xref: /openbsd/sys/dev/usb/if_upgt.c (revision 76d0caae)
1 /*	$OpenBSD: if_upgt.c,v 1.87 2020/07/31 10:49:32 mglocker Exp $ */
2 
3 /*
4  * Copyright (c) 2007 Marcus Glocker <mglocker@openbsd.org>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include "bpfilter.h"
20 
21 #include <sys/param.h>
22 #include <sys/sockio.h>
23 #include <sys/mbuf.h>
24 #include <sys/kernel.h>
25 #include <sys/socket.h>
26 #include <sys/systm.h>
27 #include <sys/timeout.h>
28 #include <sys/conf.h>
29 #include <sys/device.h>
30 #include <sys/endian.h>
31 
32 #include <machine/intr.h>
33 
34 #if NBPFILTER > 0
35 #include <net/bpf.h>
36 #endif
37 #include <net/if.h>
38 #include <net/if_dl.h>
39 #include <net/if_media.h>
40 
41 #include <netinet/in.h>
42 #include <netinet/if_ether.h>
43 
44 #include <net80211/ieee80211_var.h>
45 #include <net80211/ieee80211_radiotap.h>
46 
47 #include <dev/usb/usb.h>
48 #include <dev/usb/usbdi.h>
49 #include <dev/usb/usbdi_util.h>
50 #include <dev/usb/usbdevs.h>
51 
52 #include <dev/usb/if_upgtvar.h>
53 
54 /*
55  * Driver for the USB PrismGT devices.
56  *
57  * For now just USB 2.0 devices with the GW3887 chipset are supported.
58  * The driver has been written based on the firmware version 2.13.1.0_LM87.
59  *
60  * TODO's:
61  * - Fix MONITOR mode (MAC filter).
62  * - Add HOSTAP mode.
63  * - Add IBSS mode.
64  * - Support the USB 1.0 devices (NET2280, ISL3880, ISL3886 chipsets).
65  *
66  * Parts of this driver has been influenced by reading the p54u driver
67  * written by Jean-Baptiste Note <jean-baptiste.note@m4x.org> and
68  * Sebastien Bourdeauducq <lekernel@prism54.org>.
69  */
70 
71 #ifdef UPGT_DEBUG
72 int upgt_debug = 2;
73 #define DPRINTF(l, x...) do { if ((l) <= upgt_debug) printf(x); } while (0)
74 #else
75 #define DPRINTF(l, x...)
76 #endif
77 
78 /*
79  * Prototypes.
80  */
81 int		upgt_match(struct device *, void *, void *);
82 void		upgt_attach(struct device *, struct device *, void *);
83 void		upgt_attach_hook(struct device *);
84 int		upgt_detach(struct device *, int);
85 
86 int		upgt_device_type(struct upgt_softc *, uint16_t, uint16_t);
87 int		upgt_device_init(struct upgt_softc *);
88 int		upgt_mem_init(struct upgt_softc *);
89 uint32_t	upgt_mem_alloc(struct upgt_softc *);
90 void		upgt_mem_free(struct upgt_softc *, uint32_t);
91 int		upgt_fw_alloc(struct upgt_softc *);
92 void		upgt_fw_free(struct upgt_softc *);
93 int		upgt_fw_verify(struct upgt_softc *);
94 int		upgt_fw_load(struct upgt_softc *);
95 int		upgt_fw_copy(char *, char *, int);
96 int		upgt_eeprom_read(struct upgt_softc *);
97 int		upgt_eeprom_parse(struct upgt_softc *);
98 void		upgt_eeprom_parse_hwrx(struct upgt_softc *, uint8_t *);
99 void		upgt_eeprom_parse_freq3(struct upgt_softc *, uint8_t *, int);
100 void		upgt_eeprom_parse_freq4(struct upgt_softc *, uint8_t *, int);
101 void		upgt_eeprom_parse_freq6(struct upgt_softc *, uint8_t *, int);
102 
103 int		upgt_ioctl(struct ifnet *, u_long, caddr_t);
104 int		upgt_init(struct ifnet *);
105 void		upgt_stop(struct upgt_softc *);
106 int		upgt_media_change(struct ifnet *);
107 void		upgt_newassoc(struct ieee80211com *, struct ieee80211_node *,
108 		    int);
109 int		upgt_newstate(struct ieee80211com *, enum ieee80211_state, int);
110 void		upgt_newstate_task(void *);
111 void		upgt_next_scan(void *);
112 void		upgt_start(struct ifnet *);
113 void		upgt_watchdog(struct ifnet *);
114 void		upgt_tx_task(void *);
115 void		upgt_tx_done(struct upgt_softc *, uint8_t *);
116 void		upgt_rx_cb(struct usbd_xfer *, void *, usbd_status);
117 void		upgt_rx(struct upgt_softc *, uint8_t *, int);
118 void		upgt_setup_rates(struct upgt_softc *);
119 uint8_t		upgt_rx_rate(struct upgt_softc *, const int);
120 int		upgt_set_macfilter(struct upgt_softc *, uint8_t state);
121 int		upgt_set_channel(struct upgt_softc *, unsigned);
122 void		upgt_set_led(struct upgt_softc *, int);
123 void		upgt_set_led_blink(void *);
124 int		upgt_get_stats(struct upgt_softc *);
125 
126 int		upgt_alloc_tx(struct upgt_softc *);
127 int		upgt_alloc_rx(struct upgt_softc *);
128 int		upgt_alloc_cmd(struct upgt_softc *);
129 void		upgt_free_tx(struct upgt_softc *);
130 void		upgt_free_rx(struct upgt_softc *);
131 void		upgt_free_cmd(struct upgt_softc *);
132 int		upgt_bulk_xmit(struct upgt_softc *, struct upgt_data *,
133 		    struct usbd_pipe *, uint32_t *, int);
134 
135 void		upgt_hexdump(void *, int);
136 uint32_t	upgt_crc32_le(const void *, size_t);
137 uint32_t	upgt_chksum_le(const uint32_t *, size_t);
138 
139 struct cfdriver upgt_cd = {
140 	NULL, "upgt", DV_IFNET
141 };
142 
143 const struct cfattach upgt_ca = {
144 	sizeof(struct upgt_softc), upgt_match, upgt_attach, upgt_detach
145 };
146 
147 static const struct usb_devno upgt_devs_1[] = {
148 	/* version 1 devices */
149 	{ USB_VENDOR_ALCATELT,		USB_PRODUCT_ALCATELT_ST120G }
150 };
151 
152 static const struct usb_devno upgt_devs_2[] = {
153 	/* version 2 devices */
154 	{ USB_VENDOR_ACCTON,		USB_PRODUCT_ACCTON_PRISM_GT },
155 	{ USB_VENDOR_ALCATELT,		USB_PRODUCT_ALCATELT_ST121G },
156 	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050 },
157 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54AG },
158 	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GV2 },
159 	{ USB_VENDOR_CONCEPTRONIC,	USB_PRODUCT_CONCEPTRONIC_PRISM_GT },
160 	{ USB_VENDOR_DELL,		USB_PRODUCT_DELL_PRISM_GT_1 },
161 	{ USB_VENDOR_DELL,		USB_PRODUCT_DELL_PRISM_GT_2 },
162 	{ USB_VENDOR_DLINK,		USB_PRODUCT_DLINK_DWLG122A2 },
163 	{ USB_VENDOR_FSC,		USB_PRODUCT_FSC_E5400 },
164 	{ USB_VENDOR_GLOBESPAN,		USB_PRODUCT_GLOBESPAN_PRISM_GT_1 },
165 	{ USB_VENDOR_GLOBESPAN,		USB_PRODUCT_GLOBESPAN_PRISM_GT_2 },
166 	{ USB_VENDOR_INTERSIL,		USB_PRODUCT_INTERSIL_PRISM_GT },
167 	{ USB_VENDOR_PHEENET,		USB_PRODUCT_PHEENET_GWU513 },
168 	{ USB_VENDOR_PHILIPS,		USB_PRODUCT_PHILIPS_CPWUA054 },
169 	{ USB_VENDOR_SMC,		USB_PRODUCT_SMC_2862WG },
170 	{ USB_VENDOR_USR,		USB_PRODUCT_USR_USR5422 },
171 	{ USB_VENDOR_WISTRONNEWEB,	USB_PRODUCT_WISTRONNEWEB_UR045G },
172 	{ USB_VENDOR_XYRATEX,		USB_PRODUCT_XYRATEX_PRISM_GT_1 },
173 	{ USB_VENDOR_XYRATEX,		USB_PRODUCT_XYRATEX_PRISM_GT_2 },
174 	{ USB_VENDOR_ZCOM,		USB_PRODUCT_ZCOM_MD40900 },
175 	{ USB_VENDOR_ZCOM,		USB_PRODUCT_ZCOM_XG703A }
176 };
177 
178 int
179 upgt_match(struct device *parent, void *match, void *aux)
180 {
181 	struct usb_attach_arg *uaa = aux;
182 
183 	if (uaa->iface == NULL || uaa->configno != UPGT_CONFIG_NO)
184 		return (UMATCH_NONE);
185 
186 	if (usb_lookup(upgt_devs_1, uaa->vendor, uaa->product) != NULL)
187 		return (UMATCH_VENDOR_PRODUCT);
188 
189 	if (usb_lookup(upgt_devs_2, uaa->vendor, uaa->product) != NULL)
190 		return (UMATCH_VENDOR_PRODUCT);
191 
192 	return (UMATCH_NONE);
193 }
194 
195 void
196 upgt_attach(struct device *parent, struct device *self, void *aux)
197 {
198 	struct upgt_softc *sc = (struct upgt_softc *)self;
199 	struct usb_attach_arg *uaa = aux;
200 	usb_interface_descriptor_t *id;
201 	usb_endpoint_descriptor_t *ed;
202 	usbd_status error;
203 	int i;
204 
205 	/*
206 	 * Attach USB device.
207 	 */
208 	sc->sc_udev = uaa->device;
209 
210 	/* check device type */
211 	if (upgt_device_type(sc, uaa->vendor, uaa->product) != 0)
212 		return;
213 
214 	/* get the first interface handle */
215 	error = usbd_device2interface_handle(sc->sc_udev, UPGT_IFACE_INDEX,
216 	    &sc->sc_iface);
217 	if (error != 0) {
218 		printf("%s: could not get interface handle!\n",
219 		    sc->sc_dev.dv_xname);
220 		return;
221 	}
222 
223 	/* find endpoints */
224 	id = usbd_get_interface_descriptor(sc->sc_iface);
225 	sc->sc_rx_no = sc->sc_tx_no = -1;
226 	for (i = 0; i < id->bNumEndpoints; i++) {
227 		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
228 		if (ed == NULL) {
229 			printf("%s: no endpoint descriptor for iface %d!\n",
230 			    sc->sc_dev.dv_xname, i);
231 			return;
232 		}
233 
234 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
235 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
236 			sc->sc_tx_no = ed->bEndpointAddress;
237 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
238 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
239 			sc->sc_rx_no = ed->bEndpointAddress;
240 
241 		/*
242 		 * 0x01 TX pipe
243 		 * 0x81 RX pipe
244 		 *
245 		 * Deprecated scheme (not used with fw version >2.5.6.x):
246 		 * 0x02 TX MGMT pipe
247 		 * 0x82 TX MGMT pipe
248 		 */
249 		if (sc->sc_tx_no != -1 && sc->sc_rx_no != -1)
250 			break;
251 	}
252 	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
253 		printf("%s: missing endpoint!\n", sc->sc_dev.dv_xname);
254 		return;
255 	}
256 
257 	/* setup tasks and timeouts */
258 	usb_init_task(&sc->sc_task_newstate, upgt_newstate_task, sc,
259 	    USB_TASK_TYPE_GENERIC);
260 	usb_init_task(&sc->sc_task_tx, upgt_tx_task, sc, USB_TASK_TYPE_GENERIC);
261 	timeout_set(&sc->scan_to, upgt_next_scan, sc);
262 	timeout_set(&sc->led_to, upgt_set_led_blink, sc);
263 
264 	/*
265 	 * Open TX and RX USB bulk pipes.
266 	 */
267 	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
268 	    &sc->sc_tx_pipeh);
269 	if (error != 0) {
270 		printf("%s: could not open TX pipe: %s!\n",
271 		    sc->sc_dev.dv_xname, usbd_errstr(error));
272 		goto fail;
273 	}
274 	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
275 	    &sc->sc_rx_pipeh);
276 	if (error != 0) {
277 		printf("%s: could not open RX pipe: %s!\n",
278 		    sc->sc_dev.dv_xname, usbd_errstr(error));
279 		goto fail;
280 	}
281 
282 	/*
283 	 * Allocate TX, RX, and CMD xfers.
284 	 */
285 	if (upgt_alloc_tx(sc) != 0)
286 		goto fail;
287 	if (upgt_alloc_rx(sc) != 0)
288 		goto fail;
289 	if (upgt_alloc_cmd(sc) != 0)
290 		goto fail;
291 
292 	/*
293 	 * We need the firmware loaded to complete the attach.
294 	 */
295 	config_mountroot(self, upgt_attach_hook);
296 
297 	return;
298 fail:
299 	printf("%s: %s failed!\n", sc->sc_dev.dv_xname, __func__);
300 }
301 
302 void
303 upgt_attach_hook(struct device *self)
304 {
305 	struct upgt_softc *sc = (struct upgt_softc *)self;
306 	struct ieee80211com *ic = &sc->sc_ic;
307 	struct ifnet *ifp = &ic->ic_if;
308 	usbd_status error;
309 	int i;
310 
311 	/*
312 	 * Load firmware file into memory.
313 	 */
314 	if (upgt_fw_alloc(sc) != 0)
315 		goto fail;
316 
317 	/*
318 	 * Initialize the device.
319 	 */
320 	if (upgt_device_init(sc) != 0)
321 		goto fail;
322 
323 	/*
324 	 * Verify the firmware.
325 	 */
326 	if (upgt_fw_verify(sc) != 0)
327 		goto fail;
328 
329 	/*
330 	 * Calculate device memory space.
331 	 */
332 	if (sc->sc_memaddr_frame_start == 0 || sc->sc_memaddr_frame_end == 0) {
333 		printf("%s: could not find memory space addresses on FW!\n",
334 		    sc->sc_dev.dv_xname);
335 		goto fail;
336 	}
337 	sc->sc_memaddr_frame_end -= UPGT_MEMSIZE_RX + 1;
338 	sc->sc_memaddr_rx_start = sc->sc_memaddr_frame_end + 1;
339 
340 	DPRINTF(1, "%s: memory address frame start=0x%08x\n",
341 	    sc->sc_dev.dv_xname, sc->sc_memaddr_frame_start);
342 	DPRINTF(1, "%s: memory address frame end=0x%08x\n",
343 	    sc->sc_dev.dv_xname, sc->sc_memaddr_frame_end);
344 	DPRINTF(1, "%s: memory address rx start=0x%08x\n",
345 	    sc->sc_dev.dv_xname, sc->sc_memaddr_rx_start);
346 
347 	upgt_mem_init(sc);
348 
349 	/*
350 	 * Load the firmware.
351 	 */
352 	if (upgt_fw_load(sc) != 0)
353 		goto fail;
354 
355 	/*
356 	 * Startup the RX pipe.
357 	 */
358 	struct upgt_data *data_rx = &sc->rx_data;
359 
360 	usbd_setup_xfer(data_rx->xfer, sc->sc_rx_pipeh, data_rx, data_rx->buf,
361 	    MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
362 	error = usbd_transfer(data_rx->xfer);
363 	if (error != 0 && error != USBD_IN_PROGRESS) {
364 		printf("%s: could not queue RX transfer!\n",
365 		    sc->sc_dev.dv_xname);
366 		goto fail;
367 	}
368 	usbd_delay_ms(sc->sc_udev, 100);
369 
370 	/*
371 	 * Read the whole EEPROM content and parse it.
372 	 */
373 	if (upgt_eeprom_read(sc) != 0)
374 		goto fail;
375 	if (upgt_eeprom_parse(sc) != 0)
376 		goto fail;
377 
378 	/*
379 	 * Setup the 802.11 device.
380 	 */
381 	ic->ic_phytype = IEEE80211_T_OFDM;
382 	ic->ic_opmode = IEEE80211_M_STA;
383 	ic->ic_state = IEEE80211_S_INIT;
384 	ic->ic_caps =
385 	    IEEE80211_C_MONITOR |
386 	    IEEE80211_C_SHPREAMBLE |
387 	    IEEE80211_C_SHSLOT |
388 	    IEEE80211_C_WEP |
389 	    IEEE80211_C_RSN;
390 
391 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
392 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
393 
394 	for (i = 1; i <= 14; i++) {
395 		ic->ic_channels[i].ic_freq =
396 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
397 		ic->ic_channels[i].ic_flags =
398 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
399 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
400 	}
401 
402 	ifp->if_softc = sc;
403 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
404 	ifp->if_ioctl = upgt_ioctl;
405 	ifp->if_start = upgt_start;
406 	ifp->if_watchdog = upgt_watchdog;
407 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
408 
409 	if_attach(ifp);
410 	ieee80211_ifattach(ifp);
411 	ic->ic_newassoc = upgt_newassoc;
412 
413 	sc->sc_newstate = ic->ic_newstate;
414 	ic->ic_newstate = upgt_newstate;
415 	ieee80211_media_init(ifp, upgt_media_change, ieee80211_media_status);
416 
417 #if NBPFILTER > 0
418 	bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO,
419 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN);
420 
421 	sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
422 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
423 	sc->sc_rxtap.wr_ihdr.it_present = htole32(UPGT_RX_RADIOTAP_PRESENT);
424 
425 	sc->sc_txtap_len = sizeof(sc->sc_txtapu);
426 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
427 	sc->sc_txtap.wt_ihdr.it_present = htole32(UPGT_TX_RADIOTAP_PRESENT);
428 #endif
429 
430 	printf("%s: address %s\n",
431 	    sc->sc_dev.dv_xname, ether_sprintf(ic->ic_myaddr));
432 
433 	return;
434 fail:
435 	printf("%s: %s failed!\n", sc->sc_dev.dv_xname, __func__);
436 }
437 
438 int
439 upgt_detach(struct device *self, int flags)
440 {
441 	struct upgt_softc *sc = (struct upgt_softc *)self;
442 	struct ifnet *ifp = &sc->sc_ic.ic_if;
443 	int s;
444 
445 	DPRINTF(1, "%s: %s\n", sc->sc_dev.dv_xname, __func__);
446 
447 	s = splusb();
448 
449 	/* abort and close TX / RX pipes */
450 	if (sc->sc_tx_pipeh != NULL)
451 		usbd_close_pipe(sc->sc_tx_pipeh);
452 	if (sc->sc_rx_pipeh != NULL)
453 		usbd_close_pipe(sc->sc_rx_pipeh);
454 
455 	/* remove tasks and timeouts */
456 	usb_rem_task(sc->sc_udev, &sc->sc_task_newstate);
457 	usb_rem_task(sc->sc_udev, &sc->sc_task_tx);
458 	if (timeout_initialized(&sc->scan_to))
459 		timeout_del(&sc->scan_to);
460 	if (timeout_initialized(&sc->led_to))
461 		timeout_del(&sc->led_to);
462 
463 	/* free xfers */
464 	upgt_free_tx(sc);
465 	upgt_free_rx(sc);
466 	upgt_free_cmd(sc);
467 
468 	/* free firmware */
469 	upgt_fw_free(sc);
470 
471 	if (ifp->if_softc != NULL) {
472 		/* detach interface */
473 		ieee80211_ifdetach(ifp);
474 		if_detach(ifp);
475 	}
476 
477 	splx(s);
478 
479 	return (0);
480 }
481 
482 int
483 upgt_device_type(struct upgt_softc *sc, uint16_t vendor, uint16_t product)
484 {
485 	if (usb_lookup(upgt_devs_1, vendor, product) != NULL) {
486 		sc->sc_device_type = 1;
487 		/* XXX */
488 		printf("%s: version 1 devices not supported yet!\n",
489 		    sc->sc_dev.dv_xname);
490 		return (1);
491 	} else {
492 		sc->sc_device_type = 2;
493 	}
494 
495 	return (0);
496 }
497 
498 int
499 upgt_device_init(struct upgt_softc *sc)
500 {
501 	struct upgt_data *data_cmd = &sc->cmd_data;
502 	char init_cmd[] = { 0x7e, 0x7e, 0x7e, 0x7e };
503 	int len;
504 
505 	len = sizeof(init_cmd);
506 	bcopy(init_cmd, data_cmd->buf, len);
507 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
508 		printf("%s: could not send device init string!\n",
509 		    sc->sc_dev.dv_xname);
510 		return (EIO);
511 	}
512 	usbd_delay_ms(sc->sc_udev, 100);
513 
514 	DPRINTF(1, "%s: device initialized\n", sc->sc_dev.dv_xname);
515 
516 	return (0);
517 }
518 
519 int
520 upgt_mem_init(struct upgt_softc *sc)
521 {
522 	int i;
523 
524 	for (i = 0; i < UPGT_MEMORY_MAX_PAGES; i++) {
525 		sc->sc_memory.page[i].used = 0;
526 
527 		if (i == 0) {
528 			/*
529 			 * The first memory page is always reserved for
530 			 * command data.
531 			 */
532 			sc->sc_memory.page[i].addr =
533 			    sc->sc_memaddr_frame_start + MCLBYTES;
534 		} else {
535 			sc->sc_memory.page[i].addr =
536 			    sc->sc_memory.page[i - 1].addr + MCLBYTES;
537 		}
538 
539 		if (sc->sc_memory.page[i].addr + MCLBYTES >=
540 		    sc->sc_memaddr_frame_end)
541 			break;
542 
543 		DPRINTF(2, "%s: memory address page %d=0x%08x\n",
544 		    sc->sc_dev.dv_xname, i, sc->sc_memory.page[i].addr);
545 	}
546 
547 	sc->sc_memory.pages = i;
548 
549 	DPRINTF(2, "%s: memory pages=%d\n",
550 	    sc->sc_dev.dv_xname, sc->sc_memory.pages);
551 
552 	return (0);
553 }
554 
555 uint32_t
556 upgt_mem_alloc(struct upgt_softc *sc)
557 {
558 	int i;
559 
560 	for (i = 0; i < sc->sc_memory.pages; i++) {
561 		if (sc->sc_memory.page[i].used == 0) {
562 			sc->sc_memory.page[i].used = 1;
563 			return (sc->sc_memory.page[i].addr);
564 		}
565 	}
566 
567 	return (0);
568 }
569 
570 void
571 upgt_mem_free(struct upgt_softc *sc, uint32_t addr)
572 {
573 	int i;
574 
575 	for (i = 0; i < sc->sc_memory.pages; i++) {
576 		if (sc->sc_memory.page[i].addr == addr) {
577 			sc->sc_memory.page[i].used = 0;
578 			return;
579 		}
580 	}
581 
582 	printf("%s: could not free memory address 0x%08x!\n",
583 	    sc->sc_dev.dv_xname, addr);
584 }
585 
586 
587 int
588 upgt_fw_alloc(struct upgt_softc *sc)
589 {
590 	const char *name = "upgt-gw3887";
591 	int error;
592 
593 	if (sc->sc_fw == NULL) {
594 		error = loadfirmware(name, &sc->sc_fw, &sc->sc_fw_size);
595 		if (error != 0) {
596 			printf("%s: error %d, could not read firmware %s!\n",
597 			    sc->sc_dev.dv_xname, error, name);
598 			return (EIO);
599 		}
600 	}
601 
602 	DPRINTF(1, "%s: firmware %s allocated\n", sc->sc_dev.dv_xname, name);
603 
604 	return (0);
605 }
606 
607 void
608 upgt_fw_free(struct upgt_softc *sc)
609 {
610 	if (sc->sc_fw != NULL) {
611 		free(sc->sc_fw, M_DEVBUF, sc->sc_fw_size);
612 		sc->sc_fw = NULL;
613 		DPRINTF(1, "%s: firmware freed\n", sc->sc_dev.dv_xname);
614 	}
615 }
616 
617 int
618 upgt_fw_verify(struct upgt_softc *sc)
619 {
620 	struct upgt_fw_bra_option *bra_option;
621 	uint32_t bra_option_type, bra_option_len;
622 	uint32_t *uc;
623 	int offset, bra_end = 0;
624 
625 	/*
626 	 * Seek to beginning of Boot Record Area (BRA).
627 	 */
628 	for (offset = 0; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
629 		uc = (uint32_t *)(sc->sc_fw + offset);
630 		if (*uc == 0)
631 			break;
632 	}
633 	for (; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
634 		uc = (uint32_t *)(sc->sc_fw + offset);
635 		if (*uc != 0)
636 			break;
637 	}
638 	if (offset == sc->sc_fw_size) {
639 		printf("%s: firmware Boot Record Area not found!\n",
640 		    sc->sc_dev.dv_xname);
641 		return (EIO);
642 	}
643 	DPRINTF(1, "%s: firmware Boot Record Area found at offset %d\n",
644 	    sc->sc_dev.dv_xname, offset);
645 
646 	/*
647 	 * Parse Boot Record Area (BRA) options.
648 	 */
649 	while (offset < sc->sc_fw_size && bra_end == 0) {
650 		/* get current BRA option */
651 		bra_option = (struct upgt_fw_bra_option *)(sc->sc_fw + offset);
652 		bra_option_type = letoh32(bra_option->type);
653 		bra_option_len = letoh32(bra_option->len) * sizeof(*uc);
654 
655 		switch (bra_option_type) {
656 		case UPGT_BRA_TYPE_FW:
657 			DPRINTF(1, "%s: UPGT_BRA_TYPE_FW len=%d\n",
658 			    sc->sc_dev.dv_xname, bra_option_len);
659 
660 			if (bra_option_len != UPGT_BRA_FWTYPE_SIZE) {
661 				printf("%s: wrong UPGT_BRA_TYPE_FW len!\n",
662 				    sc->sc_dev.dv_xname);
663 				return (EIO);
664 			}
665 			if (memcmp(UPGT_BRA_FWTYPE_LM86, bra_option->data,
666 			    bra_option_len) == 0) {
667 				sc->sc_fw_type = UPGT_FWTYPE_LM86;
668 				break;
669 			}
670 			if (memcmp(UPGT_BRA_FWTYPE_LM87, bra_option->data,
671 			    bra_option_len) == 0) {
672 				sc->sc_fw_type = UPGT_FWTYPE_LM87;
673 				break;
674 			}
675 			if (memcmp(UPGT_BRA_FWTYPE_FMAC, bra_option->data,
676 			    bra_option_len) == 0) {
677 				sc->sc_fw_type = UPGT_FWTYPE_FMAC;
678 				break;
679 			}
680 			printf("%s: unsupported firmware type!\n",
681 			    sc->sc_dev.dv_xname);
682 			return (EIO);
683 		case UPGT_BRA_TYPE_VERSION:
684 			DPRINTF(1, "%s: UPGT_BRA_TYPE_VERSION len=%d\n",
685 			    sc->sc_dev.dv_xname, bra_option_len);
686 			break;
687 		case UPGT_BRA_TYPE_DEPIF:
688 			DPRINTF(1, "%s: UPGT_BRA_TYPE_DEPIF len=%d\n",
689 			    sc->sc_dev.dv_xname, bra_option_len);
690 			break;
691 		case UPGT_BRA_TYPE_EXPIF:
692 			DPRINTF(1, "%s: UPGT_BRA_TYPE_EXPIF len=%d\n",
693 			    sc->sc_dev.dv_xname, bra_option_len);
694 			break;
695 		case UPGT_BRA_TYPE_DESCR:
696 			DPRINTF(1, "%s: UPGT_BRA_TYPE_DESCR len=%d\n",
697 			    sc->sc_dev.dv_xname, bra_option_len);
698 
699 			struct upgt_fw_bra_descr *descr =
700 				(struct upgt_fw_bra_descr *)bra_option->data;
701 
702 			sc->sc_memaddr_frame_start =
703 			    letoh32(descr->memaddr_space_start);
704 			sc->sc_memaddr_frame_end =
705 			    letoh32(descr->memaddr_space_end);
706 
707 			DPRINTF(2, "%s: memory address space start=0x%08x\n",
708 			    sc->sc_dev.dv_xname, sc->sc_memaddr_frame_start);
709 			DPRINTF(2, "%s: memory address space end=0x%08x\n",
710 			    sc->sc_dev.dv_xname, sc->sc_memaddr_frame_end);
711 			break;
712 		case UPGT_BRA_TYPE_END:
713 			DPRINTF(1, "%s: UPGT_BRA_TYPE_END len=%d\n",
714 			    sc->sc_dev.dv_xname, bra_option_len);
715 			bra_end = 1;
716 			break;
717 		default:
718 			DPRINTF(1, "%s: unknown BRA option len=%d\n",
719 			    sc->sc_dev.dv_xname, bra_option_len);
720 			return (EIO);
721 		}
722 
723 		/* jump to next BRA option */
724 		offset += sizeof(struct upgt_fw_bra_option) + bra_option_len;
725 	}
726 
727 	DPRINTF(1, "%s: firmware verified\n", sc->sc_dev.dv_xname);
728 
729 	return (0);
730 }
731 
732 int
733 upgt_fw_load(struct upgt_softc *sc)
734 {
735 	struct upgt_data *data_cmd = &sc->cmd_data;
736 	struct upgt_data *data_rx = &sc->rx_data;
737 	char start_fwload_cmd[] = { 0x3c, 0x0d };
738 	int offset, bsize, n, i, len;
739 	uint32_t crc32;
740 
741 	/* send firmware start load command */
742 	len = sizeof(start_fwload_cmd);
743 	bcopy(start_fwload_cmd, data_cmd->buf, len);
744 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
745 		printf("%s: could not send start_firmware_load command!\n",
746 		    sc->sc_dev.dv_xname);
747 		return (EIO);
748 	}
749 
750 	/* send X2 header */
751 	len = sizeof(struct upgt_fw_x2_header);
752 	struct upgt_fw_x2_header *x2 = data_cmd->buf;
753 	bcopy(UPGT_X2_SIGNATURE, x2->signature, UPGT_X2_SIGNATURE_SIZE);
754 	x2->startaddr = htole32(UPGT_MEMADDR_FIRMWARE_START);
755 	x2->len = htole32(sc->sc_fw_size);
756 	x2->crc = upgt_crc32_le(data_cmd->buf + UPGT_X2_SIGNATURE_SIZE,
757 	    sizeof(struct upgt_fw_x2_header) - UPGT_X2_SIGNATURE_SIZE -
758 	    sizeof(uint32_t));
759 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
760 		printf("%s: could not send firmware X2 header!\n",
761 		    sc->sc_dev.dv_xname);
762 		return (EIO);
763 	}
764 
765 	/* download firmware */
766 	for (offset = 0; offset < sc->sc_fw_size; offset += bsize) {
767 		if (sc->sc_fw_size - offset > UPGT_FW_BLOCK_SIZE)
768 			bsize = UPGT_FW_BLOCK_SIZE;
769 		else
770 			bsize = sc->sc_fw_size - offset;
771 
772 		n = upgt_fw_copy(sc->sc_fw + offset, data_cmd->buf, bsize);
773 
774 		DPRINTF(1, "%s: FW offset=%d, read=%d, sent=%d\n",
775 		    sc->sc_dev.dv_xname, offset, n, bsize);
776 
777 		if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &bsize, 0)
778 		    != 0) {
779 			printf("%s: error while downloading firmware block!\n",
780 			    sc->sc_dev.dv_xname);
781 			return (EIO);
782 		}
783 
784 		bsize = n;
785 	}
786 	DPRINTF(1, "%s: firmware downloaded\n", sc->sc_dev.dv_xname);
787 
788 	/* load firmware */
789 	crc32 = upgt_crc32_le(sc->sc_fw, sc->sc_fw_size);
790 	*((uint32_t *)(data_cmd->buf)    ) = crc32;
791 	*((uint8_t  *)(data_cmd->buf) + 4) = 'g';
792 	*((uint8_t  *)(data_cmd->buf) + 5) = '\r';
793 	len = 6;
794 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
795 		printf("%s: could not send load_firmware command!\n",
796 		    sc->sc_dev.dv_xname);
797 		return (EIO);
798 	}
799 
800 	for (i = 0; i < UPGT_FIRMWARE_TIMEOUT; i++) {
801 		len = UPGT_FW_BLOCK_SIZE;
802 		bzero(data_rx->buf, MCLBYTES);
803 		if (upgt_bulk_xmit(sc, data_rx, sc->sc_rx_pipeh, &len,
804 		    USBD_SHORT_XFER_OK) != 0) {
805 			printf("%s: could not read firmware response!\n",
806 			    sc->sc_dev.dv_xname);
807 			return (EIO);
808 		}
809 
810 		if (memcmp(data_rx->buf, "OK", 2) == 0)
811 			break;	/* firmware load was successful */
812 	}
813 	if (i == UPGT_FIRMWARE_TIMEOUT) {
814 		printf("%s: firmware load failed!\n", sc->sc_dev.dv_xname);
815 		return (EIO);
816 	}
817 	DPRINTF(1, "%s: firmware loaded\n", sc->sc_dev.dv_xname);
818 
819 	return (0);
820 }
821 
822 /*
823  * While copying the version 2 firmware, we need to replace two characters:
824  *
825  * 0x7e -> 0x7d 0x5e
826  * 0x7d -> 0x7d 0x5d
827  */
828 int
829 upgt_fw_copy(char *src, char *dst, int size)
830 {
831 	int i, j;
832 
833 	for (i = 0, j = 0; i < size && j < size; i++) {
834 		switch (src[i]) {
835 		case 0x7e:
836 			dst[j] = 0x7d;
837 			j++;
838 			dst[j] = 0x5e;
839 			j++;
840 			break;
841 		case 0x7d:
842 			dst[j] = 0x7d;
843 			j++;
844 			dst[j] = 0x5d;
845 			j++;
846 			break;
847 		default:
848 			dst[j] = src[i];
849 			j++;
850 			break;
851 		}
852 	}
853 
854 	return (i);
855 }
856 
857 int
858 upgt_eeprom_read(struct upgt_softc *sc)
859 {
860 	struct upgt_data *data_cmd = &sc->cmd_data;
861 	struct upgt_lmac_mem *mem;
862 	struct upgt_lmac_eeprom	*eeprom;
863 	int offset, block, len;
864 
865 	offset = 0;
866 	block = UPGT_EEPROM_BLOCK_SIZE;
867 	while (offset < UPGT_EEPROM_SIZE) {
868 		DPRINTF(1, "%s: request EEPROM block (offset=%d, len=%d)\n",
869 		    sc->sc_dev.dv_xname, offset, block);
870 
871 		/*
872 		 * Transmit the URB containing the CMD data.
873 		 */
874 		bzero(data_cmd->buf, MCLBYTES);
875 
876 		mem = (struct upgt_lmac_mem *)data_cmd->buf;
877 		mem->addr = htole32(sc->sc_memaddr_frame_start +
878 		    UPGT_MEMSIZE_FRAME_HEAD);
879 
880 		eeprom = (struct upgt_lmac_eeprom *)(mem + 1);
881 		eeprom->header1.flags = 0;
882 		eeprom->header1.type = UPGT_H1_TYPE_CTRL;
883 		eeprom->header1.len = htole16((
884 		    sizeof(struct upgt_lmac_eeprom) -
885 		    sizeof(struct upgt_lmac_header)) + block);
886 
887 		eeprom->header2.reqid = htole32(sc->sc_memaddr_frame_start);
888 		eeprom->header2.type = htole16(UPGT_H2_TYPE_EEPROM);
889 		eeprom->header2.flags = 0;
890 
891 		eeprom->offset = htole16(offset);
892 		eeprom->len = htole16(block);
893 
894 		len = sizeof(*mem) + sizeof(*eeprom) + block;
895 
896 		mem->chksum = upgt_chksum_le((uint32_t *)eeprom,
897 		    len - sizeof(*mem));
898 
899 		if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len,
900 		    USBD_FORCE_SHORT_XFER) != 0) {
901 			printf("%s: could not transmit EEPROM data URB!\n",
902 			    sc->sc_dev.dv_xname);
903 			return (EIO);
904 		}
905 		if (tsleep_nsec(sc, 0, "eeprom_request",
906 		    MSEC_TO_NSEC(UPGT_USB_TIMEOUT))) {
907 			printf("%s: timeout while waiting for EEPROM data!\n",
908 			    sc->sc_dev.dv_xname);
909 			return (EIO);
910 		}
911 
912 		offset += block;
913 		if (UPGT_EEPROM_SIZE - offset < block)
914 			block = UPGT_EEPROM_SIZE - offset;
915 	}
916 
917 	return (0);
918 }
919 
920 int
921 upgt_eeprom_parse(struct upgt_softc *sc)
922 {
923 	struct ieee80211com *ic = &sc->sc_ic;
924 	struct upgt_eeprom_header *eeprom_header;
925 	struct upgt_eeprom_option *eeprom_option;
926 	uint16_t option_len;
927 	uint16_t option_type;
928 	uint16_t preamble_len;
929 	int option_end = 0;
930 
931 	/* calculate eeprom options start offset */
932 	eeprom_header = (struct upgt_eeprom_header *)sc->sc_eeprom;
933 	preamble_len = letoh16(eeprom_header->preamble_len);
934 	eeprom_option = (struct upgt_eeprom_option *)(sc->sc_eeprom +
935 	    (sizeof(struct upgt_eeprom_header) + preamble_len));
936 
937 	while (!option_end) {
938 		/* the eeprom option length is stored in words */
939 		option_len =
940 		    (letoh16(eeprom_option->len) - 1) * sizeof(uint16_t);
941 		option_type =
942 		    letoh16(eeprom_option->type);
943 
944 		switch (option_type) {
945 		case UPGT_EEPROM_TYPE_NAME:
946 			DPRINTF(1, "%s: EEPROM name len=%d\n",
947 			    sc->sc_dev.dv_xname, option_len);
948 			break;
949 		case UPGT_EEPROM_TYPE_SERIAL:
950 			DPRINTF(1, "%s: EEPROM serial len=%d\n",
951 			    sc->sc_dev.dv_xname, option_len);
952 			break;
953 		case UPGT_EEPROM_TYPE_MAC:
954 			DPRINTF(1, "%s: EEPROM mac len=%d\n",
955 			    sc->sc_dev.dv_xname, option_len);
956 
957 			IEEE80211_ADDR_COPY(ic->ic_myaddr, eeprom_option->data);
958 			break;
959 		case UPGT_EEPROM_TYPE_HWRX:
960 			DPRINTF(1, "%s: EEPROM hwrx len=%d\n",
961 			    sc->sc_dev.dv_xname, option_len);
962 
963 			upgt_eeprom_parse_hwrx(sc, eeprom_option->data);
964 			break;
965 		case UPGT_EEPROM_TYPE_CHIP:
966 			DPRINTF(1, "%s: EEPROM chip len=%d\n",
967 			    sc->sc_dev.dv_xname, option_len);
968 			break;
969 		case UPGT_EEPROM_TYPE_FREQ3:
970 			DPRINTF(1, "%s: EEPROM freq3 len=%d\n",
971 			    sc->sc_dev.dv_xname, option_len);
972 
973 			upgt_eeprom_parse_freq3(sc, eeprom_option->data,
974 			    option_len);
975 			break;
976 		case UPGT_EEPROM_TYPE_FREQ4:
977 			DPRINTF(1, "%s: EEPROM freq4 len=%d\n",
978 			    sc->sc_dev.dv_xname, option_len);
979 
980 			upgt_eeprom_parse_freq4(sc, eeprom_option->data,
981 			    option_len);
982 			break;
983 		case UPGT_EEPROM_TYPE_FREQ5:
984 			DPRINTF(1, "%s: EEPROM freq5 len=%d\n",
985 			    sc->sc_dev.dv_xname, option_len);
986 			break;
987 		case UPGT_EEPROM_TYPE_FREQ6:
988 			DPRINTF(1, "%s: EEPROM freq6 len=%d\n",
989 			    sc->sc_dev.dv_xname, option_len);
990 
991 			upgt_eeprom_parse_freq6(sc, eeprom_option->data,
992 			    option_len);
993 			break;
994 		case UPGT_EEPROM_TYPE_END:
995 			DPRINTF(1, "%s: EEPROM end len=%d\n",
996 			    sc->sc_dev.dv_xname, option_len);
997 			option_end = 1;
998 			break;
999 		case UPGT_EEPROM_TYPE_OFF:
1000 			DPRINTF(1, "%s: EEPROM off without end option!\n",
1001 			    sc->sc_dev.dv_xname);
1002 			return (EIO);
1003 		default:
1004 			DPRINTF(1, "%s: EEPROM unknown type 0x%04x len=%d\n",
1005 			    sc->sc_dev.dv_xname, option_type, option_len);
1006 			break;
1007 		}
1008 
1009 		/* jump to next EEPROM option */
1010 		eeprom_option = (struct upgt_eeprom_option *)
1011 		    (eeprom_option->data + option_len);
1012 	}
1013 
1014 	return (0);
1015 }
1016 
1017 void
1018 upgt_eeprom_parse_hwrx(struct upgt_softc *sc, uint8_t *data)
1019 {
1020 	struct upgt_eeprom_option_hwrx *option_hwrx;
1021 
1022 	option_hwrx = (struct upgt_eeprom_option_hwrx *)data;
1023 
1024 	sc->sc_eeprom_hwrx = option_hwrx->rxfilter - UPGT_EEPROM_RX_CONST;
1025 
1026 	DPRINTF(2, "%s: hwrx option value=0x%04x\n",
1027 	    sc->sc_dev.dv_xname, sc->sc_eeprom_hwrx);
1028 }
1029 
1030 void
1031 upgt_eeprom_parse_freq3(struct upgt_softc *sc, uint8_t *data, int len)
1032 {
1033 	struct upgt_eeprom_freq3_header *freq3_header;
1034 	struct upgt_lmac_freq3 *freq3;
1035 	int i, elements, flags;
1036 	unsigned channel;
1037 
1038 	freq3_header = (struct upgt_eeprom_freq3_header *)data;
1039 	freq3 = (struct upgt_lmac_freq3 *)(freq3_header + 1);
1040 
1041 	flags = freq3_header->flags;
1042 	elements = freq3_header->elements;
1043 
1044 	DPRINTF(2, "%s: flags=0x%02x\n", sc->sc_dev.dv_xname, flags);
1045 	DPRINTF(2, "%s: elements=%d\n", sc->sc_dev.dv_xname, elements);
1046 
1047 	for (i = 0; i < elements; i++) {
1048 		channel = ieee80211_mhz2ieee(letoh16(freq3[i].freq), 0);
1049 
1050 		sc->sc_eeprom_freq3[channel] = freq3[i];
1051 
1052 		DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1053 		    sc->sc_dev.dv_xname,
1054 		    letoh16(sc->sc_eeprom_freq3[channel].freq), channel);
1055 	}
1056 }
1057 
1058 void
1059 upgt_eeprom_parse_freq4(struct upgt_softc *sc, uint8_t *data, int len)
1060 {
1061 	struct upgt_eeprom_freq4_header *freq4_header;
1062 	struct upgt_eeprom_freq4_1 *freq4_1;
1063 	struct upgt_eeprom_freq4_2 *freq4_2;
1064 	int i, j, elements, settings, flags;
1065 	unsigned channel;
1066 
1067 	freq4_header = (struct upgt_eeprom_freq4_header *)data;
1068 	freq4_1 = (struct upgt_eeprom_freq4_1 *)(freq4_header + 1);
1069 
1070 	flags = freq4_header->flags;
1071 	elements = freq4_header->elements;
1072 	settings = freq4_header->settings;
1073 
1074 	/* we need this value later */
1075 	sc->sc_eeprom_freq6_settings = freq4_header->settings;
1076 
1077 	DPRINTF(2, "%s: flags=0x%02x\n", sc->sc_dev.dv_xname, flags);
1078 	DPRINTF(2, "%s: elements=%d\n", sc->sc_dev.dv_xname, elements);
1079 	DPRINTF(2, "%s: settings=%d\n", sc->sc_dev.dv_xname, settings);
1080 
1081 	for (i = 0; i < elements; i++) {
1082 		channel = ieee80211_mhz2ieee(letoh16(freq4_1[i].freq), 0);
1083 
1084 		freq4_2 = (struct upgt_eeprom_freq4_2 *)freq4_1[i].data;
1085 
1086 		for (j = 0; j < settings; j++) {
1087 			sc->sc_eeprom_freq4[channel][j].cmd = freq4_2[j];
1088 			sc->sc_eeprom_freq4[channel][j].pad = 0;
1089 		}
1090 
1091 		DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1092 		    sc->sc_dev.dv_xname,
1093 		    letoh16(freq4_1[i].freq), channel);
1094 	}
1095 }
1096 
1097 void
1098 upgt_eeprom_parse_freq6(struct upgt_softc *sc, uint8_t *data, int len)
1099 {
1100 	struct upgt_lmac_freq6 *freq6;
1101 	int i, elements;
1102 	unsigned channel;
1103 
1104 	freq6 = (struct upgt_lmac_freq6 *)data;
1105 
1106 	elements = len / sizeof(struct upgt_lmac_freq6);
1107 
1108 	DPRINTF(2, "%s: elements=%d\n", sc->sc_dev.dv_xname, elements);
1109 
1110 	for (i = 0; i < elements; i++) {
1111 		channel = ieee80211_mhz2ieee(letoh16(freq6[i].freq), 0);
1112 
1113 		sc->sc_eeprom_freq6[channel] = freq6[i];
1114 
1115 		DPRINTF(2, "%s: frequence=%d, channel=%d\n",
1116 		    sc->sc_dev.dv_xname,
1117 		    letoh16(sc->sc_eeprom_freq6[channel].freq), channel);
1118 	}
1119 }
1120 
1121 int
1122 upgt_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1123 {
1124 	struct upgt_softc *sc = ifp->if_softc;
1125 	struct ieee80211com *ic = &sc->sc_ic;
1126 	int s, error = 0;
1127 	uint8_t chan;
1128 
1129 	s = splnet();
1130 
1131 	switch (cmd) {
1132 	case SIOCSIFADDR:
1133 		ifp->if_flags |= IFF_UP;
1134 		/* FALLTHROUGH */
1135 	case SIOCSIFFLAGS:
1136 		if (ifp->if_flags & IFF_UP) {
1137 			if ((ifp->if_flags & IFF_RUNNING) == 0)
1138 				upgt_init(ifp);
1139 		} else {
1140 			if (ifp->if_flags & IFF_RUNNING)
1141 				upgt_stop(sc);
1142 		}
1143 		break;
1144 	case SIOCS80211CHANNEL:
1145 		/* allow fast channel switching in monitor mode */
1146 		error = ieee80211_ioctl(ifp, cmd, data);
1147 		if (error == ENETRESET &&
1148 		    ic->ic_opmode == IEEE80211_M_MONITOR) {
1149 			if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1150 			    (IFF_UP | IFF_RUNNING)) {
1151 				ic->ic_bss->ni_chan = ic->ic_ibss_chan;
1152 				chan = ieee80211_chan2ieee(ic,
1153 				    ic->ic_bss->ni_chan);
1154 				upgt_set_channel(sc, chan);
1155 			}
1156 			error = 0;
1157 		}
1158 		break;
1159 	default:
1160 		error = ieee80211_ioctl(ifp, cmd, data);
1161 		break;
1162 	}
1163 
1164 	if (error == ENETRESET) {
1165 		if (ifp->if_flags & (IFF_UP | IFF_RUNNING))
1166 			upgt_init(ifp);
1167 		error = 0;
1168 	}
1169 
1170 	splx(s);
1171 
1172 	return (error);
1173 }
1174 
1175 int
1176 upgt_init(struct ifnet *ifp)
1177 {
1178 	struct upgt_softc *sc = ifp->if_softc;
1179 	struct ieee80211com *ic = &sc->sc_ic;
1180 
1181 	DPRINTF(1, "%s: %s\n", sc->sc_dev.dv_xname, __func__);
1182 
1183 	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
1184 
1185 	/* select default channel */
1186 	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
1187 	sc->sc_cur_chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
1188 
1189 	/* setup device rates */
1190 	upgt_setup_rates(sc);
1191 
1192 	ifp->if_flags |= IFF_RUNNING;
1193 	ifq_clr_oactive(&ifp->if_snd);
1194 
1195 	upgt_set_macfilter(sc, IEEE80211_S_SCAN);
1196 
1197 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
1198 		upgt_set_channel(sc, sc->sc_cur_chan);
1199 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1200 	} else
1201 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1202 
1203 	return (0);
1204 }
1205 
1206 void
1207 upgt_stop(struct upgt_softc *sc)
1208 {
1209 	struct ieee80211com *ic = &sc->sc_ic;
1210 	struct ifnet *ifp = &ic->ic_if;
1211 
1212 	DPRINTF(1, "%s: %s\n", sc->sc_dev.dv_xname, __func__);
1213 
1214 	/* device down */
1215 	ifp->if_timer = 0;
1216 	ifp->if_flags &= ~IFF_RUNNING;
1217 	ifq_clr_oactive(&ifp->if_snd);
1218 
1219 	upgt_set_led(sc, UPGT_LED_OFF);
1220 
1221 	/* change device back to initial state */
1222 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1223 }
1224 
1225 int
1226 upgt_media_change(struct ifnet *ifp)
1227 {
1228 	struct upgt_softc *sc = ifp->if_softc;
1229 	int error;
1230 
1231 	DPRINTF(1, "%s: %s\n", sc->sc_dev.dv_xname, __func__);
1232 
1233 	if ((error = ieee80211_media_change(ifp)) != ENETRESET)
1234 		return (error);
1235 
1236 	if (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
1237 		/* give pending USB transfers a chance to finish */
1238 		usbd_delay_ms(sc->sc_udev, 100);
1239 		upgt_init(ifp);
1240 	}
1241 
1242 	return (error);
1243 }
1244 
1245 void
1246 upgt_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
1247 {
1248 	ni->ni_txrate = 0;
1249 }
1250 
1251 int
1252 upgt_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1253 {
1254 	struct upgt_softc *sc = ic->ic_if.if_softc;
1255 
1256 	usb_rem_task(sc->sc_udev, &sc->sc_task_newstate);
1257 	timeout_del(&sc->scan_to);
1258 
1259 	/* do it in a process context */
1260 	sc->sc_state = nstate;
1261 	sc->sc_arg = arg;
1262 	usb_add_task(sc->sc_udev, &sc->sc_task_newstate);
1263 
1264 	return (0);
1265 }
1266 
1267 void
1268 upgt_newstate_task(void *arg)
1269 {
1270 	struct upgt_softc *sc = arg;
1271 	struct ieee80211com *ic = &sc->sc_ic;
1272 	struct ieee80211_node *ni;
1273 	unsigned channel;
1274 
1275 	switch (sc->sc_state) {
1276 	case IEEE80211_S_INIT:
1277 		DPRINTF(1, "%s: newstate is IEEE80211_S_INIT\n",
1278 		    sc->sc_dev.dv_xname);
1279 
1280 		/* do not accept any frames if the device is down */
1281 		upgt_set_macfilter(sc, IEEE80211_S_INIT);
1282 		upgt_set_led(sc, UPGT_LED_OFF);
1283 		break;
1284 	case IEEE80211_S_SCAN:
1285 		DPRINTF(1, "%s: newstate is IEEE80211_S_SCAN\n",
1286 		    sc->sc_dev.dv_xname);
1287 
1288 		channel = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
1289 		upgt_set_channel(sc, channel);
1290 		timeout_add_msec(&sc->scan_to, 200);
1291 		break;
1292 	case IEEE80211_S_AUTH:
1293 		DPRINTF(1, "%s: newstate is IEEE80211_S_AUTH\n",
1294 		    sc->sc_dev.dv_xname);
1295 
1296 		channel = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
1297 		upgt_set_channel(sc, channel);
1298 		break;
1299 	case IEEE80211_S_ASSOC:
1300 		DPRINTF(1, "%s: newstate is IEEE80211_S_ASSOC\n",
1301 		    sc->sc_dev.dv_xname);
1302 		break;
1303 	case IEEE80211_S_RUN:
1304 		DPRINTF(1, "%s: newstate is IEEE80211_S_RUN\n",
1305 		    sc->sc_dev.dv_xname);
1306 
1307 		ni = ic->ic_bss;
1308 
1309 		/*
1310 		 * TX rate control is done by the firmware.
1311 		 * Report the maximum rate which is available therefore.
1312 		 */
1313 		ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
1314 
1315 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
1316 			upgt_set_macfilter(sc, IEEE80211_S_RUN);
1317 		upgt_set_led(sc, UPGT_LED_ON);
1318 		break;
1319 	}
1320 
1321 	sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
1322 }
1323 
1324 void
1325 upgt_next_scan(void *arg)
1326 {
1327 	struct upgt_softc *sc = arg;
1328 	struct ieee80211com *ic = &sc->sc_ic;
1329 	struct ifnet *ifp = &ic->ic_if;
1330 
1331 	DPRINTF(2, "%s: %s\n", sc->sc_dev.dv_xname, __func__);
1332 
1333 	if (ic->ic_state == IEEE80211_S_SCAN)
1334 		ieee80211_next_scan(ifp);
1335 }
1336 
1337 void
1338 upgt_start(struct ifnet *ifp)
1339 {
1340 	struct upgt_softc *sc = ifp->if_softc;
1341 	struct ieee80211com *ic = &sc->sc_ic;
1342 	struct ieee80211_node *ni;
1343 	struct mbuf *m;
1344 	int i;
1345 
1346 	/* don't transmit packets if interface is busy or down */
1347 	if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd))
1348 		return;
1349 
1350 	DPRINTF(2, "%s: %s\n", sc->sc_dev.dv_xname, __func__);
1351 
1352 	for (i = 0; i < UPGT_TX_COUNT; i++) {
1353 		struct upgt_data *data_tx = &sc->tx_data[i];
1354 
1355 		m = mq_dequeue(&ic->ic_mgtq);
1356 		if (m != NULL) {
1357 			/* management frame */
1358 			ni = m->m_pkthdr.ph_cookie;
1359 #if NBPFILTER > 0
1360 			if (ic->ic_rawbpf != NULL)
1361 				bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT);
1362 #endif
1363 			if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
1364 				printf("%s: no free prism memory!\n",
1365 				    sc->sc_dev.dv_xname);
1366 				return;
1367 			}
1368 			data_tx->ni = ni;
1369 			data_tx->m = m;
1370 			sc->tx_queued++;
1371 		} else {
1372 			/* data frame */
1373 			if (ic->ic_state != IEEE80211_S_RUN)
1374 				break;
1375 
1376 			m = ifq_dequeue(&ifp->if_snd);
1377 			if (m == NULL)
1378 				break;
1379 
1380 #if NBPFILTER > 0
1381 			if (ifp->if_bpf != NULL)
1382 				bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT);
1383 #endif
1384 			m = ieee80211_encap(ifp, m, &ni);
1385 			if (m == NULL)
1386 				continue;
1387 #if NBPFILTER > 0
1388 			if (ic->ic_rawbpf != NULL)
1389 				bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT);
1390 #endif
1391 			if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
1392 				printf("%s: no free prism memory!\n",
1393 				    sc->sc_dev.dv_xname);
1394 				return;
1395 			}
1396 			data_tx->ni = ni;
1397 			data_tx->m = m;
1398 			sc->tx_queued++;
1399 		}
1400 	}
1401 
1402 	if (sc->tx_queued > 0) {
1403 		DPRINTF(2, "%s: tx_queued=%d\n",
1404 		    sc->sc_dev.dv_xname, sc->tx_queued);
1405 		/* process the TX queue in process context */
1406 		ifp->if_timer = 5;
1407 		ifq_set_oactive(&ifp->if_snd);
1408 		usb_rem_task(sc->sc_udev, &sc->sc_task_tx);
1409 		usb_add_task(sc->sc_udev, &sc->sc_task_tx);
1410 	}
1411 }
1412 
1413 void
1414 upgt_watchdog(struct ifnet *ifp)
1415 {
1416 	struct upgt_softc *sc = ifp->if_softc;
1417 	struct ieee80211com *ic = &sc->sc_ic;
1418 
1419 	if (ic->ic_state == IEEE80211_S_INIT)
1420 		return;
1421 
1422 	printf("%s: watchdog timeout!\n", sc->sc_dev.dv_xname);
1423 
1424 	/* TODO: what shall we do on TX timeout? */
1425 
1426 	ieee80211_watchdog(ifp);
1427 }
1428 
1429 void
1430 upgt_tx_task(void *arg)
1431 {
1432 	struct upgt_softc *sc = arg;
1433 	struct ieee80211com *ic = &sc->sc_ic;
1434 	struct ieee80211_frame *wh;
1435 	struct ieee80211_key *k;
1436 	struct upgt_lmac_mem *mem;
1437 	struct upgt_lmac_tx_desc *txdesc;
1438 	struct mbuf *m;
1439 	uint32_t addr;
1440 	int len, i, s;
1441 	usbd_status error;
1442 
1443 	s = splusb();
1444 
1445 	upgt_set_led(sc, UPGT_LED_BLINK);
1446 
1447 	for (i = 0; i < UPGT_TX_COUNT; i++) {
1448 		struct upgt_data *data_tx = &sc->tx_data[i];
1449 
1450 		if (data_tx->m == NULL) {
1451 			DPRINTF(2, "%s: %d: m is NULL\n",
1452 			    sc->sc_dev.dv_xname, i);
1453 			continue;
1454 		}
1455 
1456 		m = data_tx->m;
1457 		addr = data_tx->addr + UPGT_MEMSIZE_FRAME_HEAD;
1458 
1459 		/*
1460 		 * Software crypto.
1461 		 */
1462 		wh = mtod(m, struct ieee80211_frame *);
1463 
1464 		if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1465 			k = ieee80211_get_txkey(ic, wh, ic->ic_bss);
1466 
1467 			if ((m = ieee80211_encrypt(ic, m, k)) == NULL) {
1468 				splx(s);
1469 				return;
1470 			}
1471 
1472 			/* in case packet header moved, reset pointer */
1473 			wh = mtod(m, struct ieee80211_frame *);
1474 		}
1475 
1476 		/*
1477 		 * Transmit the URB containing the TX data.
1478 		 */
1479 		bzero(data_tx->buf, MCLBYTES);
1480 
1481 		mem = (struct upgt_lmac_mem *)data_tx->buf;
1482 		mem->addr = htole32(addr);
1483 
1484 		txdesc = (struct upgt_lmac_tx_desc *)(mem + 1);
1485 
1486 		/* XXX differ between data and mgmt frames? */
1487 		txdesc->header1.flags = UPGT_H1_FLAGS_TX_DATA;
1488 		txdesc->header1.type = UPGT_H1_TYPE_TX_DATA;
1489 		txdesc->header1.len = htole16(m->m_pkthdr.len);
1490 
1491 		txdesc->header2.reqid = htole32(data_tx->addr);
1492 		txdesc->header2.type = htole16(UPGT_H2_TYPE_TX_ACK_YES);
1493 		txdesc->header2.flags = htole16(UPGT_H2_FLAGS_TX_ACK_YES);
1494 
1495 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1496 		    IEEE80211_FC0_TYPE_MGT) {
1497 			/* always send mgmt frames at lowest rate (DS1) */
1498 			memset(txdesc->rates, 0x10, sizeof(txdesc->rates));
1499 		} else {
1500 			bcopy(sc->sc_cur_rateset, txdesc->rates,
1501 			    sizeof(txdesc->rates));
1502 		}
1503 		txdesc->type = htole32(UPGT_TX_DESC_TYPE_DATA);
1504 		txdesc->pad3[0] = UPGT_TX_DESC_PAD3_SIZE;
1505 
1506 #if NBPFILTER > 0
1507 		if (sc->sc_drvbpf != NULL) {
1508 			struct mbuf mb;
1509 			struct upgt_tx_radiotap_header *tap = &sc->sc_txtap;
1510 
1511 			tap->wt_flags = 0;
1512 			tap->wt_rate = 0;	/* TODO: where to get from? */
1513 			tap->wt_chan_freq =
1514 			    htole16(ic->ic_bss->ni_chan->ic_freq);
1515 			tap->wt_chan_flags =
1516 			    htole16(ic->ic_bss->ni_chan->ic_flags);
1517 
1518 			mb.m_data = (caddr_t)tap;
1519 			mb.m_len = sc->sc_txtap_len;
1520 			mb.m_next = m;
1521 			mb.m_nextpkt = NULL;
1522 			mb.m_type = 0;
1523 			mb.m_flags = 0;
1524 			bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT);
1525 		}
1526 #endif
1527 		/* copy frame below our TX descriptor header */
1528 		m_copydata(m, 0, m->m_pkthdr.len,
1529 		    data_tx->buf + (sizeof(*mem) + sizeof(*txdesc)));
1530 
1531 		/* calculate frame size */
1532 		len = sizeof(*mem) + sizeof(*txdesc) + m->m_pkthdr.len;
1533 
1534 		/* we need to align the frame to a 4 byte boundary */
1535 		len = (len + 3) & ~3;
1536 
1537 		/* calculate frame checksum */
1538 		mem->chksum = upgt_chksum_le((uint32_t *)txdesc,
1539 		    len - sizeof(*mem));
1540 
1541 		/* we do not need the mbuf anymore */
1542 		m_freem(m);
1543 		data_tx->m = NULL;
1544 
1545 		DPRINTF(2, "%s: TX start data sending\n", sc->sc_dev.dv_xname);
1546 
1547 		usbd_setup_xfer(data_tx->xfer, sc->sc_tx_pipeh, data_tx,
1548 		    data_tx->buf, len, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
1549 		    UPGT_USB_TIMEOUT, NULL);
1550 		error = usbd_transfer(data_tx->xfer);
1551 		if (error != 0 && error != USBD_IN_PROGRESS) {
1552 			printf("%s: could not transmit TX data URB!\n",
1553 			    sc->sc_dev.dv_xname);
1554 			splx(s);
1555 			return;
1556 		}
1557 
1558 		DPRINTF(2, "%s: TX sent (%d bytes)\n",
1559 		    sc->sc_dev.dv_xname, len);
1560 	}
1561 
1562 	/*
1563 	 * If we don't regulary read the device statistics, the RX queue
1564 	 * will stall.  It's strange, but it works, so we keep reading
1565 	 * the statistics here.  *shrug*
1566 	 */
1567 	upgt_get_stats(sc);
1568 
1569 	splx(s);
1570 }
1571 
1572 void
1573 upgt_tx_done(struct upgt_softc *sc, uint8_t *data)
1574 {
1575 	struct ieee80211com *ic = &sc->sc_ic;
1576 	struct ifnet *ifp = &ic->ic_if;
1577 	struct upgt_lmac_tx_done_desc *desc;
1578 	int i, s;
1579 
1580 	s = splnet();
1581 
1582 	desc = (struct upgt_lmac_tx_done_desc *)data;
1583 
1584 	for (i = 0; i < UPGT_TX_COUNT; i++) {
1585 		struct upgt_data *data_tx = &sc->tx_data[i];
1586 
1587 		if (data_tx->addr == letoh32(desc->header2.reqid)) {
1588 			upgt_mem_free(sc, data_tx->addr);
1589 			ieee80211_release_node(ic, data_tx->ni);
1590 			data_tx->ni = NULL;
1591 			data_tx->addr = 0;
1592 
1593 			sc->tx_queued--;
1594 
1595 			DPRINTF(2, "%s: TX done: ", sc->sc_dev.dv_xname);
1596 			DPRINTF(2, "memaddr=0x%08x, status=0x%04x, rssi=%d, ",
1597 			    letoh32(desc->header2.reqid),
1598 			    letoh16(desc->status),
1599 			    letoh16(desc->rssi));
1600 			DPRINTF(2, "seq=%d\n", letoh16(desc->seq));
1601 			break;
1602 		}
1603 	}
1604 
1605 	if (sc->tx_queued == 0) {
1606 		/* TX queued was processed, continue */
1607 		ifp->if_timer = 0;
1608 		ifq_clr_oactive(&ifp->if_snd);
1609 		upgt_start(ifp);
1610 	}
1611 
1612 	splx(s);
1613 }
1614 
1615 void
1616 upgt_rx_cb(struct usbd_xfer *xfer, void *priv, usbd_status status)
1617 {
1618 	struct upgt_data *data_rx = priv;
1619 	struct upgt_softc *sc = data_rx->sc;
1620 	int len;
1621 	struct upgt_lmac_header *header;
1622 	struct upgt_lmac_eeprom *eeprom;
1623 	uint8_t h1_type;
1624 	uint16_t h2_type;
1625 
1626 	DPRINTF(3, "%s: %s\n", sc->sc_dev.dv_xname, __func__);
1627 
1628 	if (status != USBD_NORMAL_COMPLETION) {
1629 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1630 			return;
1631 		if (status == USBD_STALLED)
1632 			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
1633 		goto skip;
1634 	}
1635 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
1636 
1637 	/*
1638 	 * Check what type of frame came in.
1639 	 */
1640 	header = (struct upgt_lmac_header *)(data_rx->buf + 4);
1641 
1642 	h1_type = header->header1.type;
1643 	h2_type = letoh16(header->header2.type);
1644 
1645 	if (h1_type == UPGT_H1_TYPE_CTRL &&
1646 	    h2_type == UPGT_H2_TYPE_EEPROM) {
1647 		eeprom = (struct upgt_lmac_eeprom *)(data_rx->buf + 4);
1648 		uint16_t eeprom_offset = letoh16(eeprom->offset);
1649 		uint16_t eeprom_len = letoh16(eeprom->len);
1650 
1651 		DPRINTF(2, "%s: received EEPROM block (offset=%d, len=%d)\n",
1652 			sc->sc_dev.dv_xname, eeprom_offset, eeprom_len);
1653 
1654 		bcopy(data_rx->buf + sizeof(struct upgt_lmac_eeprom) + 4,
1655 			sc->sc_eeprom + eeprom_offset, eeprom_len);
1656 
1657 		/* EEPROM data has arrived in time, wakeup tsleep() */
1658 		wakeup(sc);
1659 	} else
1660 	if (h1_type == UPGT_H1_TYPE_CTRL &&
1661 	    h2_type == UPGT_H2_TYPE_TX_DONE) {
1662 		DPRINTF(2, "%s: received 802.11 TX done\n",
1663 		    sc->sc_dev.dv_xname);
1664 
1665 		upgt_tx_done(sc, data_rx->buf + 4);
1666 	} else
1667 	if (h1_type == UPGT_H1_TYPE_RX_DATA ||
1668 	    h1_type == UPGT_H1_TYPE_RX_DATA_MGMT) {
1669 		DPRINTF(3, "%s: received 802.11 RX data\n",
1670 		    sc->sc_dev.dv_xname);
1671 
1672 		upgt_rx(sc, data_rx->buf + 4, letoh16(header->header1.len));
1673 	} else
1674 	if (h1_type == UPGT_H1_TYPE_CTRL &&
1675 	    h2_type == UPGT_H2_TYPE_STATS) {
1676 		DPRINTF(2, "%s: received statistic data\n",
1677 		    sc->sc_dev.dv_xname);
1678 
1679 		/* TODO: what could we do with the statistic data? */
1680 	} else {
1681 		/* ignore unknown frame types */
1682 		DPRINTF(1, "%s: received unknown frame type 0x%02x\n",
1683 		    sc->sc_dev.dv_xname, header->header1.type);
1684 	}
1685 
1686 skip:	/* setup new transfer */
1687 	usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data_rx, data_rx->buf, MCLBYTES,
1688 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
1689 	(void)usbd_transfer(xfer);
1690 }
1691 
1692 void
1693 upgt_rx(struct upgt_softc *sc, uint8_t *data, int pkglen)
1694 {
1695 	struct ieee80211com *ic = &sc->sc_ic;
1696 	struct ifnet *ifp = &ic->ic_if;
1697 	struct upgt_lmac_rx_desc *rxdesc;
1698 	struct ieee80211_frame *wh;
1699 	struct ieee80211_rxinfo rxi;
1700 	struct ieee80211_node *ni;
1701 	struct mbuf *m;
1702 	int s;
1703 
1704 	/* access RX packet descriptor */
1705 	rxdesc = (struct upgt_lmac_rx_desc *)data;
1706 
1707 	/* create mbuf which is suitable for strict alignment archs */
1708 	m = m_devget(rxdesc->data, pkglen, ETHER_ALIGN);
1709 	if (m == NULL) {
1710 		DPRINTF(1, "%s: could not create RX mbuf!\n", sc->sc_dev.dv_xname);
1711 		ifp->if_ierrors++;
1712 		return;
1713 	}
1714 
1715 	s = splnet();
1716 
1717 #if NBPFILTER > 0
1718 	if (sc->sc_drvbpf != NULL) {
1719 		struct mbuf mb;
1720 		struct upgt_rx_radiotap_header *tap = &sc->sc_rxtap;
1721 
1722 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
1723 		tap->wr_rate = upgt_rx_rate(sc, rxdesc->rate);
1724 		tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
1725 		tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
1726 		tap->wr_antsignal = rxdesc->rssi;
1727 
1728 		mb.m_data = (caddr_t)tap;
1729 		mb.m_len = sc->sc_rxtap_len;
1730 		mb.m_next = m;
1731 		mb.m_nextpkt = NULL;
1732 		mb.m_type = 0;
1733 		mb.m_flags = 0;
1734 		bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN);
1735 	}
1736 #endif
1737 	/* trim FCS */
1738 	m_adj(m, -IEEE80211_CRC_LEN);
1739 
1740 	wh = mtod(m, struct ieee80211_frame *);
1741 	ni = ieee80211_find_rxnode(ic, wh);
1742 
1743 	/* push the frame up to the 802.11 stack */
1744 	rxi.rxi_flags = 0;
1745 	rxi.rxi_rssi = rxdesc->rssi;
1746 	rxi.rxi_tstamp = 0;	/* unused */
1747 	ieee80211_input(ifp, m, ni, &rxi);
1748 
1749 	/* node is no longer needed */
1750 	ieee80211_release_node(ic, ni);
1751 
1752 	splx(s);
1753 
1754 	DPRINTF(3, "%s: RX done\n", sc->sc_dev.dv_xname);
1755 }
1756 
1757 void
1758 upgt_setup_rates(struct upgt_softc *sc)
1759 {
1760 	struct ieee80211com *ic = &sc->sc_ic;
1761 
1762 	/*
1763 	 * 0x01 = OFMD6   0x10 = DS1
1764 	 * 0x04 = OFDM9   0x11 = DS2
1765 	 * 0x06 = OFDM12  0x12 = DS5
1766 	 * 0x07 = OFDM18  0x13 = DS11
1767 	 * 0x08 = OFDM24
1768 	 * 0x09 = OFDM36
1769 	 * 0x0a = OFDM48
1770 	 * 0x0b = OFDM54
1771 	 */
1772 	const uint8_t rateset_auto_11b[] =
1773 	    { 0x13, 0x13, 0x12, 0x11, 0x11, 0x10, 0x10, 0x10 };
1774 	const uint8_t rateset_auto_11g[] =
1775 	    { 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x04, 0x01 };
1776 	const uint8_t rateset_fix_11bg[] =
1777 	    { 0x10, 0x11, 0x12, 0x13, 0x01, 0x04, 0x06, 0x07,
1778 	      0x08, 0x09, 0x0a, 0x0b };
1779 
1780 	if (ic->ic_fixed_rate == -1) {
1781 		/*
1782 		 * Automatic rate control is done by the device.
1783 		 * We just pass the rateset from which the device
1784 		 * will pickup a rate.
1785 		 */
1786 		if (ic->ic_curmode == IEEE80211_MODE_11B)
1787 			bcopy(rateset_auto_11b, sc->sc_cur_rateset,
1788 			    sizeof(sc->sc_cur_rateset));
1789 		if (ic->ic_curmode == IEEE80211_MODE_11G ||
1790 		    ic->ic_curmode == IEEE80211_MODE_AUTO)
1791 			bcopy(rateset_auto_11g, sc->sc_cur_rateset,
1792 			    sizeof(sc->sc_cur_rateset));
1793 	} else {
1794 		/* set a fixed rate */
1795 		memset(sc->sc_cur_rateset, rateset_fix_11bg[ic->ic_fixed_rate],
1796 		    sizeof(sc->sc_cur_rateset));
1797 	}
1798 }
1799 
1800 uint8_t
1801 upgt_rx_rate(struct upgt_softc *sc, const int rate)
1802 {
1803 	struct ieee80211com *ic = &sc->sc_ic;
1804 
1805 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1806 		if (rate < 0 || rate > 3)
1807 			/* invalid rate */
1808 			return (0);
1809 
1810 		switch (rate) {
1811 		case 0:
1812 			return (2);
1813 		case 1:
1814 			return (4);
1815 		case 2:
1816 			return (11);
1817 		case 3:
1818 			return (22);
1819 		default:
1820 			return (0);
1821 		}
1822 	}
1823 
1824 	if (ic->ic_curmode == IEEE80211_MODE_11G) {
1825 		if (rate < 0 || rate > 11)
1826 			/* invalid rate */
1827 			return (0);
1828 
1829 		switch (rate) {
1830 		case 0:
1831 			return (2);
1832 		case 1:
1833 			return (4);
1834 		case 2:
1835 			return (11);
1836 		case 3:
1837 			return (22);
1838 		case 4:
1839 			return (12);
1840 		case 5:
1841 			return (18);
1842 		case 6:
1843 			return (24);
1844 		case 7:
1845 			return (36);
1846 		case 8:
1847 			return (48);
1848 		case 9:
1849 			return (72);
1850 		case 10:
1851 			return (96);
1852 		case 11:
1853 			return (108);
1854 		default:
1855 			return (0);
1856 		}
1857 	}
1858 
1859 	return (0);
1860 }
1861 
1862 int
1863 upgt_set_macfilter(struct upgt_softc *sc, uint8_t state)
1864 {
1865 	struct ieee80211com *ic = &sc->sc_ic;
1866 	struct ieee80211_node *ni = ic->ic_bss;
1867 	struct upgt_data *data_cmd = &sc->cmd_data;
1868 	struct upgt_lmac_mem *mem;
1869 	struct upgt_lmac_filter *filter;
1870 	int len;
1871 	uint8_t broadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
1872 
1873 	/*
1874 	 * Transmit the URB containing the CMD data.
1875 	 */
1876 	bzero(data_cmd->buf, MCLBYTES);
1877 
1878 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
1879 	mem->addr = htole32(sc->sc_memaddr_frame_start +
1880 	    UPGT_MEMSIZE_FRAME_HEAD);
1881 
1882 	filter = (struct upgt_lmac_filter *)(mem + 1);
1883 
1884 	filter->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
1885 	filter->header1.type = UPGT_H1_TYPE_CTRL;
1886 	filter->header1.len = htole16(
1887 	    sizeof(struct upgt_lmac_filter) -
1888 	    sizeof(struct upgt_lmac_header));
1889 
1890 	filter->header2.reqid = htole32(sc->sc_memaddr_frame_start);
1891 	filter->header2.type = htole16(UPGT_H2_TYPE_MACFILTER);
1892 	filter->header2.flags = 0;
1893 
1894 	switch (state) {
1895 	case IEEE80211_S_INIT:
1896 		DPRINTF(1, "%s: set MAC filter to INIT\n",
1897 		    sc->sc_dev.dv_xname);
1898 
1899 		filter->type = htole16(UPGT_FILTER_TYPE_RESET);
1900 		break;
1901 	case IEEE80211_S_SCAN:
1902 		DPRINTF(1, "%s: set MAC filter to SCAN (bssid %s)\n",
1903 		    sc->sc_dev.dv_xname, ether_sprintf(broadcast));
1904 
1905 		filter->type = htole16(UPGT_FILTER_TYPE_NONE);
1906 		IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
1907 		IEEE80211_ADDR_COPY(filter->src, broadcast);
1908 		filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
1909 		filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
1910 		filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
1911 		filter->rxhw = htole32(sc->sc_eeprom_hwrx);
1912 		filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
1913 		break;
1914 	case IEEE80211_S_RUN:
1915 		DPRINTF(1, "%s: set MAC filter to RUN (bssid %s)\n",
1916 		    sc->sc_dev.dv_xname, ether_sprintf(ni->ni_bssid));
1917 
1918 		filter->type = htole16(UPGT_FILTER_TYPE_STA);
1919 		IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
1920 		IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid);
1921 		filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
1922 		filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
1923 		filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
1924 		filter->rxhw = htole32(sc->sc_eeprom_hwrx);
1925 		filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
1926 		break;
1927 	default:
1928 		printf("%s: MAC filter does not know that state!\n",
1929 		    sc->sc_dev.dv_xname);
1930 		break;
1931 	}
1932 
1933 	len = sizeof(*mem) + sizeof(*filter);
1934 
1935 	mem->chksum = upgt_chksum_le((uint32_t *)filter,
1936 	    len - sizeof(*mem));
1937 
1938 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
1939 		printf("%s: could not transmit macfilter CMD data URB!\n",
1940 		    sc->sc_dev.dv_xname);
1941 		return (EIO);
1942 	}
1943 
1944 	return (0);
1945 }
1946 
1947 int
1948 upgt_set_channel(struct upgt_softc *sc, unsigned channel)
1949 {
1950 	struct upgt_data *data_cmd = &sc->cmd_data;
1951 	struct upgt_lmac_mem *mem;
1952 	struct upgt_lmac_channel *chan;
1953 	int len;
1954 
1955 	DPRINTF(1, "%s: %s: %d\n", sc->sc_dev.dv_xname, __func__, channel);
1956 
1957 	/*
1958 	 * Transmit the URB containing the CMD data.
1959 	 */
1960 	bzero(data_cmd->buf, MCLBYTES);
1961 
1962 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
1963 	mem->addr = htole32(sc->sc_memaddr_frame_start +
1964 	    UPGT_MEMSIZE_FRAME_HEAD);
1965 
1966 	chan = (struct upgt_lmac_channel *)(mem + 1);
1967 
1968 	chan->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
1969 	chan->header1.type = UPGT_H1_TYPE_CTRL;
1970 	chan->header1.len = htole16(
1971 	    sizeof(struct upgt_lmac_channel) -
1972 	    sizeof(struct upgt_lmac_header));
1973 
1974 	chan->header2.reqid = htole32(sc->sc_memaddr_frame_start);
1975 	chan->header2.type = htole16(UPGT_H2_TYPE_CHANNEL);
1976 	chan->header2.flags = 0;
1977 
1978 	chan->unknown1 = htole16(UPGT_CHANNEL_UNKNOWN1);
1979 	chan->unknown2 = htole16(UPGT_CHANNEL_UNKNOWN2);
1980 	chan->freq6 = sc->sc_eeprom_freq6[channel];
1981 	chan->settings = sc->sc_eeprom_freq6_settings;
1982 	chan->unknown3 = UPGT_CHANNEL_UNKNOWN3;
1983 
1984 	bcopy(&sc->sc_eeprom_freq3[channel].data, chan->freq3_1,
1985 	    sizeof(chan->freq3_1));
1986 
1987 	bcopy(&sc->sc_eeprom_freq4[channel], chan->freq4,
1988 	    sizeof(sc->sc_eeprom_freq4[channel]));
1989 
1990 	bcopy(&sc->sc_eeprom_freq3[channel].data, chan->freq3_2,
1991 	    sizeof(chan->freq3_2));
1992 
1993 	len = sizeof(*mem) + sizeof(*chan);
1994 
1995 	mem->chksum = upgt_chksum_le((uint32_t *)chan,
1996 	    len - sizeof(*mem));
1997 
1998 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
1999 		printf("%s: could not transmit channel CMD data URB!\n",
2000 		    sc->sc_dev.dv_xname);
2001 		return (EIO);
2002 	}
2003 
2004 	return (0);
2005 }
2006 
2007 void
2008 upgt_set_led(struct upgt_softc *sc, int action)
2009 {
2010 	struct ieee80211com *ic = &sc->sc_ic;
2011 	struct upgt_data *data_cmd = &sc->cmd_data;
2012 	struct upgt_lmac_mem *mem;
2013 	struct upgt_lmac_led *led;
2014 	int len;
2015 
2016 	/*
2017 	 * Transmit the URB containing the CMD data.
2018 	 */
2019 	bzero(data_cmd->buf, MCLBYTES);
2020 
2021 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
2022 	mem->addr = htole32(sc->sc_memaddr_frame_start +
2023 	    UPGT_MEMSIZE_FRAME_HEAD);
2024 
2025 	led = (struct upgt_lmac_led *)(mem + 1);
2026 
2027 	led->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
2028 	led->header1.type = UPGT_H1_TYPE_CTRL;
2029 	led->header1.len = htole16(
2030 	    sizeof(struct upgt_lmac_led) -
2031 	    sizeof(struct upgt_lmac_header));
2032 
2033 	led->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2034 	led->header2.type = htole16(UPGT_H2_TYPE_LED);
2035 	led->header2.flags = 0;
2036 
2037 	switch (action) {
2038 	case UPGT_LED_OFF:
2039 		led->mode = htole16(UPGT_LED_MODE_SET);
2040 		led->action_fix = 0;
2041 		led->action_tmp = htole16(UPGT_LED_ACTION_OFF);
2042 		led->action_tmp_dur = 0;
2043 		break;
2044 	case UPGT_LED_ON:
2045 		led->mode = htole16(UPGT_LED_MODE_SET);
2046 		led->action_fix = 0;
2047 		led->action_tmp = htole16(UPGT_LED_ACTION_ON);
2048 		led->action_tmp_dur = 0;
2049 		break;
2050 	case UPGT_LED_BLINK:
2051 		if (ic->ic_state != IEEE80211_S_RUN)
2052 			return;
2053 		if (sc->sc_led_blink)
2054 			/* previous blink was not finished */
2055 			return;
2056 		led->mode = htole16(UPGT_LED_MODE_SET);
2057 		led->action_fix = htole16(UPGT_LED_ACTION_OFF);
2058 		led->action_tmp = htole16(UPGT_LED_ACTION_ON);
2059 		led->action_tmp_dur = htole16(UPGT_LED_ACTION_TMP_DUR);
2060 		/* lock blink */
2061 		sc->sc_led_blink = 1;
2062 		timeout_add_msec(&sc->led_to, UPGT_LED_ACTION_TMP_DUR);
2063 		break;
2064 	default:
2065 		return;
2066 	}
2067 
2068 	len = sizeof(*mem) + sizeof(*led);
2069 
2070 	mem->chksum = upgt_chksum_le((uint32_t *)led,
2071 	    len - sizeof(*mem));
2072 
2073 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2074 		printf("%s: could not transmit led CMD URB!\n",
2075 		    sc->sc_dev.dv_xname);
2076 	}
2077 }
2078 
2079 void
2080 upgt_set_led_blink(void *arg)
2081 {
2082 	struct upgt_softc *sc = arg;
2083 
2084 	/* blink finished, we are ready for a next one */
2085 	sc->sc_led_blink = 0;
2086 	timeout_del(&sc->led_to);
2087 }
2088 
2089 int
2090 upgt_get_stats(struct upgt_softc *sc)
2091 {
2092 	struct upgt_data *data_cmd = &sc->cmd_data;
2093 	struct upgt_lmac_mem *mem;
2094 	struct upgt_lmac_stats *stats;
2095 	int len;
2096 
2097 	/*
2098 	 * Transmit the URB containing the CMD data.
2099 	 */
2100 	bzero(data_cmd->buf, MCLBYTES);
2101 
2102 	mem = (struct upgt_lmac_mem *)data_cmd->buf;
2103 	mem->addr = htole32(sc->sc_memaddr_frame_start +
2104 	    UPGT_MEMSIZE_FRAME_HEAD);
2105 
2106 	stats = (struct upgt_lmac_stats *)(mem + 1);
2107 
2108 	stats->header1.flags = 0;
2109 	stats->header1.type = UPGT_H1_TYPE_CTRL;
2110 	stats->header1.len = htole16(
2111 	    sizeof(struct upgt_lmac_stats) -
2112 	    sizeof(struct upgt_lmac_header));
2113 
2114 	stats->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2115 	stats->header2.type = htole16(UPGT_H2_TYPE_STATS);
2116 	stats->header2.flags = 0;
2117 
2118 	len = sizeof(*mem) + sizeof(*stats);
2119 
2120 	mem->chksum = upgt_chksum_le((uint32_t *)stats,
2121 	    len - sizeof(*mem));
2122 
2123 	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2124 		printf("%s: could not transmit statistics CMD data URB!\n",
2125 		    sc->sc_dev.dv_xname);
2126 		return (EIO);
2127 	}
2128 
2129 	return (0);
2130 
2131 }
2132 
2133 int
2134 upgt_alloc_tx(struct upgt_softc *sc)
2135 {
2136 	int i;
2137 
2138 	sc->tx_queued = 0;
2139 
2140 	for (i = 0; i < UPGT_TX_COUNT; i++) {
2141 		struct upgt_data *data_tx = &sc->tx_data[i];
2142 
2143 		data_tx->sc = sc;
2144 
2145 		data_tx->xfer = usbd_alloc_xfer(sc->sc_udev);
2146 		if (data_tx->xfer == NULL) {
2147 			printf("%s: could not allocate TX xfer!\n",
2148 			    sc->sc_dev.dv_xname);
2149 			return (ENOMEM);
2150 		}
2151 
2152 		data_tx->buf = usbd_alloc_buffer(data_tx->xfer, MCLBYTES);
2153 		if (data_tx->buf == NULL) {
2154 			printf("%s: could not allocate TX buffer!\n",
2155 			    sc->sc_dev.dv_xname);
2156 			return (ENOMEM);
2157 		}
2158 
2159 		bzero(data_tx->buf, MCLBYTES);
2160 	}
2161 
2162 	return (0);
2163 }
2164 
2165 int
2166 upgt_alloc_rx(struct upgt_softc *sc)
2167 {
2168 	struct upgt_data *data_rx = &sc->rx_data;
2169 
2170 	data_rx->sc = sc;
2171 
2172 	data_rx->xfer = usbd_alloc_xfer(sc->sc_udev);
2173 	if (data_rx->xfer == NULL) {
2174 		printf("%s: could not allocate RX xfer!\n",
2175 		    sc->sc_dev.dv_xname);
2176 		return (ENOMEM);
2177 	}
2178 
2179 	data_rx->buf = usbd_alloc_buffer(data_rx->xfer, MCLBYTES);
2180 	if (data_rx->buf == NULL) {
2181 		printf("%s: could not allocate RX buffer!\n",
2182 		    sc->sc_dev.dv_xname);
2183 		return (ENOMEM);
2184 	}
2185 
2186 	bzero(data_rx->buf, MCLBYTES);
2187 
2188 	return (0);
2189 }
2190 
2191 int
2192 upgt_alloc_cmd(struct upgt_softc *sc)
2193 {
2194 	struct upgt_data *data_cmd = &sc->cmd_data;
2195 
2196 	data_cmd->sc = sc;
2197 
2198 	data_cmd->xfer = usbd_alloc_xfer(sc->sc_udev);
2199 	if (data_cmd->xfer == NULL) {
2200 		printf("%s: could not allocate RX xfer!\n",
2201 		    sc->sc_dev.dv_xname);
2202 		return (ENOMEM);
2203 	}
2204 
2205 	data_cmd->buf = usbd_alloc_buffer(data_cmd->xfer, MCLBYTES);
2206 	if (data_cmd->buf == NULL) {
2207 		printf("%s: could not allocate RX buffer!\n",
2208 		    sc->sc_dev.dv_xname);
2209 		return (ENOMEM);
2210 	}
2211 
2212 	bzero(data_cmd->buf, MCLBYTES);
2213 
2214 	return (0);
2215 }
2216 
2217 void
2218 upgt_free_tx(struct upgt_softc *sc)
2219 {
2220 	int i;
2221 
2222 	for (i = 0; i < UPGT_TX_COUNT; i++) {
2223 		struct upgt_data *data_tx = &sc->tx_data[i];
2224 
2225 		if (data_tx->xfer != NULL) {
2226 			usbd_free_xfer(data_tx->xfer);
2227 			data_tx->xfer = NULL;
2228 		}
2229 
2230 		data_tx->ni = NULL;
2231 	}
2232 }
2233 
2234 void
2235 upgt_free_rx(struct upgt_softc *sc)
2236 {
2237 	struct upgt_data *data_rx = &sc->rx_data;
2238 
2239 	if (data_rx->xfer != NULL) {
2240 		usbd_free_xfer(data_rx->xfer);
2241 		data_rx->xfer = NULL;
2242 	}
2243 
2244 	data_rx->ni = NULL;
2245 }
2246 
2247 void
2248 upgt_free_cmd(struct upgt_softc *sc)
2249 {
2250 	struct upgt_data *data_cmd = &sc->cmd_data;
2251 
2252 	if (data_cmd->xfer != NULL) {
2253 		usbd_free_xfer(data_cmd->xfer);
2254 		data_cmd->xfer = NULL;
2255 	}
2256 }
2257 
2258 int
2259 upgt_bulk_xmit(struct upgt_softc *sc, struct upgt_data *data,
2260     struct usbd_pipe *pipeh, uint32_t *size, int flags)
2261 {
2262         usbd_status status;
2263 
2264 	usbd_setup_xfer(data->xfer, pipeh, 0, data->buf, *size,
2265 	    USBD_NO_COPY | USBD_SYNCHRONOUS | flags, UPGT_USB_TIMEOUT, NULL);
2266 	status = usbd_transfer(data->xfer);
2267 	if (status != USBD_NORMAL_COMPLETION) {
2268 		printf("%s: %s: error %s!\n",
2269 		    sc->sc_dev.dv_xname, __func__, usbd_errstr(status));
2270 		return (EIO);
2271 	}
2272 
2273 	return (0);
2274 }
2275 
2276 void
2277 upgt_hexdump(void *buf, int len)
2278 {
2279 	int i;
2280 
2281 	for (i = 0; i < len; i++) {
2282 		if (i % 16 == 0)
2283 			printf("%s%5i:", i ? "\n" : "", i);
2284 		if (i % 4 == 0)
2285 			printf(" ");
2286 		printf("%02x", (int)*((u_char *)buf + i));
2287 	}
2288 	printf("\n");
2289 }
2290 
2291 uint32_t
2292 upgt_crc32_le(const void *buf, size_t size)
2293 {
2294 	uint32_t crc;
2295 
2296 	crc = ether_crc32_le(buf, size);
2297 
2298 	/* apply final XOR value as common for CRC-32 */
2299 	crc = htole32(crc ^ 0xffffffffU);
2300 
2301 	return (crc);
2302 }
2303 
2304 /*
2305  * The firmware awaits a checksum for each frame we send to it.
2306  * The algorithm used therefor is uncommon but somehow similar to CRC32.
2307  */
2308 uint32_t
2309 upgt_chksum_le(const uint32_t *buf, size_t size)
2310 {
2311 	int i;
2312 	uint32_t crc = 0;
2313 
2314 	for (i = 0; i < size; i += sizeof(uint32_t)) {
2315 		crc = htole32(crc ^ *buf++);
2316 		crc = htole32((crc >> 5) ^ (crc << 3));
2317 	}
2318 
2319 	return (crc);
2320 }
2321