xref: /openbsd/sys/dev/usb/if_uath.c (revision 097a140d)
1 /*	$OpenBSD: if_uath.c,v 1.87 2021/02/25 02:48:20 dlg Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006
5  *	Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*-
21  * Driver for Atheros AR5005UG/AR5005UX chipsets.
22  *
23  * IMPORTANT NOTICE:
24  * This driver was written without any documentation or support from Atheros
25  * Communications. It is based on a black-box analysis of the Windows binary
26  * driver. It handles both pre and post-firmware devices.
27  */
28 
29 #include "bpfilter.h"
30 
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/mbuf.h>
34 #include <sys/kernel.h>
35 #include <sys/socket.h>
36 #include <sys/systm.h>
37 #include <sys/timeout.h>
38 #include <sys/conf.h>
39 #include <sys/device.h>
40 #include <sys/endian.h>
41 
42 #include <machine/bus.h>
43 #include <machine/intr.h>
44 
45 #if NBPFILTER > 0
46 #include <net/bpf.h>
47 #endif
48 #include <net/if.h>
49 #include <net/if_dl.h>
50 #include <net/if_media.h>
51 
52 #include <netinet/in.h>
53 #include <netinet/if_ether.h>
54 
55 #include <net80211/ieee80211_var.h>
56 #include <net80211/ieee80211_radiotap.h>
57 
58 #include <dev/usb/usb.h>
59 #include <dev/usb/usbdi.h>
60 #include <dev/usb/usbdivar.h>	/* needs_reattach() */
61 #include <dev/usb/usbdi_util.h>
62 #include <dev/usb/usbdevs.h>
63 
64 #include <dev/usb/if_uathreg.h>
65 #include <dev/usb/if_uathvar.h>
66 
67 #ifdef UATH_DEBUG
68 #define DPRINTF(x)	do { if (uath_debug) printf x; } while (0)
69 #define DPRINTFN(n, x)	do { if (uath_debug >= (n)) printf x; } while (0)
70 int uath_debug = 1;
71 #else
72 #define DPRINTF(x)
73 #define DPRINTFN(n, x)
74 #endif
75 
76 /*-
77  * Various supported device vendors/products.
78  * UB51: AR5005UG 802.11b/g, UB52: AR5005UX 802.11a/b/g
79  */
80 #define UATH_DEV(v, p, f)						\
81 	{ { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, (f) },		\
82 	{ { USB_VENDOR_##v, USB_PRODUCT_##v##_##p##_NF },		\
83 	    (f) | UATH_FLAG_PRE_FIRMWARE }
84 #define UATH_DEV_UG(v, p)	UATH_DEV(v, p, 0)
85 #define UATH_DEV_UX(v, p)	UATH_DEV(v, p, UATH_FLAG_ABG)
86 static const struct uath_type {
87 	struct usb_devno	dev;
88 	unsigned int		flags;
89 #define UATH_FLAG_PRE_FIRMWARE	(1 << 0)
90 #define UATH_FLAG_ABG		(1 << 1)
91 } uath_devs[] = {
92 	UATH_DEV_UG(ACCTON,		SMCWUSBTG2),
93 	UATH_DEV_UG(ATHEROS,		AR5523),
94 	UATH_DEV_UG(ATHEROS2,		AR5523_1),
95 	UATH_DEV_UG(ATHEROS2,		AR5523_2),
96 	UATH_DEV_UX(ATHEROS2,		AR5523_3),
97 	UATH_DEV_UG(CONCEPTRONIC,	AR5523_1),
98 	UATH_DEV_UX(CONCEPTRONIC,	AR5523_2),
99 	UATH_DEV_UX(DLINK,		DWLAG122),
100 	UATH_DEV_UX(DLINK,		DWLAG132),
101 	UATH_DEV_UG(DLINK,		DWLG132),
102 	UATH_DEV_UG(DLINK2,		WUA2340),
103 	UATH_DEV_UG(GIGASET,		AR5523),
104 	UATH_DEV_UG(GIGASET,		SMCWUSBTG),
105 	UATH_DEV_UG(GLOBALSUN,		AR5523_1),
106 	UATH_DEV_UX(GLOBALSUN,		AR5523_2),
107 	UATH_DEV_UG(IODATA,		USBWNG54US),
108 	UATH_DEV_UG(MELCO,		WLIU2KAMG54),
109 	UATH_DEV_UX(NETGEAR,		WG111U),
110 	UATH_DEV_UG(NETGEAR3,		WG111T),
111 	UATH_DEV_UG(NETGEAR3,		WPN111),
112 	UATH_DEV_UG(PHILIPS,		SNU6500),
113 	UATH_DEV_UX(UMEDIA,		AR5523_2),
114 	UATH_DEV_UG(UMEDIA,		TEW444UBEU),
115 	UATH_DEV_UG(WISTRONNEWEB,	AR5523_1),
116 	UATH_DEV_UX(WISTRONNEWEB,	AR5523_2),
117 	UATH_DEV_UG(ZCOM,		AR5523),
118 
119 	/* Devices that share one of the IDs above. */
120 	{ { USB_VENDOR_NETGEAR3, USB_PRODUCT_NETGEAR3_WG111T_1 }, 0 }		\
121 };
122 #define uath_lookup(v, p)	\
123 	((const struct uath_type *)usb_lookup(uath_devs, v, p))
124 
125 void	uath_attachhook(struct device *);
126 int	uath_open_pipes(struct uath_softc *);
127 void	uath_close_pipes(struct uath_softc *);
128 int	uath_alloc_tx_data_list(struct uath_softc *);
129 void	uath_free_tx_data_list(struct uath_softc *);
130 int	uath_alloc_rx_data_list(struct uath_softc *);
131 void	uath_free_rx_data_list(struct uath_softc *);
132 int	uath_alloc_tx_cmd_list(struct uath_softc *);
133 void	uath_free_tx_cmd_list(struct uath_softc *);
134 int	uath_alloc_rx_cmd_list(struct uath_softc *);
135 void	uath_free_rx_cmd_list(struct uath_softc *);
136 int	uath_media_change(struct ifnet *);
137 void	uath_stat(void *);
138 void	uath_next_scan(void *);
139 void	uath_task(void *);
140 int	uath_newstate(struct ieee80211com *, enum ieee80211_state, int);
141 #ifdef UATH_DEBUG
142 void	uath_dump_cmd(const uint8_t *, int, char);
143 #endif
144 int	uath_cmd(struct uath_softc *, uint32_t, const void *, int, void *,
145 	    int);
146 int	uath_cmd_write(struct uath_softc *, uint32_t, const void *, int, int);
147 int	uath_cmd_read(struct uath_softc *, uint32_t, const void *, int, void *,
148 	    int);
149 int	uath_write_reg(struct uath_softc *, uint32_t, uint32_t);
150 int	uath_write_multi(struct uath_softc *, uint32_t, const void *, int);
151 int	uath_read_reg(struct uath_softc *, uint32_t, uint32_t *);
152 int	uath_read_eeprom(struct uath_softc *, uint32_t, void *);
153 void	uath_cmd_rxeof(struct usbd_xfer *, void *, usbd_status);
154 void	uath_data_rxeof(struct usbd_xfer *, void *, usbd_status);
155 void	uath_data_txeof(struct usbd_xfer *, void *, usbd_status);
156 int	uath_tx_null(struct uath_softc *);
157 int	uath_tx_data(struct uath_softc *, struct mbuf *,
158 	    struct ieee80211_node *);
159 void	uath_start(struct ifnet *);
160 void	uath_watchdog(struct ifnet *);
161 int	uath_ioctl(struct ifnet *, u_long, caddr_t);
162 int	uath_query_eeprom(struct uath_softc *);
163 int	uath_reset(struct uath_softc *);
164 int	uath_reset_tx_queues(struct uath_softc *);
165 int	uath_wme_init(struct uath_softc *);
166 int	uath_set_chan(struct uath_softc *, struct ieee80211_channel *);
167 int	uath_set_key(struct uath_softc *, const struct ieee80211_key *, int);
168 int	uath_set_keys(struct uath_softc *);
169 int	uath_set_rates(struct uath_softc *, const struct ieee80211_rateset *);
170 int	uath_set_rxfilter(struct uath_softc *, uint32_t, uint32_t);
171 int	uath_set_led(struct uath_softc *, int, int);
172 int	uath_switch_channel(struct uath_softc *, struct ieee80211_channel *);
173 int	uath_init(struct ifnet *);
174 void	uath_stop(struct ifnet *, int);
175 int	uath_loadfirmware(struct uath_softc *, const u_char *, int);
176 
177 int uath_match(struct device *, void *, void *);
178 void uath_attach(struct device *, struct device *, void *);
179 int uath_detach(struct device *, int);
180 
181 struct cfdriver uath_cd = {
182 	NULL, "uath", DV_IFNET
183 };
184 
185 const struct cfattach uath_ca = {
186 	sizeof(struct uath_softc), uath_match, uath_attach, uath_detach
187 };
188 
189 int
190 uath_match(struct device *parent, void *match, void *aux)
191 {
192 	struct usb_attach_arg *uaa = aux;
193 
194 	if (uaa->iface == NULL || uaa->configno != UATH_CONFIG_NO)
195 		return UMATCH_NONE;
196 
197 	return (uath_lookup(uaa->vendor, uaa->product) != NULL) ?
198 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
199 }
200 
201 void
202 uath_attachhook(struct device *self)
203 {
204 	struct uath_softc *sc = (struct uath_softc *)self;
205 	u_char *fw;
206 	size_t size;
207 	int error;
208 
209 	if ((error = loadfirmware("uath-ar5523", &fw, &size)) != 0) {
210 		printf("%s: error %d, could not read firmware %s\n",
211 		    sc->sc_dev.dv_xname, error, "uath-ar5523");
212 		return;
213 	}
214 
215 	error = uath_loadfirmware(sc, fw, size);
216 	free(fw, M_DEVBUF, size);
217 
218 	if (error == 0) {
219 		/*
220 		 * Hack alert: the device doesn't always gracefully detach
221 		 * from the bus after a firmware upload.  We need to force
222 		 * a port reset and a re-exploration on the parent hub.
223 		 */
224 		usbd_reset_port(sc->sc_uhub, sc->sc_port);
225 		usb_needs_reattach(sc->sc_udev);
226 	} else {
227 		printf("%s: could not load firmware (error=%s)\n",
228 		    sc->sc_dev.dv_xname, usbd_errstr(error));
229 	}
230 }
231 
232 void
233 uath_attach(struct device *parent, struct device *self, void *aux)
234 {
235 	struct uath_softc *sc = (struct uath_softc *)self;
236 	struct usb_attach_arg *uaa = aux;
237 	struct ieee80211com *ic = &sc->sc_ic;
238 	struct ifnet *ifp = &ic->ic_if;
239 	usbd_status error;
240 	int i;
241 
242 	sc->sc_udev = uaa->device;
243 	sc->sc_uhub = uaa->device->myhub;
244 	sc->sc_port = uaa->port;
245 
246 	sc->sc_flags = uath_lookup(uaa->vendor, uaa->product)->flags;
247 
248 	/* get the first interface handle */
249 	error = usbd_device2interface_handle(sc->sc_udev, UATH_IFACE_INDEX,
250 	    &sc->sc_iface);
251 	if (error != 0) {
252 		printf("%s: could not get interface handle\n",
253 		    sc->sc_dev.dv_xname);
254 		return;
255 	}
256 
257 	/*
258 	 * We must open the pipes early because they're used to upload the
259 	 * firmware (pre-firmware devices) or to send firmware commands.
260 	 */
261 	if (uath_open_pipes(sc) != 0) {
262 		printf("%s: could not open pipes\n", sc->sc_dev.dv_xname);
263 		return;
264 	}
265 
266 	if (sc->sc_flags & UATH_FLAG_PRE_FIRMWARE) {
267 		config_mountroot(self, uath_attachhook);
268 		return;
269 	}
270 
271 	/*
272 	 * Only post-firmware devices here.
273 	 */
274 	usb_init_task(&sc->sc_task, uath_task, sc, USB_TASK_TYPE_GENERIC);
275 	timeout_set(&sc->scan_to, uath_next_scan, sc);
276 	timeout_set(&sc->stat_to, uath_stat, sc);
277 
278 	/*
279 	 * Allocate xfers for firmware commands.
280 	 */
281 	if (uath_alloc_tx_cmd_list(sc) != 0) {
282 		printf("%s: could not allocate Tx command list\n",
283 		    sc->sc_dev.dv_xname);
284 		goto fail;
285 	}
286 	if (uath_alloc_rx_cmd_list(sc) != 0) {
287 		printf("%s: could not allocate Rx command list\n",
288 		    sc->sc_dev.dv_xname);
289 		goto fail;
290 	}
291 
292 	/*
293 	 * Queue Rx command xfers.
294 	 */
295 	for (i = 0; i < UATH_RX_CMD_LIST_COUNT; i++) {
296 		struct uath_rx_cmd *cmd = &sc->rx_cmd[i];
297 
298 		usbd_setup_xfer(cmd->xfer, sc->cmd_rx_pipe, cmd, cmd->buf,
299 		    UATH_MAX_RXCMDSZ, USBD_SHORT_XFER_OK | USBD_NO_COPY,
300 		    USBD_NO_TIMEOUT, uath_cmd_rxeof);
301 		error = usbd_transfer(cmd->xfer);
302 		if (error != USBD_IN_PROGRESS && error != 0) {
303 			printf("%s: could not queue Rx command xfer\n",
304 			    sc->sc_dev.dv_xname);
305 			goto fail;
306 		}
307 	}
308 
309 	/*
310 	 * We're now ready to send/receive firmware commands.
311 	 */
312 	if (uath_reset(sc) != 0) {
313 		printf("%s: could not initialize adapter\n",
314 		    sc->sc_dev.dv_xname);
315 		goto fail;
316 	}
317 	if (uath_query_eeprom(sc) != 0) {
318 		printf("%s: could not read EEPROM\n", sc->sc_dev.dv_xname);
319 		goto fail;
320 	}
321 
322 	printf("%s: MAC/BBP AR5523, RF AR%c112, address %s\n",
323 	    sc->sc_dev.dv_xname, (sc->sc_flags & UATH_FLAG_ABG) ? '5': '2',
324 	    ether_sprintf(ic->ic_myaddr));
325 
326 	/*
327 	 * Allocate xfers for Tx/Rx data pipes.
328 	 */
329 	if (uath_alloc_tx_data_list(sc) != 0) {
330 		printf("%s: could not allocate Tx data list\n",
331 		    sc->sc_dev.dv_xname);
332 		goto fail;
333 	}
334 	if (uath_alloc_rx_data_list(sc) != 0) {
335 		printf("%s: could not allocate Rx data list\n",
336 		    sc->sc_dev.dv_xname);
337 		goto fail;
338 	}
339 
340 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
341 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
342 	ic->ic_state = IEEE80211_S_INIT;
343 
344 	/* set device capabilities */
345 	ic->ic_caps =
346 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
347 	    IEEE80211_C_TXPMGT |	/* tx power management */
348 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
349 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
350 	    IEEE80211_C_WEP;		/* h/w WEP */
351 
352 	/* set supported .11b and .11g rates */
353 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
354 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
355 
356 	/* set supported .11b and .11g channels (1 through 14) */
357 	for (i = 1; i <= 14; i++) {
358 		ic->ic_channels[i].ic_freq =
359 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
360 		ic->ic_channels[i].ic_flags =
361 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
362 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
363 	}
364 
365 	ifp->if_softc = sc;
366 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
367 	ifp->if_ioctl = uath_ioctl;
368 	ifp->if_start = uath_start;
369 	ifp->if_watchdog = uath_watchdog;
370 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
371 
372 	if_attach(ifp);
373 	ieee80211_ifattach(ifp);
374 
375 	/* override state transition machine */
376 	sc->sc_newstate = ic->ic_newstate;
377 	ic->ic_newstate = uath_newstate;
378 	ieee80211_media_init(ifp, uath_media_change, ieee80211_media_status);
379 
380 #if NBPFILTER > 0
381 	bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO,
382 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN);
383 
384 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
385 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
386 	sc->sc_rxtap.wr_ihdr.it_present = htole32(UATH_RX_RADIOTAP_PRESENT);
387 
388 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
389 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
390 	sc->sc_txtap.wt_ihdr.it_present = htole32(UATH_TX_RADIOTAP_PRESENT);
391 #endif
392 
393 	return;
394 
395 fail:	uath_close_pipes(sc);
396 	uath_free_tx_data_list(sc);
397 	uath_free_rx_cmd_list(sc);
398 	uath_free_tx_cmd_list(sc);
399 	usbd_deactivate(sc->sc_udev);
400 }
401 
402 int
403 uath_detach(struct device *self, int flags)
404 {
405 	struct uath_softc *sc = (struct uath_softc *)self;
406 	struct ifnet *ifp = &sc->sc_ic.ic_if;
407 	int s;
408 
409 	s = splnet();
410 
411 	if (sc->sc_flags & UATH_FLAG_PRE_FIRMWARE) {
412 		uath_close_pipes(sc);
413 		splx(s);
414 		return 0;
415 	}
416 
417 	/* post-firmware device */
418 
419 	usb_rem_task(sc->sc_udev, &sc->sc_task);
420 	if (timeout_initialized(&sc->scan_to))
421 		timeout_del(&sc->scan_to);
422 	if (timeout_initialized(&sc->stat_to))
423 		timeout_del(&sc->stat_to);
424 
425 	/* close Tx/Rx pipes */
426 	uath_close_pipes(sc);
427 
428 	/* free xfers */
429 	uath_free_tx_data_list(sc);
430 	uath_free_rx_data_list(sc);
431 	uath_free_tx_cmd_list(sc);
432 	uath_free_rx_cmd_list(sc);
433 
434 	if (ifp->if_softc != NULL) {
435 		ieee80211_ifdetach(ifp);	/* free all nodes */
436 		if_detach(ifp);
437 	}
438 
439 	splx(s);
440 
441 	return 0;
442 }
443 
444 int
445 uath_open_pipes(struct uath_softc *sc)
446 {
447 	int error;
448 
449 	/*
450 	 * XXX pipes numbers are hardcoded because we don't have any way
451 	 * to distinguish the data pipes from the firmware command pipes
452 	 * (both are bulk pipes) using the endpoints descriptors.
453 	 */
454 	error = usbd_open_pipe(sc->sc_iface, 0x01, USBD_EXCLUSIVE_USE,
455 	    &sc->cmd_tx_pipe);
456 	if (error != 0) {
457 		printf("%s: could not open Tx command pipe: %s\n",
458 		    sc->sc_dev.dv_xname, usbd_errstr(error));
459 		goto fail;
460 	}
461 
462 	error = usbd_open_pipe(sc->sc_iface, 0x02, USBD_EXCLUSIVE_USE,
463 	    &sc->data_tx_pipe);
464 	if (error != 0) {
465 		printf("%s: could not open Tx data pipe: %s\n",
466 		    sc->sc_dev.dv_xname, usbd_errstr(error));
467 		goto fail;
468 	}
469 
470 	error = usbd_open_pipe(sc->sc_iface, 0x81, USBD_EXCLUSIVE_USE,
471 	    &sc->cmd_rx_pipe);
472 	if (error != 0) {
473 		printf("%s: could not open Rx command pipe: %s\n",
474 		    sc->sc_dev.dv_xname, usbd_errstr(error));
475 		goto fail;
476 	}
477 
478 	error = usbd_open_pipe(sc->sc_iface, 0x82, USBD_EXCLUSIVE_USE,
479 	    &sc->data_rx_pipe);
480 	if (error != 0) {
481 		printf("%s: could not open Rx data pipe: %s\n",
482 		    sc->sc_dev.dv_xname, usbd_errstr(error));
483 		goto fail;
484 	}
485 
486 	return 0;
487 
488 fail:	uath_close_pipes(sc);
489 	return error;
490 }
491 
492 void
493 uath_close_pipes(struct uath_softc *sc)
494 {
495 	if (sc->data_tx_pipe != NULL) {
496 		usbd_close_pipe(sc->data_tx_pipe);
497 		sc->data_tx_pipe = NULL;
498 	}
499 
500 	if (sc->data_rx_pipe != NULL) {
501 		usbd_close_pipe(sc->data_rx_pipe);
502 		sc->data_rx_pipe = NULL;
503 	}
504 
505 	if (sc->cmd_tx_pipe != NULL) {
506 		usbd_close_pipe(sc->cmd_tx_pipe);
507 		sc->cmd_tx_pipe = NULL;
508 	}
509 
510 	if (sc->cmd_rx_pipe != NULL) {
511 		usbd_close_pipe(sc->cmd_rx_pipe);
512 		sc->cmd_rx_pipe = NULL;
513 	}
514 }
515 
516 int
517 uath_alloc_tx_data_list(struct uath_softc *sc)
518 {
519 	int i, error;
520 
521 	for (i = 0; i < UATH_TX_DATA_LIST_COUNT; i++) {
522 		struct uath_tx_data *data = &sc->tx_data[i];
523 
524 		data->sc = sc;	/* backpointer for callbacks */
525 
526 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
527 		if (data->xfer == NULL) {
528 			printf("%s: could not allocate xfer\n",
529 			    sc->sc_dev.dv_xname);
530 			error = ENOMEM;
531 			goto fail;
532 		}
533 		data->buf = usbd_alloc_buffer(data->xfer, UATH_MAX_TXBUFSZ);
534 		if (data->buf == NULL) {
535 			printf("%s: could not allocate xfer buffer\n",
536 			    sc->sc_dev.dv_xname);
537 			error = ENOMEM;
538 			goto fail;
539 		}
540 	}
541 	return 0;
542 
543 fail:	uath_free_tx_data_list(sc);
544 	return error;
545 }
546 
547 void
548 uath_free_tx_data_list(struct uath_softc *sc)
549 {
550 	int i;
551 
552 	for (i = 0; i < UATH_TX_DATA_LIST_COUNT; i++)
553 		if (sc->tx_data[i].xfer != NULL) {
554 			usbd_free_xfer(sc->tx_data[i].xfer);
555 			sc->tx_data[i].xfer = NULL;
556 		}
557 }
558 
559 int
560 uath_alloc_rx_data_list(struct uath_softc *sc)
561 {
562 	int i, error;
563 
564 	for (i = 0; i < UATH_RX_DATA_LIST_COUNT; i++) {
565 		struct uath_rx_data *data = &sc->rx_data[i];
566 
567 		data->sc = sc;	/* backpointer for callbacks */
568 
569 		data->xfer = usbd_alloc_xfer(sc->sc_udev);
570 		if (data->xfer == NULL) {
571 			printf("%s: could not allocate xfer\n",
572 			    sc->sc_dev.dv_xname);
573 			error = ENOMEM;
574 			goto fail;
575 		}
576 		if (usbd_alloc_buffer(data->xfer, sc->rxbufsz) == NULL) {
577 			printf("%s: could not allocate xfer buffer\n",
578 			    sc->sc_dev.dv_xname);
579 			error = ENOMEM;
580 			goto fail;
581 		}
582 
583 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
584 		if (data->m == NULL) {
585 			printf("%s: could not allocate rx mbuf\n",
586 			    sc->sc_dev.dv_xname);
587 			error = ENOMEM;
588 			goto fail;
589 		}
590 		MCLGETL(data->m, M_DONTWAIT, sc->rxbufsz);
591 		if (!(data->m->m_flags & M_EXT)) {
592 			printf("%s: could not allocate rx mbuf cluster\n",
593 			    sc->sc_dev.dv_xname);
594 			error = ENOMEM;
595 			goto fail;
596 		}
597 
598 		data->buf = mtod(data->m, uint8_t *);
599 	}
600 	return 0;
601 
602 fail:	uath_free_rx_data_list(sc);
603 	return error;
604 }
605 
606 void
607 uath_free_rx_data_list(struct uath_softc *sc)
608 {
609 	int i;
610 
611 	for (i = 0; i < UATH_RX_DATA_LIST_COUNT; i++) {
612 		struct uath_rx_data *data = &sc->rx_data[i];
613 
614 		if (data->xfer != NULL) {
615 			usbd_free_xfer(data->xfer);
616 			data->xfer = NULL;
617 		}
618 
619 		if (data->m != NULL) {
620 			m_freem(data->m);
621 			data->m = NULL;
622 		}
623 	}
624 }
625 
626 int
627 uath_alloc_tx_cmd_list(struct uath_softc *sc)
628 {
629 	int i, error;
630 
631 	for (i = 0; i < UATH_TX_CMD_LIST_COUNT; i++) {
632 		struct uath_tx_cmd *cmd = &sc->tx_cmd[i];
633 
634 		cmd->sc = sc;	/* backpointer for callbacks */
635 
636 		cmd->xfer = usbd_alloc_xfer(sc->sc_udev);
637 		if (cmd->xfer == NULL) {
638 			printf("%s: could not allocate xfer\n",
639 			    sc->sc_dev.dv_xname);
640 			error = ENOMEM;
641 			goto fail;
642 		}
643 		cmd->buf = usbd_alloc_buffer(cmd->xfer, UATH_MAX_TXCMDSZ);
644 		if (cmd->buf == NULL) {
645 			printf("%s: could not allocate xfer buffer\n",
646 			    sc->sc_dev.dv_xname);
647 			error = ENOMEM;
648 			goto fail;
649 		}
650 	}
651 	return 0;
652 
653 fail:	uath_free_tx_cmd_list(sc);
654 	return error;
655 }
656 
657 void
658 uath_free_tx_cmd_list(struct uath_softc *sc)
659 {
660 	int i;
661 
662 	for (i = 0; i < UATH_TX_CMD_LIST_COUNT; i++)
663 		if (sc->tx_cmd[i].xfer != NULL) {
664 			usbd_free_xfer(sc->tx_cmd[i].xfer);
665 			sc->tx_cmd[i].xfer = NULL;
666 		}
667 }
668 
669 int
670 uath_alloc_rx_cmd_list(struct uath_softc *sc)
671 {
672 	int i, error;
673 
674 	for (i = 0; i < UATH_RX_CMD_LIST_COUNT; i++) {
675 		struct uath_rx_cmd *cmd = &sc->rx_cmd[i];
676 
677 		cmd->sc = sc;	/* backpointer for callbacks */
678 
679 		cmd->xfer = usbd_alloc_xfer(sc->sc_udev);
680 		if (cmd->xfer == NULL) {
681 			printf("%s: could not allocate xfer\n",
682 			    sc->sc_dev.dv_xname);
683 			error = ENOMEM;
684 			goto fail;
685 		}
686 		cmd->buf = usbd_alloc_buffer(cmd->xfer, UATH_MAX_RXCMDSZ);
687 		if (cmd->buf == NULL) {
688 			printf("%s: could not allocate xfer buffer\n",
689 			    sc->sc_dev.dv_xname);
690 			error = ENOMEM;
691 			goto fail;
692 		}
693 	}
694 	return 0;
695 
696 fail:	uath_free_rx_cmd_list(sc);
697 	return error;
698 }
699 
700 void
701 uath_free_rx_cmd_list(struct uath_softc *sc)
702 {
703 	int i;
704 
705 	for (i = 0; i < UATH_RX_CMD_LIST_COUNT; i++)
706 		if (sc->rx_cmd[i].xfer != NULL) {
707 			usbd_free_xfer(sc->rx_cmd[i].xfer);
708 			sc->rx_cmd[i].xfer = NULL;
709 		}
710 }
711 
712 int
713 uath_media_change(struct ifnet *ifp)
714 {
715 	int error;
716 
717 	error = ieee80211_media_change(ifp);
718 	if (error != ENETRESET)
719 		return error;
720 
721 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
722 		error = uath_init(ifp);
723 
724 	return error;
725 }
726 
727 /*
728  * This function is called periodically (every second) when associated to
729  * query device statistics.
730  */
731 void
732 uath_stat(void *arg)
733 {
734 	struct uath_softc *sc = arg;
735 	int error;
736 
737 	/*
738 	 * Send request for statistics asynchronously. The timer will be
739 	 * restarted when we'll get the stats notification.
740 	 */
741 	error = uath_cmd_write(sc, UATH_CMD_STATS, NULL, 0,
742 	    UATH_CMD_FLAG_ASYNC);
743 	if (error != 0) {
744 		printf("%s: could not query statistics (error=%d)\n",
745 		    sc->sc_dev.dv_xname, error);
746 	}
747 }
748 
749 /*
750  * This function is called periodically (every 250ms) during scanning to
751  * switch from one channel to another.
752  */
753 void
754 uath_next_scan(void *arg)
755 {
756 	struct uath_softc *sc = arg;
757 	struct ieee80211com *ic = &sc->sc_ic;
758 	struct ifnet *ifp = &ic->ic_if;
759 
760 	if (ic->ic_state == IEEE80211_S_SCAN)
761 		ieee80211_next_scan(ifp);
762 }
763 
764 void
765 uath_task(void *arg)
766 {
767 	struct uath_softc *sc = arg;
768 	struct ieee80211com *ic = &sc->sc_ic;
769 	enum ieee80211_state ostate;
770 
771 	ostate = ic->ic_state;
772 
773 	switch (sc->sc_state) {
774 	case IEEE80211_S_INIT:
775 		if (ostate == IEEE80211_S_RUN) {
776 			/* turn link and activity LEDs off */
777 			(void)uath_set_led(sc, UATH_LED_LINK, 0);
778 			(void)uath_set_led(sc, UATH_LED_ACTIVITY, 0);
779 		}
780 		break;
781 
782 	case IEEE80211_S_SCAN:
783 		if (uath_switch_channel(sc, ic->ic_bss->ni_chan) != 0) {
784 			printf("%s: could not switch channel\n",
785 			    sc->sc_dev.dv_xname);
786 			break;
787 		}
788 		timeout_add_msec(&sc->scan_to, 250);
789 		break;
790 
791 	case IEEE80211_S_AUTH:
792 	{
793 		struct ieee80211_node *ni = ic->ic_bss;
794 		struct uath_cmd_bssid bssid;
795 		struct uath_cmd_0b cmd0b;
796 		struct uath_cmd_0c cmd0c;
797 
798 		if (uath_switch_channel(sc, ni->ni_chan) != 0) {
799 			printf("%s: could not switch channel\n",
800 			    sc->sc_dev.dv_xname);
801 			break;
802 		}
803 
804 		(void)uath_cmd_write(sc, UATH_CMD_24, NULL, 0, 0);
805 
806 		bzero(&bssid, sizeof bssid);
807 		bssid.len = htobe32(IEEE80211_ADDR_LEN);
808 		IEEE80211_ADDR_COPY(bssid.bssid, ni->ni_bssid);
809 		(void)uath_cmd_write(sc, UATH_CMD_SET_BSSID, &bssid,
810 		    sizeof bssid, 0);
811 
812 		bzero(&cmd0b, sizeof cmd0b);
813 		cmd0b.code = htobe32(2);
814 		cmd0b.size = htobe32(sizeof (cmd0b.data));
815 		(void)uath_cmd_write(sc, UATH_CMD_0B, &cmd0b, sizeof cmd0b, 0);
816 
817 		bzero(&cmd0c, sizeof cmd0c);
818 		cmd0c.magic1 = htobe32(2);
819 		cmd0c.magic2 = htobe32(7);
820 		cmd0c.magic3 = htobe32(1);
821 		(void)uath_cmd_write(sc, UATH_CMD_0C, &cmd0c, sizeof cmd0c, 0);
822 
823 		if (uath_set_rates(sc, &ni->ni_rates) != 0) {
824 			printf("%s: could not set negotiated rate set\n",
825 			    sc->sc_dev.dv_xname);
826 			break;
827 		}
828 		break;
829 	}
830 
831 	case IEEE80211_S_ASSOC:
832 		break;
833 
834 	case IEEE80211_S_RUN:
835 	{
836 		struct ieee80211_node *ni = ic->ic_bss;
837 		struct uath_cmd_bssid bssid;
838 		struct uath_cmd_xled xled;
839 		uint32_t val;
840 
841 		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
842 			/* make both LEDs blink while monitoring */
843 			bzero(&xled, sizeof xled);
844 			xled.which = htobe32(0);
845 			xled.rate = htobe32(1);
846 			xled.mode = htobe32(2);
847 			(void)uath_cmd_write(sc, UATH_CMD_SET_XLED, &xled,
848 			    sizeof xled, 0);
849 			break;
850 		}
851 
852 		/*
853 		 * Tx rate is controlled by firmware, report the maximum
854 		 * negotiated rate in ifconfig output.
855 		 */
856 		ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
857 
858 		val = htobe32(1);
859 		(void)uath_cmd_write(sc, UATH_CMD_2E, &val, sizeof val, 0);
860 
861 		bzero(&bssid, sizeof bssid);
862 		bssid.flags1 = htobe32(0xc004);
863 		bssid.flags2 = htobe32(0x003b);
864 		bssid.len = htobe32(IEEE80211_ADDR_LEN);
865 		IEEE80211_ADDR_COPY(bssid.bssid, ni->ni_bssid);
866 		(void)uath_cmd_write(sc, UATH_CMD_SET_BSSID, &bssid,
867 		    sizeof bssid, 0);
868 
869 		/* turn link LED on */
870 		(void)uath_set_led(sc, UATH_LED_LINK, 1);
871 
872 		/* make activity LED blink */
873 		bzero(&xled, sizeof xled);
874 		xled.which = htobe32(1);
875 		xled.rate = htobe32(1);
876 		xled.mode = htobe32(2);
877 		(void)uath_cmd_write(sc, UATH_CMD_SET_XLED, &xled, sizeof xled,
878 		    0);
879 
880 		/* set state to associated */
881 		val = htobe32(1);
882 		(void)uath_cmd_write(sc, UATH_CMD_SET_STATE, &val, sizeof val,
883 		    0);
884 
885 		/* start statistics timer */
886 		timeout_add_sec(&sc->stat_to, 1);
887 		break;
888 	}
889 	}
890 	sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
891 }
892 
893 int
894 uath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
895 {
896 	struct uath_softc *sc = ic->ic_softc;
897 
898 	usb_rem_task(sc->sc_udev, &sc->sc_task);
899 	timeout_del(&sc->scan_to);
900 	timeout_del(&sc->stat_to);
901 
902 	/* do it in a process context */
903 	sc->sc_state = nstate;
904 	sc->sc_arg = arg;
905 	usb_add_task(sc->sc_udev, &sc->sc_task);
906 	return 0;
907 }
908 
909 #ifdef UATH_DEBUG
910 void
911 uath_dump_cmd(const uint8_t *buf, int len, char prefix)
912 {
913 	int i;
914 
915 	for (i = 0; i < len; i++) {
916 		if ((i % 16) == 0)
917 			printf("\n%c ", prefix);
918 		else if ((i % 4) == 0)
919 			printf(" ");
920 		printf("%02x", buf[i]);
921 	}
922 	printf("\n");
923 }
924 #endif
925 
926 /*
927  * Low-level function to send read or write commands to the firmware.
928  */
929 int
930 uath_cmd(struct uath_softc *sc, uint32_t code, const void *idata, int ilen,
931     void *odata, int flags)
932 {
933 	struct uath_cmd_hdr *hdr;
934 	struct uath_tx_cmd *cmd;
935 	uint16_t xferflags;
936 	int s, xferlen, error;
937 
938 	/* grab a xfer */
939 	cmd = &sc->tx_cmd[sc->cmd_idx];
940 
941 	/* always bulk-out a multiple of 4 bytes */
942 	xferlen = (sizeof (struct uath_cmd_hdr) + ilen + 3) & ~3;
943 
944 	hdr = (struct uath_cmd_hdr *)cmd->buf;
945 	bzero(hdr, sizeof (struct uath_cmd_hdr));
946 	hdr->len   = htobe32(xferlen);
947 	hdr->code  = htobe32(code);
948 	hdr->priv  = sc->cmd_idx;	/* don't care about endianness */
949 	hdr->magic = htobe32((flags & UATH_CMD_FLAG_MAGIC) ? 1 << 24 : 0);
950 	bcopy(idata, (uint8_t *)(hdr + 1), ilen);
951 
952 #ifdef UATH_DEBUG
953 	if (uath_debug >= 5) {
954 		printf("sending command code=0x%02x flags=0x%x index=%u",
955 		    code, flags, sc->cmd_idx);
956 		uath_dump_cmd(cmd->buf, xferlen, '+');
957 	}
958 #endif
959 	xferflags = USBD_FORCE_SHORT_XFER | USBD_NO_COPY;
960 	if (!(flags & UATH_CMD_FLAG_READ)) {
961 		if (!(flags & UATH_CMD_FLAG_ASYNC))
962 			xferflags |= USBD_SYNCHRONOUS;
963 	} else
964 		s = splusb();
965 
966 	cmd->odata = odata;
967 
968 	usbd_setup_xfer(cmd->xfer, sc->cmd_tx_pipe, cmd, cmd->buf, xferlen,
969 	    xferflags, UATH_CMD_TIMEOUT, NULL);
970 	error = usbd_transfer(cmd->xfer);
971 	if (error != USBD_IN_PROGRESS && error != 0) {
972 		if (flags & UATH_CMD_FLAG_READ)
973 			splx(s);
974 		printf("%s: could not send command 0x%x (error=%s)\n",
975 		    sc->sc_dev.dv_xname, code, usbd_errstr(error));
976 		return error;
977 	}
978 	sc->cmd_idx = (sc->cmd_idx + 1) % UATH_TX_CMD_LIST_COUNT;
979 
980 	if (!(flags & UATH_CMD_FLAG_READ))
981 		return 0;	/* write: don't wait for reply */
982 
983 	/* wait at most two seconds for command reply */
984 	error = tsleep_nsec(cmd, PCATCH, "uathcmd", SEC_TO_NSEC(2));
985 	cmd->odata = NULL;	/* in case answer is received too late */
986 	splx(s);
987 	if (error != 0) {
988 		printf("%s: timeout waiting for command reply\n",
989 		    sc->sc_dev.dv_xname);
990 	}
991 	return error;
992 }
993 
994 int
995 uath_cmd_write(struct uath_softc *sc, uint32_t code, const void *data, int len,
996     int flags)
997 {
998 	flags &= ~UATH_CMD_FLAG_READ;
999 	return uath_cmd(sc, code, data, len, NULL, flags);
1000 }
1001 
1002 int
1003 uath_cmd_read(struct uath_softc *sc, uint32_t code, const void *idata,
1004     int ilen, void *odata, int flags)
1005 {
1006 	flags |= UATH_CMD_FLAG_READ;
1007 	return uath_cmd(sc, code, idata, ilen, odata, flags);
1008 }
1009 
1010 int
1011 uath_write_reg(struct uath_softc *sc, uint32_t reg, uint32_t val)
1012 {
1013 	struct uath_write_mac write;
1014 	int error;
1015 
1016 	write.reg = htobe32(reg);
1017 	write.len = htobe32(0);	/* 0 = single write */
1018 	*(uint32_t *)write.data = htobe32(val);
1019 
1020 	error = uath_cmd_write(sc, UATH_CMD_WRITE_MAC, &write,
1021 	    3 * sizeof (uint32_t), 0);
1022 	if (error != 0) {
1023 		printf("%s: could not write register 0x%02x\n",
1024 		    sc->sc_dev.dv_xname, reg);
1025 	}
1026 	return error;
1027 }
1028 
1029 int
1030 uath_write_multi(struct uath_softc *sc, uint32_t reg, const void *data,
1031     int len)
1032 {
1033 	struct uath_write_mac write;
1034 	int error;
1035 
1036 	write.reg = htobe32(reg);
1037 	write.len = htobe32(len);
1038 	bcopy(data, write.data, len);
1039 
1040 	/* properly handle the case where len is zero (reset) */
1041 	error = uath_cmd_write(sc, UATH_CMD_WRITE_MAC, &write,
1042 	    (len == 0) ? sizeof (uint32_t) : 2 * sizeof (uint32_t) + len, 0);
1043 	if (error != 0) {
1044 		printf("%s: could not write %d bytes to register 0x%02x\n",
1045 		    sc->sc_dev.dv_xname, len, reg);
1046 	}
1047 	return error;
1048 }
1049 
1050 int
1051 uath_read_reg(struct uath_softc *sc, uint32_t reg, uint32_t *val)
1052 {
1053 	struct uath_read_mac read;
1054 	int error;
1055 
1056 	reg = htobe32(reg);
1057 	error = uath_cmd_read(sc, UATH_CMD_READ_MAC, &reg, sizeof reg, &read,
1058 	    0);
1059 	if (error != 0) {
1060 		printf("%s: could not read register 0x%02x\n",
1061 		    sc->sc_dev.dv_xname, betoh32(reg));
1062 		return error;
1063 	}
1064 	*val = betoh32(*(uint32_t *)read.data);
1065 	return error;
1066 }
1067 
1068 int
1069 uath_read_eeprom(struct uath_softc *sc, uint32_t reg, void *odata)
1070 {
1071 	struct uath_read_mac read;
1072 	int len, error;
1073 
1074 	reg = htobe32(reg);
1075 	error = uath_cmd_read(sc, UATH_CMD_READ_EEPROM, &reg, sizeof reg,
1076 	    &read, 0);
1077 	if (error != 0) {
1078 		printf("%s: could not read EEPROM offset 0x%02x\n",
1079 		    sc->sc_dev.dv_xname, betoh32(reg));
1080 		return error;
1081 	}
1082 	len = betoh32(read.len);
1083 	bcopy(read.data, odata, (len == 0) ? sizeof (uint32_t) : len);
1084 	return error;
1085 }
1086 
1087 void
1088 uath_cmd_rxeof(struct usbd_xfer *xfer, void *priv,
1089     usbd_status status)
1090 {
1091 	struct uath_rx_cmd *cmd = priv;
1092 	struct uath_softc *sc = cmd->sc;
1093 	struct uath_cmd_hdr *hdr;
1094 
1095 	if (status != USBD_NORMAL_COMPLETION) {
1096 		if (status == USBD_STALLED)
1097 			usbd_clear_endpoint_stall_async(sc->cmd_rx_pipe);
1098 		return;
1099 	}
1100 
1101 	hdr = (struct uath_cmd_hdr *)cmd->buf;
1102 
1103 #ifdef UATH_DEBUG
1104 	if (uath_debug >= 5) {
1105 		printf("received command code=0x%x index=%u len=%u",
1106 		    betoh32(hdr->code), hdr->priv, betoh32(hdr->len));
1107 		uath_dump_cmd(cmd->buf, betoh32(hdr->len), '-');
1108 	}
1109 #endif
1110 
1111 	switch (betoh32(hdr->code) & 0xff) {
1112 	/* reply to a read command */
1113 	default:
1114 	{
1115 		struct uath_tx_cmd *txcmd = &sc->tx_cmd[hdr->priv];
1116 
1117 		if (txcmd->odata != NULL) {
1118 			/* copy answer into caller's supplied buffer */
1119 			bcopy((uint8_t *)(hdr + 1), txcmd->odata,
1120 			    betoh32(hdr->len) - sizeof (struct uath_cmd_hdr));
1121 		}
1122 		wakeup(txcmd);	/* wake up caller */
1123 		break;
1124 	}
1125 	/* spontaneous firmware notifications */
1126 	case UATH_NOTIF_READY:
1127 		DPRINTF(("received device ready notification\n"));
1128 		wakeup(UATH_COND_INIT(sc));
1129 		break;
1130 
1131 	case UATH_NOTIF_TX:
1132 		/* this notification is sent when UATH_TX_NOTIFY is set */
1133 		DPRINTF(("received Tx notification\n"));
1134 		break;
1135 
1136 	case UATH_NOTIF_STATS:
1137 		DPRINTFN(2, ("received device statistics\n"));
1138 		timeout_add_sec(&sc->stat_to, 1);
1139 		break;
1140 	}
1141 
1142 	/* setup a new transfer */
1143 	usbd_setup_xfer(xfer, sc->cmd_rx_pipe, cmd, cmd->buf, UATH_MAX_RXCMDSZ,
1144 	    USBD_SHORT_XFER_OK | USBD_NO_COPY, USBD_NO_TIMEOUT,
1145 	    uath_cmd_rxeof);
1146 	(void)usbd_transfer(xfer);
1147 }
1148 
1149 void
1150 uath_data_rxeof(struct usbd_xfer *xfer, void *priv,
1151     usbd_status status)
1152 {
1153 	struct uath_rx_data *data = priv;
1154 	struct uath_softc *sc = data->sc;
1155 	struct ieee80211com *ic = &sc->sc_ic;
1156 	struct ifnet *ifp = &ic->ic_if;
1157 	struct ieee80211_frame *wh;
1158 	struct ieee80211_rxinfo rxi;
1159 	struct ieee80211_node *ni;
1160 	struct uath_rx_desc *desc;
1161 	struct mbuf *mnew, *m;
1162 	uint32_t hdr;
1163 	int s, len;
1164 
1165 	if (status != USBD_NORMAL_COMPLETION) {
1166 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1167 			return;
1168 
1169 		if (status == USBD_STALLED)
1170 			usbd_clear_endpoint_stall_async(sc->data_rx_pipe);
1171 
1172 		ifp->if_ierrors++;
1173 		return;
1174 	}
1175 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
1176 
1177 	if (len < UATH_MIN_RXBUFSZ) {
1178 		DPRINTF(("wrong xfer size (len=%d)\n", len));
1179 		ifp->if_ierrors++;
1180 		goto skip;
1181 	}
1182 
1183 	hdr = betoh32(*(uint32_t *)data->buf);
1184 
1185 	/* Rx descriptor is located at the end, 32-bit aligned */
1186 	desc = (struct uath_rx_desc *)
1187 	    (data->buf + len - sizeof (struct uath_rx_desc));
1188 
1189 	if (betoh32(desc->len) > sc->rxbufsz) {
1190 		DPRINTF(("bad descriptor (len=%d)\n", betoh32(desc->len)));
1191 		ifp->if_ierrors++;
1192 		goto skip;
1193 	}
1194 
1195 	/* there's probably a "bad CRC" flag somewhere in the descriptor.. */
1196 
1197 	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1198 	if (mnew == NULL) {
1199 		printf("%s: could not allocate rx mbuf\n",
1200 		    sc->sc_dev.dv_xname);
1201 		ifp->if_ierrors++;
1202 		goto skip;
1203 	}
1204 	MCLGETL(mnew, M_DONTWAIT, sc->rxbufsz);
1205 	if (!(mnew->m_flags & M_EXT)) {
1206 		printf("%s: could not allocate rx mbuf cluster\n",
1207 		    sc->sc_dev.dv_xname);
1208 		m_freem(mnew);
1209 		ifp->if_ierrors++;
1210 		goto skip;
1211 	}
1212 
1213 	m = data->m;
1214 	data->m = mnew;
1215 
1216 	/* finalize mbuf */
1217 	m->m_data = data->buf + sizeof (uint32_t);
1218 	m->m_pkthdr.len = m->m_len = betoh32(desc->len) -
1219 	    sizeof (struct uath_rx_desc) - IEEE80211_CRC_LEN;
1220 
1221 	data->buf = mtod(data->m, uint8_t *);
1222 
1223 	wh = mtod(m, struct ieee80211_frame *);
1224 	rxi.rxi_flags = 0;
1225 	if ((wh->i_fc[1] & IEEE80211_FC1_WEP) &&
1226 	    ic->ic_opmode != IEEE80211_M_MONITOR) {
1227 		/*
1228 		 * Hardware decrypts the frame itself but leaves the WEP bit
1229 		 * set in the 802.11 header and doesn't remove the IV and CRC
1230 		 * fields.
1231 		 */
1232 		wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
1233 		memmove((caddr_t)wh + IEEE80211_WEP_IVLEN +
1234 		    IEEE80211_WEP_KIDLEN, wh, sizeof (struct ieee80211_frame));
1235 		m_adj(m, IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN);
1236 		m_adj(m, -IEEE80211_WEP_CRCLEN);
1237 		wh = mtod(m, struct ieee80211_frame *);
1238 
1239 		rxi.rxi_flags |= IEEE80211_RXI_HWDEC;
1240 	}
1241 
1242 #if NBPFILTER > 0
1243 	/* there are a lot more fields in the Rx descriptor */
1244 	if (sc->sc_drvbpf != NULL) {
1245 		struct mbuf mb;
1246 		struct uath_rx_radiotap_header *tap = &sc->sc_rxtap;
1247 
1248 		tap->wr_flags = 0;
1249 		tap->wr_chan_freq = htole16(betoh32(desc->freq));
1250 		tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
1251 		tap->wr_dbm_antsignal = (int8_t)betoh32(desc->rssi);
1252 
1253 		mb.m_data = (caddr_t)tap;
1254 		mb.m_len = sc->sc_rxtap_len;
1255 		mb.m_next = m;
1256 		mb.m_nextpkt = NULL;
1257 		mb.m_type = 0;
1258 		mb.m_flags = 0;
1259 		bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN);
1260 	}
1261 #endif
1262 
1263 	s = splnet();
1264 	ni = ieee80211_find_rxnode(ic, wh);
1265 	rxi.rxi_rssi = (int)betoh32(desc->rssi);
1266 	rxi.rxi_tstamp = 0;	/* unused */
1267 	ieee80211_input(ifp, m, ni, &rxi);
1268 
1269 	/* node is no longer needed */
1270 	ieee80211_release_node(ic, ni);
1271 	splx(s);
1272 
1273 skip:	/* setup a new transfer */
1274 	usbd_setup_xfer(xfer, sc->data_rx_pipe, data, data->buf, sc->rxbufsz,
1275 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, uath_data_rxeof);
1276 	(void)usbd_transfer(data->xfer);
1277 }
1278 
1279 int
1280 uath_tx_null(struct uath_softc *sc)
1281 {
1282 	struct uath_tx_data *data;
1283 	struct uath_tx_desc *desc;
1284 
1285 	data = &sc->tx_data[sc->data_idx];
1286 
1287 	data->ni = NULL;
1288 
1289 	*(uint32_t *)data->buf = UATH_MAKECTL(1, sizeof (struct uath_tx_desc));
1290 	desc = (struct uath_tx_desc *)(data->buf + sizeof (uint32_t));
1291 
1292 	bzero(desc, sizeof (struct uath_tx_desc));
1293 	desc->len  = htobe32(sizeof (struct uath_tx_desc));
1294 	desc->type = htobe32(UATH_TX_NULL);
1295 
1296 	usbd_setup_xfer(data->xfer, sc->data_tx_pipe, data, data->buf,
1297 	    sizeof (uint32_t) + sizeof (struct uath_tx_desc), USBD_NO_COPY |
1298 	    USBD_FORCE_SHORT_XFER | USBD_SYNCHRONOUS, UATH_DATA_TIMEOUT, NULL);
1299 	if (usbd_transfer(data->xfer) != 0)
1300 		return EIO;
1301 
1302 	sc->data_idx = (sc->data_idx + 1) % UATH_TX_DATA_LIST_COUNT;
1303 
1304 	return uath_cmd_write(sc, UATH_CMD_0F, NULL, 0, UATH_CMD_FLAG_ASYNC);
1305 }
1306 
1307 void
1308 uath_data_txeof(struct usbd_xfer *xfer, void *priv,
1309     usbd_status status)
1310 {
1311 	struct uath_tx_data *data = priv;
1312 	struct uath_softc *sc = data->sc;
1313 	struct ieee80211com *ic = &sc->sc_ic;
1314 	struct ifnet *ifp = &ic->ic_if;
1315 	int s;
1316 
1317 	if (status != USBD_NORMAL_COMPLETION) {
1318 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1319 			return;
1320 
1321 		printf("%s: could not transmit buffer: %s\n",
1322 		    sc->sc_dev.dv_xname, usbd_errstr(status));
1323 
1324 		if (status == USBD_STALLED)
1325 			usbd_clear_endpoint_stall_async(sc->data_tx_pipe);
1326 
1327 		ifp->if_oerrors++;
1328 		return;
1329 	}
1330 
1331 	s = splnet();
1332 
1333 	ieee80211_release_node(ic, data->ni);
1334 	data->ni = NULL;
1335 
1336 	sc->tx_queued--;
1337 
1338 	sc->sc_tx_timer = 0;
1339 	ifq_clr_oactive(&ifp->if_snd);
1340 	uath_start(ifp);
1341 
1342 	splx(s);
1343 }
1344 
1345 int
1346 uath_tx_data(struct uath_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1347 {
1348 	struct ieee80211com *ic = &sc->sc_ic;
1349 	struct uath_tx_data *data;
1350 	struct uath_tx_desc *desc;
1351 	const struct ieee80211_frame *wh;
1352 	int paylen, totlen, xferlen, error;
1353 
1354 	data = &sc->tx_data[sc->data_idx];
1355 	desc = (struct uath_tx_desc *)(data->buf + sizeof (uint32_t));
1356 
1357 	data->ni = ni;
1358 
1359 #if NBPFILTER > 0
1360 	if (sc->sc_drvbpf != NULL) {
1361 		struct mbuf mb;
1362 		struct uath_tx_radiotap_header *tap = &sc->sc_txtap;
1363 
1364 		tap->wt_flags = 0;
1365 		tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
1366 		tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
1367 
1368 		mb.m_data = (caddr_t)tap;
1369 		mb.m_len = sc->sc_txtap_len;
1370 		mb.m_next = m0;
1371 		mb.m_nextpkt = NULL;
1372 		mb.m_type = 0;
1373 		mb.m_flags = 0;
1374 		bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT);
1375 	}
1376 #endif
1377 
1378 	paylen = m0->m_pkthdr.len;
1379 	xferlen = sizeof (uint32_t) + sizeof (struct uath_tx_desc) + paylen;
1380 
1381 	wh = mtod(m0, struct ieee80211_frame *);
1382 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1383 		uint8_t *frm = (uint8_t *)(desc + 1);
1384 		uint32_t iv;
1385 
1386 		/* h/w WEP: it's up to the host to fill the IV field */
1387 		bcopy(wh, frm, sizeof (struct ieee80211_frame));
1388 		frm += sizeof (struct ieee80211_frame);
1389 
1390 		/* insert IV: code copied from net80211 */
1391 		iv = (ic->ic_iv != 0) ? ic->ic_iv : arc4random();
1392 		if (iv >= 0x03ff00 && (iv & 0xf8ff00) == 0x00ff00)
1393 			iv += 0x000100;
1394 		ic->ic_iv = iv + 1;
1395 
1396 		*frm++ = iv & 0xff;
1397 		*frm++ = (iv >>  8) & 0xff;
1398 		*frm++ = (iv >> 16) & 0xff;
1399 		*frm++ = ic->ic_wep_txkey << 6;
1400 
1401 		m_copydata(m0, sizeof(struct ieee80211_frame),
1402 		    m0->m_pkthdr.len - sizeof(struct ieee80211_frame), frm);
1403 
1404 		paylen  += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN;
1405 		xferlen += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN;
1406 		totlen = xferlen + IEEE80211_WEP_CRCLEN;
1407 	} else {
1408 		m_copydata(m0, 0, m0->m_pkthdr.len, desc + 1);
1409 		totlen = xferlen;
1410 	}
1411 
1412 	/* fill Tx descriptor */
1413 	*(uint32_t *)data->buf = UATH_MAKECTL(1, xferlen - sizeof (uint32_t));
1414 
1415 	desc->len    = htobe32(totlen);
1416 	desc->priv   = sc->data_idx;	/* don't care about endianness */
1417 	desc->paylen = htobe32(paylen);
1418 	desc->type   = htobe32(UATH_TX_DATA);
1419 	desc->flags  = htobe32(0);
1420 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1421 		desc->dest  = htobe32(UATH_ID_BROADCAST);
1422 		desc->magic = htobe32(3);
1423 	} else {
1424 		desc->dest  = htobe32(UATH_ID_BSS);
1425 		desc->magic = htobe32(1);
1426 	}
1427 
1428 	m_freem(m0);	/* mbuf is no longer needed */
1429 
1430 #ifdef UATH_DEBUG
1431 	if (uath_debug >= 6) {
1432 		printf("sending frame index=%u len=%d xferlen=%d",
1433 		    sc->data_idx, paylen, xferlen);
1434 		uath_dump_cmd(data->buf, xferlen, '+');
1435 	}
1436 #endif
1437 	usbd_setup_xfer(data->xfer, sc->data_tx_pipe, data, data->buf, xferlen,
1438 	    USBD_FORCE_SHORT_XFER | USBD_NO_COPY, UATH_DATA_TIMEOUT,
1439 	    uath_data_txeof);
1440 	error = usbd_transfer(data->xfer);
1441 	if (error != USBD_IN_PROGRESS && error != 0) {
1442 		ic->ic_if.if_oerrors++;
1443 		return error;
1444 	}
1445 	sc->data_idx = (sc->data_idx + 1) % UATH_TX_DATA_LIST_COUNT;
1446 	sc->tx_queued++;
1447 
1448 	return 0;
1449 }
1450 
1451 void
1452 uath_start(struct ifnet *ifp)
1453 {
1454 	struct uath_softc *sc = ifp->if_softc;
1455 	struct ieee80211com *ic = &sc->sc_ic;
1456 	struct ieee80211_node *ni;
1457 	struct mbuf *m0;
1458 
1459 	/*
1460 	 * net80211 may still try to send management frames even if the
1461 	 * IFF_RUNNING flag is not set...
1462 	 */
1463 	if (!(ifp->if_flags & IFF_RUNNING) && ifq_is_oactive(&ifp->if_snd))
1464 		return;
1465 
1466 	for (;;) {
1467 		if (sc->tx_queued >= UATH_TX_DATA_LIST_COUNT) {
1468 			ifq_set_oactive(&ifp->if_snd);
1469 			break;
1470 		}
1471 
1472 		m0 = mq_dequeue(&ic->ic_mgtq);
1473 		if (m0 != NULL) {
1474 			ni = m0->m_pkthdr.ph_cookie;
1475 #if NBPFILTER > 0
1476 			if (ic->ic_rawbpf != NULL)
1477 				bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT);
1478 #endif
1479 			if (uath_tx_data(sc, m0, ni) != 0)
1480 				break;
1481 		} else {
1482 			if (ic->ic_state != IEEE80211_S_RUN)
1483 				break;
1484 
1485 			m0 = ifq_dequeue(&ifp->if_snd);
1486 			if (m0 == NULL)
1487 				break;
1488 #if NBPFILTER > 0
1489 			if (ifp->if_bpf != NULL)
1490 				bpf_mtap(ifp->if_bpf, m0, BPF_DIRECTION_OUT);
1491 #endif
1492 			m0 = ieee80211_encap(ifp, m0, &ni);
1493 			if (m0 == NULL)
1494 				continue;
1495 #if NBPFILTER > 0
1496 			if (ic->ic_rawbpf != NULL)
1497 				bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT);
1498 #endif
1499 			if (uath_tx_data(sc, m0, ni) != 0) {
1500 				if (ni != NULL)
1501 					ieee80211_release_node(ic, ni);
1502 				ifp->if_oerrors++;
1503 				break;
1504 			}
1505 		}
1506 
1507 		sc->sc_tx_timer = 5;
1508 		ifp->if_timer = 1;
1509 	}
1510 }
1511 
1512 void
1513 uath_watchdog(struct ifnet *ifp)
1514 {
1515 	struct uath_softc *sc = ifp->if_softc;
1516 
1517 	ifp->if_timer = 0;
1518 
1519 	if (sc->sc_tx_timer > 0) {
1520 		if (--sc->sc_tx_timer == 0) {
1521 			printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1522 			/*uath_init(ifp); XXX needs a process context! */
1523 			ifp->if_oerrors++;
1524 			return;
1525 		}
1526 		ifp->if_timer = 1;
1527 	}
1528 
1529 	ieee80211_watchdog(ifp);
1530 }
1531 
1532 int
1533 uath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1534 {
1535 	int s, error = 0;
1536 
1537 	s = splnet();
1538 
1539 	switch (cmd) {
1540 	case SIOCSIFADDR:
1541 		ifp->if_flags |= IFF_UP;
1542 		/* FALLTHROUGH */
1543 	case SIOCSIFFLAGS:
1544 		if (ifp->if_flags & IFF_UP) {
1545 			if (!(ifp->if_flags & IFF_RUNNING))
1546 				uath_init(ifp);
1547 		} else {
1548 			if (ifp->if_flags & IFF_RUNNING)
1549 				uath_stop(ifp, 1);
1550 		}
1551 		break;
1552 
1553 	default:
1554 		error = ieee80211_ioctl(ifp, cmd, data);
1555 	}
1556 
1557 	if (error == ENETRESET) {
1558 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1559 		    (IFF_UP | IFF_RUNNING))
1560 			uath_init(ifp);
1561 		error = 0;
1562 	}
1563 
1564 	splx(s);
1565 
1566 	return error;
1567 }
1568 
1569 int
1570 uath_query_eeprom(struct uath_softc *sc)
1571 {
1572 	uint32_t tmp;
1573 	int error;
1574 
1575 	/* retrieve MAC address */
1576 	error = uath_read_eeprom(sc, UATH_EEPROM_MACADDR, sc->sc_ic.ic_myaddr);
1577 	if (error != 0) {
1578 		printf("%s: could not read MAC address\n",
1579 		    sc->sc_dev.dv_xname);
1580 		return error;
1581 	}
1582 
1583 	/* retrieve the maximum frame size that the hardware can receive */
1584 	error = uath_read_eeprom(sc, UATH_EEPROM_RXBUFSZ, &tmp);
1585 	if (error != 0) {
1586 		printf("%s: could not read maximum Rx buffer size\n",
1587 		    sc->sc_dev.dv_xname);
1588 		return error;
1589 	}
1590 	sc->rxbufsz = betoh32(tmp) & 0xfff;
1591 	DPRINTF(("maximum Rx buffer size %d\n", sc->rxbufsz));
1592 	return 0;
1593 }
1594 
1595 int
1596 uath_reset(struct uath_softc *sc)
1597 {
1598 	struct uath_cmd_setup setup;
1599 	uint32_t reg, val;
1600 	int s, error;
1601 
1602 	/* init device with some voodoo incantations.. */
1603 	setup.magic1 = htobe32(1);
1604 	setup.magic2 = htobe32(5);
1605 	setup.magic3 = htobe32(200);
1606 	setup.magic4 = htobe32(27);
1607 	s = splusb();
1608 	error = uath_cmd_write(sc, UATH_CMD_SETUP, &setup, sizeof setup,
1609 	    UATH_CMD_FLAG_ASYNC);
1610 	/* ..and wait until firmware notifies us that it is ready */
1611 	if (error == 0)
1612 		error = tsleep_nsec(UATH_COND_INIT(sc), PCATCH, "uathinit",
1613 		    SEC_TO_NSEC(5));
1614 	splx(s);
1615 	if (error != 0)
1616 		return error;
1617 
1618 	/* read PHY registers */
1619 	for (reg = 0x09; reg <= 0x24; reg++) {
1620 		if (reg == 0x0b || reg == 0x0c)
1621 			continue;
1622 		DELAY(100);
1623 		if ((error = uath_read_reg(sc, reg, &val)) != 0)
1624 			return error;
1625 		DPRINTFN(2, ("reg 0x%02x=0x%08x\n", reg, val));
1626 	}
1627 	return error;
1628 }
1629 
1630 int
1631 uath_reset_tx_queues(struct uath_softc *sc)
1632 {
1633 	int ac, error;
1634 
1635 	for (ac = 0; ac < 4; ac++) {
1636 		const uint32_t qid = htobe32(UATH_AC_TO_QID(ac));
1637 
1638 		DPRINTF(("resetting Tx queue %d\n", UATH_AC_TO_QID(ac)));
1639 		error = uath_cmd_write(sc, UATH_CMD_RESET_QUEUE, &qid,
1640 		    sizeof qid, 0);
1641 		if (error != 0)
1642 			break;
1643 	}
1644 	return error;
1645 }
1646 
1647 int
1648 uath_wme_init(struct uath_softc *sc)
1649 {
1650 	struct uath_qinfo qinfo;
1651 	int ac, error;
1652 	static const struct uath_wme_settings uath_wme_11g[4] = {
1653 		{ 7, 4, 10,  0, 0 },	/* Background */
1654 		{ 3, 4, 10,  0, 0 },	/* Best-Effort */
1655 		{ 3, 3,  4, 26, 0 },	/* Video */
1656 		{ 2, 2,  3, 47, 0 }	/* Voice */
1657 	};
1658 
1659 	bzero(&qinfo, sizeof qinfo);
1660 	qinfo.size   = htobe32(32);
1661 	qinfo.magic1 = htobe32(1);	/* XXX ack policy? */
1662 	qinfo.magic2 = htobe32(1);
1663 	for (ac = 0; ac < 4; ac++) {
1664 		qinfo.qid      = htobe32(UATH_AC_TO_QID(ac));
1665 		qinfo.ac       = htobe32(ac);
1666 		qinfo.aifsn    = htobe32(uath_wme_11g[ac].aifsn);
1667 		qinfo.logcwmin = htobe32(uath_wme_11g[ac].logcwmin);
1668 		qinfo.logcwmax = htobe32(uath_wme_11g[ac].logcwmax);
1669 		qinfo.txop     = htobe32(UATH_TXOP_TO_US(
1670 				     uath_wme_11g[ac].txop));
1671 		qinfo.acm      = htobe32(uath_wme_11g[ac].acm);
1672 
1673 		DPRINTF(("setting up Tx queue %d\n", UATH_AC_TO_QID(ac)));
1674 		error = uath_cmd_write(sc, UATH_CMD_SET_QUEUE, &qinfo,
1675 		    sizeof qinfo, 0);
1676 		if (error != 0)
1677 			break;
1678 	}
1679 	return error;
1680 }
1681 
1682 int
1683 uath_set_chan(struct uath_softc *sc, struct ieee80211_channel *c)
1684 {
1685 	struct uath_set_chan chan;
1686 
1687 	bzero(&chan, sizeof chan);
1688 	chan.flags  = htobe32(0x1400);
1689 	chan.freq   = htobe32(c->ic_freq);
1690 	chan.magic1 = htobe32(20);
1691 	chan.magic2 = htobe32(50);
1692 	chan.magic3 = htobe32(1);
1693 
1694 	DPRINTF(("switching to channel %d\n",
1695 	    ieee80211_chan2ieee(&sc->sc_ic, c)));
1696 	return uath_cmd_write(sc, UATH_CMD_SET_CHAN, &chan, sizeof chan, 0);
1697 }
1698 
1699 int
1700 uath_set_key(struct uath_softc *sc, const struct ieee80211_key *k, int index)
1701 {
1702 	struct uath_cmd_crypto crypto;
1703 	int i;
1704 
1705 	bzero(&crypto, sizeof crypto);
1706 	crypto.keyidx = htobe32(index);
1707 	crypto.magic1 = htobe32(1);
1708 	crypto.size   = htobe32(368);
1709 	crypto.mask   = htobe32(0xffff);
1710 	crypto.flags  = htobe32(0x80000068);
1711 	if (index != UATH_DEFAULT_KEY)
1712 		crypto.flags |= htobe32(index << 16);
1713 	memset(crypto.magic2, 0xff, sizeof crypto.magic2);
1714 
1715 	/*
1716 	 * Each byte of the key must be XOR'ed with 10101010 before being
1717 	 * transmitted to the firmware.
1718 	 */
1719 	for (i = 0; i < k->k_len; i++)
1720 		crypto.key[i] = k->k_key[i] ^ 0xaa;
1721 
1722 	DPRINTF(("setting crypto key index=%d len=%d\n", index, k->k_len));
1723 	return uath_cmd_write(sc, UATH_CMD_CRYPTO, &crypto, sizeof crypto, 0);
1724 }
1725 
1726 int
1727 uath_set_keys(struct uath_softc *sc)
1728 {
1729 	const struct ieee80211com *ic = &sc->sc_ic;
1730 	int i, error;
1731 
1732 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1733 		const struct ieee80211_key *k = &ic->ic_nw_keys[i];
1734 
1735 		if (k->k_len > 0 && (error = uath_set_key(sc, k, i)) != 0)
1736 			return error;
1737 	}
1738 	return uath_set_key(sc, &ic->ic_nw_keys[ic->ic_wep_txkey],
1739 	    UATH_DEFAULT_KEY);
1740 }
1741 
1742 int
1743 uath_set_rates(struct uath_softc *sc, const struct ieee80211_rateset *rs)
1744 {
1745 	struct uath_cmd_rates rates;
1746 
1747 	bzero(&rates, sizeof rates);
1748 	rates.magic1 = htobe32(0x02);
1749 	rates.size   = htobe32(1 + sizeof rates.rates);
1750 	rates.nrates = rs->rs_nrates;
1751 	bcopy(rs->rs_rates, rates.rates, rs->rs_nrates);
1752 
1753 	DPRINTF(("setting supported rates nrates=%d\n", rs->rs_nrates));
1754 	return uath_cmd_write(sc, UATH_CMD_SET_RATES, &rates, sizeof rates, 0);
1755 }
1756 
1757 int
1758 uath_set_rxfilter(struct uath_softc *sc, uint32_t filter, uint32_t flags)
1759 {
1760 	struct uath_cmd_filter rxfilter;
1761 
1762 	rxfilter.filter = htobe32(filter);
1763 	rxfilter.flags  = htobe32(flags);
1764 
1765 	DPRINTF(("setting Rx filter=0x%x flags=0x%x\n", filter, flags));
1766 	return uath_cmd_write(sc, UATH_CMD_SET_FILTER, &rxfilter,
1767 	    sizeof rxfilter, 0);
1768 }
1769 
1770 int
1771 uath_set_led(struct uath_softc *sc, int which, int on)
1772 {
1773 	struct uath_cmd_led led;
1774 
1775 	led.which = htobe32(which);
1776 	led.state = htobe32(on ? UATH_LED_ON : UATH_LED_OFF);
1777 
1778 	DPRINTFN(2, ("switching %s led %s\n",
1779 	    (which == UATH_LED_LINK) ? "link" : "activity",
1780 	    on ? "on" : "off"));
1781 	return uath_cmd_write(sc, UATH_CMD_SET_LED, &led, sizeof led, 0);
1782 }
1783 
1784 int
1785 uath_switch_channel(struct uath_softc *sc, struct ieee80211_channel *c)
1786 {
1787 	uint32_t val;
1788 	int error;
1789 
1790 	/* set radio frequency */
1791 	if ((error = uath_set_chan(sc, c)) != 0) {
1792 		printf("%s: could not set channel\n", sc->sc_dev.dv_xname);
1793 		return error;
1794 	}
1795 
1796 	/* reset Tx rings */
1797 	if ((error = uath_reset_tx_queues(sc)) != 0) {
1798 		printf("%s: could not reset Tx queues\n",
1799 		    sc->sc_dev.dv_xname);
1800 		return error;
1801 	}
1802 
1803 	/* set Tx rings WME properties */
1804 	if ((error = uath_wme_init(sc)) != 0) {
1805 		printf("%s: could not init Tx queues\n",
1806 		    sc->sc_dev.dv_xname);
1807 		return error;
1808 	}
1809 
1810 	val = htobe32(0);
1811 	error = uath_cmd_write(sc, UATH_CMD_SET_STATE, &val, sizeof val, 0);
1812 	if (error != 0) {
1813 		printf("%s: could not set state\n", sc->sc_dev.dv_xname);
1814 		return error;
1815 	}
1816 
1817 	return uath_tx_null(sc);
1818 }
1819 
1820 int
1821 uath_init(struct ifnet *ifp)
1822 {
1823 	struct uath_softc *sc = ifp->if_softc;
1824 	struct ieee80211com *ic = &sc->sc_ic;
1825 	struct uath_cmd_31 cmd31;
1826 	uint32_t val;
1827 	int i, error;
1828 
1829 	/* reset data and command rings */
1830 	sc->tx_queued = sc->data_idx = sc->cmd_idx = 0;
1831 
1832 	val = htobe32(0);
1833 	(void)uath_cmd_write(sc, UATH_CMD_02, &val, sizeof val, 0);
1834 
1835 	/* set MAC address */
1836 	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
1837 	(void)uath_write_multi(sc, 0x13, ic->ic_myaddr, IEEE80211_ADDR_LEN);
1838 
1839 	(void)uath_write_reg(sc, 0x02, 0x00000001);
1840 	(void)uath_write_reg(sc, 0x0e, 0x0000003f);
1841 	(void)uath_write_reg(sc, 0x10, 0x00000001);
1842 	(void)uath_write_reg(sc, 0x06, 0x0000001e);
1843 
1844 	/*
1845 	 * Queue Rx data xfers.
1846 	 */
1847 	for (i = 0; i < UATH_RX_DATA_LIST_COUNT; i++) {
1848 		struct uath_rx_data *data = &sc->rx_data[i];
1849 
1850 		usbd_setup_xfer(data->xfer, sc->data_rx_pipe, data, data->buf,
1851 		    sc->rxbufsz, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT,
1852 		    uath_data_rxeof);
1853 		error = usbd_transfer(data->xfer);
1854 		if (error != USBD_IN_PROGRESS && error != 0) {
1855 			printf("%s: could not queue Rx transfer\n",
1856 			    sc->sc_dev.dv_xname);
1857 			goto fail;
1858 		}
1859 	}
1860 
1861 	error = uath_cmd_read(sc, UATH_CMD_07, NULL, 0, &val,
1862 	    UATH_CMD_FLAG_MAGIC);
1863 	if (error != 0) {
1864 		printf("%s: could not send read command 07h\n",
1865 		    sc->sc_dev.dv_xname);
1866 		goto fail;
1867 	}
1868 	DPRINTF(("command 07h return code: %x\n", betoh32(val)));
1869 
1870 	/* set default channel */
1871 	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
1872 	if ((error = uath_set_chan(sc, ic->ic_bss->ni_chan)) != 0) {
1873 		printf("%s: could not set channel\n", sc->sc_dev.dv_xname);
1874 		goto fail;
1875 	}
1876 
1877 	if ((error = uath_wme_init(sc)) != 0) {
1878 		printf("%s: could not setup WME parameters\n",
1879 		    sc->sc_dev.dv_xname);
1880 		goto fail;
1881 	}
1882 
1883 	/* init MAC registers */
1884 	(void)uath_write_reg(sc, 0x19, 0x00000000);
1885 	(void)uath_write_reg(sc, 0x1a, 0x0000003c);
1886 	(void)uath_write_reg(sc, 0x1b, 0x0000003c);
1887 	(void)uath_write_reg(sc, 0x1c, 0x00000000);
1888 	(void)uath_write_reg(sc, 0x1e, 0x00000000);
1889 	(void)uath_write_reg(sc, 0x1f, 0x00000003);
1890 	(void)uath_write_reg(sc, 0x0c, 0x00000000);
1891 	(void)uath_write_reg(sc, 0x0f, 0x00000002);
1892 	(void)uath_write_reg(sc, 0x0a, 0x00000007);	/* XXX retry? */
1893 	(void)uath_write_reg(sc, 0x09, ic->ic_rtsthreshold);
1894 
1895 	val = htobe32(4);
1896 	(void)uath_cmd_write(sc, UATH_CMD_27, &val, sizeof val, 0);
1897 	(void)uath_cmd_write(sc, UATH_CMD_27, &val, sizeof val, 0);
1898 	(void)uath_cmd_write(sc, UATH_CMD_1B, NULL, 0, 0);
1899 
1900 	if ((error = uath_set_keys(sc)) != 0) {
1901 		printf("%s: could not set crypto keys\n",
1902 		    sc->sc_dev.dv_xname);
1903 		goto fail;
1904 	}
1905 
1906 	/* enable Rx */
1907 	(void)uath_set_rxfilter(sc, 0x0000, 4);
1908 	(void)uath_set_rxfilter(sc, 0x0817, 1);
1909 
1910 	cmd31.magic1 = htobe32(0xffffffff);
1911 	cmd31.magic2 = htobe32(0xffffffff);
1912 	(void)uath_cmd_write(sc, UATH_CMD_31, &cmd31, sizeof cmd31, 0);
1913 
1914 	ifp->if_flags |= IFF_RUNNING;
1915 	ifq_clr_oactive(&ifp->if_snd);
1916 
1917 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
1918 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1919 	else
1920 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1921 
1922 	return 0;
1923 
1924 fail:	uath_stop(ifp, 1);
1925 	return error;
1926 }
1927 
1928 void
1929 uath_stop(struct ifnet *ifp, int disable)
1930 {
1931 	struct uath_softc *sc = ifp->if_softc;
1932 	struct ieee80211com *ic = &sc->sc_ic;
1933 	uint32_t val;
1934 	int s;
1935 
1936 	s = splusb();
1937 
1938 	sc->sc_tx_timer = 0;
1939 	ifp->if_timer = 0;
1940 	ifp->if_flags &= ~IFF_RUNNING;
1941 	ifq_clr_oactive(&ifp->if_snd);
1942 
1943 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
1944 
1945 	val = htobe32(0);
1946 	(void)uath_cmd_write(sc, UATH_CMD_SET_STATE, &val, sizeof val, 0);
1947 	(void)uath_cmd_write(sc, UATH_CMD_RESET, NULL, 0, 0);
1948 
1949 	val = htobe32(0);
1950 	(void)uath_cmd_write(sc, UATH_CMD_15, &val, sizeof val, 0);
1951 
1952 #if 0
1953 	(void)uath_cmd_read(sc, UATH_CMD_SHUTDOWN, NULL, 0, NULL,
1954 	    UATH_CMD_FLAG_MAGIC);
1955 #endif
1956 
1957 	/* abort any pending transfers */
1958 	usbd_abort_pipe(sc->data_tx_pipe);
1959 	usbd_abort_pipe(sc->data_rx_pipe);
1960 	usbd_abort_pipe(sc->cmd_tx_pipe);
1961 
1962 	splx(s);
1963 }
1964 
1965 /*
1966  * Load the MIPS R4000 microcode into the device.  Once the image is loaded,
1967  * the device will detach itself from the bus and reattach later with a new
1968  * product Id (a la ezusb).  XXX this could also be implemented in userland
1969  * through /dev/ugen.
1970  */
1971 int
1972 uath_loadfirmware(struct uath_softc *sc, const u_char *fw, int len)
1973 {
1974 	struct usbd_xfer *ctlxfer, *txxfer, *rxxfer;
1975 	struct uath_fwblock *txblock, *rxblock;
1976 	uint8_t *txdata;
1977 	int error = 0;
1978 
1979 	if ((ctlxfer = usbd_alloc_xfer(sc->sc_udev)) == NULL) {
1980 		printf("%s: could not allocate Tx control xfer\n",
1981 		    sc->sc_dev.dv_xname);
1982 		error = USBD_NOMEM;
1983 		goto fail1;
1984 	}
1985 	txblock = usbd_alloc_buffer(ctlxfer, sizeof (struct uath_fwblock));
1986 	if (txblock == NULL) {
1987 		printf("%s: could not allocate Tx control block\n",
1988 		    sc->sc_dev.dv_xname);
1989 		error = USBD_NOMEM;
1990 		goto fail2;
1991 	}
1992 
1993 	if ((txxfer = usbd_alloc_xfer(sc->sc_udev)) == NULL) {
1994 		printf("%s: could not allocate Tx xfer\n",
1995 		    sc->sc_dev.dv_xname);
1996 		error = USBD_NOMEM;
1997 		goto fail2;
1998 	}
1999 	txdata = usbd_alloc_buffer(txxfer, UATH_MAX_FWBLOCK_SIZE);
2000 	if (txdata == NULL) {
2001 		printf("%s: could not allocate Tx buffer\n",
2002 		    sc->sc_dev.dv_xname);
2003 		error = USBD_NOMEM;
2004 		goto fail3;
2005 	}
2006 
2007 	if ((rxxfer = usbd_alloc_xfer(sc->sc_udev)) == NULL) {
2008 		printf("%s: could not allocate Rx control xfer\n",
2009 		    sc->sc_dev.dv_xname);
2010 		error = USBD_NOMEM;
2011 		goto fail3;
2012 	}
2013 	rxblock = usbd_alloc_buffer(rxxfer, sizeof (struct uath_fwblock));
2014 	if (rxblock == NULL) {
2015 		printf("%s: could not allocate Rx control block\n",
2016 		    sc->sc_dev.dv_xname);
2017 		error = USBD_NOMEM;
2018 		goto fail4;
2019 	}
2020 
2021 	bzero(txblock, sizeof (struct uath_fwblock));
2022 	txblock->flags = htobe32(UATH_WRITE_BLOCK);
2023 	txblock->total = htobe32(len);
2024 
2025 	while (len > 0) {
2026 		int mlen = min(len, UATH_MAX_FWBLOCK_SIZE);
2027 
2028 		txblock->remain = htobe32(len - mlen);
2029 		txblock->len = htobe32(mlen);
2030 
2031 		DPRINTF(("sending firmware block: %d bytes remaining\n",
2032 		    len - mlen));
2033 
2034 		/* send firmware block meta-data */
2035 		usbd_setup_xfer(ctlxfer, sc->cmd_tx_pipe, sc, txblock,
2036 		    sizeof (struct uath_fwblock),
2037 		    USBD_NO_COPY | USBD_SYNCHRONOUS,
2038 		    UATH_CMD_TIMEOUT, NULL);
2039 		if ((error = usbd_transfer(ctlxfer)) != 0) {
2040 			printf("%s: could not send firmware block info\n",
2041 			    sc->sc_dev.dv_xname);
2042 			break;
2043 		}
2044 
2045 		/* send firmware block data */
2046 		bcopy(fw, txdata, mlen);
2047 		usbd_setup_xfer(txxfer, sc->data_tx_pipe, sc, txdata, mlen,
2048 		    USBD_NO_COPY | USBD_SYNCHRONOUS, UATH_DATA_TIMEOUT, NULL);
2049 		if ((error = usbd_transfer(txxfer)) != 0) {
2050 			printf("%s: could not send firmware block data\n",
2051 			    sc->sc_dev.dv_xname);
2052 			break;
2053 		}
2054 
2055 		/* wait for ack from firmware */
2056 		usbd_setup_xfer(rxxfer, sc->cmd_rx_pipe, sc, rxblock,
2057 		    sizeof (struct uath_fwblock), USBD_SHORT_XFER_OK |
2058 		    USBD_NO_COPY | USBD_SYNCHRONOUS, UATH_CMD_TIMEOUT, NULL);
2059 		if ((error = usbd_transfer(rxxfer)) != 0) {
2060 			printf("%s: could not read firmware answer\n",
2061 			    sc->sc_dev.dv_xname);
2062 			break;
2063 		}
2064 
2065 		DPRINTFN(2, ("rxblock flags=0x%x total=%d\n",
2066 		    betoh32(rxblock->flags), betoh32(rxblock->rxtotal)));
2067 		fw += mlen;
2068 		len -= mlen;
2069 	}
2070 
2071 fail4:	usbd_free_xfer(rxxfer);
2072 fail3:	usbd_free_xfer(txxfer);
2073 fail2:	usbd_free_xfer(ctlxfer);
2074 fail1:	return error;
2075 }
2076