xref: /openbsd/sys/dev/usb/if_rum.c (revision d415bd75)
1 /*	$OpenBSD: if_rum.c,v 1.127 2022/04/21 21:03:03 stsp Exp $	*/
2 
3 /*-
4  * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr>
5  * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*-
21  * Ralink Technology RT2501USB/RT2601USB chipset driver
22  * http://www.ralinktech.com.tw/
23  */
24 
25 #include "bpfilter.h"
26 
27 #include <sys/param.h>
28 #include <sys/sockio.h>
29 #include <sys/mbuf.h>
30 #include <sys/kernel.h>
31 #include <sys/socket.h>
32 #include <sys/systm.h>
33 #include <sys/timeout.h>
34 #include <sys/conf.h>
35 #include <sys/device.h>
36 #include <sys/endian.h>
37 
38 #include <machine/intr.h>
39 
40 #if NBPFILTER > 0
41 #include <net/bpf.h>
42 #endif
43 #include <net/if.h>
44 #include <net/if_dl.h>
45 #include <net/if_media.h>
46 
47 #include <netinet/in.h>
48 #include <netinet/if_ether.h>
49 
50 #include <net80211/ieee80211_var.h>
51 #include <net80211/ieee80211_amrr.h>
52 #include <net80211/ieee80211_radiotap.h>
53 
54 #include <dev/usb/usb.h>
55 #include <dev/usb/usbdi.h>
56 #include <dev/usb/usbdi_util.h>
57 #include <dev/usb/usbdevs.h>
58 
59 #include <dev/usb/if_rumreg.h>
60 #include <dev/usb/if_rumvar.h>
61 
62 #ifdef RUM_DEBUG
63 #define DPRINTF(x)	do { if (rum_debug) printf x; } while (0)
64 #define DPRINTFN(n, x)	do { if (rum_debug >= (n)) printf x; } while (0)
65 int rum_debug = 0;
66 #else
67 #define DPRINTF(x)
68 #define DPRINTFN(n, x)
69 #endif
70 
71 /* various supported device vendors/products */
72 static const struct usb_devno rum_devs[] = {
73 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_HWU54DM },
74 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_2 },
75 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_3 },
76 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_4 },
77 	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_WUG2700 },
78 	{ USB_VENDOR_AMIT,		USB_PRODUCT_AMIT_CGWLUSB2GO },
79 	{ USB_VENDOR_ASUS,		USB_PRODUCT_ASUS_RT2573_1 },
80 	{ USB_VENDOR_ASUS,		USB_PRODUCT_ASUS_RT2573_2 },
81 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050A },
82 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D9050V3 },
83 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D9050C },
84 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB200 },
85 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
86 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GR },
87 	{ USB_VENDOR_CONCEPTRONIC2,	USB_PRODUCT_CONCEPTRONIC2_C54RU2 },
88 	{ USB_VENDOR_CONCEPTRONIC2,	USB_PRODUCT_CONCEPTRONIC2_RT2573 },
89 	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GL },
90 	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GPX },
91 	{ USB_VENDOR_DICKSMITH,		USB_PRODUCT_DICKSMITH_CWD854F },
92 	{ USB_VENDOR_DICKSMITH,		USB_PRODUCT_DICKSMITH_RT2573 },
93 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWA111 },
94 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWA110 },
95 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWLG122C1 },
96 	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_WUA1340 },
97 	{ USB_VENDOR_EDIMAX,		USB_PRODUCT_EDIMAX_EW7318 },
98 	{ USB_VENDOR_EDIMAX,		USB_PRODUCT_EDIMAX_EW7618 },
99 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWB01GS },
100 	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWI05GS },
101 	{ USB_VENDOR_GIGASET,		USB_PRODUCT_GIGASET_RT2573 },
102 	{ USB_VENDOR_GOODWAY,		USB_PRODUCT_GOODWAY_RT2573 },
103 	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254LB },
104 	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP },
105 	{ USB_VENDOR_HUAWEI3COM,	USB_PRODUCT_HUAWEI3COM_WUB320G },
106 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_G54HP },
107 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_SG54HP },
108 	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_SG54HG },
109 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_1 },
110 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_2 },
111 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_3 },
112 	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_4 },
113 	{ USB_VENDOR_NOVATECH,		USB_PRODUCT_NOVATECH_RT2573 },
114 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUS54HP },
115 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUS54MINI2 },
116 	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUSMM },
117 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573 },
118 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573_2 },
119 	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573_3 },
120 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2573 },
121 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2573_2 },
122 	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2671 },
123 	{ USB_VENDOR_SITECOMEU,		USB_PRODUCT_SITECOMEU_WL113R2 },
124 	{ USB_VENDOR_SITECOMEU,		USB_PRODUCT_SITECOMEU_WL172 },
125 	{ USB_VENDOR_SURECOM,		USB_PRODUCT_SURECOM_RT2573 },
126 	{ USB_VENDOR_SPARKLAN,		USB_PRODUCT_SPARKLAN_RT2573 },
127 	{ USB_VENDOR_ZYXEL,		USB_PRODUCT_ZYXEL_RT2573 }
128 };
129 
130 void		rum_attachhook(struct device *);
131 int		rum_alloc_tx_list(struct rum_softc *);
132 void		rum_free_tx_list(struct rum_softc *);
133 int		rum_alloc_rx_list(struct rum_softc *);
134 void		rum_free_rx_list(struct rum_softc *);
135 int		rum_media_change(struct ifnet *);
136 void		rum_next_scan(void *);
137 void		rum_task(void *);
138 int		rum_newstate(struct ieee80211com *, enum ieee80211_state, int);
139 void		rum_txeof(struct usbd_xfer *, void *, usbd_status);
140 void		rum_rxeof(struct usbd_xfer *, void *, usbd_status);
141 #if NBPFILTER > 0
142 uint8_t		rum_rxrate(const struct rum_rx_desc *);
143 #endif
144 int		rum_ack_rate(struct ieee80211com *, int);
145 uint16_t	rum_txtime(int, int, uint32_t);
146 uint8_t		rum_plcp_signal(int);
147 void		rum_setup_tx_desc(struct rum_softc *, struct rum_tx_desc *,
148 		    uint32_t, uint16_t, int, int);
149 int		rum_tx_data(struct rum_softc *, struct mbuf *,
150 		    struct ieee80211_node *);
151 void		rum_start(struct ifnet *);
152 void		rum_watchdog(struct ifnet *);
153 int		rum_ioctl(struct ifnet *, u_long, caddr_t);
154 void		rum_eeprom_read(struct rum_softc *, uint16_t, void *, int);
155 uint32_t	rum_read(struct rum_softc *, uint16_t);
156 void		rum_read_multi(struct rum_softc *, uint16_t, void *, int);
157 void		rum_write(struct rum_softc *, uint16_t, uint32_t);
158 void		rum_write_multi(struct rum_softc *, uint16_t, void *, size_t);
159 void		rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
160 uint8_t		rum_bbp_read(struct rum_softc *, uint8_t);
161 void		rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
162 void		rum_select_antenna(struct rum_softc *);
163 void		rum_enable_mrr(struct rum_softc *);
164 void		rum_set_txpreamble(struct rum_softc *);
165 void		rum_set_basicrates(struct rum_softc *);
166 void		rum_select_band(struct rum_softc *,
167 		    struct ieee80211_channel *);
168 void		rum_set_chan(struct rum_softc *, struct ieee80211_channel *);
169 void		rum_enable_tsf_sync(struct rum_softc *);
170 void		rum_update_slot(struct rum_softc *);
171 void		rum_set_bssid(struct rum_softc *, const uint8_t *);
172 void		rum_set_macaddr(struct rum_softc *, const uint8_t *);
173 void		rum_update_promisc(struct rum_softc *);
174 const char	*rum_get_rf(int);
175 void		rum_read_eeprom(struct rum_softc *);
176 int		rum_bbp_init(struct rum_softc *);
177 int		rum_init(struct ifnet *);
178 void		rum_stop(struct ifnet *, int);
179 int		rum_load_microcode(struct rum_softc *, const u_char *, size_t);
180 #ifndef IEEE80211_STA_ONLY
181 int		rum_prepare_beacon(struct rum_softc *);
182 #endif
183 void		rum_newassoc(struct ieee80211com *, struct ieee80211_node *,
184 		    int);
185 void		rum_amrr_start(struct rum_softc *, struct ieee80211_node *);
186 void		rum_amrr_timeout(void *);
187 void		rum_amrr_update(struct usbd_xfer *, void *,
188 		    usbd_status status);
189 
190 static const struct {
191 	uint32_t	reg;
192 	uint32_t	val;
193 } rum_def_mac[] = {
194 	RT2573_DEF_MAC
195 };
196 
197 static const struct {
198 	uint8_t	reg;
199 	uint8_t	val;
200 } rum_def_bbp[] = {
201 	RT2573_DEF_BBP
202 };
203 
204 static const struct rfprog {
205 	uint8_t		chan;
206 	uint32_t	r1, r2, r3, r4;
207 }  rum_rf5226[] = {
208 	RT2573_RF5226
209 }, rum_rf5225[] = {
210 	RT2573_RF5225
211 };
212 
213 int rum_match(struct device *, void *, void *);
214 void rum_attach(struct device *, struct device *, void *);
215 int rum_detach(struct device *, int);
216 
217 struct cfdriver rum_cd = {
218 	NULL, "rum", DV_IFNET
219 };
220 
221 const struct cfattach rum_ca = {
222 	sizeof(struct rum_softc), rum_match, rum_attach, rum_detach
223 };
224 
225 int
226 rum_match(struct device *parent, void *match, void *aux)
227 {
228 	struct usb_attach_arg *uaa = aux;
229 
230 	if (uaa->iface == NULL || uaa->configno != 1)
231 		return UMATCH_NONE;
232 
233 	return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ?
234 	    UMATCH_VENDOR_PRODUCT_CONF_IFACE : UMATCH_NONE;
235 }
236 
237 void
238 rum_attachhook(struct device *self)
239 {
240 	struct rum_softc *sc = (struct rum_softc *)self;
241 	const char *name = "rum-rt2573";
242 	u_char *ucode;
243 	size_t size;
244 	int error;
245 
246 	if ((error = loadfirmware(name, &ucode, &size)) != 0) {
247 		printf("%s: failed loadfirmware of file %s (error %d)\n",
248 		    sc->sc_dev.dv_xname, name, error);
249 		return;
250 	}
251 
252 	if (rum_load_microcode(sc, ucode, size) != 0) {
253 		printf("%s: could not load 8051 microcode\n",
254 		    sc->sc_dev.dv_xname);
255 	}
256 
257 	free(ucode, M_DEVBUF, size);
258 }
259 
260 void
261 rum_attach(struct device *parent, struct device *self, void *aux)
262 {
263 	struct rum_softc *sc = (struct rum_softc *)self;
264 	struct usb_attach_arg *uaa = aux;
265 	struct ieee80211com *ic = &sc->sc_ic;
266 	struct ifnet *ifp = &ic->ic_if;
267 	usb_interface_descriptor_t *id;
268 	usb_endpoint_descriptor_t *ed;
269 	int i, ntries;
270 	uint32_t tmp;
271 
272 	sc->sc_udev = uaa->device;
273 	sc->sc_iface = uaa->iface;
274 
275 	/*
276 	 * Find endpoints.
277 	 */
278 	id = usbd_get_interface_descriptor(sc->sc_iface);
279 
280 	sc->sc_rx_no = sc->sc_tx_no = -1;
281 	for (i = 0; i < id->bNumEndpoints; i++) {
282 		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
283 		if (ed == NULL) {
284 			printf("%s: no endpoint descriptor for iface %d\n",
285 			    sc->sc_dev.dv_xname, i);
286 			return;
287 		}
288 
289 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
290 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
291 			sc->sc_rx_no = ed->bEndpointAddress;
292 		else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
293 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
294 			sc->sc_tx_no = ed->bEndpointAddress;
295 	}
296 	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
297 		printf("%s: missing endpoint\n", sc->sc_dev.dv_xname);
298 		return;
299 	}
300 
301 	usb_init_task(&sc->sc_task, rum_task, sc, USB_TASK_TYPE_GENERIC);
302 	timeout_set(&sc->scan_to, rum_next_scan, sc);
303 
304 	sc->amrr.amrr_min_success_threshold =  1;
305 	sc->amrr.amrr_max_success_threshold = 10;
306 	timeout_set(&sc->amrr_to, rum_amrr_timeout, sc);
307 
308 	/* retrieve RT2573 rev. no */
309 	for (ntries = 0; ntries < 1000; ntries++) {
310 		if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
311 			break;
312 		DELAY(1000);
313 	}
314 	if (ntries == 1000) {
315 		printf("%s: timeout waiting for chip to settle\n",
316 		    sc->sc_dev.dv_xname);
317 		return;
318 	}
319 
320 	/* retrieve MAC address and various other things from EEPROM */
321 	rum_read_eeprom(sc);
322 
323 	printf("%s: MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n",
324 	    sc->sc_dev.dv_xname, sc->macbbp_rev, tmp,
325 	    rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr));
326 
327 	config_mountroot(self, rum_attachhook);
328 
329 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
330 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
331 	ic->ic_state = IEEE80211_S_INIT;
332 
333 	/* set device capabilities */
334 	ic->ic_caps =
335 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
336 #ifndef IEEE80211_STA_ONLY
337 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
338 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
339 #endif
340 	    IEEE80211_C_TXPMGT |	/* tx power management */
341 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
342 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
343 	    IEEE80211_C_WEP |		/* s/w WEP */
344 	    IEEE80211_C_RSN;		/* WPA/RSN */
345 
346 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
347 		/* set supported .11a rates */
348 		ic->ic_sup_rates[IEEE80211_MODE_11A] =
349 		    ieee80211_std_rateset_11a;
350 
351 		/* set supported .11a channels */
352 		for (i = 34; i <= 46; i += 4) {
353 			ic->ic_channels[i].ic_freq =
354 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
355 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
356 		}
357 		for (i = 36; i <= 64; i += 4) {
358 			ic->ic_channels[i].ic_freq =
359 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
360 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
361 		}
362 		for (i = 100; i <= 140; i += 4) {
363 			ic->ic_channels[i].ic_freq =
364 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
365 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
366 		}
367 		for (i = 149; i <= 165; i += 4) {
368 			ic->ic_channels[i].ic_freq =
369 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
370 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
371 		}
372 	}
373 
374 	/* set supported .11b and .11g rates */
375 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
376 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
377 
378 	/* set supported .11b and .11g channels (1 through 14) */
379 	for (i = 1; i <= 14; i++) {
380 		ic->ic_channels[i].ic_freq =
381 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
382 		ic->ic_channels[i].ic_flags =
383 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
384 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
385 	}
386 
387 	ifp->if_softc = sc;
388 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
389 	ifp->if_ioctl = rum_ioctl;
390 	ifp->if_start = rum_start;
391 	ifp->if_watchdog = rum_watchdog;
392 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
393 
394 	if_attach(ifp);
395 	ieee80211_ifattach(ifp);
396 	ic->ic_newassoc = rum_newassoc;
397 
398 	/* override state transition machine */
399 	sc->sc_newstate = ic->ic_newstate;
400 	ic->ic_newstate = rum_newstate;
401 	ieee80211_media_init(ifp, rum_media_change, ieee80211_media_status);
402 
403 #if NBPFILTER > 0
404 	bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO,
405 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN);
406 
407 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
408 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
409 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
410 
411 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
412 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
413 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
414 #endif
415 }
416 
417 int
418 rum_detach(struct device *self, int flags)
419 {
420 	struct rum_softc *sc = (struct rum_softc *)self;
421 	struct ifnet *ifp = &sc->sc_ic.ic_if;
422 	int s;
423 
424 	s = splusb();
425 
426 	if (timeout_initialized(&sc->scan_to))
427 		timeout_del(&sc->scan_to);
428 	if (timeout_initialized(&sc->amrr_to))
429 		timeout_del(&sc->amrr_to);
430 
431 	usb_rem_wait_task(sc->sc_udev, &sc->sc_task);
432 
433 	usbd_ref_wait(sc->sc_udev);
434 
435 	if (ifp->if_softc != NULL) {
436 		ieee80211_ifdetach(ifp);	/* free all nodes */
437 		if_detach(ifp);
438 	}
439 
440 	if (sc->amrr_xfer != NULL) {
441 		usbd_free_xfer(sc->amrr_xfer);
442 		sc->amrr_xfer = NULL;
443 	}
444 	if (sc->sc_rx_pipeh != NULL)
445 		usbd_close_pipe(sc->sc_rx_pipeh);
446 	if (sc->sc_tx_pipeh != NULL)
447 		usbd_close_pipe(sc->sc_tx_pipeh);
448 
449 	rum_free_rx_list(sc);
450 	rum_free_tx_list(sc);
451 
452 	splx(s);
453 
454 	return 0;
455 }
456 
457 int
458 rum_alloc_tx_list(struct rum_softc *sc)
459 {
460 	int i, error;
461 
462 	sc->tx_cur = sc->tx_queued = 0;
463 
464 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
465 		struct rum_tx_data *data = &sc->tx_data[i];
466 
467 		data->sc = sc;
468 
469 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
470 		if (data->xfer == NULL) {
471 			printf("%s: could not allocate tx xfer\n",
472 			    sc->sc_dev.dv_xname);
473 			error = ENOMEM;
474 			goto fail;
475 		}
476 		data->buf = usbd_alloc_buffer(data->xfer,
477 		    RT2573_TX_DESC_SIZE + IEEE80211_MAX_LEN);
478 		if (data->buf == NULL) {
479 			printf("%s: could not allocate tx buffer\n",
480 			    sc->sc_dev.dv_xname);
481 			error = ENOMEM;
482 			goto fail;
483 		}
484 		/* clean Tx descriptor */
485 		bzero(data->buf, RT2573_TX_DESC_SIZE);
486 	}
487 
488 	return 0;
489 
490 fail:	rum_free_tx_list(sc);
491 	return error;
492 }
493 
494 void
495 rum_free_tx_list(struct rum_softc *sc)
496 {
497 	int i;
498 
499 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
500 		struct rum_tx_data *data = &sc->tx_data[i];
501 
502 		if (data->xfer != NULL) {
503 			usbd_free_xfer(data->xfer);
504 			data->xfer = NULL;
505 		}
506 		/*
507 		 * The node has already been freed at that point so don't call
508 		 * ieee80211_release_node() here.
509 		 */
510 		data->ni = NULL;
511 	}
512 }
513 
514 int
515 rum_alloc_rx_list(struct rum_softc *sc)
516 {
517 	int i, error;
518 
519 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
520 		struct rum_rx_data *data = &sc->rx_data[i];
521 
522 		data->sc = sc;
523 
524 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
525 		if (data->xfer == NULL) {
526 			printf("%s: could not allocate rx xfer\n",
527 			    sc->sc_dev.dv_xname);
528 			error = ENOMEM;
529 			goto fail;
530 		}
531 		if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
532 			printf("%s: could not allocate rx buffer\n",
533 			    sc->sc_dev.dv_xname);
534 			error = ENOMEM;
535 			goto fail;
536 		}
537 
538 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
539 		if (data->m == NULL) {
540 			printf("%s: could not allocate rx mbuf\n",
541 			    sc->sc_dev.dv_xname);
542 			error = ENOMEM;
543 			goto fail;
544 		}
545 		MCLGET(data->m, M_DONTWAIT);
546 		if (!(data->m->m_flags & M_EXT)) {
547 			printf("%s: could not allocate rx mbuf cluster\n",
548 			    sc->sc_dev.dv_xname);
549 			error = ENOMEM;
550 			goto fail;
551 		}
552 		data->buf = mtod(data->m, uint8_t *);
553 	}
554 
555 	return 0;
556 
557 fail:	rum_free_rx_list(sc);
558 	return error;
559 }
560 
561 void
562 rum_free_rx_list(struct rum_softc *sc)
563 {
564 	int i;
565 
566 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
567 		struct rum_rx_data *data = &sc->rx_data[i];
568 
569 		if (data->xfer != NULL) {
570 			usbd_free_xfer(data->xfer);
571 			data->xfer = NULL;
572 		}
573 		if (data->m != NULL) {
574 			m_freem(data->m);
575 			data->m = NULL;
576 		}
577 	}
578 }
579 
580 int
581 rum_media_change(struct ifnet *ifp)
582 {
583 	int error;
584 
585 	error = ieee80211_media_change(ifp);
586 	if (error != ENETRESET)
587 		return error;
588 
589 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
590 		error = rum_init(ifp);
591 
592 	return error;
593 }
594 
595 /*
596  * This function is called periodically (every 200ms) during scanning to
597  * switch from one channel to another.
598  */
599 void
600 rum_next_scan(void *arg)
601 {
602 	struct rum_softc *sc = arg;
603 	struct ieee80211com *ic = &sc->sc_ic;
604 	struct ifnet *ifp = &ic->ic_if;
605 
606 	if (usbd_is_dying(sc->sc_udev))
607 		return;
608 
609 	usbd_ref_incr(sc->sc_udev);
610 
611 	if (ic->ic_state == IEEE80211_S_SCAN)
612 		ieee80211_next_scan(ifp);
613 
614 	usbd_ref_decr(sc->sc_udev);
615 }
616 
617 void
618 rum_task(void *arg)
619 {
620 	struct rum_softc *sc = arg;
621 	struct ieee80211com *ic = &sc->sc_ic;
622 	enum ieee80211_state ostate;
623 	struct ieee80211_node *ni;
624 	uint32_t tmp;
625 
626 	if (usbd_is_dying(sc->sc_udev))
627 		return;
628 
629 	ostate = ic->ic_state;
630 
631 	switch (sc->sc_state) {
632 	case IEEE80211_S_INIT:
633 		if (ostate == IEEE80211_S_RUN) {
634 			/* abort TSF synchronization */
635 			tmp = rum_read(sc, RT2573_TXRX_CSR9);
636 			rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
637 		}
638 		break;
639 
640 	case IEEE80211_S_SCAN:
641 		rum_set_chan(sc, ic->ic_bss->ni_chan);
642 		if (!usbd_is_dying(sc->sc_udev))
643 			timeout_add_msec(&sc->scan_to, 200);
644 		break;
645 
646 	case IEEE80211_S_AUTH:
647 		rum_set_chan(sc, ic->ic_bss->ni_chan);
648 		break;
649 
650 	case IEEE80211_S_ASSOC:
651 		rum_set_chan(sc, ic->ic_bss->ni_chan);
652 		break;
653 
654 	case IEEE80211_S_RUN:
655 		rum_set_chan(sc, ic->ic_bss->ni_chan);
656 
657 		ni = ic->ic_bss;
658 
659 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
660 			rum_update_slot(sc);
661 			rum_enable_mrr(sc);
662 			rum_set_txpreamble(sc);
663 			rum_set_basicrates(sc);
664 			rum_set_bssid(sc, ni->ni_bssid);
665 		}
666 
667 #ifndef IEEE80211_STA_ONLY
668 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
669 		    ic->ic_opmode == IEEE80211_M_IBSS)
670 			rum_prepare_beacon(sc);
671 #endif
672 
673 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
674 			rum_enable_tsf_sync(sc);
675 
676 		if (ic->ic_opmode == IEEE80211_M_STA) {
677 			/* fake a join to init the tx rate */
678 			rum_newassoc(ic, ic->ic_bss, 1);
679 
680 			/* enable automatic rate control in STA mode */
681 			if (ic->ic_fixed_rate == -1)
682 				rum_amrr_start(sc, ni);
683 		}
684 		break;
685 	}
686 
687 	sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
688 }
689 
690 int
691 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
692 {
693 	struct rum_softc *sc = ic->ic_if.if_softc;
694 
695 	usb_rem_task(sc->sc_udev, &sc->sc_task);
696 	timeout_del(&sc->scan_to);
697 	timeout_del(&sc->amrr_to);
698 
699 	/* do it in a process context */
700 	sc->sc_state = nstate;
701 	sc->sc_arg = arg;
702 	usb_add_task(sc->sc_udev, &sc->sc_task);
703 	return 0;
704 }
705 
706 /* quickly determine if a given rate is CCK or OFDM */
707 #define RUM_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
708 
709 #define RUM_ACK_SIZE	14	/* 10 + 4(FCS) */
710 #define RUM_CTS_SIZE	14	/* 10 + 4(FCS) */
711 
712 void
713 rum_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
714 {
715 	struct rum_tx_data *data = priv;
716 	struct rum_softc *sc = data->sc;
717 	struct ieee80211com *ic = &sc->sc_ic;
718 	struct ifnet *ifp = &ic->ic_if;
719 	int s;
720 
721 	if (status != USBD_NORMAL_COMPLETION) {
722 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
723 			return;
724 
725 		printf("%s: could not transmit buffer: %s\n",
726 		    sc->sc_dev.dv_xname, usbd_errstr(status));
727 
728 		if (status == USBD_STALLED)
729 			usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
730 
731 		ifp->if_oerrors++;
732 		return;
733 	}
734 
735 	s = splnet();
736 
737 	ieee80211_release_node(ic, data->ni);
738 	data->ni = NULL;
739 
740 	sc->tx_queued--;
741 
742 	DPRINTFN(10, ("tx done\n"));
743 
744 	sc->sc_tx_timer = 0;
745 	ifq_clr_oactive(&ifp->if_snd);
746 	rum_start(ifp);
747 
748 	splx(s);
749 }
750 
751 void
752 rum_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
753 {
754 	struct rum_rx_data *data = priv;
755 	struct rum_softc *sc = data->sc;
756 	struct ieee80211com *ic = &sc->sc_ic;
757 	struct ifnet *ifp = &ic->ic_if;
758 	const struct rum_rx_desc *desc;
759 	struct ieee80211_frame *wh;
760 	struct ieee80211_rxinfo rxi;
761 	struct ieee80211_node *ni;
762 	struct mbuf *mnew, *m;
763 	int s, len;
764 
765 	if (status != USBD_NORMAL_COMPLETION) {
766 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
767 			return;
768 
769 		if (status == USBD_STALLED)
770 			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
771 		goto skip;
772 	}
773 
774 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
775 
776 	if (len < RT2573_RX_DESC_SIZE + sizeof (struct ieee80211_frame_min)) {
777 		DPRINTF(("%s: xfer too short %d\n", sc->sc_dev.dv_xname,
778 		    len));
779 		ifp->if_ierrors++;
780 		goto skip;
781 	}
782 
783 	desc = (const struct rum_rx_desc *)data->buf;
784 
785 	if (letoh32(desc->flags) & RT2573_RX_CRC_ERROR) {
786 		/*
787 		 * This should not happen since we did not request to receive
788 		 * those frames when we filled RT2573_TXRX_CSR0.
789 		 */
790 		DPRINTFN(5, ("CRC error\n"));
791 		ifp->if_ierrors++;
792 		goto skip;
793 	}
794 
795 	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
796 	if (mnew == NULL) {
797 		printf("%s: could not allocate rx mbuf\n",
798 		    sc->sc_dev.dv_xname);
799 		ifp->if_ierrors++;
800 		goto skip;
801 	}
802 	MCLGET(mnew, M_DONTWAIT);
803 	if (!(mnew->m_flags & M_EXT)) {
804 		printf("%s: could not allocate rx mbuf cluster\n",
805 		    sc->sc_dev.dv_xname);
806 		m_freem(mnew);
807 		ifp->if_ierrors++;
808 		goto skip;
809 	}
810 	m = data->m;
811 	data->m = mnew;
812 	data->buf = mtod(data->m, uint8_t *);
813 
814 	/* finalize mbuf */
815 	m->m_data = (caddr_t)(desc + 1);
816 	m->m_pkthdr.len = m->m_len = (letoh32(desc->flags) >> 16) & 0xfff;
817 
818 	s = splnet();
819 
820 #if NBPFILTER > 0
821 	if (sc->sc_drvbpf != NULL) {
822 		struct mbuf mb;
823 		struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
824 
825 		tap->wr_flags = 0;
826 		tap->wr_rate = rum_rxrate(desc);
827 		tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
828 		tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
829 		tap->wr_antenna = sc->rx_ant;
830 		tap->wr_antsignal = desc->rssi;
831 
832 		mb.m_data = (caddr_t)tap;
833 		mb.m_len = sc->sc_rxtap_len;
834 		mb.m_next = m;
835 		mb.m_nextpkt = NULL;
836 		mb.m_type = 0;
837 		mb.m_flags = 0;
838 		bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN);
839 	}
840 #endif
841 
842 	wh = mtod(m, struct ieee80211_frame *);
843 	ni = ieee80211_find_rxnode(ic, wh);
844 
845 	/* send the frame to the 802.11 layer */
846 	memset(&rxi, 0, sizeof(rxi));
847 	rxi.rxi_rssi = desc->rssi;
848 	ieee80211_input(ifp, m, ni, &rxi);
849 
850 	/* node is no longer needed */
851 	ieee80211_release_node(ic, ni);
852 
853 	splx(s);
854 
855 	DPRINTFN(15, ("rx done\n"));
856 
857 skip:	/* setup a new transfer */
858 	usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
859 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
860 	(void)usbd_transfer(xfer);
861 }
862 
863 /*
864  * This function is only used by the Rx radiotap code. It returns the rate at
865  * which a given frame was received.
866  */
867 #if NBPFILTER > 0
868 uint8_t
869 rum_rxrate(const struct rum_rx_desc *desc)
870 {
871 	if (letoh32(desc->flags) & RT2573_RX_OFDM) {
872 		/* reverse function of rum_plcp_signal */
873 		switch (desc->rate) {
874 		case 0xb:	return 12;
875 		case 0xf:	return 18;
876 		case 0xa:	return 24;
877 		case 0xe:	return 36;
878 		case 0x9:	return 48;
879 		case 0xd:	return 72;
880 		case 0x8:	return 96;
881 		case 0xc:	return 108;
882 		}
883 	} else {
884 		if (desc->rate == 10)
885 			return 2;
886 		if (desc->rate == 20)
887 			return 4;
888 		if (desc->rate == 55)
889 			return 11;
890 		if (desc->rate == 110)
891 			return 22;
892 	}
893 	return 2;	/* should not get there */
894 }
895 #endif
896 
897 /*
898  * Return the expected ack rate for a frame transmitted at rate `rate'.
899  */
900 int
901 rum_ack_rate(struct ieee80211com *ic, int rate)
902 {
903 	switch (rate) {
904 	/* CCK rates */
905 	case 2:
906 		return 2;
907 	case 4:
908 	case 11:
909 	case 22:
910 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
911 
912 	/* OFDM rates */
913 	case 12:
914 	case 18:
915 		return 12;
916 	case 24:
917 	case 36:
918 		return 24;
919 	case 48:
920 	case 72:
921 	case 96:
922 	case 108:
923 		return 48;
924 	}
925 
926 	/* default to 1Mbps */
927 	return 2;
928 }
929 
930 /*
931  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
932  * The function automatically determines the operating mode depending on the
933  * given rate. `flags' indicates whether short preamble is in use or not.
934  */
935 uint16_t
936 rum_txtime(int len, int rate, uint32_t flags)
937 {
938 	uint16_t txtime;
939 
940 	if (RUM_RATE_IS_OFDM(rate)) {
941 		/* IEEE Std 802.11a-1999, pp. 37 */
942 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
943 		txtime = 16 + 4 + 4 * txtime + 6;
944 	} else {
945 		/* IEEE Std 802.11b-1999, pp. 28 */
946 		txtime = (16 * len + rate - 1) / rate;
947 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
948 			txtime +=  72 + 24;
949 		else
950 			txtime += 144 + 48;
951 	}
952 	return txtime;
953 }
954 
955 uint8_t
956 rum_plcp_signal(int rate)
957 {
958 	switch (rate) {
959 	/* CCK rates (returned values are device-dependent) */
960 	case 2:		return 0x0;
961 	case 4:		return 0x1;
962 	case 11:	return 0x2;
963 	case 22:	return 0x3;
964 
965 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
966 	case 12:	return 0xb;
967 	case 18:	return 0xf;
968 	case 24:	return 0xa;
969 	case 36:	return 0xe;
970 	case 48:	return 0x9;
971 	case 72:	return 0xd;
972 	case 96:	return 0x8;
973 	case 108:	return 0xc;
974 
975 	/* unsupported rates (should not get there) */
976 	default:	return 0xff;
977 	}
978 }
979 
980 void
981 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
982     uint32_t flags, uint16_t xflags, int len, int rate)
983 {
984 	struct ieee80211com *ic = &sc->sc_ic;
985 	uint16_t plcp_length;
986 	int remainder;
987 
988 	desc->flags = htole32(flags);
989 	desc->flags |= htole32(RT2573_TX_VALID);
990 	desc->flags |= htole32(len << 16);
991 
992 	desc->xflags = htole16(xflags);
993 
994 	desc->wme = htole16(
995 	    RT2573_QID(0) |
996 	    RT2573_AIFSN(2) |
997 	    RT2573_LOGCWMIN(4) |
998 	    RT2573_LOGCWMAX(10));
999 
1000 	/* setup PLCP fields */
1001 	desc->plcp_signal  = rum_plcp_signal(rate);
1002 	desc->plcp_service = 4;
1003 
1004 	len += IEEE80211_CRC_LEN;
1005 	if (RUM_RATE_IS_OFDM(rate)) {
1006 		desc->flags |= htole32(RT2573_TX_OFDM);
1007 
1008 		plcp_length = len & 0xfff;
1009 		desc->plcp_length_hi = plcp_length >> 6;
1010 		desc->plcp_length_lo = plcp_length & 0x3f;
1011 	} else {
1012 		plcp_length = (16 * len + rate - 1) / rate;
1013 		if (rate == 22) {
1014 			remainder = (16 * len) % 22;
1015 			if (remainder != 0 && remainder < 7)
1016 				desc->plcp_service |= RT2573_PLCP_LENGEXT;
1017 		}
1018 		desc->plcp_length_hi = plcp_length >> 8;
1019 		desc->plcp_length_lo = plcp_length & 0xff;
1020 
1021 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1022 			desc->plcp_signal |= 0x08;
1023 	}
1024 }
1025 
1026 #define RUM_TX_TIMEOUT	5000
1027 
1028 int
1029 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1030 {
1031 	struct ieee80211com *ic = &sc->sc_ic;
1032 	struct rum_tx_desc *desc;
1033 	struct rum_tx_data *data;
1034 	struct ieee80211_frame *wh;
1035 	struct ieee80211_key *k;
1036 	uint32_t flags = 0;
1037 	uint16_t dur;
1038 	usbd_status error;
1039 	int rate, xferlen, pktlen, needrts = 0, needcts = 0;
1040 
1041 	wh = mtod(m0, struct ieee80211_frame *);
1042 
1043 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1044 		k = ieee80211_get_txkey(ic, wh, ni);
1045 
1046 		if ((m0 = ieee80211_encrypt(ic, m0, k)) == NULL)
1047 			return ENOBUFS;
1048 
1049 		/* packet header may have moved, reset our local pointer */
1050 		wh = mtod(m0, struct ieee80211_frame *);
1051 	}
1052 
1053 	/* compute actual packet length (including CRC and crypto overhead) */
1054 	pktlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
1055 
1056 	/* pickup a rate */
1057 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1058 	    ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1059 	     IEEE80211_FC0_TYPE_MGT)) {
1060 		/* mgmt/multicast frames are sent at the lowest avail. rate */
1061 		rate = ni->ni_rates.rs_rates[0];
1062 	} else if (ic->ic_fixed_rate != -1) {
1063 		rate = ic->ic_sup_rates[ic->ic_curmode].
1064 		    rs_rates[ic->ic_fixed_rate];
1065 	} else
1066 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1067 	if (rate == 0)
1068 		rate = 2;	/* XXX should not happen */
1069 	rate &= IEEE80211_RATE_VAL;
1070 
1071 	/* check if RTS/CTS or CTS-to-self protection must be used */
1072 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1073 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
1074 		if (pktlen > ic->ic_rtsthreshold) {
1075 			needrts = 1;	/* RTS/CTS based on frame length */
1076 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1077 		    RUM_RATE_IS_OFDM(rate)) {
1078 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
1079 				needcts = 1;	/* CTS-to-self */
1080 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
1081 				needrts = 1;	/* RTS/CTS */
1082 		}
1083 	}
1084 	if (needrts || needcts) {
1085 		struct mbuf *mprot;
1086 		int protrate, ackrate;
1087 		uint16_t dur;
1088 
1089 		protrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1090 		ackrate  = rum_ack_rate(ic, rate);
1091 
1092 		dur = rum_txtime(pktlen, rate, ic->ic_flags) +
1093 		      rum_txtime(RUM_ACK_SIZE, ackrate, ic->ic_flags) +
1094 		      2 * sc->sifs;
1095 		if (needrts) {
1096 			dur += rum_txtime(RUM_CTS_SIZE, rum_ack_rate(ic,
1097 			    protrate), ic->ic_flags) + sc->sifs;
1098 			mprot = ieee80211_get_rts(ic, wh, dur);
1099 		} else {
1100 			mprot = ieee80211_get_cts_to_self(ic, dur);
1101 		}
1102 		if (mprot == NULL) {
1103 			printf("%s: could not allocate protection frame\n",
1104 			    sc->sc_dev.dv_xname);
1105 			m_freem(m0);
1106 			return ENOBUFS;
1107 		}
1108 
1109 		data = &sc->tx_data[sc->tx_cur];
1110 		desc = (struct rum_tx_desc *)data->buf;
1111 
1112 		/* avoid multiple free() of the same node for each fragment */
1113 		data->ni = ieee80211_ref_node(ni);
1114 
1115 		m_copydata(mprot, 0, mprot->m_pkthdr.len,
1116 		    data->buf + RT2573_TX_DESC_SIZE);
1117 		rum_setup_tx_desc(sc, desc,
1118 		    (needrts ? RT2573_TX_NEED_ACK : 0) | RT2573_TX_MORE_FRAG,
1119 		    0, mprot->m_pkthdr.len, protrate);
1120 
1121 		/* no roundup necessary here */
1122 		xferlen = RT2573_TX_DESC_SIZE + mprot->m_pkthdr.len;
1123 
1124 		/* XXX may want to pass the protection frame to BPF */
1125 
1126 		/* mbuf is no longer needed */
1127 		m_freem(mprot);
1128 
1129 		usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1130 		    xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
1131 		    RUM_TX_TIMEOUT, rum_txeof);
1132 		error = usbd_transfer(data->xfer);
1133 		if (error != 0 && error != USBD_IN_PROGRESS) {
1134 			m_freem(m0);
1135 			return error;
1136 		}
1137 
1138 		sc->tx_queued++;
1139 		sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
1140 
1141 		flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
1142 	}
1143 
1144 	data = &sc->tx_data[sc->tx_cur];
1145 	desc = (struct rum_tx_desc *)data->buf;
1146 
1147 	data->ni = ni;
1148 
1149 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1150 		flags |= RT2573_TX_NEED_ACK;
1151 
1152 		dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1153 		    ic->ic_flags) + sc->sifs;
1154 		*(uint16_t *)wh->i_dur = htole16(dur);
1155 
1156 #ifndef IEEE80211_STA_ONLY
1157 		/* tell hardware to set timestamp in probe responses */
1158 		if ((wh->i_fc[0] &
1159 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1160 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1161 			flags |= RT2573_TX_TIMESTAMP;
1162 #endif
1163 	}
1164 
1165 #if NBPFILTER > 0
1166 	if (sc->sc_drvbpf != NULL) {
1167 		struct mbuf mb;
1168 		struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1169 
1170 		tap->wt_flags = 0;
1171 		tap->wt_rate = rate;
1172 		tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
1173 		tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
1174 		tap->wt_antenna = sc->tx_ant;
1175 
1176 		mb.m_data = (caddr_t)tap;
1177 		mb.m_len = sc->sc_txtap_len;
1178 		mb.m_next = m0;
1179 		mb.m_nextpkt = NULL;
1180 		mb.m_type = 0;
1181 		mb.m_flags = 0;
1182 		bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT);
1183 	}
1184 #endif
1185 
1186 	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1187 	rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1188 
1189 	/* align end on a 4-bytes boundary */
1190 	xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1191 
1192 	/*
1193 	 * No space left in the last URB to store the extra 4 bytes, force
1194 	 * sending of another URB.
1195 	 */
1196 	if ((xferlen % 64) == 0)
1197 		xferlen += 4;
1198 
1199 	DPRINTFN(10, ("sending frame len=%u rate=%u xfer len=%u\n",
1200 	    m0->m_pkthdr.len + RT2573_TX_DESC_SIZE, rate, xferlen));
1201 
1202 	/* mbuf is no longer needed */
1203 	m_freem(m0);
1204 
1205 	usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1206 	    USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1207 	error = usbd_transfer(data->xfer);
1208 	if (error != 0 && error != USBD_IN_PROGRESS)
1209 		return error;
1210 
1211 	sc->tx_queued++;
1212 	sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
1213 
1214 	return 0;
1215 }
1216 
1217 void
1218 rum_start(struct ifnet *ifp)
1219 {
1220 	struct rum_softc *sc = ifp->if_softc;
1221 	struct ieee80211com *ic = &sc->sc_ic;
1222 	struct ieee80211_node *ni;
1223 	struct mbuf *m0;
1224 
1225 	/*
1226 	 * net80211 may still try to send management frames even if the
1227 	 * IFF_RUNNING flag is not set...
1228 	 */
1229 	if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd))
1230 		return;
1231 
1232 	for (;;) {
1233 		if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
1234 			ifq_set_oactive(&ifp->if_snd);
1235 			break;
1236 		}
1237 
1238 		m0 = mq_dequeue(&ic->ic_mgtq);
1239 		if (m0 != NULL) {
1240 			ni = m0->m_pkthdr.ph_cookie;
1241 #if NBPFILTER > 0
1242 			if (ic->ic_rawbpf != NULL)
1243 				bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT);
1244 #endif
1245 			if (rum_tx_data(sc, m0, ni) != 0)
1246 				break;
1247 
1248 		} else {
1249 			if (ic->ic_state != IEEE80211_S_RUN)
1250 				break;
1251 
1252 			m0 = ifq_dequeue(&ifp->if_snd);
1253 			if (m0 == NULL)
1254 				break;
1255 #if NBPFILTER > 0
1256 			if (ifp->if_bpf != NULL)
1257 				bpf_mtap(ifp->if_bpf, m0, BPF_DIRECTION_OUT);
1258 #endif
1259 			m0 = ieee80211_encap(ifp, m0, &ni);
1260 			if (m0 == NULL)
1261 				continue;
1262 #if NBPFILTER > 0
1263 			if (ic->ic_rawbpf != NULL)
1264 				bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT);
1265 #endif
1266 			if (rum_tx_data(sc, m0, ni) != 0) {
1267 				if (ni != NULL)
1268 					ieee80211_release_node(ic, ni);
1269 				ifp->if_oerrors++;
1270 				break;
1271 			}
1272 		}
1273 
1274 		sc->sc_tx_timer = 5;
1275 		ifp->if_timer = 1;
1276 	}
1277 }
1278 
1279 void
1280 rum_watchdog(struct ifnet *ifp)
1281 {
1282 	struct rum_softc *sc = ifp->if_softc;
1283 
1284 	ifp->if_timer = 0;
1285 
1286 	if (sc->sc_tx_timer > 0) {
1287 		if (--sc->sc_tx_timer == 0) {
1288 			printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1289 			/*rum_init(ifp); XXX needs a process context! */
1290 			ifp->if_oerrors++;
1291 			return;
1292 		}
1293 		ifp->if_timer = 1;
1294 	}
1295 
1296 	ieee80211_watchdog(ifp);
1297 }
1298 
1299 int
1300 rum_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1301 {
1302 	struct rum_softc *sc = ifp->if_softc;
1303 	struct ieee80211com *ic = &sc->sc_ic;
1304 	int s, error = 0;
1305 
1306 	if (usbd_is_dying(sc->sc_udev))
1307 		return ENXIO;
1308 
1309 	usbd_ref_incr(sc->sc_udev);
1310 
1311 	s = splnet();
1312 
1313 	switch (cmd) {
1314 	case SIOCSIFADDR:
1315 		ifp->if_flags |= IFF_UP;
1316 		/* FALLTHROUGH */
1317 	case SIOCSIFFLAGS:
1318 		if (ifp->if_flags & IFF_UP) {
1319 			if (ifp->if_flags & IFF_RUNNING)
1320 				rum_update_promisc(sc);
1321 			else
1322 				rum_init(ifp);
1323 		} else {
1324 			if (ifp->if_flags & IFF_RUNNING)
1325 				rum_stop(ifp, 1);
1326 		}
1327 		break;
1328 
1329 	case SIOCS80211CHANNEL:
1330 		/*
1331 		 * This allows for fast channel switching in monitor mode
1332 		 * (used by kismet). In IBSS mode, we must explicitly reset
1333 		 * the interface to generate a new beacon frame.
1334 		 */
1335 		error = ieee80211_ioctl(ifp, cmd, data);
1336 		if (error == ENETRESET &&
1337 		    ic->ic_opmode == IEEE80211_M_MONITOR) {
1338 			if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1339 			    (IFF_UP | IFF_RUNNING))
1340 				rum_set_chan(sc, ic->ic_ibss_chan);
1341 			error = 0;
1342 		}
1343 		break;
1344 
1345 	default:
1346 		error = ieee80211_ioctl(ifp, cmd, data);
1347 	}
1348 
1349 	if (error == ENETRESET) {
1350 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1351 		    (IFF_UP | IFF_RUNNING))
1352 			rum_init(ifp);
1353 		error = 0;
1354 	}
1355 
1356 	splx(s);
1357 
1358 	usbd_ref_decr(sc->sc_udev);
1359 
1360 	return error;
1361 }
1362 
1363 void
1364 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1365 {
1366 	usb_device_request_t req;
1367 	usbd_status error;
1368 
1369 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1370 	req.bRequest = RT2573_READ_EEPROM;
1371 	USETW(req.wValue, 0);
1372 	USETW(req.wIndex, addr);
1373 	USETW(req.wLength, len);
1374 
1375 	error = usbd_do_request(sc->sc_udev, &req, buf);
1376 	if (error != 0) {
1377 		printf("%s: could not read EEPROM: %s\n",
1378 		    sc->sc_dev.dv_xname, usbd_errstr(error));
1379 	}
1380 }
1381 
1382 uint32_t
1383 rum_read(struct rum_softc *sc, uint16_t reg)
1384 {
1385 	uint32_t val;
1386 
1387 	rum_read_multi(sc, reg, &val, sizeof val);
1388 
1389 	return letoh32(val);
1390 }
1391 
1392 void
1393 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1394 {
1395 	usb_device_request_t req;
1396 	usbd_status error;
1397 
1398 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1399 	req.bRequest = RT2573_READ_MULTI_MAC;
1400 	USETW(req.wValue, 0);
1401 	USETW(req.wIndex, reg);
1402 	USETW(req.wLength, len);
1403 
1404 	error = usbd_do_request(sc->sc_udev, &req, buf);
1405 	if (error != 0) {
1406 		printf("%s: could not multi read MAC register: %s\n",
1407 		    sc->sc_dev.dv_xname, usbd_errstr(error));
1408 	}
1409 }
1410 
1411 void
1412 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1413 {
1414 	uint32_t tmp = htole32(val);
1415 
1416 	rum_write_multi(sc, reg, &tmp, sizeof tmp);
1417 }
1418 
1419 void
1420 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1421 {
1422 	usb_device_request_t req;
1423 	usbd_status error;
1424 	int offset;
1425 
1426 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1427 	req.bRequest = RT2573_WRITE_MULTI_MAC;
1428 	USETW(req.wValue, 0);
1429 
1430 	/* write at most 64 bytes at a time */
1431 	for (offset = 0; offset < len; offset += 64) {
1432 		USETW(req.wIndex, reg + offset);
1433 		USETW(req.wLength, MIN(len - offset, 64));
1434 
1435 		error = usbd_do_request(sc->sc_udev, &req, buf + offset);
1436 		if (error != 0) {
1437 			printf("%s: could not multi write MAC register: %s\n",
1438 			    sc->sc_dev.dv_xname, usbd_errstr(error));
1439 		}
1440 	}
1441 }
1442 
1443 void
1444 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1445 {
1446 	uint32_t tmp;
1447 	int ntries;
1448 
1449 	for (ntries = 0; ntries < 5; ntries++) {
1450 		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1451 			break;
1452 	}
1453 	if (ntries == 5) {
1454 		printf("%s: could not write to BBP\n", sc->sc_dev.dv_xname);
1455 		return;
1456 	}
1457 
1458 	tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1459 	rum_write(sc, RT2573_PHY_CSR3, tmp);
1460 }
1461 
1462 uint8_t
1463 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1464 {
1465 	uint32_t val;
1466 	int ntries;
1467 
1468 	for (ntries = 0; ntries < 5; ntries++) {
1469 		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1470 			break;
1471 	}
1472 	if (ntries == 5) {
1473 		printf("%s: could not read BBP\n", sc->sc_dev.dv_xname);
1474 		return 0;
1475 	}
1476 
1477 	val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1478 	rum_write(sc, RT2573_PHY_CSR3, val);
1479 
1480 	for (ntries = 0; ntries < 100; ntries++) {
1481 		val = rum_read(sc, RT2573_PHY_CSR3);
1482 		if (!(val & RT2573_BBP_BUSY))
1483 			return val & 0xff;
1484 		DELAY(1);
1485 	}
1486 
1487 	printf("%s: could not read BBP\n", sc->sc_dev.dv_xname);
1488 	return 0;
1489 }
1490 
1491 void
1492 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1493 {
1494 	uint32_t tmp;
1495 	int ntries;
1496 
1497 	for (ntries = 0; ntries < 5; ntries++) {
1498 		if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1499 			break;
1500 	}
1501 	if (ntries == 5) {
1502 		printf("%s: could not write to RF\n", sc->sc_dev.dv_xname);
1503 		return;
1504 	}
1505 
1506 	tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1507 	    (reg & 3);
1508 	rum_write(sc, RT2573_PHY_CSR4, tmp);
1509 
1510 	/* remember last written value in sc */
1511 	sc->rf_regs[reg] = val;
1512 
1513 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
1514 }
1515 
1516 void
1517 rum_select_antenna(struct rum_softc *sc)
1518 {
1519 	uint8_t bbp4, bbp77;
1520 	uint32_t tmp;
1521 
1522 	bbp4  = rum_bbp_read(sc, 4);
1523 	bbp77 = rum_bbp_read(sc, 77);
1524 
1525 	/* TBD */
1526 
1527 	/* make sure Rx is disabled before switching antenna */
1528 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
1529 	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1530 
1531 	rum_bbp_write(sc,  4, bbp4);
1532 	rum_bbp_write(sc, 77, bbp77);
1533 
1534 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
1535 }
1536 
1537 /*
1538  * Enable multi-rate retries for frames sent at OFDM rates.
1539  * In 802.11b/g mode, allow fallback to CCK rates.
1540  */
1541 void
1542 rum_enable_mrr(struct rum_softc *sc)
1543 {
1544 	struct ieee80211com *ic = &sc->sc_ic;
1545 	uint32_t tmp;
1546 
1547 	tmp = rum_read(sc, RT2573_TXRX_CSR4);
1548 
1549 	tmp &= ~RT2573_MRR_CCK_FALLBACK;
1550 	if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan))
1551 		tmp |= RT2573_MRR_CCK_FALLBACK;
1552 	tmp |= RT2573_MRR_ENABLED;
1553 
1554 	rum_write(sc, RT2573_TXRX_CSR4, tmp);
1555 }
1556 
1557 void
1558 rum_set_txpreamble(struct rum_softc *sc)
1559 {
1560 	uint32_t tmp;
1561 
1562 	tmp = rum_read(sc, RT2573_TXRX_CSR4);
1563 
1564 	tmp &= ~RT2573_SHORT_PREAMBLE;
1565 	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1566 		tmp |= RT2573_SHORT_PREAMBLE;
1567 
1568 	rum_write(sc, RT2573_TXRX_CSR4, tmp);
1569 }
1570 
1571 void
1572 rum_set_basicrates(struct rum_softc *sc)
1573 {
1574 	struct ieee80211com *ic = &sc->sc_ic;
1575 
1576 	/* update basic rate set */
1577 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1578 		/* 11b basic rates: 1, 2Mbps */
1579 		rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1580 	} else if (ic->ic_curmode == IEEE80211_MODE_11A) {
1581 		/* 11a basic rates: 6, 12, 24Mbps */
1582 		rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1583 	} else {
1584 		/* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
1585 		rum_write(sc, RT2573_TXRX_CSR5, 0xf);
1586 	}
1587 }
1588 
1589 /*
1590  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
1591  * driver.
1592  */
1593 void
1594 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1595 {
1596 	uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1597 	uint32_t tmp;
1598 
1599 	/* update all BBP registers that depend on the band */
1600 	bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1601 	bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
1602 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
1603 		bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1604 		bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
1605 	}
1606 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1607 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1608 		bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1609 	}
1610 
1611 	sc->bbp17 = bbp17;
1612 	rum_bbp_write(sc,  17, bbp17);
1613 	rum_bbp_write(sc,  96, bbp96);
1614 	rum_bbp_write(sc, 104, bbp104);
1615 
1616 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1617 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1618 		rum_bbp_write(sc, 75, 0x80);
1619 		rum_bbp_write(sc, 86, 0x80);
1620 		rum_bbp_write(sc, 88, 0x80);
1621 	}
1622 
1623 	rum_bbp_write(sc, 35, bbp35);
1624 	rum_bbp_write(sc, 97, bbp97);
1625 	rum_bbp_write(sc, 98, bbp98);
1626 
1627 	tmp = rum_read(sc, RT2573_PHY_CSR0);
1628 	tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1629 	if (IEEE80211_IS_CHAN_2GHZ(c))
1630 		tmp |= RT2573_PA_PE_2GHZ;
1631 	else
1632 		tmp |= RT2573_PA_PE_5GHZ;
1633 	rum_write(sc, RT2573_PHY_CSR0, tmp);
1634 
1635 	/* 802.11a uses a 16 microseconds short interframe space */
1636 	sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
1637 }
1638 
1639 void
1640 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1641 {
1642 	struct ieee80211com *ic = &sc->sc_ic;
1643 	const struct rfprog *rfprog;
1644 	uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1645 	int8_t power;
1646 	u_int i, chan;
1647 
1648 	chan = ieee80211_chan2ieee(ic, c);
1649 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1650 		return;
1651 
1652 	/* select the appropriate RF settings based on what EEPROM says */
1653 	rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1654 		  sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1655 
1656 	/* find the settings for this channel (we know it exists) */
1657 	for (i = 0; rfprog[i].chan != chan; i++);
1658 
1659 	power = sc->txpow[i];
1660 	if (power < 0) {
1661 		bbp94 += power;
1662 		power = 0;
1663 	} else if (power > 31) {
1664 		bbp94 += power - 31;
1665 		power = 31;
1666 	}
1667 
1668 	/*
1669 	 * If we are switching from the 2GHz band to the 5GHz band or
1670 	 * vice-versa, BBP registers need to be reprogrammed.
1671 	 */
1672 	if (c->ic_flags != sc->sc_curchan->ic_flags) {
1673 		rum_select_band(sc, c);
1674 		rum_select_antenna(sc);
1675 	}
1676 	sc->sc_curchan = c;
1677 
1678 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1679 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1680 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1681 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1682 
1683 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1684 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1685 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1686 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1687 
1688 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1689 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1690 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1691 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1692 
1693 	DELAY(10);
1694 
1695 	/* enable smart mode for MIMO-capable RFs */
1696 	bbp3 = rum_bbp_read(sc, 3);
1697 
1698 	bbp3 &= ~RT2573_SMART_MODE;
1699 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1700 		bbp3 |= RT2573_SMART_MODE;
1701 
1702 	rum_bbp_write(sc, 3, bbp3);
1703 
1704 	if (bbp94 != RT2573_BBPR94_DEFAULT)
1705 		rum_bbp_write(sc, 94, bbp94);
1706 }
1707 
1708 /*
1709  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1710  * and HostAP operating modes.
1711  */
1712 void
1713 rum_enable_tsf_sync(struct rum_softc *sc)
1714 {
1715 	struct ieee80211com *ic = &sc->sc_ic;
1716 	uint32_t tmp;
1717 
1718 #ifndef IEEE80211_STA_ONLY
1719 	if (ic->ic_opmode != IEEE80211_M_STA) {
1720 		/*
1721 		 * Change default 16ms TBTT adjustment to 8ms.
1722 		 * Must be done before enabling beacon generation.
1723 		 */
1724 		rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1725 	}
1726 #endif
1727 
1728 	tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1729 
1730 	/* set beacon interval (in 1/16ms unit) */
1731 	tmp |= ic->ic_bss->ni_intval * 16;
1732 
1733 	tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1734 	if (ic->ic_opmode == IEEE80211_M_STA)
1735 		tmp |= RT2573_TSF_MODE(1);
1736 #ifndef IEEE80211_STA_ONLY
1737 	else
1738 		tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1739 #endif
1740 	rum_write(sc, RT2573_TXRX_CSR9, tmp);
1741 }
1742 
1743 void
1744 rum_update_slot(struct rum_softc *sc)
1745 {
1746 	struct ieee80211com *ic = &sc->sc_ic;
1747 	uint8_t slottime;
1748 	uint32_t tmp;
1749 
1750 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ?
1751 	    IEEE80211_DUR_DS_SHSLOT : IEEE80211_DUR_DS_SLOT;
1752 
1753 	tmp = rum_read(sc, RT2573_MAC_CSR9);
1754 	tmp = (tmp & ~0xff) | slottime;
1755 	rum_write(sc, RT2573_MAC_CSR9, tmp);
1756 
1757 	DPRINTF(("setting slot time to %uus\n", slottime));
1758 }
1759 
1760 void
1761 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1762 {
1763 	uint32_t tmp;
1764 
1765 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1766 	rum_write(sc, RT2573_MAC_CSR4, tmp);
1767 
1768 	tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1769 	rum_write(sc, RT2573_MAC_CSR5, tmp);
1770 }
1771 
1772 void
1773 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1774 {
1775 	uint32_t tmp;
1776 
1777 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1778 	rum_write(sc, RT2573_MAC_CSR2, tmp);
1779 
1780 	tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1781 	rum_write(sc, RT2573_MAC_CSR3, tmp);
1782 }
1783 
1784 void
1785 rum_update_promisc(struct rum_softc *sc)
1786 {
1787 	struct ifnet *ifp = &sc->sc_ic.ic_if;
1788 	uint32_t tmp;
1789 
1790 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
1791 
1792 	tmp &= ~RT2573_DROP_NOT_TO_ME;
1793 	if (!(ifp->if_flags & IFF_PROMISC))
1794 		tmp |= RT2573_DROP_NOT_TO_ME;
1795 
1796 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
1797 
1798 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1799 	    "entering" : "leaving"));
1800 }
1801 
1802 const char *
1803 rum_get_rf(int rev)
1804 {
1805 	switch (rev) {
1806 	case RT2573_RF_2527:	return "RT2527 (MIMO XR)";
1807 	case RT2573_RF_2528:	return "RT2528";
1808 	case RT2573_RF_5225:	return "RT5225 (MIMO XR)";
1809 	case RT2573_RF_5226:	return "RT5226";
1810 	default:		return "unknown";
1811 	}
1812 }
1813 
1814 void
1815 rum_read_eeprom(struct rum_softc *sc)
1816 {
1817 	struct ieee80211com *ic = &sc->sc_ic;
1818 	uint16_t val;
1819 #ifdef RUM_DEBUG
1820 	int i;
1821 #endif
1822 
1823 	/* read MAC/BBP type */
1824 	rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
1825 	sc->macbbp_rev = letoh16(val);
1826 
1827 	/* read MAC address */
1828 	rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1829 
1830 	rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1831 	val = letoh16(val);
1832 	sc->rf_rev =   (val >> 11) & 0x1f;
1833 	sc->hw_radio = (val >> 10) & 0x1;
1834 	sc->rx_ant =   (val >> 4)  & 0x3;
1835 	sc->tx_ant =   (val >> 2)  & 0x3;
1836 	sc->nb_ant =   val & 0x3;
1837 
1838 	DPRINTF(("RF revision=%d\n", sc->rf_rev));
1839 
1840 	rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1841 	val = letoh16(val);
1842 	sc->ext_5ghz_lna = (val >> 6) & 0x1;
1843 	sc->ext_2ghz_lna = (val >> 4) & 0x1;
1844 
1845 	DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1846 	    sc->ext_2ghz_lna, sc->ext_5ghz_lna));
1847 
1848 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1849 	val = letoh16(val);
1850 	if ((val & 0xff) != 0xff)
1851 		sc->rssi_2ghz_corr = (int8_t)(val & 0xff);	/* signed */
1852 
1853 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1854 	val = letoh16(val);
1855 	if ((val & 0xff) != 0xff)
1856 		sc->rssi_5ghz_corr = (int8_t)(val & 0xff);	/* signed */
1857 
1858 	DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
1859 	    sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
1860 
1861 	rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
1862 	val = letoh16(val);
1863 	if ((val & 0xff) != 0xff)
1864 		sc->rffreq = val & 0xff;
1865 
1866 	DPRINTF(("RF freq=%d\n", sc->rffreq));
1867 
1868 	/* read Tx power for all a/b/g channels */
1869 	rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
1870 	/* XXX default Tx power for 802.11a channels */
1871 	memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
1872 #ifdef RUM_DEBUG
1873 	for (i = 0; i < 14; i++)
1874 		DPRINTF(("Channel=%d Tx power=%d\n", i + 1,  sc->txpow[i]));
1875 #endif
1876 
1877 	/* read default values for BBP registers */
1878 	rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1879 #ifdef RUM_DEBUG
1880 	for (i = 0; i < 14; i++) {
1881 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1882 			continue;
1883 		DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
1884 		    sc->bbp_prom[i].val));
1885 	}
1886 #endif
1887 }
1888 
1889 int
1890 rum_bbp_init(struct rum_softc *sc)
1891 {
1892 	int i, ntries;
1893 
1894 	/* wait for BBP to be ready */
1895 	for (ntries = 0; ntries < 100; ntries++) {
1896 		const uint8_t val = rum_bbp_read(sc, 0);
1897 		if (val != 0 && val != 0xff)
1898 			break;
1899 		DELAY(1000);
1900 	}
1901 	if (ntries == 100) {
1902 		printf("%s: timeout waiting for BBP\n",
1903 		    sc->sc_dev.dv_xname);
1904 		return EIO;
1905 	}
1906 
1907 	/* initialize BBP registers to default values */
1908 	for (i = 0; i < nitems(rum_def_bbp); i++)
1909 		rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
1910 
1911 	/* write vendor-specific BBP values (from EEPROM) */
1912 	for (i = 0; i < 16; i++) {
1913 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1914 			continue;
1915 		rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1916 	}
1917 
1918 	return 0;
1919 }
1920 
1921 int
1922 rum_init(struct ifnet *ifp)
1923 {
1924 	struct rum_softc *sc = ifp->if_softc;
1925 	struct ieee80211com *ic = &sc->sc_ic;
1926 	uint32_t tmp;
1927 	usbd_status error;
1928 	int i, ntries;
1929 
1930 	rum_stop(ifp, 0);
1931 
1932 	/* initialize MAC registers to default values */
1933 	for (i = 0; i < nitems(rum_def_mac); i++)
1934 		rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
1935 
1936 	/* set host ready */
1937 	rum_write(sc, RT2573_MAC_CSR1, 3);
1938 	rum_write(sc, RT2573_MAC_CSR1, 0);
1939 
1940 	/* wait for BBP/RF to wakeup */
1941 	for (ntries = 0; ntries < 1000; ntries++) {
1942 		if (rum_read(sc, RT2573_MAC_CSR12) & 8)
1943 			break;
1944 		rum_write(sc, RT2573_MAC_CSR12, 4);	/* force wakeup */
1945 		DELAY(1000);
1946 	}
1947 	if (ntries == 1000) {
1948 		printf("%s: timeout waiting for BBP/RF to wakeup\n",
1949 		    sc->sc_dev.dv_xname);
1950 		error = ENODEV;
1951 		goto fail;
1952 	}
1953 
1954 	if ((error = rum_bbp_init(sc)) != 0)
1955 		goto fail;
1956 
1957 	/* select default channel */
1958 	sc->sc_curchan = ic->ic_bss->ni_chan = ic->ic_ibss_chan;
1959 	rum_select_band(sc, sc->sc_curchan);
1960 	rum_select_antenna(sc);
1961 	rum_set_chan(sc, sc->sc_curchan);
1962 
1963 	/* clear STA registers */
1964 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
1965 
1966 	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
1967 	rum_set_macaddr(sc, ic->ic_myaddr);
1968 
1969 	/* initialize ASIC */
1970 	rum_write(sc, RT2573_MAC_CSR1, 4);
1971 
1972 	/*
1973 	 * Allocate xfer for AMRR statistics requests.
1974 	 */
1975 	sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev);
1976 	if (sc->amrr_xfer == NULL) {
1977 		printf("%s: could not allocate AMRR xfer\n",
1978 		    sc->sc_dev.dv_xname);
1979 		goto fail;
1980 	}
1981 
1982 	/*
1983 	 * Open Tx and Rx USB bulk pipes.
1984 	 */
1985 	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
1986 	    &sc->sc_tx_pipeh);
1987 	if (error != 0) {
1988 		printf("%s: could not open Tx pipe: %s\n",
1989 		    sc->sc_dev.dv_xname, usbd_errstr(error));
1990 		goto fail;
1991 	}
1992 	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
1993 	    &sc->sc_rx_pipeh);
1994 	if (error != 0) {
1995 		printf("%s: could not open Rx pipe: %s\n",
1996 		    sc->sc_dev.dv_xname, usbd_errstr(error));
1997 		goto fail;
1998 	}
1999 
2000 	/*
2001 	 * Allocate Tx and Rx xfer queues.
2002 	 */
2003 	error = rum_alloc_tx_list(sc);
2004 	if (error != 0) {
2005 		printf("%s: could not allocate Tx list\n",
2006 		    sc->sc_dev.dv_xname);
2007 		goto fail;
2008 	}
2009 	error = rum_alloc_rx_list(sc);
2010 	if (error != 0) {
2011 		printf("%s: could not allocate Rx list\n",
2012 		    sc->sc_dev.dv_xname);
2013 		goto fail;
2014 	}
2015 
2016 	/*
2017 	 * Start up the receive pipe.
2018 	 */
2019 	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
2020 		struct rum_rx_data *data = &sc->rx_data[i];
2021 
2022 		usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2023 		    MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
2024 		error = usbd_transfer(data->xfer);
2025 		if (error != 0 && error != USBD_IN_PROGRESS) {
2026 			printf("%s: could not queue Rx transfer\n",
2027 			    sc->sc_dev.dv_xname);
2028 			goto fail;
2029 		}
2030 	}
2031 
2032 	/* update Rx filter */
2033 	tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2034 
2035 	tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2036 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2037 		tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2038 		       RT2573_DROP_ACKCTS;
2039 #ifndef IEEE80211_STA_ONLY
2040 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2041 #endif
2042 			tmp |= RT2573_DROP_TODS;
2043 		if (!(ifp->if_flags & IFF_PROMISC))
2044 			tmp |= RT2573_DROP_NOT_TO_ME;
2045 	}
2046 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
2047 
2048 	ifq_clr_oactive(&ifp->if_snd);
2049 	ifp->if_flags |= IFF_RUNNING;
2050 
2051 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2052 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2053 	else
2054 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2055 
2056 	return 0;
2057 
2058 fail:	rum_stop(ifp, 1);
2059 	return error;
2060 }
2061 
2062 void
2063 rum_stop(struct ifnet *ifp, int disable)
2064 {
2065 	struct rum_softc *sc = ifp->if_softc;
2066 	struct ieee80211com *ic = &sc->sc_ic;
2067 	uint32_t tmp;
2068 
2069 	sc->sc_tx_timer = 0;
2070 	ifp->if_timer = 0;
2071 	ifp->if_flags &= ~IFF_RUNNING;
2072 	ifq_clr_oactive(&ifp->if_snd);
2073 
2074 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
2075 
2076 	/* disable Rx */
2077 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
2078 	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2079 
2080 	/* reset ASIC */
2081 	rum_write(sc, RT2573_MAC_CSR1, 3);
2082 	rum_write(sc, RT2573_MAC_CSR1, 0);
2083 
2084 	if (sc->amrr_xfer != NULL) {
2085 		usbd_free_xfer(sc->amrr_xfer);
2086 		sc->amrr_xfer = NULL;
2087 	}
2088 	if (sc->sc_rx_pipeh != NULL) {
2089 		usbd_close_pipe(sc->sc_rx_pipeh);
2090 		sc->sc_rx_pipeh = NULL;
2091 	}
2092 	if (sc->sc_tx_pipeh != NULL) {
2093 		usbd_close_pipe(sc->sc_tx_pipeh);
2094 		sc->sc_tx_pipeh = NULL;
2095 	}
2096 
2097 	rum_free_rx_list(sc);
2098 	rum_free_tx_list(sc);
2099 }
2100 
2101 int
2102 rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
2103 {
2104 	usb_device_request_t req;
2105 	uint16_t reg = RT2573_MCU_CODE_BASE;
2106 	usbd_status error;
2107 
2108 	/* copy firmware image into NIC */
2109 	for (; size >= 4; reg += 4, ucode += 4, size -= 4)
2110 		rum_write(sc, reg, UGETDW(ucode));
2111 
2112 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2113 	req.bRequest = RT2573_MCU_CNTL;
2114 	USETW(req.wValue, RT2573_MCU_RUN);
2115 	USETW(req.wIndex, 0);
2116 	USETW(req.wLength, 0);
2117 
2118 	error = usbd_do_request(sc->sc_udev, &req, NULL);
2119 	if (error != 0) {
2120 		printf("%s: could not run firmware: %s\n",
2121 		    sc->sc_dev.dv_xname, usbd_errstr(error));
2122 	}
2123 	return error;
2124 }
2125 
2126 #ifndef IEEE80211_STA_ONLY
2127 int
2128 rum_prepare_beacon(struct rum_softc *sc)
2129 {
2130 	struct ieee80211com *ic = &sc->sc_ic;
2131 	struct rum_tx_desc desc;
2132 	struct mbuf *m0;
2133 	int rate;
2134 
2135 	m0 = ieee80211_beacon_alloc(ic, ic->ic_bss);
2136 	if (m0 == NULL) {
2137 		printf("%s: could not allocate beacon frame\n",
2138 		    sc->sc_dev.dv_xname);
2139 		return ENOBUFS;
2140 	}
2141 
2142 	/* send beacons at the lowest available rate */
2143 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan) ? 12 : 2;
2144 
2145 	rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2146 	    m0->m_pkthdr.len, rate);
2147 
2148 	/* copy the first 24 bytes of Tx descriptor into NIC memory */
2149 	rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2150 
2151 	/* copy beacon header and payload into NIC memory */
2152 	rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2153 	    m0->m_pkthdr.len);
2154 
2155 	m_freem(m0);
2156 
2157 	return 0;
2158 }
2159 #endif
2160 
2161 void
2162 rum_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
2163 {
2164 	/* start with lowest Tx rate */
2165 	ni->ni_txrate = 0;
2166 }
2167 
2168 void
2169 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
2170 {
2171 	int i;
2172 
2173 	/* clear statistic registers (STA_CSR0 to STA_CSR5) */
2174 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2175 
2176 	ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2177 
2178 	/* set rate to some reasonable initial value */
2179 	for (i = ni->ni_rates.rs_nrates - 1;
2180 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2181 	     i--);
2182 	ni->ni_txrate = i;
2183 
2184 	if (!usbd_is_dying(sc->sc_udev))
2185 		timeout_add_sec(&sc->amrr_to, 1);
2186 }
2187 
2188 void
2189 rum_amrr_timeout(void *arg)
2190 {
2191 	struct rum_softc *sc = arg;
2192 	usb_device_request_t req;
2193 
2194 	if (usbd_is_dying(sc->sc_udev))
2195 		return;
2196 
2197 	/*
2198 	 * Asynchronously read statistic registers (cleared by read).
2199 	 */
2200 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
2201 	req.bRequest = RT2573_READ_MULTI_MAC;
2202 	USETW(req.wValue, 0);
2203 	USETW(req.wIndex, RT2573_STA_CSR0);
2204 	USETW(req.wLength, sizeof sc->sta);
2205 
2206 	usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2207 	    USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
2208 	    rum_amrr_update);
2209 	(void)usbd_transfer(sc->amrr_xfer);
2210 }
2211 
2212 void
2213 rum_amrr_update(struct usbd_xfer *xfer, void *priv,
2214     usbd_status status)
2215 {
2216 	struct rum_softc *sc = (struct rum_softc *)priv;
2217 	struct ifnet *ifp = &sc->sc_ic.ic_if;
2218 
2219 	if (status != USBD_NORMAL_COMPLETION) {
2220 		printf("%s: could not retrieve Tx statistics - cancelling "
2221 		    "automatic rate control\n", sc->sc_dev.dv_xname);
2222 		return;
2223 	}
2224 
2225 	/* count TX retry-fail as Tx errors */
2226 	ifp->if_oerrors += letoh32(sc->sta[5]) >> 16;
2227 
2228 	sc->amn.amn_retrycnt =
2229 	    (letoh32(sc->sta[4]) >> 16) +	/* TX one-retry ok count */
2230 	    (letoh32(sc->sta[5]) & 0xffff) +	/* TX more-retry ok count */
2231 	    (letoh32(sc->sta[5]) >> 16);	/* TX retry-fail count */
2232 
2233 	sc->amn.amn_txcnt =
2234 	    sc->amn.amn_retrycnt +
2235 	    (letoh32(sc->sta[4]) & 0xffff);	/* TX no-retry ok count */
2236 
2237 	ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2238 
2239 	if (!usbd_is_dying(sc->sc_udev))
2240 		timeout_add_sec(&sc->amrr_to, 1);
2241 }
2242