1 /* $OpenBSD: udcf.c,v 1.47 2009/10/13 19:33:17 pirofti Exp $ */ 2 3 /* 4 * Copyright (c) 2006, 2007, 2008 Marc Balmer <mbalmer@openbsd.org> 5 * 6 * Permission to use, copy, modify, and distribute this software for any 7 * purpose with or without fee is hereby granted, provided that the above 8 * copyright notice and this permission notice appear in all copies. 9 * 10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 17 */ 18 19 #include <sys/param.h> 20 #include <sys/systm.h> 21 #include <sys/kernel.h> 22 #include <sys/conf.h> 23 #include <sys/file.h> 24 #include <sys/select.h> 25 #include <sys/proc.h> 26 #include <sys/vnode.h> 27 #include <sys/device.h> 28 #include <sys/poll.h> 29 #include <sys/time.h> 30 #include <sys/sensors.h> 31 32 #include <dev/usb/usb.h> 33 #include <dev/usb/usbdi.h> 34 #include <dev/usb/usbdi_util.h> 35 #include <dev/usb/usbdevs.h> 36 37 #ifdef UDCF_DEBUG 38 #define DPRINTFN(n, x) do { if (udcfdebug > (n)) printf x; } while (0) 39 int udcfdebug = 0; 40 #else 41 #define DPRINTFN(n, x) 42 #endif 43 #define DPRINTF(x) DPRINTFN(0, x) 44 45 #define UDCF_READ_IDX 0x1f 46 47 #define UDCF_CTRL_IDX 0x33 48 #define UDCF_CTRL_VAL 0x98 49 50 #define FT232R_RESET 0x00 /* reset USB request */ 51 #define FT232R_STATUS 0x05 /* get modem status USB request */ 52 #define FT232R_RI 0x40 /* ring indicator */ 53 54 #define DPERIOD1 ((long) 5 * 60) /* degrade OK -> WARN */ 55 #define DPERIOD2 ((long) 15 * 60) /* degrade WARN -> CRIT */ 56 57 /* max. skew of received time diff vs. measured time diff in percent. */ 58 #define MAX_SKEW 5 59 60 #define CLOCK_DCF77 0 61 #define CLOCK_HBG 1 62 63 static const char *clockname[2] = { 64 "DCF77", 65 "HBG" }; 66 67 struct udcf_softc { 68 struct device sc_dev; /* base device */ 69 usbd_device_handle sc_udev; /* USB device */ 70 usbd_interface_handle sc_iface; /* data interface */ 71 u_char sc_dying; /* disconnecting */ 72 73 struct timeout sc_to; 74 struct usb_task sc_task; 75 76 struct timeout sc_bv_to; /* bit-value detect */ 77 struct timeout sc_db_to; /* debounce */ 78 struct timeout sc_mg_to; /* minute-gap detect */ 79 struct timeout sc_sl_to; /* signal-loss detect */ 80 struct timeout sc_it_to; /* invalidate time */ 81 struct timeout sc_ct_to; /* detect clock type */ 82 struct usb_task sc_bv_task; 83 struct usb_task sc_mg_task; 84 struct usb_task sc_sl_task; 85 struct usb_task sc_ct_task; 86 87 usb_device_request_t sc_req; 88 89 int sc_detect_ct; /* != 0: autodetect type */ 90 int sc_clocktype; /* DCF77 or HBG */ 91 int sc_sync; /* 1 during sync */ 92 u_int64_t sc_mask; /* 64 bit mask */ 93 u_int64_t sc_tbits; /* Time bits */ 94 int sc_minute; 95 int sc_level; 96 time_t sc_last_mg; 97 int (*sc_signal)(struct udcf_softc *); 98 99 time_t sc_current; /* current time */ 100 time_t sc_next; /* time to become valid next */ 101 time_t sc_last; 102 int sc_nrecv; /* consecutive valid times */ 103 struct timeval sc_last_tv; /* uptime of last valid time */ 104 struct ksensor sc_sensor; 105 #ifdef UDCF_DEBUG 106 struct ksensor sc_skew; /* recv vs local skew */ 107 #endif 108 struct ksensordev sc_sensordev; 109 }; 110 111 /* 112 * timeouts being used in hz: 113 * t_bv bit value detection (150ms) 114 * t_ct detect clocktype (250ms) 115 * t_sync sync (950ms) 116 * t_mg minute gap detection (1500ms) 117 * t_mgsync resync after a minute gap (450ms) 118 * t_sl detect signal loss (3sec) 119 * t_wait wait (5sec) 120 * t_warn degrade sensor status to warning (5min) 121 * t_crit degrade sensor status to critical (15min) 122 */ 123 static int t_bv, t_ct, t_sync, t_mg, t_sl, t_mgsync, t_wait, t_warn, t_crit; 124 125 void udcf_intr(void *); 126 void udcf_probe(void *); 127 128 void udcf_bv_intr(void *); 129 void udcf_mg_intr(void *); 130 void udcf_sl_intr(void *); 131 void udcf_it_intr(void *); 132 void udcf_ct_intr(void *); 133 void udcf_bv_probe(void *); 134 void udcf_mg_probe(void *); 135 void udcf_sl_probe(void *); 136 void udcf_ct_probe(void *); 137 138 int udcf_match(struct device *, void *, void *); 139 void udcf_attach(struct device *, struct device *, void *); 140 int udcf_detach(struct device *, int); 141 int udcf_activate(struct device *, int); 142 143 int udcf_nc_signal(struct udcf_softc *); 144 int udcf_nc_init_hw(struct udcf_softc *); 145 int udcf_ft232r_signal(struct udcf_softc *); 146 int udcf_ft232r_init_hw(struct udcf_softc *); 147 148 struct cfdriver udcf_cd = { 149 NULL, "udcf", DV_DULL 150 }; 151 152 const struct cfattach udcf_ca = { 153 sizeof(struct udcf_softc), 154 udcf_match, 155 udcf_attach, 156 udcf_detach, 157 udcf_activate 158 }; 159 160 static const struct usb_devno udcf_devs[] = { 161 { USB_VENDOR_GUDE, USB_PRODUCT_GUDE_DCF }, 162 { USB_VENDOR_FTDI, USB_PRODUCT_FTDI_DCF }, 163 { USB_VENDOR_FTDI, USB_PRODUCT_FTDI_HBG } 164 }; 165 166 int 167 udcf_match(struct device *parent, void *match, void *aux) 168 { 169 struct usb_attach_arg *uaa = aux; 170 171 if (uaa->iface != NULL) 172 return UMATCH_NONE; 173 174 if (usb_lookup(udcf_devs, uaa->vendor, uaa->product) == NULL) 175 return UMATCH_NONE; 176 177 return UMATCH_VENDOR_PRODUCT; 178 } 179 180 void 181 udcf_attach(struct device *parent, struct device *self, void *aux) 182 { 183 struct udcf_softc *sc = (struct udcf_softc *)self; 184 struct usb_attach_arg *uaa = aux; 185 usbd_device_handle dev = uaa->device; 186 usbd_interface_handle iface; 187 struct timeval t; 188 usbd_status err; 189 190 switch (uaa->product) { 191 case USB_PRODUCT_GUDE_DCF: 192 sc->sc_detect_ct = 1; 193 sc->sc_signal = udcf_nc_signal; 194 strlcpy(sc->sc_sensor.desc, "Unknown", 195 sizeof(sc->sc_sensor.desc)); 196 break; 197 case USB_PRODUCT_FTDI_DCF: 198 sc->sc_signal = udcf_ft232r_signal; 199 strlcpy(sc->sc_sensor.desc, clockname[CLOCK_DCF77], 200 sizeof(sc->sc_sensor.desc)); 201 break; 202 case USB_PRODUCT_FTDI_HBG: 203 sc->sc_signal = udcf_ft232r_signal; 204 strlcpy(sc->sc_sensor.desc, clockname[CLOCK_HBG], 205 sizeof(sc->sc_sensor.desc)); 206 break; 207 } 208 209 usb_init_task(&sc->sc_task, udcf_probe, sc); 210 usb_init_task(&sc->sc_bv_task, udcf_bv_probe, sc); 211 usb_init_task(&sc->sc_mg_task, udcf_mg_probe, sc); 212 usb_init_task(&sc->sc_sl_task, udcf_sl_probe, sc); 213 214 timeout_set(&sc->sc_to, udcf_intr, sc); 215 timeout_set(&sc->sc_bv_to, udcf_bv_intr, sc); 216 timeout_set(&sc->sc_mg_to, udcf_mg_intr, sc); 217 timeout_set(&sc->sc_sl_to, udcf_sl_intr, sc); 218 timeout_set(&sc->sc_it_to, udcf_it_intr, sc); 219 220 if (sc->sc_detect_ct) { 221 usb_init_task(&sc->sc_ct_task, udcf_ct_probe, sc); 222 timeout_set(&sc->sc_ct_to, udcf_ct_intr, sc); 223 } 224 strlcpy(sc->sc_sensordev.xname, sc->sc_dev.dv_xname, 225 sizeof(sc->sc_sensordev.xname)); 226 227 sc->sc_sensor.type = SENSOR_TIMEDELTA; 228 sc->sc_sensor.status = SENSOR_S_UNKNOWN; 229 sensor_attach(&sc->sc_sensordev, &sc->sc_sensor); 230 231 #ifdef UDCF_DEBUG 232 sc->sc_skew.type = SENSOR_TIMEDELTA; 233 sc->sc_skew.status = SENSOR_S_UNKNOWN; 234 strlcpy(sc->sc_skew.desc, "local clock skew", 235 sizeof(sc->sc_skew.desc)); 236 sensor_attach(&sc->sc_sensordev, &sc->sc_skew); 237 #endif 238 sensordev_install(&sc->sc_sensordev); 239 240 sc->sc_udev = dev; 241 if ((err = usbd_set_config_index(dev, 0, 1))) { 242 DPRINTF(("%s: failed to set configuration, err=%s\n", 243 sc->sc_dev.dv_xname, usbd_errstr(err))); 244 goto fishy; 245 } 246 247 if ((err = usbd_device2interface_handle(dev, 0, &iface))) { 248 DPRINTF(("%s: failed to get interface, err=%s\n", 249 sc->sc_dev.dv_xname, usbd_errstr(err))); 250 goto fishy; 251 } 252 253 sc->sc_iface = iface; 254 255 sc->sc_clocktype = -1; 256 sc->sc_level = 0; 257 sc->sc_minute = 0; 258 sc->sc_last_mg = 0L; 259 260 sc->sc_sync = 1; 261 262 sc->sc_current = 0L; 263 sc->sc_next = 0L; 264 sc->sc_nrecv = 0; 265 sc->sc_last = 0L; 266 sc->sc_last_tv.tv_sec = 0L; 267 268 switch (uaa->product) { 269 case USB_PRODUCT_GUDE_DCF: 270 if (udcf_nc_init_hw(sc)) 271 goto fishy; 272 break; 273 case USB_PRODUCT_FTDI_DCF: /* FALLTHROUGH */ 274 case USB_PRODUCT_FTDI_HBG: 275 if (udcf_ft232r_init_hw(sc)) 276 goto fishy; 277 break; 278 } 279 280 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, 281 &sc->sc_dev); 282 283 /* convert timevals to hz */ 284 t.tv_sec = 0L; 285 t.tv_usec = 150000L; 286 t_bv = tvtohz(&t); 287 288 t.tv_usec = 450000L; 289 t_mgsync = tvtohz(&t); 290 291 t.tv_usec = 950000L; 292 t_sync = tvtohz(&t); 293 294 t.tv_sec = 1L; 295 t.tv_usec = 500000L; 296 t_mg = tvtohz(&t); 297 298 t.tv_sec = 3L; 299 t.tv_usec = 0L; 300 t_sl = tvtohz(&t); 301 302 t.tv_sec = 5L; 303 t_wait = tvtohz(&t); 304 305 t.tv_sec = DPERIOD1; 306 t_warn = tvtohz(&t); 307 308 t.tv_sec = DPERIOD2; 309 t_crit = tvtohz(&t); 310 311 if (sc->sc_detect_ct) { 312 t.tv_sec = 0L; 313 t.tv_usec = 250000L; 314 t_ct = tvtohz(&t); 315 } 316 317 /* Give the receiver some slack to stabilize */ 318 timeout_add(&sc->sc_to, t_wait); 319 320 /* Detect signal loss */ 321 timeout_add(&sc->sc_sl_to, t_wait + t_sl); 322 323 DPRINTF(("synchronizing\n")); 324 return; 325 326 fishy: 327 DPRINTF(("udcf_attach failed\n")); 328 sc->sc_dying = 1; 329 } 330 331 int 332 udcf_detach(struct device *self, int flags) 333 { 334 struct udcf_softc *sc = (struct udcf_softc *)self; 335 336 sc->sc_dying = 1; 337 338 timeout_del(&sc->sc_to); 339 timeout_del(&sc->sc_bv_to); 340 timeout_del(&sc->sc_mg_to); 341 timeout_del(&sc->sc_sl_to); 342 timeout_del(&sc->sc_it_to); 343 if (sc->sc_detect_ct) 344 timeout_del(&sc->sc_ct_to); 345 346 /* Unregister the clock with the kernel */ 347 sensordev_deinstall(&sc->sc_sensordev); 348 usb_rem_task(sc->sc_udev, &sc->sc_task); 349 usb_rem_task(sc->sc_udev, &sc->sc_bv_task); 350 usb_rem_task(sc->sc_udev, &sc->sc_mg_task); 351 usb_rem_task(sc->sc_udev, &sc->sc_sl_task); 352 if (sc->sc_detect_ct) 353 usb_rem_task(sc->sc_udev, &sc->sc_ct_task); 354 355 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, 356 &sc->sc_dev); 357 return 0; 358 } 359 360 /* udcf_intr runs in an interrupt context */ 361 void 362 udcf_intr(void *xsc) 363 { 364 struct udcf_softc *sc = xsc; 365 usb_add_task(sc->sc_udev, &sc->sc_task); 366 } 367 368 /* bit value detection */ 369 void 370 udcf_bv_intr(void *xsc) 371 { 372 struct udcf_softc *sc = xsc; 373 usb_add_task(sc->sc_udev, &sc->sc_bv_task); 374 } 375 376 /* minute gap detection */ 377 void 378 udcf_mg_intr(void *xsc) 379 { 380 struct udcf_softc *sc = xsc; 381 usb_add_task(sc->sc_udev, &sc->sc_mg_task); 382 } 383 384 /* signal loss detection */ 385 void 386 udcf_sl_intr(void *xsc) 387 { 388 struct udcf_softc *sc = xsc; 389 usb_add_task(sc->sc_udev, &sc->sc_sl_task); 390 } 391 392 /* detect the clock type (DCF77 or HBG) */ 393 void 394 udcf_ct_intr(void *xsc) 395 { 396 struct udcf_softc *sc = xsc; 397 usb_add_task(sc->sc_udev, &sc->sc_ct_task); 398 } 399 400 /* 401 * initialize the Expert mouseCLOCK USB devices, they use a NetCologne 402 * chip to interface the receiver. Power must be supplied to the 403 * receiver and the receiver must be turned on. 404 */ 405 int 406 udcf_nc_init_hw(struct udcf_softc *sc) 407 { 408 usbd_status err; 409 usb_device_request_t req; 410 uWord result; 411 int actlen; 412 413 /* Prepare the USB request to probe the value */ 414 sc->sc_req.bmRequestType = UT_READ_VENDOR_DEVICE; 415 sc->sc_req.bRequest = 1; 416 USETW(sc->sc_req.wValue, 0); 417 USETW(sc->sc_req.wIndex, UDCF_READ_IDX); 418 USETW(sc->sc_req.wLength, 1); 419 420 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 421 req.bRequest = 0; 422 USETW(req.wValue, 0); 423 USETW(req.wIndex, 0); 424 USETW(req.wLength, 0); 425 if ((err = usbd_do_request_flags(sc->sc_udev, &req, &result, 426 USBD_SHORT_XFER_OK, &actlen, USBD_DEFAULT_TIMEOUT))) { 427 DPRINTF(("failed to turn on power for receiver\n")); 428 return -1; 429 } 430 431 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 432 req.bRequest = 0; 433 USETW(req.wValue, UDCF_CTRL_VAL); 434 USETW(req.wIndex, UDCF_CTRL_IDX); 435 USETW(req.wLength, 0); 436 if ((err = usbd_do_request_flags(sc->sc_udev, &req, &result, 437 USBD_SHORT_XFER_OK, &actlen, USBD_DEFAULT_TIMEOUT))) { 438 DPRINTF(("failed to turn on receiver\n")); 439 return -1; 440 } 441 return 0; 442 } 443 444 /* 445 * initialize the Expert mouseCLOCK USB II devices, they use an FTDI 446 * FT232R chip to interface the receiver. Only reset the chip. 447 */ 448 int 449 udcf_ft232r_init_hw(struct udcf_softc *sc) 450 { 451 usbd_status err; 452 usb_device_request_t req; 453 454 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 455 req.bRequest = FT232R_RESET; 456 /* 0 resets the SIO */ 457 USETW(req.wValue,FT232R_RESET); 458 USETW(req.wIndex, 0); 459 USETW(req.wLength, 0); 460 err = usbd_do_request(sc->sc_udev, &req, NULL); 461 if (err) { 462 DPRINTF(("failed to reset ftdi\n")); 463 return -1; 464 } 465 return 0; 466 } 467 468 /* 469 * return 1 during high-power-, 0 during low-power-emission 470 * If bit 0 is set, the transmitter emits at full power. 471 * During the low-power emission we decode a zero bit. 472 */ 473 int 474 udcf_nc_signal(struct udcf_softc *sc) 475 { 476 int actlen; 477 unsigned char data; 478 479 if (usbd_do_request_flags(sc->sc_udev, &sc->sc_req, &data, 480 USBD_SHORT_XFER_OK, &actlen, USBD_DEFAULT_TIMEOUT)) 481 /* This happens if we pull the receiver */ 482 return -1; 483 return data & 0x01; 484 } 485 486 /* pick up the signal level through the FTDI FT232R chip */ 487 int 488 udcf_ft232r_signal(struct udcf_softc *sc) 489 { 490 usb_device_request_t req; 491 int actlen; 492 u_int16_t data; 493 494 req.bmRequestType = UT_READ_VENDOR_DEVICE; 495 req.bRequest = FT232R_STATUS; 496 USETW(req.wValue, 0); 497 USETW(req.wIndex, 0); 498 USETW(req.wLength, 2); 499 if (usbd_do_request_flags(sc->sc_udev, &req, &data, 500 USBD_SHORT_XFER_OK, &actlen, USBD_DEFAULT_TIMEOUT)) { 501 DPRINTFN(2, ("error reading ftdi modem status\n")); 502 return -1; 503 } 504 DPRINTFN(2, ("ftdi status 0x%04x\n", data)); 505 return data & FT232R_RI ? 0 : 1; 506 } 507 508 /* udcf_probe runs in a process context. */ 509 void 510 udcf_probe(void *xsc) 511 { 512 struct udcf_softc *sc = xsc; 513 struct timespec now; 514 int data; 515 516 if (sc->sc_dying) 517 return; 518 519 data = sc->sc_signal(sc); 520 if (data == -1) 521 return; 522 523 if (data) { 524 sc->sc_level = 1; 525 timeout_add(&sc->sc_to, 1); 526 return; 527 } 528 529 if (sc->sc_level == 0) 530 return; 531 532 /* the beginning of a second */ 533 sc->sc_level = 0; 534 if (sc->sc_minute == 1) { 535 if (sc->sc_sync) { 536 DPRINTF(("start collecting bits\n")); 537 sc->sc_sync = 0; 538 if (sc->sc_sensor.status == SENSOR_S_UNKNOWN && 539 sc->sc_detect_ct) 540 sc->sc_clocktype = -1; 541 } else { 542 /* provide the timedelta */ 543 microtime(&sc->sc_sensor.tv); 544 nanotime(&now); 545 sc->sc_current = sc->sc_next; 546 sc->sc_sensor.value = (int64_t)(now.tv_sec - 547 sc->sc_current) * 1000000000LL + now.tv_nsec; 548 549 /* set the clocktype and make sensor valid */ 550 if (sc->sc_sensor.status == SENSOR_S_UNKNOWN && 551 sc->sc_detect_ct) { 552 strlcpy(sc->sc_sensor.desc, sc->sc_clocktype ? 553 clockname[CLOCK_HBG] : 554 clockname[CLOCK_DCF77], 555 sizeof(sc->sc_sensor.desc)); 556 } 557 sc->sc_sensor.status = SENSOR_S_OK; 558 559 /* 560 * if no valid time information is received 561 * during the next 5 minutes, the sensor state 562 * will be degraded to SENSOR_S_WARN 563 */ 564 timeout_add(&sc->sc_it_to, t_warn); 565 } 566 sc->sc_minute = 0; 567 } 568 569 timeout_add(&sc->sc_to, t_sync); /* resync in 950 ms */ 570 571 /* no clock and bit detection during sync */ 572 if (!sc->sc_sync) { 573 /* detect bit value */ 574 timeout_add(&sc->sc_bv_to, t_bv); 575 576 /* detect clocktype */ 577 if (sc->sc_detect_ct && sc->sc_clocktype == -1) 578 timeout_add(&sc->sc_ct_to, t_ct); 579 } 580 timeout_add(&sc->sc_mg_to, t_mg); /* detect minute gap */ 581 timeout_add(&sc->sc_sl_to, t_sl); /* detect signal loss */ 582 } 583 584 /* detect the bit value */ 585 void 586 udcf_bv_probe(void *xsc) 587 { 588 struct udcf_softc *sc = xsc; 589 int data; 590 591 if (sc->sc_dying) 592 return; 593 594 data = sc->sc_signal(sc); 595 if (data == -1) { 596 DPRINTF(("bit detection failed\n")); 597 return; 598 } 599 600 DPRINTFN(1, (data ? "0" : "1")); 601 if (!(data)) 602 sc->sc_tbits |= sc->sc_mask; 603 sc->sc_mask <<= 1; 604 } 605 606 /* detect the minute gap */ 607 void 608 udcf_mg_probe(void *xsc) 609 { 610 struct udcf_softc *sc = xsc; 611 struct clock_ymdhms ymdhm; 612 struct timeval monotime; 613 int tdiff_recv, tdiff_local; 614 int skew; 615 int minute_bits, hour_bits, day_bits; 616 int month_bits, year_bits, wday; 617 int p1, p2, p3; 618 int p1_bit, p2_bit, p3_bit; 619 int r_bit, a1_bit, a2_bit, z1_bit, z2_bit; 620 int s_bit, m_bit; 621 u_int32_t parity = 0x6996; 622 623 if (sc->sc_sync) { 624 sc->sc_minute = 1; 625 goto cleanbits; 626 } 627 628 if (time_second - sc->sc_last_mg < 57) { 629 DPRINTF(("\nunexpected gap, resync\n")); 630 sc->sc_sync = sc->sc_minute = 1; 631 goto cleanbits; 632 } 633 634 /* extract bits w/o parity */ 635 m_bit = sc->sc_tbits & 1; 636 r_bit = sc->sc_tbits >> 15 & 1; 637 a1_bit = sc->sc_tbits >> 16 & 1; 638 z1_bit = sc->sc_tbits >> 17 & 1; 639 z2_bit = sc->sc_tbits >> 18 & 1; 640 a2_bit = sc->sc_tbits >> 19 & 1; 641 s_bit = sc->sc_tbits >> 20 & 1; 642 p1_bit = sc->sc_tbits >> 28 & 1; 643 p2_bit = sc->sc_tbits >> 35 & 1; 644 p3_bit = sc->sc_tbits >> 58 & 1; 645 646 minute_bits = sc->sc_tbits >> 21 & 0x7f; 647 hour_bits = sc->sc_tbits >> 29 & 0x3f; 648 day_bits = sc->sc_tbits >> 36 & 0x3f; 649 wday = (sc->sc_tbits >> 42) & 0x07; 650 month_bits = sc->sc_tbits >> 45 & 0x1f; 651 year_bits = sc->sc_tbits >> 50 & 0xff; 652 653 /* validate time information */ 654 p1 = (parity >> (minute_bits & 0x0f) & 1) ^ 655 (parity >> (minute_bits >> 4) & 1); 656 657 p2 = (parity >> (hour_bits & 0x0f) & 1) ^ 658 (parity >> (hour_bits >> 4) & 1); 659 660 p3 = (parity >> (day_bits & 0x0f) & 1) ^ 661 (parity >> (day_bits >> 4) & 1) ^ 662 ((parity >> wday) & 1) ^ (parity >> (month_bits & 0x0f) & 1) ^ 663 (parity >> (month_bits >> 4) & 1) ^ 664 (parity >> (year_bits & 0x0f) & 1) ^ 665 (parity >> (year_bits >> 4) & 1); 666 667 if (m_bit == 0 && s_bit == 1 && p1 == p1_bit && p2 == p2_bit && 668 p3 == p3_bit && (z1_bit ^ z2_bit)) { 669 670 /* Decode time */ 671 if ((ymdhm.dt_year = 2000 + FROMBCD(year_bits)) > 2037) { 672 DPRINTF(("year out of range, resync\n")); 673 sc->sc_sync = 1; 674 goto cleanbits; 675 } 676 ymdhm.dt_min = FROMBCD(minute_bits); 677 ymdhm.dt_hour = FROMBCD(hour_bits); 678 ymdhm.dt_day = FROMBCD(day_bits); 679 ymdhm.dt_mon = FROMBCD(month_bits); 680 ymdhm.dt_sec = 0; 681 682 sc->sc_next = clock_ymdhms_to_secs(&ymdhm); 683 getmicrouptime(&monotime); 684 685 /* convert to coordinated universal time */ 686 sc->sc_next -= z1_bit ? 7200 : 3600; 687 688 DPRINTF(("\n%02d.%02d.%04d %02d:%02d:00 %s", 689 ymdhm.dt_day, ymdhm.dt_mon, ymdhm.dt_year, 690 ymdhm.dt_hour, ymdhm.dt_min, z1_bit ? "CEST" : "CET")); 691 DPRINTF((r_bit ? ", call bit" : "")); 692 DPRINTF((a1_bit ? ", dst chg ann." : "")); 693 DPRINTF((a2_bit ? ", leap sec ann." : "")); 694 DPRINTF(("\n")); 695 696 if (sc->sc_last) { 697 tdiff_recv = sc->sc_next - sc->sc_last; 698 tdiff_local = monotime.tv_sec - sc->sc_last_tv.tv_sec; 699 skew = abs(tdiff_local - tdiff_recv); 700 #ifdef UDCF_DEBUG 701 if (sc->sc_skew.status == SENSOR_S_UNKNOWN) 702 sc->sc_skew.status = SENSOR_S_CRIT; 703 sc->sc_skew.value = skew * 1000000000LL; 704 getmicrotime(&sc->sc_skew.tv); 705 #endif 706 DPRINTF(("local = %d, recv = %d, skew = %d\n", 707 tdiff_local, tdiff_recv, skew)); 708 709 if (skew && skew * 100LL / tdiff_local > MAX_SKEW) { 710 DPRINTF(("skew out of tolerated range\n")); 711 goto cleanbits; 712 } else { 713 if (sc->sc_nrecv < 2) { 714 sc->sc_nrecv++; 715 DPRINTF(("got frame %d\n", 716 sc->sc_nrecv)); 717 } else { 718 DPRINTF(("data is valid\n")); 719 sc->sc_minute = 1; 720 } 721 } 722 } else { 723 DPRINTF(("received the first frame\n")); 724 sc->sc_nrecv = 1; 725 } 726 727 /* record the time received and when it was received */ 728 sc->sc_last = sc->sc_next; 729 sc->sc_last_tv.tv_sec = monotime.tv_sec; 730 } else { 731 DPRINTF(("\nparity error, resync\n")); 732 sc->sc_sync = sc->sc_minute = 1; 733 } 734 735 cleanbits: 736 timeout_add(&sc->sc_to, t_mgsync); /* re-sync in 450 ms */ 737 sc->sc_last_mg = time_second; 738 sc->sc_tbits = 0LL; 739 sc->sc_mask = 1LL; 740 } 741 742 /* detect signal loss */ 743 void 744 udcf_sl_probe(void *xsc) 745 { 746 struct udcf_softc *sc = xsc; 747 748 if (sc->sc_dying) 749 return; 750 751 DPRINTF(("no signal\n")); 752 sc->sc_sync = 1; 753 timeout_add(&sc->sc_to, t_wait); 754 timeout_add(&sc->sc_sl_to, t_wait + t_sl); 755 } 756 757 /* invalidate timedelta (called in an interrupt context) */ 758 void 759 udcf_it_intr(void *xsc) 760 { 761 struct udcf_softc *sc = xsc; 762 763 if (sc->sc_dying) 764 return; 765 766 if (sc->sc_sensor.status == SENSOR_S_OK) { 767 sc->sc_sensor.status = SENSOR_S_WARN; 768 /* 769 * further degrade in 15 minutes if we dont receive any new 770 * time information 771 */ 772 timeout_add(&sc->sc_it_to, t_crit); 773 } else { 774 sc->sc_sensor.status = SENSOR_S_CRIT; 775 sc->sc_nrecv = 0; 776 } 777 } 778 779 /* detect clock type. used for older devices only. */ 780 void 781 udcf_ct_probe(void *xsc) 782 { 783 struct udcf_softc *sc = xsc; 784 int data; 785 786 if (sc->sc_dying) 787 return; 788 789 data = sc->sc_signal(sc); 790 if (data == -1) { 791 DPRINTF(("clocktype detection failed\n")); 792 return; 793 } 794 795 sc->sc_clocktype = data ? 0 : 1; 796 DPRINTF(("\nclocktype is %s\n", sc->sc_clocktype ? 797 clockname[CLOCK_HBG] : clockname[CLOCK_DCF77])); 798 } 799 800 int 801 udcf_activate(struct device *self, int act) 802 { 803 struct udcf_softc *sc = (struct udcf_softc *)self; 804 805 switch (act) { 806 case DVACT_ACTIVATE: 807 break; 808 case DVACT_DEACTIVATE: 809 sc->sc_dying = 1; 810 break; 811 } 812 return 0; 813 } 814