xref: /openbsd/sys/kern/sched_bsd.c (revision cf08c0f1)
1 /*	$OpenBSD: sched_bsd.c,v 1.98 2024/11/24 13:02:37 claudio Exp $	*/
2 /*	$NetBSD: kern_synch.c,v 1.37 1996/04/22 01:38:37 christos Exp $	*/
3 
4 /*-
5  * Copyright (c) 1982, 1986, 1990, 1991, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  * (c) UNIX System Laboratories, Inc.
8  * All or some portions of this file are derived from material licensed
9  * to the University of California by American Telephone and Telegraph
10  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
11  * the permission of UNIX System Laboratories, Inc.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	@(#)kern_synch.c	8.6 (Berkeley) 1/21/94
38  */
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/clockintr.h>
43 #include <sys/proc.h>
44 #include <sys/kernel.h>
45 #include <sys/malloc.h>
46 #include <sys/resourcevar.h>
47 #include <uvm/uvm_extern.h>
48 #include <sys/sched.h>
49 #include <sys/timeout.h>
50 #include <sys/smr.h>
51 #include <sys/tracepoint.h>
52 
53 #ifdef KTRACE
54 #include <sys/ktrace.h>
55 #endif
56 
57 uint64_t roundrobin_period;	/* [I] roundrobin period (ns) */
58 int	lbolt;			/* once a second sleep address */
59 
60 struct mutex sched_lock;
61 
62 void			update_loadavg(void *);
63 void			schedcpu(void *);
64 uint32_t		decay_aftersleep(uint32_t, uint32_t);
65 
66 extern struct cpuset sched_idle_cpus;
67 
68 /*
69  * constants for averages over 1, 5, and 15 minutes when sampling at
70  * 5 second intervals.
71  */
72 static const fixpt_t cexp[3] = {
73 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
74 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
75 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
76 };
77 
78 struct loadavg averunnable;
79 
80 /*
81  * Force switch among equal priority processes every 100ms.
82  */
83 void
roundrobin(struct clockrequest * cr,void * cf,void * arg)84 roundrobin(struct clockrequest *cr, void *cf, void *arg)
85 {
86 	uint64_t count;
87 	struct cpu_info *ci = curcpu();
88 	struct schedstate_percpu *spc = &ci->ci_schedstate;
89 
90 	count = clockrequest_advance(cr, roundrobin_period);
91 
92 	if (ci->ci_curproc != NULL) {
93 		if (spc->spc_schedflags & SPCF_SEENRR || count >= 2) {
94 			/*
95 			 * The process has already been through a roundrobin
96 			 * without switching and may be hogging the CPU.
97 			 * Indicate that the process should yield.
98 			 */
99 			atomic_setbits_int(&spc->spc_schedflags,
100 			    SPCF_SEENRR | SPCF_SHOULDYIELD);
101 		} else {
102 			atomic_setbits_int(&spc->spc_schedflags,
103 			    SPCF_SEENRR);
104 		}
105 	}
106 
107 	if (spc->spc_nrun || spc->spc_schedflags & SPCF_SHOULDYIELD)
108 		need_resched(ci);
109 }
110 
111 
112 
113 /*
114  * update_loadav: compute a tenex style load average of a quantity on
115  * 1, 5, and 15 minute intervals.
116  */
117 void
update_loadavg(void * unused)118 update_loadavg(void *unused)
119 {
120 	static struct timeout to = TIMEOUT_INITIALIZER(update_loadavg, NULL);
121 	CPU_INFO_ITERATOR cii;
122 	struct cpu_info *ci;
123 	u_int i, nrun = 0;
124 
125 	CPU_INFO_FOREACH(cii, ci) {
126 		if (!cpuset_isset(&sched_idle_cpus, ci))
127 			nrun++;
128 		nrun += ci->ci_schedstate.spc_nrun;
129 	}
130 
131 	for (i = 0; i < 3; i++) {
132 		averunnable.ldavg[i] = (cexp[i] * averunnable.ldavg[i] +
133 		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
134 	}
135 
136 	timeout_add_sec(&to, 5);
137 }
138 
139 /*
140  * Constants for digital decay and forget:
141  *	90% of (p_estcpu) usage in 5 * loadav time
142  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
143  *          Note that, as ps(1) mentions, this can let percentages
144  *          total over 100% (I've seen 137.9% for 3 processes).
145  *
146  * Note that hardclock updates p_estcpu and p_cpticks independently.
147  *
148  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
149  * That is, the system wants to compute a value of decay such
150  * that the following for loop:
151  * 	for (i = 0; i < (5 * loadavg); i++)
152  * 		p_estcpu *= decay;
153  * will compute
154  * 	p_estcpu *= 0.1;
155  * for all values of loadavg:
156  *
157  * Mathematically this loop can be expressed by saying:
158  * 	decay ** (5 * loadavg) ~= .1
159  *
160  * The system computes decay as:
161  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
162  *
163  * We wish to prove that the system's computation of decay
164  * will always fulfill the equation:
165  * 	decay ** (5 * loadavg) ~= .1
166  *
167  * If we compute b as:
168  * 	b = 2 * loadavg
169  * then
170  * 	decay = b / (b + 1)
171  *
172  * We now need to prove two things:
173  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
174  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
175  *
176  * Facts:
177  *         For x close to zero, exp(x) =~ 1 + x, since
178  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
179  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
180  *         For x close to zero, ln(1+x) =~ x, since
181  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
182  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
183  *         ln(.1) =~ -2.30
184  *
185  * Proof of (1):
186  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
187  *	solving for factor,
188  *      ln(factor) =~ (-2.30/5*loadav), or
189  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
190  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
191  *
192  * Proof of (2):
193  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
194  *	solving for power,
195  *      power*ln(b/(b+1)) =~ -2.30, or
196  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
197  *
198  * Actual power values for the implemented algorithm are as follows:
199  *      loadav: 1       2       3       4
200  *      power:  5.68    10.32   14.94   19.55
201  */
202 
203 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
204 #define	loadfactor(loadav)	(2 * (loadav))
205 #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
206 
207 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
208 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
209 
210 /*
211  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
212  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
213  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
214  *
215  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
216  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
217  *
218  * If you don't want to bother with the faster/more-accurate formula, you
219  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
220  * (more general) method of calculating the %age of CPU used by a process.
221  */
222 #define	CCPU_SHIFT	11
223 
224 /*
225  * Recompute process priorities, every second.
226  */
227 void
schedcpu(void * unused)228 schedcpu(void *unused)
229 {
230 	static struct timeout to = TIMEOUT_INITIALIZER(schedcpu, NULL);
231 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
232 	struct proc *p;
233 	unsigned int newcpu;
234 
235 	LIST_FOREACH(p, &allproc, p_list) {
236 		/*
237 		 * Idle threads are never placed on the runqueue,
238 		 * therefore computing their priority is pointless.
239 		 */
240 		if (p->p_cpu != NULL &&
241 		    p->p_cpu->ci_schedstate.spc_idleproc == p)
242 			continue;
243 		/*
244 		 * Increment sleep time (if sleeping). We ignore overflow.
245 		 */
246 		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
247 			p->p_slptime++;
248 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
249 		/*
250 		 * If the process has slept the entire second,
251 		 * stop recalculating its priority until it wakes up.
252 		 */
253 		if (p->p_slptime > 1)
254 			continue;
255 		SCHED_LOCK();
256 		/*
257 		 * p_pctcpu is only for diagnostic tools such as ps.
258 		 */
259 #if	(FSHIFT >= CCPU_SHIFT)
260 		p->p_pctcpu += (stathz == 100)?
261 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
262                 	100 * (((fixpt_t) p->p_cpticks)
263 				<< (FSHIFT - CCPU_SHIFT)) / stathz;
264 #else
265 		p->p_pctcpu += ((FSCALE - ccpu) *
266 			(p->p_cpticks * FSCALE / stathz)) >> FSHIFT;
267 #endif
268 		p->p_cpticks = 0;
269 		newcpu = (u_int) decay_cpu(loadfac, p->p_estcpu);
270 		setpriority(p, newcpu, p->p_p->ps_nice);
271 
272 		if (p->p_stat == SRUN &&
273 		    (p->p_runpri / SCHED_PPQ) != (p->p_usrpri / SCHED_PPQ)) {
274 			remrunqueue(p);
275 			setrunqueue(p->p_cpu, p, p->p_usrpri);
276 		}
277 		SCHED_UNLOCK();
278 	}
279 	wakeup(&lbolt);
280 	timeout_add_sec(&to, 1);
281 }
282 
283 /*
284  * Recalculate the priority of a process after it has slept for a while.
285  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
286  * least six times the loadfactor will decay p_estcpu to zero.
287  */
288 uint32_t
decay_aftersleep(uint32_t estcpu,uint32_t slptime)289 decay_aftersleep(uint32_t estcpu, uint32_t slptime)
290 {
291 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
292 	uint32_t newcpu;
293 
294 	if (slptime > 5 * loadfac)
295 		newcpu = 0;
296 	else {
297 		newcpu = estcpu;
298 		slptime--;	/* the first time was done in schedcpu */
299 		while (newcpu && --slptime)
300 			newcpu = decay_cpu(loadfac, newcpu);
301 
302 	}
303 
304 	return (newcpu);
305 }
306 
307 /*
308  * General yield call.  Puts the current process back on its run queue and
309  * performs a voluntary context switch.
310  */
311 void
yield(void)312 yield(void)
313 {
314 	struct proc *p = curproc;
315 
316 	SCHED_LOCK();
317 	setrunqueue(p->p_cpu, p, p->p_usrpri);
318 	p->p_ru.ru_nvcsw++;
319 	mi_switch();
320 	SCHED_UNLOCK();
321 }
322 
323 /*
324  * General preemption call.  Puts the current process back on its run queue
325  * and performs an involuntary context switch.  If a process is supplied,
326  * we switch to that process.  Otherwise, we use the normal process selection
327  * criteria.
328  */
329 void
preempt(void)330 preempt(void)
331 {
332 	struct proc *p = curproc;
333 
334 	SCHED_LOCK();
335 	setrunqueue(p->p_cpu, p, p->p_usrpri);
336 	p->p_ru.ru_nivcsw++;
337 	mi_switch();
338 	SCHED_UNLOCK();
339 }
340 
341 void
mi_switch(void)342 mi_switch(void)
343 {
344 	struct schedstate_percpu *spc = &curcpu()->ci_schedstate;
345 	struct proc *p = curproc;
346 	struct proc *nextproc;
347 	int oldipl;
348 #ifdef MULTIPROCESSOR
349 	int hold_count;
350 #endif
351 
352 	KASSERT(p->p_stat != SONPROC);
353 
354 	SCHED_ASSERT_LOCKED();
355 
356 #ifdef MULTIPROCESSOR
357 	/*
358 	 * Release the kernel_lock, as we are about to yield the CPU.
359 	 */
360 	if (_kernel_lock_held())
361 		hold_count = __mp_release_all(&kernel_lock);
362 	else
363 		hold_count = 0;
364 #endif
365 
366 	/* Update thread runtime */
367 	tuagg_add_runtime();
368 
369 	/* Stop any optional clock interrupts. */
370 	if (ISSET(spc->spc_schedflags, SPCF_ITIMER)) {
371 		atomic_clearbits_int(&spc->spc_schedflags, SPCF_ITIMER);
372 		clockintr_cancel(&spc->spc_itimer);
373 	}
374 	if (ISSET(spc->spc_schedflags, SPCF_PROFCLOCK)) {
375 		atomic_clearbits_int(&spc->spc_schedflags, SPCF_PROFCLOCK);
376 		clockintr_cancel(&spc->spc_profclock);
377 	}
378 
379 	/*
380 	 * Process is about to yield the CPU; clear the appropriate
381 	 * scheduling flags.
382 	 */
383 	atomic_clearbits_int(&spc->spc_schedflags, SPCF_SWITCHCLEAR);
384 
385 	nextproc = sched_chooseproc();
386 
387 	/* preserve old IPL level so we can switch back to that */
388 	oldipl = MUTEX_OLDIPL(&sched_lock);
389 
390 	if (p != nextproc) {
391 		uvmexp.swtch++;
392 		TRACEPOINT(sched, off__cpu, nextproc->p_tid + THREAD_PID_OFFSET,
393 		    nextproc->p_p->ps_pid);
394 		cpu_switchto(p, nextproc);
395 		TRACEPOINT(sched, on__cpu, NULL);
396 	} else {
397 		TRACEPOINT(sched, remain__cpu, NULL);
398 		p->p_stat = SONPROC;
399 	}
400 
401 	clear_resched(curcpu());
402 
403 	SCHED_ASSERT_LOCKED();
404 
405 	/* Restore proc's IPL. */
406 	MUTEX_OLDIPL(&sched_lock) = oldipl;
407 	SCHED_UNLOCK();
408 
409 	SCHED_ASSERT_UNLOCKED();
410 
411 	assertwaitok();
412 	smr_idle();
413 
414 	/*
415 	 * We're running again; record our new start time.  We might
416 	 * be running on a new CPU now, so refetch the schedstate_percpu
417 	 * pointer.
418 	 */
419 	KASSERT(p->p_cpu == curcpu());
420 	spc = &p->p_cpu->ci_schedstate;
421 
422 	/* Start any optional clock interrupts needed by the thread. */
423 	if (ISSET(p->p_p->ps_flags, PS_ITIMER)) {
424 		atomic_setbits_int(&spc->spc_schedflags, SPCF_ITIMER);
425 		clockintr_advance(&spc->spc_itimer, hardclock_period);
426 	}
427 	if (ISSET(p->p_p->ps_flags, PS_PROFIL)) {
428 		atomic_setbits_int(&spc->spc_schedflags, SPCF_PROFCLOCK);
429 		clockintr_advance(&spc->spc_profclock, profclock_period);
430 	}
431 
432 	nanouptime(&spc->spc_runtime);
433 
434 #ifdef MULTIPROCESSOR
435 	/*
436 	 * Reacquire the kernel_lock now.  We do this after we've
437 	 * released the scheduler lock to avoid deadlock, and before
438 	 * we reacquire the interlock and the scheduler lock.
439 	 */
440 	if (hold_count)
441 		__mp_acquire_count(&kernel_lock, hold_count);
442 #endif
443 	SCHED_LOCK();
444 }
445 
446 /*
447  * Change process state to be runnable,
448  * placing it on the run queue.
449  */
450 void
setrunnable(struct proc * p)451 setrunnable(struct proc *p)
452 {
453 	struct process *pr = p->p_p;
454 	u_char prio;
455 
456 	SCHED_ASSERT_LOCKED();
457 
458 	switch (p->p_stat) {
459 	case 0:
460 	case SRUN:
461 	case SONPROC:
462 	case SDEAD:
463 	case SIDL:
464 	default:
465 		panic("setrunnable");
466 	case SSTOP:
467 		prio = p->p_usrpri;
468 		/* if not yet asleep, unstop but don't add to runqueue */
469 		if (ISSET(p->p_flag, P_WSLEEP)) {
470 			p->p_stat = SSLEEP;
471 			return;
472 		}
473 		setrunqueue(NULL, p, prio);
474 		break;
475 	case SSLEEP:
476 		prio = p->p_slppri;
477 
478 		/* if not yet asleep, don't add to runqueue */
479 		if (ISSET(p->p_flag, P_WSLEEP))
480 			return;
481 		setrunqueue(NULL, p, prio);
482 		TRACEPOINT(sched, wakeup, p->p_tid + THREAD_PID_OFFSET,
483 		    p->p_p->ps_pid, CPU_INFO_UNIT(p->p_cpu));
484 		break;
485 	}
486 	if (p->p_slptime > 1) {
487 		uint32_t newcpu;
488 
489 		newcpu = decay_aftersleep(p->p_estcpu, p->p_slptime);
490 		setpriority(p, newcpu, pr->ps_nice);
491 	}
492 	p->p_slptime = 0;
493 }
494 
495 /*
496  * Compute the priority of a process.
497  */
498 void
setpriority(struct proc * p,uint32_t newcpu,uint8_t nice)499 setpriority(struct proc *p, uint32_t newcpu, uint8_t nice)
500 {
501 	unsigned int newprio;
502 
503 	newprio = min((PUSER + newcpu + NICE_WEIGHT * (nice - NZERO)), MAXPRI);
504 
505 	SCHED_ASSERT_LOCKED();
506 	p->p_estcpu = newcpu;
507 	p->p_usrpri = newprio;
508 }
509 
510 /*
511  * We adjust the priority of the current process.  The priority of a process
512  * gets worse as it accumulates CPU time.  The cpu usage estimator (p_estcpu)
513  * is increased here.  The formula for computing priorities (in kern_synch.c)
514  * will compute a different value each time p_estcpu increases. This can
515  * cause a switch, but unless the priority crosses a PPQ boundary the actual
516  * queue will not change.  The cpu usage estimator ramps up quite quickly
517  * when the process is running (linearly), and decays away exponentially, at
518  * a rate which is proportionally slower when the system is busy.  The basic
519  * principle is that the system will 90% forget that the process used a lot
520  * of CPU time in 5 * loadav seconds.  This causes the system to favor
521  * processes which haven't run much recently, and to round-robin among other
522  * processes.
523  */
524 void
schedclock(struct proc * p)525 schedclock(struct proc *p)
526 {
527 	struct cpu_info *ci = curcpu();
528 	struct schedstate_percpu *spc = &ci->ci_schedstate;
529 	uint32_t newcpu;
530 
531 	if (p == spc->spc_idleproc || spc->spc_spinning)
532 		return;
533 
534 	SCHED_LOCK();
535 	newcpu = ESTCPULIM(p->p_estcpu + 1);
536 	setpriority(p, newcpu, p->p_p->ps_nice);
537 	SCHED_UNLOCK();
538 }
539 
540 void (*cpu_setperf)(int);
541 
542 #define PERFPOL_MANUAL 0
543 #define PERFPOL_AUTO 1
544 #define PERFPOL_HIGH 2
545 int perflevel = 100;
546 int perfpolicy_on_ac = PERFPOL_HIGH;
547 int perfpolicy_on_battery = PERFPOL_AUTO;
548 
549 #ifndef SMALL_KERNEL
550 /*
551  * The code below handles CPU throttling.
552  */
553 #include <sys/sysctl.h>
554 
555 void setperf_auto(void *);
556 struct timeout setperf_to = TIMEOUT_INITIALIZER(setperf_auto, NULL);
557 extern int hw_power;
558 
559 static inline int
perfpolicy_dynamic(void)560 perfpolicy_dynamic(void)
561 {
562 	return (perfpolicy_on_ac == PERFPOL_AUTO ||
563 	    perfpolicy_on_battery == PERFPOL_AUTO);
564 }
565 
566 static inline int
current_perfpolicy(void)567 current_perfpolicy(void)
568 {
569 	return (hw_power) ? perfpolicy_on_ac : perfpolicy_on_battery;
570 }
571 
572 void
setperf_auto(void * v)573 setperf_auto(void *v)
574 {
575 	static uint64_t *idleticks, *totalticks;
576 	static int downbeats;
577 	int i, j = 0;
578 	int speedup = 0;
579 	CPU_INFO_ITERATOR cii;
580 	struct cpu_info *ci;
581 	uint64_t idle, total, allidle = 0, alltotal = 0;
582 
583 	if (!perfpolicy_dynamic())
584 		return;
585 
586 	if (cpu_setperf == NULL)
587 		return;
588 
589 	if (current_perfpolicy() == PERFPOL_HIGH) {
590 		speedup = 1;
591 		goto faster;
592 	}
593 
594 	if (!idleticks)
595 		if (!(idleticks = mallocarray(ncpusfound, sizeof(*idleticks),
596 		    M_DEVBUF, M_NOWAIT | M_ZERO)))
597 			return;
598 	if (!totalticks)
599 		if (!(totalticks = mallocarray(ncpusfound, sizeof(*totalticks),
600 		    M_DEVBUF, M_NOWAIT | M_ZERO))) {
601 			free(idleticks, M_DEVBUF,
602 			    sizeof(*idleticks) * ncpusfound);
603 			return;
604 		}
605 	CPU_INFO_FOREACH(cii, ci) {
606 		if (!cpu_is_online(ci))
607 			continue;
608 		total = 0;
609 		for (i = 0; i < CPUSTATES; i++) {
610 			total += ci->ci_schedstate.spc_cp_time[i];
611 		}
612 		total -= totalticks[j];
613 		idle = ci->ci_schedstate.spc_cp_time[CP_IDLE] - idleticks[j];
614 		if (idle < total / 3)
615 			speedup = 1;
616 		alltotal += total;
617 		allidle += idle;
618 		idleticks[j] += idle;
619 		totalticks[j] += total;
620 		j++;
621 	}
622 	if (allidle < alltotal / 2)
623 		speedup = 1;
624 	if (speedup && downbeats < 5)
625 		downbeats++;
626 
627 	if (speedup && perflevel != 100) {
628 faster:
629 		perflevel = 100;
630 		cpu_setperf(perflevel);
631 	} else if (!speedup && perflevel != 0 && --downbeats <= 0) {
632 		perflevel = 0;
633 		cpu_setperf(perflevel);
634 	}
635 
636 	timeout_add_msec(&setperf_to, 100);
637 }
638 
639 int
sysctl_hwsetperf(void * oldp,size_t * oldlenp,void * newp,size_t newlen)640 sysctl_hwsetperf(void *oldp, size_t *oldlenp, void *newp, size_t newlen)
641 {
642 	int err;
643 
644 	if (!cpu_setperf)
645 		return EOPNOTSUPP;
646 
647 	if (perfpolicy_on_ac != PERFPOL_MANUAL)
648 		return sysctl_rdint(oldp, oldlenp, newp, perflevel);
649 
650 	err = sysctl_int_bounded(oldp, oldlenp, newp, newlen,
651 	    &perflevel, 0, 100);
652 	if (err)
653 		return err;
654 
655 	if (newp != NULL)
656 		cpu_setperf(perflevel);
657 
658 	return 0;
659 }
660 
661 int
sysctl_hwperfpolicy(void * oldp,size_t * oldlenp,void * newp,size_t newlen)662 sysctl_hwperfpolicy(void *oldp, size_t *oldlenp, void *newp, size_t newlen)
663 {
664 	char policy[32];
665 	char *policy_on_battery;
666 	int err, perfpolicy;
667 
668 	if (!cpu_setperf)
669 		return EOPNOTSUPP;
670 
671 	switch (current_perfpolicy()) {
672 	case PERFPOL_MANUAL:
673 		strlcpy(policy, "manual", sizeof(policy));
674 		break;
675 	case PERFPOL_AUTO:
676 		strlcpy(policy, "auto", sizeof(policy));
677 		break;
678 	case PERFPOL_HIGH:
679 		strlcpy(policy, "high", sizeof(policy));
680 		break;
681 	default:
682 		strlcpy(policy, "unknown", sizeof(policy));
683 		break;
684 	}
685 
686 	if (newp == NULL)
687 		return sysctl_rdstring(oldp, oldlenp, newp, policy);
688 
689 	err = sysctl_string(oldp, oldlenp, newp, newlen, policy, sizeof(policy));
690 	if (err)
691 		return err;
692 
693 	policy_on_battery = strchr(policy, ',');
694 	if (policy_on_battery != NULL) {
695 		*policy_on_battery = '\0';
696 		policy_on_battery++;
697 	}
698 
699 	if (strcmp(policy, "manual") == 0)
700 		perfpolicy = PERFPOL_MANUAL;
701 	else if (strcmp(policy, "auto") == 0)
702 		perfpolicy = PERFPOL_AUTO;
703 	else if (strcmp(policy, "high") == 0)
704 		perfpolicy = PERFPOL_HIGH;
705 	else
706 		return EINVAL;
707 
708 	if (policy_on_battery == NULL)
709 		perfpolicy_on_battery = perfpolicy_on_ac = perfpolicy;
710 	else {
711 		if (strcmp(policy_on_battery, "manual") == 0 ||
712 		    perfpolicy == PERFPOL_MANUAL) {
713 			/* Not handled */
714 			return EINVAL;
715 		}
716 		if (strcmp(policy_on_battery, "auto") == 0)
717 			perfpolicy_on_battery = PERFPOL_AUTO;
718 		else if (strcmp(policy_on_battery, "high") == 0)
719 			perfpolicy_on_battery = PERFPOL_HIGH;
720 		else
721 			return EINVAL;
722 		perfpolicy_on_ac = perfpolicy;
723 	}
724 
725 	if (current_perfpolicy() == PERFPOL_HIGH) {
726 		perflevel = 100;
727 		cpu_setperf(perflevel);
728 	}
729 
730 	if (perfpolicy_dynamic())
731 		timeout_add_msec(&setperf_to, 200);
732 
733 	return 0;
734 }
735 #endif
736 
737 /*
738  * Start the scheduler's periodic timeouts.
739  */
740 void
scheduler_start(void)741 scheduler_start(void)
742 {
743 	schedcpu(NULL);
744 	update_loadavg(NULL);
745 
746 #ifndef SMALL_KERNEL
747 	if (perfpolicy_dynamic())
748 		timeout_add_msec(&setperf_to, 200);
749 #endif
750 }
751 
752