IEEE80211_M_IBSS)
698 			rum_prepare_beacon(sc);
699 #endif
700 
701 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
702 			rum_enable_tsf_sync(sc);
703 
704 		if (ic->ic_opmode == IEEE80211_M_STA) {
705 			/* fake a join to init the tx rate */
706 			rum_newassoc(ic, ic->ic_bss, 1);
707 
708 			/* enable automatic rate control in STA mode */
709 			if (ic->ic_fixed_rate == -1)
710 				rum_amrr_start(sc, ni);
711 		}
712 		break;
713 	}
714 
715 	sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
716 }
717 
718 int
719 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
720 {
721 	struct rum_softc *sc = ic->ic_if.if_softc;
722 
723 	usb_rem_task(sc->sc_udev, &sc->sc_task);
724 	timeout_del(&sc->scan_to);
725 	timeout_del(&sc->amrr_to);
726 
727 	/* do it in a process context */
728 	sc->sc_state = nstate;
729 	sc->sc_arg = arg;
730 	usb_add_task(sc->sc_udev, &sc->sc_task);
731 	return 0;
732 }
733 
734 /* quickly determine if a given rate is CCK or OFDM */
735 #define RUM_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
736 
737 #define RUM_ACK_SIZE	14	/* 10 + 4(FCS) */
738 #define RUM_CTS_SIZE	14	/* 10 + 4(FCS) */
739 
740 void
741 rum_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
742 {
743 	struct rum_tx_data *data = priv;
744 	struct rum_softc *sc = data->sc;
745 	struct ieee80211com *ic = &sc->sc_ic;
746 	struct ifnet *ifp = &ic->ic_if;
747 	int s;
748 
749 	if (status != USBD_NORMAL_COMPLETION) {
750 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
751 			return;
752 
753 		printf("%s: could not transmit buffer: %s\n",
754 		    sc->sc_dev.dv_xname, usbd_errstr(status));
755 
756 		if (status == USBD_STALLED)
757 			usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
758 
759 		ifp->if_oerrors++;
760 		return;
761 	}
762 
763 	s = splnet();
764 
765 	ieee80211_release_node(ic, data->ni);
766 	data->ni = NULL;
767 
768 	sc->tx_queued--;
769 	ifp->if_opackets++;
770 
771 	DPRINTFN(10, ("tx done\n"));
772 
773 	sc->sc_tx_timer = 0;
774 	ifp->if_flags &= ~IFF_OACTIVE;
775 	rum_start(ifp);
776 
777 	splx(s);
778 }
779 
780 void
781 rum_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
782 {
783 	struct rum_rx_data *data = priv;
784 	struct rum_softc *sc = data->sc;
785 	struct ieee80211com *ic = &sc->sc_ic;
786 	struct ifnet *ifp = &ic->ic_if;
787 	const struct rum_rx_desc *desc;
788 	struct ieee80211_frame *wh;
789 	struct ieee80211_rxinfo rxi;
790 	struct ieee80211_node *ni;
791 	struct mbuf *mnew, *m;
792 	int s, len;
793 
794 	if (status != USBD_NORMAL_COMPLETION) {
795 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
796 			return;
797 
798 		if (status == USBD_STALLED)
799 			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
800 		goto skip;
801 	}
802 
803 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
804 
805 	if (len < RT2573_RX_DESC_SIZE + sizeof (struct ieee80211_frame_min)) {
806 		DPRINTF(("%s: xfer too short %d\n", sc->sc_dev.dv_xname,
807 		    len));
808 		ifp->if_ierrors++;
809 		goto skip;
810 	}
811 
812 	desc = (const struct rum_rx_desc *)data->buf;
813 
814 	if (letoh32(desc->flags) & RT2573_RX_CRC_ERROR) {
815 		/*
816 		 * This should not happen since we did not request to receive
817 		 * those frames when we filled RT2573_TXRX_CSR0.
818 		 */
819 		DPRINTFN(5, ("CRC error\n"));
820 		ifp->if_ierrors++;
821 		goto skip;
822 	}
823 
824 	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
825 	if (mnew == NULL) {
826 		printf("%s: could not allocate rx mbuf\n",
827 		    sc->sc_dev.dv_xname);
828 		ifp->if_ierrors++;
829 		goto skip;
830 	}
831 	MCLGET(mnew, M_DONTWAIT);
832 	if (!(mnew->m_flags & M_EXT)) {
833 		printf("%s: could not allocate rx mbuf cluster\n",
834 		    sc->sc_dev.dv_xname);
835 		m_freem(mnew);
836 		ifp->if_ierrors++;
837 		goto skip;
838 	}
839 	m = data->m;
840 	data->m = mnew;
841 	data->buf = mtod(data->m, uint8_t *);
842 
843 	/* finalize mbuf */
844 	m->m_pkthdr.rcvif = ifp;
845 	m->m_data = (caddr_t)(desc + 1);
846 	m->m_pkthdr.len = m->m_len = (letoh32(desc->flags) >> 16) & 0xfff;
847 
848 	s = splnet();
849 
850 #if NBPFILTER > 0
851 	if (sc->sc_drvbpf != NULL) {
852 		struct mbuf mb;
853 		struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
854 
855 		tap->wr_flags = 0;
856 		tap->wr_rate = rum_rxrate(desc);
857 		tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
858 		tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
859 		tap->wr_antenna = sc->rx_ant;
860 		tap->wr_antsignal = desc->rssi;
861 
862 		mb.m_data = (caddr_t)tap;
863 		mb.m_len = sc->sc_rxtap_len;
864 		mb.m_next = m;
865 		mb.m_nextpkt = NULL;
866 		mb.m_type = 0;
867 		mb.m_flags = 0;
868 		bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN);
869 	}
870 #endif
871 
872 	wh = mtod(m, struct ieee80211_frame *);
873 	ni = ieee80211_find_rxnode(ic, wh);
874 
875 	/* send the frame to the 802.11 layer */
876 	rxi.rxi_flags = 0;
877 	rxi.rxi_rssi = desc->rssi;
878 	rxi.rxi_tstamp = 0;	/* unused */
879 	ieee80211_input(ifp, m, ni, &rxi);
880 
881 	/* node is no longer needed */
882 	ieee80211_release_node(ic, ni);
883 
884 	splx(s);
885 
886 	DPRINTFN(15, ("rx done\n"));
887 
888 skip:	/* setup a new transfer */
889 	usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
890 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
891 	(void)usbd_transfer(xfer);
892 }
893 
894 /*
895  * This function is only used by the Rx radiotap code. It returns the rate at
896  * which a given frame was received.
897  */
898 #if NBPFILTER > 0
899 uint8_t
900 rum_rxrate(const struct rum_rx_desc *desc)
901 {
902 	if (letoh32(desc->flags) & RT2573_RX_OFDM) {
903 		/* reverse function of rum_plcp_signal */
904 		switch (desc->rate) {
905 		case 0xb:	return 12;
906 		case 0xf:	return 18;
907 		case 0xa:	return 24;
908 		case 0xe:	return 36;
909 		case 0x9:	return 48;
910 		case 0xd:	return 72;
911 		case 0x8:	return 96;
912 		case 0xc:	return 108;
913 		}
914 	} else {
915 		if (desc->rate == 10)
916 			return 2;
917 		if (desc->rate == 20)
918 			return 4;
919 		if (desc->rate == 55)
920 			return 11;
921 		if (desc->rate == 110)
922 			return 22;
923 	}
924 	return 2;	/* should not get there */
925 }
926 #endif
927 
928 /*
929  * Return the expected ack rate for a frame transmitted at rate `rate'.
930  */
931 int
932 rum_ack_rate(struct ieee80211com *ic, int rate)
933 {
934 	switch (rate) {
935 	/* CCK rates */
936 	case 2:
937 		return 2;
938 	case 4:
939 	case 11:
940 	case 22:
941 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
942 
943 	/* OFDM rates */
944 	case 12:
945 	case 18:
946 		return 12;
947 	case 24:
948 	case 36:
949 		return 24;
950 	case 48:
951 	case 72:
952 	case 96:
953 	case 108:
954 		return 48;
955 	}
956 
957 	/* default to 1Mbps */
958 	return 2;
959 }
960 
961 /*
962  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
963  * The function automatically determines the operating mode depending on the
964  * given rate. `flags' indicates whether short preamble is in use or not.
965  */
966 uint16_t
967 rum_txtime(int len, int rate, uint32_t flags)
968 {
969 	uint16_t txtime;
970 
971 	if (RUM_RATE_IS_OFDM(rate)) {
972 		/* IEEE Std 802.11a-1999, pp. 37 */
973 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
974 		txtime = 16 + 4 + 4 * txtime + 6;
975 	} else {
976 		/* IEEE Std 802.11b-1999, pp. 28 */
977 		txtime = (16 * len + rate - 1) / rate;
978 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
979 			txtime +=  72 + 24;
980 		else
981 			txtime += 144 + 48;
982 	}
983 	return txtime;
984 }
985 
986 uint8_t
987 rum_plcp_signal(int rate)
988 {
989 	switch (rate) {
990 	/* CCK rates (returned values are device-dependent) */
991 	case 2:		return 0x0;
992 	case 4:		return 0x1;
993 	case 11:	return 0x2;
994 	case 22:	return 0x3;
995 
996 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
997 	case 12:	return 0xb;
998 	case 18:	return 0xf;
999 	case 24:	return 0xa;
1000 	case 36:	return 0xe;
1001 	case 48:	return 0x9;
1002 	case 72:	return 0xd;
1003 	case 96:	return 0x8;
1004 	case 108:	return 0xc;
1005 
1006 	/* unsupported rates (should not get there) */
1007 	default:	return 0xff;
1008 	}
1009 }
1010 
1011 void
1012 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
1013     uint32_t flags, uint16_t xflags, int len, int rate)
1014 {
1015 	struct ieee80211com *ic = &sc->sc_ic;
1016 	uint16_t plcp_length;
1017 	int remainder;
1018 
1019 	desc->flags = htole32(flags);
1020 	desc->flags |= htole32(RT2573_TX_VALID);
1021 	desc->flags |= htole32(len << 16);
1022 
1023 	desc->xflags = htole16(xflags);
1024 
1025 	desc->wme = htole16(
1026 	    RT2573_QID(0) |
1027 	    RT2573_AIFSN(2) |
1028 	    RT2573_LOGCWMIN(4) |
1029 	    RT2573_LOGCWMAX(10));
1030 
1031 	/* setup PLCP fields */
1032 	desc->plcp_signal  = rum_plcp_signal(rate);
1033 	desc->plcp_service = 4;
1034 
1035 	len += IEEE80211_CRC_LEN;
1036 	if (RUM_RATE_IS_OFDM(rate)) {
1037 		desc->flags |= htole32(RT2573_TX_OFDM);
1038 
1039 		plcp_length = len & 0xfff;
1040 		desc->plcp_length_hi = plcp_length >> 6;
1041 		desc->plcp_length_lo = plcp_length & 0x3f;
1042 	} else {
1043 		plcp_length = (16 * len + rate - 1) / rate;
1044 		if (rate == 22) {
1045 			remainder = (16 * len) % 22;
1046 			if (remainder != 0 && remainder < 7)
1047 				desc->plcp_service |= RT2573_PLCP_LENGEXT;
1048 		}
1049 		desc->plcp_length_hi = plcp_length >> 8;
1050 		desc->plcp_length_lo = plcp_length & 0xff;
1051 
1052 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1053 			desc->plcp_signal |= 0x08;
1054 	}
1055 }
1056 
1057 #define RUM_TX_TIMEOUT	5000
1058 
1059 int
1060 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1061 {
1062 	struct ieee80211com *ic = &sc->sc_ic;
1063 	struct rum_tx_desc *desc;
1064 	struct rum_tx_data *data;
1065 	struct ieee80211_frame *wh;
1066 	struct ieee80211_key *k;
1067 	uint32_t flags = 0;
1068 	uint16_t dur;
1069 	usbd_status error;
1070 	int rate, xferlen, pktlen, needrts = 0, needcts = 0;
1071 
1072 	wh = mtod(m0, struct ieee80211_frame *);
1073 
1074 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1075 		k = ieee80211_get_txkey(ic, wh, ni);
1076 
1077 		if ((m0 = ieee80211_encrypt(ic, m0, k)) == NULL)
1078 			return ENOBUFS;
1079 
1080 		/* packet header may have moved, reset our local pointer */
1081 		wh = mtod(m0, struct ieee80211_frame *);
1082 	}
1083 
1084 	/* compute actual packet length (including CRC and crypto overhead) */
1085 	pktlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
1086 
1087 	/* pickup a rate */
1088 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1089 	    ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1090 	     IEEE80211_FC0_TYPE_MGT)) {
1091 		/* mgmt/multicast frames are sent at the lowest avail. rate */
1092 		rate = ni->ni_rates.rs_rates[0];
1093 	} else if (ic->ic_fixed_rate != -1) {
1094 		rate = ic->ic_sup_rates[ic->ic_curmode].
1095 		    rs_rates[ic->ic_fixed_rate];
1096 	} else
1097 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1098 	if (rate == 0)
1099 		rate = 2;	/* XXX should not happen */
1100 	rate &= IEEE80211_RATE_VAL;
1101 
1102 	/* check if RTS/CTS or CTS-to-self protection must be used */
1103 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1104 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
1105 		if (pktlen > ic->ic_rtsthreshold) {
1106 			needrts = 1;	/* RTS/CTS based on frame length */
1107 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1108 		    RUM_RATE_IS_OFDM(rate)) {
1109 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
1110 				needcts = 1;	/* CTS-to-self */
1111 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
1112 				needrts = 1;	/* RTS/CTS */
1113 		}
1114 	}
1115 	if (needrts || needcts) {
1116 		struct mbuf *mprot;
1117 		int protrate, ackrate;
1118 		uint16_t dur;
1119 
1120 		protrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1121 		ackrate  = rum_ack_rate(ic, rate);
1122 
1123 		dur = rum_txtime(pktlen, rate, ic->ic_flags) +
1124 		      rum_txtime(RUM_ACK_SIZE, ackrate, ic->ic_flags) +
1125 		      2 * sc->sifs;
1126 		if (needrts) {
1127 			dur += rum_txtime(RUM_CTS_SIZE, rum_ack_rate(ic,
1128 			    protrate), ic->ic_flags) + sc->sifs;
1129 			mprot = ieee80211_get_rts(ic, wh, dur);
1130 		} else {
1131 			mprot = ieee80211_get_cts_to_self(ic, dur);
1132 		}
1133 		if (mprot == NULL) {
1134 			printf("%s: could not allocate protection frame\n",
1135 			    sc->sc_dev.dv_xname);
1136 			m_freem(m0);
1137 			return ENOBUFS;
1138 		}
1139 
1140 		data = &sc->tx_data[sc->tx_cur];
1141 		desc = (struct rum_tx_desc *)data->buf;
1142 
1143 		/* avoid multiple free() of the same node for each fragment */
1144 		data->ni = ieee80211_ref_node(ni);
1145 
1146 		m_copydata(mprot, 0, mprot->m_pkthdr.len,
1147 		    data->buf + RT2573_TX_DESC_SIZE);
1148 		rum_setup_tx_desc(sc, desc,
1149 		    (needrts ? RT2573_TX_NEED_ACK : 0) | RT2573_TX_MORE_FRAG,
1150 		    0, mprot->m_pkthdr.len, protrate);
1151 
1152 		/* no roundup necessary here */
1153 		xferlen = RT2573_TX_DESC_SIZE + mprot->m_pkthdr.len;
1154 
1155 		/* XXX may want to pass the protection frame to BPF */
1156 
1157 		/* mbuf is no longer needed */
1158 		m_freem(mprot);
1159 
1160 		usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1161 		    xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
1162 		    RUM_TX_TIMEOUT, rum_txeof);
1163 		error = usbd_transfer(data->xfer);
1164 		if (error != 0 && error != USBD_IN_PROGRESS) {
1165 			m_freem(m0);
1166 			return error;
1167 		}
1168 
1169 		sc->tx_queued++;
1170 		sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
1171 
1172 		flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
1173 	}
1174 
1175 	data = &sc->tx_data[sc->tx_cur];
1176 	desc = (struct rum_tx_desc *)data->buf;
1177 
1178 	data->ni = ni;
1179 
1180 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1181 		flags |= RT2573_TX_NEED_ACK;
1182 
1183 		dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1184 		    ic->ic_flags) + sc->sifs;
1185 		*(uint16_t *)wh->i_dur = htole16(dur);
1186 
1187 #ifndef IEEE80211_STA_ONLY
1188 		/* tell hardware to set timestamp in probe responses */
1189 		if ((wh->i_fc[0] &
1190 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1191 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1192 			flags |= RT2573_TX_TIMESTAMP;
1193 #endif
1194 	}
1195 
1196 #if NBPFILTER > 0
1197 	if (sc->sc_drvbpf != NULL) {
1198 		struct mbuf mb;
1199 		struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1200 
1201 		tap->wt_flags = 0;
1202 		tap->wt_rate = rate;
1203 		tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
1204 		tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
1205 		tap->wt_antenna = sc->tx_ant;
1206 
1207 		mb.m_data = (caddr_t)tap;
1208 		mb.m_len = sc->sc_txtap_len;
1209 		mb.m_next = m0;
1210 		mb.m_nextpkt = NULL;
1211 		mb.m_type = 0;
1212 		mb.m_flags = 0;
1213 		bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT);
1214 	}
1215 #endif
1216 
1217 	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1218 	rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1219 
1220 	/* align end on a 4-bytes boundary */
1221 	xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1222 
1223 	/*
1224 	 * No space left in the last URB to store the extra 4 bytes, force
1225 	 * sending of another URB.
1226 	 */
1227 	if ((xferlen % 64) == 0)
1228 		xferlen += 4;
1229 
1230 	DPRINTFN(10, ("sending frame len=%u rate=%u xfer len=%u\n",
1231 	    m0->m_pkthdr.len + RT2573_TX_DESC_SIZE, rate, xferlen));
1232 
1233 	/* mbuf is no longer needed */
1234 	m_freem(m0);
1235 
1236 	usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1237 	    USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1238 	error = usbd_transfer(data->xfer);
1239 	if (error != 0 && error != USBD_IN_PROGRESS)
1240 		return error;
1241 
1242 	sc->tx_queued++;
1243 	sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
1244 
1245 	return 0;
1246 }
1247 
1248 void
1249 rum_start(struct ifnet *ifp)
1250 {
1251 	struct rum_softc *sc = ifp->if_softc;
1252 	struct ieee80211com *ic = &sc->sc_ic;
1253 	struct ieee80211_node *ni;
1254 	struct mbuf *m0;
1255 
1256 	/*
1257 	 * net80211 may still try to send management frames even if the
1258 	 * IFF_RUNNING flag is not set...
1259 	 */
1260 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1261 		return;
1262 
1263 	for (;;) {
1264 		IF_POLL(&ic->ic_mgtq, m0);
1265 		if (m0 != NULL) {
1266 			if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
1267 				ifp->if_flags |= IFF_OACTIVE;
1268 				break;
1269 			}
1270 			IF_DEQUEUE(&ic->ic_mgtq, m0);
1271 
1272 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1273 			m0->m_pkthdr.rcvif = NULL;
1274 #if NBPFILTER > 0
1275 			if (ic->ic_rawbpf != NULL)
1276 				bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT);
1277 #endif
1278 			if (rum_tx_data(sc, m0, ni) != 0)
1279 				break;
1280 
1281 		} else {
1282 			if (ic->ic_state != IEEE80211_S_RUN)
1283 				break;
1284 			IFQ_POLL(&ifp->if_snd, m0);
1285 			if (m0 == NULL)
1286 				break;
1287 			if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
1288 				ifp->if_flags |= IFF_OACTIVE;
1289 				break;
1290 			}
1291 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1292 #if NBPFILTER > 0
1293 			if (ifp->if_bpf != NULL)
1294 				bpf_mtap(ifp->if_bpf, m0, BPF_DIRECTION_OUT);
1295 #endif
1296 			m0 = ieee80211_encap(ifp, m0, &ni);
1297 			if (m0 == NULL)
1298 				continue;
1299 #if NBPFILTER > 0
1300 			if (ic->ic_rawbpf != NULL)
1301 				bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT);
1302 #endif
1303 			if (rum_tx_data(sc, m0, ni) != 0) {
1304 				if (ni != NULL)
1305 					ieee80211_release_node(ic, ni);
1306 				ifp->if_oerrors++;
1307 				break;
1308 			}
1309 		}
1310 
1311 		sc->sc_tx_timer = 5;
1312 		ifp->if_timer = 1;
1313 	}
1314 }
1315 
1316 void
1317 rum_watchdog(struct ifnet *ifp)
1318 {
1319 	struct rum_softc *sc = ifp->if_softc;
1320 
1321 	ifp->if_timer = 0;
1322 
1323 	if (sc->sc_tx_timer > 0) {
1324 		if (--sc->sc_tx_timer == 0) {
1325 			printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1326 			/*rum_init(ifp); XXX needs a process context! */
1327 			ifp->if_oerrors++;
1328 			return;
1329 		}
1330 		ifp->if_timer = 1;
1331 	}
1332 
1333 	ieee80211_watchdog(ifp);
1334 }
1335 
1336 int
1337 rum_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1338 {
1339 	struct rum_softc *sc = ifp->if_softc;
1340 	struct ieee80211com *ic = &sc->sc_ic;
1341 	struct ifaddr *ifa;
1342 	struct ifreq *ifr;
1343 	int s, error = 0;
1344 
1345 	s = splnet();
1346 
1347 	switch (cmd) {
1348 	case SIOCSIFADDR:
1349 		ifa = (struct ifaddr *)data;
1350 		ifp->if_flags |= IFF_UP;
1351 #ifdef INET
1352 		if (ifa->ifa_addr->sa_family == AF_INET)
1353 			arp_ifinit(&ic->ic_ac, ifa);
1354 #endif
1355 		/* FALLTHROUGH */
1356 	case SIOCSIFFLAGS:
1357 		if (ifp->if_flags & IFF_UP) {
1358 			if (ifp->if_flags & IFF_RUNNING)
1359 				rum_update_promisc(sc);
1360 			else
1361 				rum_init(ifp);
1362 		} else {
1363 			if (ifp->if_flags & IFF_RUNNING)
1364 				rum_stop(ifp, 1);
1365 		}
1366 		break;
1367 
1368 	case SIOCADDMULTI:
1369 	case SIOCDELMULTI:
1370 		ifr = (struct ifreq *)data;
1371 		error = (cmd == SIOCADDMULTI) ?
1372 		    ether_addmulti(ifr, &ic->ic_ac) :
1373 		    ether_delmulti(ifr, &ic->ic_ac);
1374 
1375 		if (error == ENETRESET)
1376 			error = 0;
1377 		break;
1378 
1379 	case SIOCS80211CHANNEL:
1380 		/*
1381 		 * This allows for fast channel switching in monitor mode
1382 		 * (used by kismet). In IBSS mode, we must explicitly reset
1383 		 * the interface to generate a new beacon frame.
1384 		 */
1385 		error = ieee80211_ioctl(ifp, cmd, data);
1386 		if (error == ENETRESET &&
1387 		    ic->ic_opmode == IEEE80211_M_MONITOR) {
1388 			if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1389 			    (IFF_UP | IFF_RUNNING))
1390 				rum_set_chan(sc, ic->ic_ibss_chan);
1391 			error = 0;
1392 		}
1393 		break;
1394 
1395 	default:
1396 		error = ieee80211_ioctl(ifp, cmd, data);
1397 	}
1398 
1399 	if (error == ENETRESET) {
1400 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1401 		    (IFF_UP | IFF_RUNNING))
1402 			rum_init(ifp);
1403 		error = 0;
1404 	}
1405 
1406 	splx(s);
1407 
1408 	return error;
1409 }
1410 
1411 void
1412 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1413 {
1414 	usb_device_request_t req;
1415 	usbd_status error;
1416 
1417 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1418 	req.bRequest = RT2573_READ_EEPROM;
1419 	USETW(req.wValue, 0);
1420 	USETW(req.wIndex, addr);
1421 	USETW(req.wLength, len);
1422 
1423 	error = usbd_do_request(sc->sc_udev, &req, buf);
1424 	if (error != 0) {
1425 		printf("%s: could not read EEPROM: %s\n",
1426 		    sc->sc_dev.dv_xname, usbd_errstr(error));
1427 	}
1428 }
1429 
1430 uint32_t
1431 rum_read(struct rum_softc *sc, uint16_t reg)
1432 {
1433 	uint32_t val;
1434 
1435 	rum_read_multi(sc, reg, &val, sizeof val);
1436 
1437 	return letoh32(val);
1438 }
1439 
1440 void
1441 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1442 {
1443 	usb_device_request_t req;
1444 	usbd_status error;
1445 
1446 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1447 	req.bRequest = RT2573_READ_MULTI_MAC;
1448 	USETW(req.wValue, 0);
1449 	USETW(req.wIndex, reg);
1450 	USETW(req.wLength, len);
1451 
1452 	error = usbd_do_request(sc->sc_udev, &req, buf);
1453 	if (error != 0) {
1454 		printf("%s: could not multi read MAC register: %s\n",
1455 		    sc->sc_dev.dv_xname, usbd_errstr(error));
1456 	}
1457 }
1458 
1459 void
1460 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1461 {
1462 	uint32_t tmp = htole32(val);
1463 
1464 	rum_write_multi(sc, reg, &tmp, sizeof tmp);
1465 }
1466 
1467 void
1468 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1469 {
1470 	usb_device_request_t req;
1471 	usbd_status error;
1472 
1473 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1474 	req.bRequest = RT2573_WRITE_MULTI_MAC;
1475 	USETW(req.wValue, 0);
1476 	USETW(req.wIndex, reg);
1477 	USETW(req.wLength, len);
1478 
1479 	error = usbd_do_request(sc->sc_udev, &req, buf);
1480 	if (error != 0) {
1481 		printf("%s: could not multi write MAC register: %s\n",
1482 		    sc->sc_dev.dv_xname, usbd_errstr(error));
1483 	}
1484 }
1485 
1486 void
1487 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1488 {
1489 	uint32_t tmp;
1490 	int ntries;
1491 
1492 	for (ntries = 0; ntries < 5; ntries++) {
1493 		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1494 			break;
1495 	}
1496 	if (ntries == 5) {
1497 		printf("%s: could not write to BBP\n", sc->sc_dev.dv_xname);
1498 		return;
1499 	}
1500 
1501 	tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1502 	rum_write(sc, RT2573_PHY_CSR3, tmp);
1503 }
1504 
1505 uint8_t
1506 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1507 {
1508 	uint32_t val;
1509 	int ntries;
1510 
1511 	for (ntries = 0; ntries < 5; ntries++) {
1512 		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1513 			break;
1514 	}
1515 	if (ntries == 5) {
1516 		printf("%s: could not read BBP\n", sc->sc_dev.dv_xname);
1517 		return 0;
1518 	}
1519 
1520 	val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1521 	rum_write(sc, RT2573_PHY_CSR3, val);
1522 
1523 	for (ntries = 0; ntries < 100; ntries++) {
1524 		val = rum_read(sc, RT2573_PHY_CSR3);
1525 		if (!(val & RT2573_BBP_BUSY))
1526 			return val & 0xff;
1527 		DELAY(1);
1528 	}
1529 
1530 	printf("%s: could not read BBP\n", sc->sc_dev.dv_xname);
1531 	return 0;
1532 }
1533 
1534 void
1535 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1536 {
1537 	uint32_t tmp;
1538 	int ntries;
1539 
1540 	for (ntries = 0; ntries < 5; ntries++) {
1541 		if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1542 			break;
1543 	}
1544 	if (ntries == 5) {
1545 		printf("%s: could not write to RF\n", sc->sc_dev.dv_xname);
1546 		return;
1547 	}
1548 
1549 	tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1550 	    (reg & 3);
1551 	rum_write(sc, RT2573_PHY_CSR4, tmp);
1552 
1553 	/* remember last written value in sc */
1554 	sc->rf_regs[reg] = val;
1555 
1556 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
1557 }
1558 
1559 void
1560 rum_select_antenna(struct rum_softc *sc)
1561 {
1562 	uint8_t bbp4, bbp77;
1563 	uint32_t tmp;
1564 
1565 	bbp4  = rum_bbp_read(sc, 4);
1566 	bbp77 = rum_bbp_read(sc, 77);
1567 
1568 	/* TBD */
1569 
1570 	/* make sure Rx is disabled before switching antenna */
1571 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
1572 	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1573 
1574 	rum_bbp_write(sc,  4, bbp4);
1575 	rum_bbp_write(sc, 77, bbp77);
1576 
1577 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
1578 }
1579 
1580 /*
1581  * Enable multi-rate retries for frames sent at OFDM rates.
1582  * In 802.11b/g mode, allow fallback to CCK rates.
1583  */
1584 void
1585 rum_enable_mrr(struct rum_softc *sc)
1586 {
1587 	struct ieee80211com *ic = &sc->sc_ic;
1588 	uint32_t tmp;
1589 
1590 	tmp = rum_read(sc, RT2573_TXRX_CSR4);
1591 
1592 	tmp &= ~RT2573_MRR_CCK_FALLBACK;
1593 	if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan))
1594 		tmp |= RT2573_MRR_CCK_FALLBACK;
1595 	tmp |= RT2573_MRR_ENABLED;
1596 
1597 	rum_write(sc, RT2573_TXRX_CSR4, tmp);
1598 }
1599 
1600 void
1601 rum_set_txpreamble(struct rum_softc *sc)
1602 {
1603 	uint32_t tmp;
1604 
1605 	tmp = rum_read(sc, RT2573_TXRX_CSR4);
1606 
1607 	tmp &= ~RT2573_SHORT_PREAMBLE;
1608 	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1609 		tmp |= RT2573_SHORT_PREAMBLE;
1610 
1611 	rum_write(sc, RT2573_TXRX_CSR4, tmp);
1612 }
1613 
1614 void
1615 rum_set_basicrates(struct rum_softc *sc)
1616 {
1617 	struct ieee80211com *ic = &sc->sc_ic;
1618 
1619 	/* update basic rate set */
1620 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1621 		/* 11b basic rates: 1, 2Mbps */
1622 		rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1623 	} else if (ic->ic_curmode == IEEE80211_MODE_11A) {
1624 		/* 11a basic rates: 6, 12, 24Mbps */
1625 		rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1626 	} else {
1627 		/* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
1628 		rum_write(sc, RT2573_TXRX_CSR5, 0xf);
1629 	}
1630 }
1631 
1632 /*
1633  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
1634  * driver.
1635  */
1636 void
1637 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1638 {
1639 	uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1640 	uint32_t tmp;
1641 
1642 	/* update all BBP registers that depend on the band */
1643 	bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1644 	bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
1645 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
1646 		bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1647 		bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
1648 	}
1649 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1650 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1651 		bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1652 	}
1653 
1654 	sc->bbp17 = bbp17;
1655 	rum_bbp_write(sc,  17, bbp17);
1656 	rum_bbp_write(sc,  96, bbp96);
1657 	rum_bbp_write(sc, 104, bbp104);
1658 
1659 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1660 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1661 		rum_bbp_write(sc, 75, 0x80);
1662 		rum_bbp_write(sc, 86, 0x80);
1663 		rum_bbp_write(sc, 88, 0x80);
1664 	}
1665 
1666 	rum_bbp_write(sc, 35, bbp35);
1667 	rum_bbp_write(sc, 97, bbp97);
1668 	rum_bbp_write(sc, 98, bbp98);
1669 
1670 	tmp = rum_read(sc, RT2573_PHY_CSR0);
1671 	tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1672 	if (IEEE80211_IS_CHAN_2GHZ(c))
1673 		tmp |= RT2573_PA_PE_2GHZ;
1674 	else
1675 		tmp |= RT2573_PA_PE_5GHZ;
1676 	rum_write(sc, RT2573_PHY_CSR0, tmp);
1677 
1678 	/* 802.11a uses a 16 microseconds short interframe space */
1679 	sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
1680 }
1681 
1682 void
1683 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1684 {
1685 	struct ieee80211com *ic = &sc->sc_ic;
1686 	const struct rfprog *rfprog;
1687 	uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1688 	int8_t power;
1689 	u_int i, chan;
1690 
1691 	chan = ieee80211_chan2ieee(ic, c);
1692 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1693 		return;
1694 
1695 	/* select the appropriate RF settings based on what EEPROM says */
1696 	rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1697 		  sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1698 
1699 	/* find the settings for this channel (we know it exists) */
1700 	for (i = 0; rfprog[i].chan != chan; i++);
1701 
1702 	power = sc->txpow[i];
1703 	if (power < 0) {
1704 		bbp94 += power;
1705 		power = 0;
1706 	} else if (power > 31) {
1707 		bbp94 += power - 31;
1708 		power = 31;
1709 	}
1710 
1711 	/*
1712 	 * If we are switching from the 2GHz band to the 5GHz band or
1713 	 * vice-versa, BBP registers need to be reprogrammed.
1714 	 */
1715 	if (c->ic_flags != sc->sc_curchan->ic_flags) {
1716 		rum_select_band(sc, c);
1717 		rum_select_antenna(sc);
1718 	}
1719 	sc->sc_curchan = c;
1720 
1721 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1722 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1723 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1724 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1725 
1726 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1727 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1728 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1729 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1730 
1731 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1732 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1733 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1734 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1735 
1736 	DELAY(10);
1737 
1738 	/* enable smart mode for MIMO-capable RFs */
1739 	bbp3 = rum_bbp_read(sc, 3);
1740 
1741 	bbp3 &= ~RT2573_SMART_MODE;
1742 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1743 		bbp3 |= RT2573_SMART_MODE;
1744 
1745 	rum_bbp_write(sc, 3, bbp3);
1746 
1747 	if (bbp94 != RT2573_BBPR94_DEFAULT)
1748 		rum_bbp_write(sc, 94, bbp94);
1749 }
1750 
1751 /*
1752  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1753  * and HostAP operating modes.
1754  */
1755 void
1756 rum_enable_tsf_sync(struct rum_softc *sc)
1757 {
1758 	struct ieee80211com *ic = &sc->sc_ic;
1759 	uint32_t tmp;
1760 
1761 #ifndef IEEE80211_STA_ONLY
1762 	if (ic->ic_opmode != IEEE80211_M_STA) {
1763 		/*
1764 		 * Change default 16ms TBTT adjustment to 8ms.
1765 		 * Must be done before enabling beacon generation.
1766 		 */
1767 		rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1768 	}
1769 #endif
1770 
1771 	tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1772 
1773 	/* set beacon interval (in 1/16ms unit) */
1774 	tmp |= ic->ic_bss->ni_intval * 16;
1775 
1776 	tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1777 	if (ic->ic_opmode == IEEE80211_M_STA)
1778 		tmp |= RT2573_TSF_MODE(1);
1779 #ifndef IEEE80211_STA_ONLY
1780 	else
1781 		tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1782 #endif
1783 	rum_write(sc, RT2573_TXRX_CSR9, tmp);
1784 }
1785 
1786 void
1787 rum_update_slot(struct rum_softc *sc)
1788 {
1789 	struct ieee80211com *ic = &sc->sc_ic;
1790 	uint8_t slottime;
1791 	uint32_t tmp;
1792 
1793 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1794 
1795 	tmp = rum_read(sc, RT2573_MAC_CSR9);
1796 	tmp = (tmp & ~0xff) | slottime;
1797 	rum_write(sc, RT2573_MAC_CSR9, tmp);
1798 
1799 	DPRINTF(("setting slot time to %uus\n", slottime));
1800 }
1801 
1802 void
1803 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1804 {
1805 	uint32_t tmp;
1806 
1807 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1808 	rum_write(sc, RT2573_MAC_CSR4, tmp);
1809 
1810 	tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1811 	rum_write(sc, RT2573_MAC_CSR5, tmp);
1812 }
1813 
1814 void
1815 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1816 {
1817 	uint32_t tmp;
1818 
1819 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1820 	rum_write(sc, RT2573_MAC_CSR2, tmp);
1821 
1822 	tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1823 	rum_write(sc, RT2573_MAC_CSR3, tmp);
1824 }
1825 
1826 void
1827 rum_update_promisc(struct rum_softc *sc)
1828 {
1829 	struct ifnet *ifp = &sc->sc_ic.ic_if;
1830 	uint32_t tmp;
1831 
1832 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
1833 
1834 	tmp &= ~RT2573_DROP_NOT_TO_ME;
1835 	if (!(ifp->if_flags & IFF_PROMISC))
1836 		tmp |= RT2573_DROP_NOT_TO_ME;
1837 
1838 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
1839 
1840 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1841 	    "entering" : "leaving"));
1842 }
1843 
1844 const char *
1845 rum_get_rf(int rev)
1846 {
1847 	switch (rev) {
1848 	case RT2573_RF_2527:	return "RT2527 (MIMO XR)";
1849 	case RT2573_RF_2528:	return "RT2528";
1850 	case RT2573_RF_5225:	return "RT5225 (MIMO XR)";
1851 	case RT2573_RF_5226:	return "RT5226";
1852 	default:		return "unknown";
1853 	}
1854 }
1855 
1856 void
1857 rum_read_eeprom(struct rum_softc *sc)
1858 {
1859 	struct ieee80211com *ic = &sc->sc_ic;
1860 	uint16_t val;
1861 #ifdef RUM_DEBUG
1862 	int i;
1863 #endif
1864 
1865 	/* read MAC/BBP type */
1866 	rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
1867 	sc->macbbp_rev = letoh16(val);
1868 
1869 	/* read MAC address */
1870 	rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1871 
1872 	rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1873 	val = letoh16(val);
1874 	sc->rf_rev =   (val >> 11) & 0x1f;
1875 	sc->hw_radio = (val >> 10) & 0x1;
1876 	sc->rx_ant =   (val >> 4)  & 0x3;
1877 	sc->tx_ant =   (val >> 2)  & 0x3;
1878 	sc->nb_ant =   val & 0x3;
1879 
1880 	DPRINTF(("RF revision=%d\n", sc->rf_rev));
1881 
1882 	rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1883 	val = letoh16(val);
1884 	sc->ext_5ghz_lna = (val >> 6) & 0x1;
1885 	sc->ext_2ghz_lna = (val >> 4) & 0x1;
1886 
1887 	DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1888 	    sc->ext_2ghz_lna, sc->ext_5ghz_lna));
1889 
1890 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1891 	val = letoh16(val);
1892 	if ((val & 0xff) != 0xff)
1893 		sc->rssi_2ghz_corr = (int8_t)(val & 0xff);	/* signed */
1894 
1895 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1896 	val = letoh16(val);
1897 	if ((val & 0xff) != 0xff)
1898 		sc->rssi_5ghz_corr = (int8_t)(val & 0xff);	/* signed */
1899 
1900 	DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
1901 	    sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
1902 
1903 	rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
1904 	val = letoh16(val);
1905 	if ((val & 0xff) != 0xff)
1906 		sc->rffreq = val & 0xff;
1907 
1908 	DPRINTF(("RF freq=%d\n", sc->rffreq));
1909 
1910 	/* read Tx power for all a/b/g channels */
1911 	rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
1912 	/* XXX default Tx power for 802.11a channels */
1913 	memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
1914 #ifdef RUM_DEBUG
1915 	for (i = 0; i < 14; i++)
1916 		DPRINTF(("Channel=%d Tx power=%d\n", i + 1,  sc->txpow[i]));
1917 #endif
1918 
1919 	/* read default values for BBP registers */
1920 	rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1921 #ifdef RUM_DEBUG
1922 	for (i = 0; i < 14; i++) {
1923 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1924 			continue;
1925 		DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
1926 		    sc->bbp_prom[i].val));
1927 	}
1928 #endif
1929 }
1930 
1931 int
1932 rum_bbp_init(struct rum_softc *sc)
1933 {
1934 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
1935 	int i, ntries;
1936 
1937 	/* wait for BBP to be ready */
1938 	for (ntries = 0; ntries < 100; ntries++) {
1939 		const uint8_t val = rum_bbp_read(sc, 0);
1940 		if (val != 0 && val != 0xff)
1941 			break;
1942 		DELAY(1000);
1943 	}
1944 	if (ntries == 100) {
1945 		printf("%s: timeout waiting for BBP\n",
1946 		    sc->sc_dev.dv_xname);
1947 		return EIO;
1948 	}
1949 
1950 	/* initialize BBP registers to default values */
1951 	for (i = 0; i < N(rum_def_bbp); i++)
1952 		rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
1953 
1954 	/* write vendor-specific BBP values (from EEPROM) */
1955 	for (i = 0; i < 16; i++) {
1956 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1957 			continue;
1958 		rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1959 	}
1960 
1961 	return 0;
1962 #undef N
1963 }
1964 
1965 int
1966 rum_init(struct ifnet *ifp)
1967 {
1968 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
1969 	struct rum_softc *sc = ifp->if_softc;
1970 	struct ieee80211com *ic = &sc->sc_ic;
1971 	uint32_t tmp;
1972 	usbd_status error;
1973 	int i, ntries;
1974 
1975 	rum_stop(ifp, 0);
1976 
1977 	/* initialize MAC registers to default values */
1978 	for (i = 0; i < N(rum_def_mac); i++)
1979 		rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
1980 
1981 	/* set host ready */
1982 	rum_write(sc, RT2573_MAC_CSR1, 3);
1983 	rum_write(sc, RT2573_MAC_CSR1, 0);
1984 
1985 	/* wait for BBP/RF to wakeup */
1986 	for (ntries = 0; ntries < 1000; ntries++) {
1987 		if (rum_read(sc, RT2573_MAC_CSR12) & 8)
1988 			break;
1989 		rum_write(sc, RT2573_MAC_CSR12, 4);	/* force wakeup */
1990 		DELAY(1000);
1991 	}
1992 	if (ntries == 1000) {
1993 		printf("%s: timeout waiting for BBP/RF to wakeup\n",
1994 		    sc->sc_dev.dv_xname);
1995 		goto fail;
1996 	}
1997 
1998 	if ((error = rum_bbp_init(sc)) != 0)
1999 		goto fail;
2000 
2001 	/* select default channel */
2002 	sc->sc_curchan = ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2003 	rum_select_band(sc, sc->sc_curchan);
2004 	rum_select_antenna(sc);
2005 	rum_set_chan(sc, sc->sc_curchan);
2006 
2007 	/* clear STA registers */
2008 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2009 
2010 	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
2011 	rum_set_macaddr(sc, ic->ic_myaddr);
2012 
2013 	/* initialize ASIC */
2014 	rum_write(sc, RT2573_MAC_CSR1, 4);
2015 
2016 	/*
2017 	 * Allocate xfer for AMRR statistics requests.
2018 	 */
2019 	sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev);
2020 	if (sc->amrr_xfer == NULL) {
2021 		printf("%s: could not allocate AMRR xfer\n",
2022 		    sc->sc_dev.dv_xname);
2023 		goto fail;
2024 	}
2025 
2026 	/*
2027 	 * Open Tx and Rx USB bulk pipes.
2028 	 */
2029 	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2030 	    &sc->sc_tx_pipeh);
2031 	if (error != 0) {
2032 		printf("%s: could not open Tx pipe: %s\n",
2033 		    sc->sc_dev.dv_xname, usbd_errstr(error));
2034 		goto fail;
2035 	}
2036 	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2037 	    &sc->sc_rx_pipeh);
2038 	if (error != 0) {
2039 		printf("%s: could not open Rx pipe: %s\n",
2040 		    sc->sc_dev.dv_xname, usbd_errstr(error));
2041 		goto fail;
2042 	}
2043 
2044 	/*
2045 	 * Allocate Tx and Rx xfer queues.
2046 	 */
2047 	error = rum_alloc_tx_list(sc);
2048 	if (error != 0) {
2049 		printf("%s: could not allocate Tx list\n",
2050 		    sc->sc_dev.dv_xname);
2051 		goto fail;
2052 	}
2053 	error = rum_alloc_rx_list(sc);
2054 	if (error != 0) {
2055 		printf("%s: could not allocate Rx list\n",
2056 		    sc->sc_dev.dv_xname);
2057 		goto fail;
2058 	}
2059 
2060 	/*
2061 	 * Start up the receive pipe.
2062 	 */
2063 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
2064 		struct rum_rx_data *data = &sc->rx_data[i];
2065 
2066 		usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2067 		    MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
2068 		error = usbd_transfer(data->xfer);
2069 		if (error != 0 && error != USBD_IN_PROGRESS) {
2070 			printf("%s: could not queue Rx transfer\n",
2071 			    sc->sc_dev.dv_xname);
2072 			goto fail;
2073 		}
2074 	}
2075 
2076 	/* update Rx filter */
2077 	tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2078 
2079 	tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2080 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2081 		tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2082 		       RT2573_DROP_ACKCTS;
2083 #ifndef IEEE80211_STA_ONLY
2084 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2085 #endif
2086 			tmp |= RT2573_DROP_TODS;
2087 		if (!(ifp->if_flags & IFF_PROMISC))
2088 			tmp |= RT2573_DROP_NOT_TO_ME;
2089 	}
2090 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
2091 
2092 	ifp->if_flags &= ~IFF_OACTIVE;
2093 	ifp->if_flags |= IFF_RUNNING;
2094 
2095 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2096 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2097 	else
2098 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2099 
2100 	return 0;
2101 
2102 fail:	rum_stop(ifp, 1);
2103 	return error;
2104 #undef N
2105 }
2106 
2107 void
2108 rum_stop(struct ifnet *ifp, int disable)
2109 {
2110 	struct rum_softc *sc = ifp->if_softc;
2111 	struct ieee80211com *ic = &sc->sc_ic;
2112 	uint32_t tmp;
2113 
2114 	sc->sc_tx_timer = 0;
2115 	ifp->if_timer = 0;
2116 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2117 
2118 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
2119 
2120 	/* disable Rx */
2121 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
2122 	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2123 
2124 	/* reset ASIC */
2125 	rum_write(sc, RT2573_MAC_CSR1, 3);
2126 	rum_write(sc, RT2573_MAC_CSR1, 0);
2127 
2128 	if (sc->amrr_xfer != NULL) {
2129 		usbd_free_xfer(sc->amrr_xfer);
2130 		sc->amrr_xfer = NULL;
2131 	}
2132 	if (sc->sc_rx_pipeh != NULL) {
2133 		usbd_abort_pipe(sc->sc_rx_pipeh);
2134 		usbd_close_pipe(sc->sc_rx_pipeh);
2135 		sc->sc_rx_pipeh = NULL;
2136 	}
2137 	if (sc->sc_tx_pipeh != NULL) {
2138 		usbd_abort_pipe(sc->sc_tx_pipeh);
2139 		usbd_close_pipe(sc->sc_tx_pipeh);
2140 		sc->sc_tx_pipeh = NULL;
2141 	}
2142 
2143 	rum_free_rx_list(sc);
2144 	rum_free_tx_list(sc);
2145 }
2146 
2147 int
2148 rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
2149 {
2150 	usb_device_request_t req;
2151 	uint16_t reg = RT2573_MCU_CODE_BASE;
2152 	usbd_status error;
2153 
2154 	/* copy firmware image into NIC */
2155 	for (; size >= 4; reg += 4, ucode += 4, size -= 4)
2156 		rum_write(sc, reg, UGETDW(ucode));
2157 
2158 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2159 	req.bRequest = RT2573_MCU_CNTL;
2160 	USETW(req.wValue, RT2573_MCU_RUN);
2161 	USETW(req.wIndex, 0);
2162 	USETW(req.wLength, 0);
2163 
2164 	error = usbd_do_request(sc->sc_udev, &req, NULL);
2165 	if (error != 0) {
2166 		printf("%s: could not run firmware: %s\n",
2167 		    sc->sc_dev.dv_xname, usbd_errstr(error));
2168 	}
2169 	return error;
2170 }
2171 
2172 #ifndef IEEE80211_STA_ONLY
2173 int
2174 rum_prepare_beacon(struct rum_softc *sc)
2175 {
2176 	struct ieee80211com *ic = &sc->sc_ic;
2177 	struct rum_tx_desc desc;
2178 	struct mbuf *m0;
2179 	int rate;
2180 
2181 	m0 = ieee80211_beacon_alloc(ic, ic->ic_bss);
2182 	if (m0 == NULL) {
2183 		printf("%s: could not allocate beacon frame\n",
2184 		    sc->sc_dev.dv_xname);
2185 		return ENOBUFS;
2186 	}
2187 
2188 	/* send beacons at the lowest available rate */
2189 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan) ? 12 : 2;
2190 
2191 	rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2192 	    m0->m_pkthdr.len, rate);
2193 
2194 	/* copy the first 24 bytes of Tx descriptor into NIC memory */
2195 	rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2196 
2197 	/* copy beacon header and payload into NIC memory */
2198 	rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2199 	    m0->m_pkthdr.len);
2200 
2201 	m_freem(m0);
2202 
2203 	return 0;
2204 }
2205 #endif
2206 
2207 void
2208 rum_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
2209 {
2210 	/* start with lowest Tx rate */
2211 	ni->ni_txrate = 0;
2212 }
2213 
2214 void
2215 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
2216 {
2217 	int i;
2218 
2219 	/* clear statistic registers (STA_CSR0 to STA_CSR5) */
2220 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2221 
2222 	ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2223 
2224 	/* set rate to some reasonable initial value */
2225 	for (i = ni->ni_rates.rs_nrates - 1;
2226 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2227 	     i--);
2228 	ni->ni_txrate = i;
2229 
2230 	timeout_add_sec(&sc->amrr_to, 1);
2231 }
2232 
2233 void
2234 rum_amrr_timeout(void *arg)
2235 {
2236 	struct rum_softc *sc = arg;
2237 	usb_device_request_t req;
2238 
2239 	/*
2240 	 * Asynchronously read statistic registers (cleared by read).
2241 	 */
2242 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
2243 	req.bRequest = RT2573_READ_MULTI_MAC;
2244 	USETW(req.wValue, 0);
2245 	USETW(req.wIndex, RT2573_STA_CSR0);
2246 	USETW(req.wLength, sizeof sc->sta);
2247 
2248 	usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2249 	    USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
2250 	    rum_amrr_update);
2251 	(void)usbd_transfer(sc->amrr_xfer);
2252 }
2253 
2254 void
2255 rum_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv,
2256     usbd_status status)
2257 {
2258 	struct rum_softc *sc = (struct rum_softc *)priv;
2259 	struct ifnet *ifp = &sc->sc_ic.ic_if;
2260 
2261 	if (status != USBD_NORMAL_COMPLETION) {
2262 		printf("%s: could not retrieve Tx statistics - cancelling "
2263 		    "automatic rate control\n", sc->sc_dev.dv_xname);
2264 		return;
2265 	}
2266 
2267 	/* count TX retry-fail as Tx errors */
2268 	ifp->if_oerrors += letoh32(sc->sta[5]) >> 16;
2269 
2270 	sc->amn.amn_retrycnt =
2271 	    (letoh32(sc->sta[4]) >> 16) +	/* TX one-retry ok count */
2272 	    (letoh32(sc->sta[5]) & 0xffff) +	/* TX more-retry ok count */
2273 	    (letoh32(sc->sta[5]) >> 16);	/* TX retry-fail count */
2274 
2275 	sc->amn.amn_txcnt =
2276 	    sc->amn.amn_retrycnt +
2277 	    (letoh32(sc->sta[4]) & 0xffff);	/* TX no-retry ok count */
2278 
2279 	ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2280 
2281 	timeout_add_sec(&sc->amrr_to, 1);
2282 }
2283 
2284 int
2285 rum_activate(struct device *self, int act)
2286 {
2287 	switch (act) {
2288 	case DVACT_ACTIVATE:
2289 		break;
2290 
2291 	case DVACT_DEACTIVATE:
2292 		break;
2293 	}
2294 
2295 	return 0;
2296 }
2297