1 /* $OpenBSD: sched_bsd.c,v 1.63 2020/05/30 14:42:59 solene Exp $ */ 2 /* $NetBSD: kern_synch.c,v 1.37 1996/04/22 01:38:37 christos Exp $ */ 3 4 /*- 5 * Copyright (c) 1982, 1986, 1990, 1991, 1993 6 * The Regents of the University of California. All rights reserved. 7 * (c) UNIX System Laboratories, Inc. 8 * All or some portions of this file are derived from material licensed 9 * to the University of California by American Telephone and Telegraph 10 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 11 * the permission of UNIX System Laboratories, Inc. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 * 37 * @(#)kern_synch.c 8.6 (Berkeley) 1/21/94 38 */ 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/proc.h> 43 #include <sys/kernel.h> 44 #include <sys/malloc.h> 45 #include <sys/signalvar.h> 46 #include <sys/resourcevar.h> 47 #include <uvm/uvm_extern.h> 48 #include <sys/sched.h> 49 #include <sys/timeout.h> 50 #include <sys/smr.h> 51 #include <sys/tracepoint.h> 52 53 #ifdef KTRACE 54 #include <sys/ktrace.h> 55 #endif 56 57 58 int lbolt; /* once a second sleep address */ 59 int rrticks_init; /* # of hardclock ticks per roundrobin() */ 60 61 #ifdef MULTIPROCESSOR 62 struct __mp_lock sched_lock; 63 #endif 64 65 void schedcpu(void *); 66 uint32_t decay_aftersleep(uint32_t, uint32_t); 67 68 void 69 scheduler_start(void) 70 { 71 static struct timeout schedcpu_to; 72 73 /* 74 * We avoid polluting the global namespace by keeping the scheduler 75 * timeouts static in this function. 76 * We setup the timeout here and kick schedcpu once to make it do 77 * its job. 78 */ 79 timeout_set(&schedcpu_to, schedcpu, &schedcpu_to); 80 81 rrticks_init = hz / 10; 82 schedcpu(&schedcpu_to); 83 } 84 85 /* 86 * Force switch among equal priority processes every 100ms. 87 */ 88 void 89 roundrobin(struct cpu_info *ci) 90 { 91 struct schedstate_percpu *spc = &ci->ci_schedstate; 92 93 spc->spc_rrticks = rrticks_init; 94 95 if (ci->ci_curproc != NULL) { 96 if (spc->spc_schedflags & SPCF_SEENRR) { 97 /* 98 * The process has already been through a roundrobin 99 * without switching and may be hogging the CPU. 100 * Indicate that the process should yield. 101 */ 102 atomic_setbits_int(&spc->spc_schedflags, 103 SPCF_SHOULDYIELD); 104 } else { 105 atomic_setbits_int(&spc->spc_schedflags, 106 SPCF_SEENRR); 107 } 108 } 109 110 if (spc->spc_nrun) 111 need_resched(ci); 112 } 113 114 /* 115 * Constants for digital decay and forget: 116 * 90% of (p_estcpu) usage in 5 * loadav time 117 * 95% of (p_pctcpu) usage in 60 seconds (load insensitive) 118 * Note that, as ps(1) mentions, this can let percentages 119 * total over 100% (I've seen 137.9% for 3 processes). 120 * 121 * Note that hardclock updates p_estcpu and p_cpticks independently. 122 * 123 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds. 124 * That is, the system wants to compute a value of decay such 125 * that the following for loop: 126 * for (i = 0; i < (5 * loadavg); i++) 127 * p_estcpu *= decay; 128 * will compute 129 * p_estcpu *= 0.1; 130 * for all values of loadavg: 131 * 132 * Mathematically this loop can be expressed by saying: 133 * decay ** (5 * loadavg) ~= .1 134 * 135 * The system computes decay as: 136 * decay = (2 * loadavg) / (2 * loadavg + 1) 137 * 138 * We wish to prove that the system's computation of decay 139 * will always fulfill the equation: 140 * decay ** (5 * loadavg) ~= .1 141 * 142 * If we compute b as: 143 * b = 2 * loadavg 144 * then 145 * decay = b / (b + 1) 146 * 147 * We now need to prove two things: 148 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1) 149 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg) 150 * 151 * Facts: 152 * For x close to zero, exp(x) =~ 1 + x, since 153 * exp(x) = 0! + x**1/1! + x**2/2! + ... . 154 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b. 155 * For x close to zero, ln(1+x) =~ x, since 156 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1 157 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1). 158 * ln(.1) =~ -2.30 159 * 160 * Proof of (1): 161 * Solve (factor)**(power) =~ .1 given power (5*loadav): 162 * solving for factor, 163 * ln(factor) =~ (-2.30/5*loadav), or 164 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) = 165 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED 166 * 167 * Proof of (2): 168 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)): 169 * solving for power, 170 * power*ln(b/(b+1)) =~ -2.30, or 171 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED 172 * 173 * Actual power values for the implemented algorithm are as follows: 174 * loadav: 1 2 3 4 175 * power: 5.68 10.32 14.94 19.55 176 */ 177 178 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */ 179 #define loadfactor(loadav) (2 * (loadav)) 180 #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE)) 181 182 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */ 183 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */ 184 185 /* 186 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the 187 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below 188 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT). 189 * 190 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used: 191 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits). 192 * 193 * If you don't want to bother with the faster/more-accurate formula, you 194 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate 195 * (more general) method of calculating the %age of CPU used by a process. 196 */ 197 #define CCPU_SHIFT 11 198 199 /* 200 * Recompute process priorities, every second. 201 */ 202 void 203 schedcpu(void *arg) 204 { 205 struct timeout *to = (struct timeout *)arg; 206 fixpt_t loadfac = loadfactor(averunnable.ldavg[0]); 207 struct proc *p; 208 int s; 209 unsigned int newcpu; 210 int phz; 211 212 /* 213 * If we have a statistics clock, use that to calculate CPU 214 * time, otherwise revert to using the profiling clock (which, 215 * in turn, defaults to hz if there is no separate profiling 216 * clock available) 217 */ 218 phz = stathz ? stathz : profhz; 219 KASSERT(phz); 220 221 LIST_FOREACH(p, &allproc, p_list) { 222 /* 223 * Idle threads are never placed on the runqueue, 224 * therefore computing their priority is pointless. 225 */ 226 if (p->p_cpu != NULL && 227 p->p_cpu->ci_schedstate.spc_idleproc == p) 228 continue; 229 /* 230 * Increment sleep time (if sleeping). We ignore overflow. 231 */ 232 if (p->p_stat == SSLEEP || p->p_stat == SSTOP) 233 p->p_slptime++; 234 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT; 235 /* 236 * If the process has slept the entire second, 237 * stop recalculating its priority until it wakes up. 238 */ 239 if (p->p_slptime > 1) 240 continue; 241 SCHED_LOCK(s); 242 /* 243 * p_pctcpu is only for diagnostic tools such as ps. 244 */ 245 #if (FSHIFT >= CCPU_SHIFT) 246 p->p_pctcpu += (phz == 100)? 247 ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT): 248 100 * (((fixpt_t) p->p_cpticks) 249 << (FSHIFT - CCPU_SHIFT)) / phz; 250 #else 251 p->p_pctcpu += ((FSCALE - ccpu) * 252 (p->p_cpticks * FSCALE / phz)) >> FSHIFT; 253 #endif 254 p->p_cpticks = 0; 255 newcpu = (u_int) decay_cpu(loadfac, p->p_estcpu); 256 setpriority(p, newcpu, p->p_p->ps_nice); 257 258 if (p->p_stat == SRUN && 259 (p->p_runpri / SCHED_PPQ) != (p->p_usrpri / SCHED_PPQ)) { 260 remrunqueue(p); 261 setrunqueue(p->p_cpu, p, p->p_usrpri); 262 } 263 SCHED_UNLOCK(s); 264 } 265 uvm_meter(); 266 wakeup(&lbolt); 267 timeout_add_sec(to, 1); 268 } 269 270 /* 271 * Recalculate the priority of a process after it has slept for a while. 272 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at 273 * least six times the loadfactor will decay p_estcpu to zero. 274 */ 275 uint32_t 276 decay_aftersleep(uint32_t estcpu, uint32_t slptime) 277 { 278 fixpt_t loadfac = loadfactor(averunnable.ldavg[0]); 279 uint32_t newcpu; 280 281 if (slptime > 5 * loadfac) 282 newcpu = 0; 283 else { 284 newcpu = estcpu; 285 slptime--; /* the first time was done in schedcpu */ 286 while (newcpu && --slptime) 287 newcpu = decay_cpu(loadfac, newcpu); 288 289 } 290 291 return (newcpu); 292 } 293 294 /* 295 * General yield call. Puts the current process back on its run queue and 296 * performs a voluntary context switch. 297 */ 298 void 299 yield(void) 300 { 301 struct proc *p = curproc; 302 int s; 303 304 NET_ASSERT_UNLOCKED(); 305 306 SCHED_LOCK(s); 307 setrunqueue(p->p_cpu, p, p->p_usrpri); 308 p->p_ru.ru_nvcsw++; 309 mi_switch(); 310 SCHED_UNLOCK(s); 311 } 312 313 /* 314 * General preemption call. Puts the current process back on its run queue 315 * and performs an involuntary context switch. If a process is supplied, 316 * we switch to that process. Otherwise, we use the normal process selection 317 * criteria. 318 */ 319 void 320 preempt(void) 321 { 322 struct proc *p = curproc; 323 int s; 324 325 SCHED_LOCK(s); 326 setrunqueue(p->p_cpu, p, p->p_usrpri); 327 p->p_ru.ru_nivcsw++; 328 mi_switch(); 329 SCHED_UNLOCK(s); 330 } 331 332 void 333 mi_switch(void) 334 { 335 struct schedstate_percpu *spc = &curcpu()->ci_schedstate; 336 struct proc *p = curproc; 337 struct proc *nextproc; 338 struct process *pr = p->p_p; 339 struct timespec ts; 340 #ifdef MULTIPROCESSOR 341 int hold_count; 342 int sched_count; 343 #endif 344 345 assertwaitok(); 346 KASSERT(p->p_stat != SONPROC); 347 348 SCHED_ASSERT_LOCKED(); 349 350 #ifdef MULTIPROCESSOR 351 /* 352 * Release the kernel_lock, as we are about to yield the CPU. 353 */ 354 sched_count = __mp_release_all_but_one(&sched_lock); 355 if (_kernel_lock_held()) 356 hold_count = __mp_release_all(&kernel_lock); 357 else 358 hold_count = 0; 359 #endif 360 361 /* 362 * Compute the amount of time during which the current 363 * process was running, and add that to its total so far. 364 */ 365 nanouptime(&ts); 366 if (timespeccmp(&ts, &spc->spc_runtime, <)) { 367 #if 0 368 printf("uptime is not monotonic! " 369 "ts=%lld.%09lu, runtime=%lld.%09lu\n", 370 (long long)tv.tv_sec, tv.tv_nsec, 371 (long long)spc->spc_runtime.tv_sec, 372 spc->spc_runtime.tv_nsec); 373 #endif 374 } else { 375 timespecsub(&ts, &spc->spc_runtime, &ts); 376 timespecadd(&p->p_rtime, &ts, &p->p_rtime); 377 } 378 379 /* add the time counts for this thread to the process's total */ 380 tuagg_unlocked(pr, p); 381 382 /* 383 * Process is about to yield the CPU; clear the appropriate 384 * scheduling flags. 385 */ 386 atomic_clearbits_int(&spc->spc_schedflags, SPCF_SWITCHCLEAR); 387 388 nextproc = sched_chooseproc(); 389 390 if (p != nextproc) { 391 uvmexp.swtch++; 392 TRACEPOINT(sched, off__cpu, nextproc->p_tid, 393 nextproc->p_p->ps_pid); 394 cpu_switchto(p, nextproc); 395 TRACEPOINT(sched, on__cpu, NULL); 396 } else { 397 TRACEPOINT(sched, remain__cpu, NULL); 398 p->p_stat = SONPROC; 399 } 400 401 clear_resched(curcpu()); 402 403 SCHED_ASSERT_LOCKED(); 404 405 /* 406 * To preserve lock ordering, we need to release the sched lock 407 * and grab it after we grab the big lock. 408 * In the future, when the sched lock isn't recursive, we'll 409 * just release it here. 410 */ 411 #ifdef MULTIPROCESSOR 412 __mp_unlock(&sched_lock); 413 #endif 414 415 SCHED_ASSERT_UNLOCKED(); 416 417 smr_idle(); 418 419 /* 420 * We're running again; record our new start time. We might 421 * be running on a new CPU now, so don't use the cache'd 422 * schedstate_percpu pointer. 423 */ 424 KASSERT(p->p_cpu == curcpu()); 425 426 nanouptime(&p->p_cpu->ci_schedstate.spc_runtime); 427 428 #ifdef MULTIPROCESSOR 429 /* 430 * Reacquire the kernel_lock now. We do this after we've 431 * released the scheduler lock to avoid deadlock, and before 432 * we reacquire the interlock and the scheduler lock. 433 */ 434 if (hold_count) 435 __mp_acquire_count(&kernel_lock, hold_count); 436 __mp_acquire_count(&sched_lock, sched_count + 1); 437 #endif 438 } 439 440 /* 441 * Change process state to be runnable, 442 * placing it on the run queue. 443 */ 444 void 445 setrunnable(struct proc *p) 446 { 447 struct process *pr = p->p_p; 448 u_char prio; 449 450 SCHED_ASSERT_LOCKED(); 451 452 switch (p->p_stat) { 453 case 0: 454 case SRUN: 455 case SONPROC: 456 case SDEAD: 457 case SIDL: 458 default: 459 panic("setrunnable"); 460 case SSTOP: 461 /* 462 * If we're being traced (possibly because someone attached us 463 * while we were stopped), check for a signal from the debugger. 464 */ 465 if ((pr->ps_flags & PS_TRACED) != 0 && pr->ps_xsig != 0) 466 atomic_setbits_int(&p->p_siglist, sigmask(pr->ps_xsig)); 467 prio = p->p_usrpri; 468 unsleep(p); 469 break; 470 case SSLEEP: 471 prio = p->p_slppri; 472 unsleep(p); /* e.g. when sending signals */ 473 break; 474 } 475 setrunqueue(NULL, p, prio); 476 if (p->p_slptime > 1) { 477 uint32_t newcpu; 478 479 newcpu = decay_aftersleep(p->p_estcpu, p->p_slptime); 480 setpriority(p, newcpu, pr->ps_nice); 481 } 482 p->p_slptime = 0; 483 } 484 485 /* 486 * Compute the priority of a process. 487 */ 488 void 489 setpriority(struct proc *p, uint32_t newcpu, uint8_t nice) 490 { 491 unsigned int newprio; 492 493 newprio = min((PUSER + newcpu + NICE_WEIGHT * (nice - NZERO)), MAXPRI); 494 495 SCHED_ASSERT_LOCKED(); 496 p->p_estcpu = newcpu; 497 p->p_usrpri = newprio; 498 } 499 500 /* 501 * We adjust the priority of the current process. The priority of a process 502 * gets worse as it accumulates CPU time. The cpu usage estimator (p_estcpu) 503 * is increased here. The formula for computing priorities (in kern_synch.c) 504 * will compute a different value each time p_estcpu increases. This can 505 * cause a switch, but unless the priority crosses a PPQ boundary the actual 506 * queue will not change. The cpu usage estimator ramps up quite quickly 507 * when the process is running (linearly), and decays away exponentially, at 508 * a rate which is proportionally slower when the system is busy. The basic 509 * principle is that the system will 90% forget that the process used a lot 510 * of CPU time in 5 * loadav seconds. This causes the system to favor 511 * processes which haven't run much recently, and to round-robin among other 512 * processes. 513 */ 514 void 515 schedclock(struct proc *p) 516 { 517 struct cpu_info *ci = curcpu(); 518 struct schedstate_percpu *spc = &ci->ci_schedstate; 519 uint32_t newcpu; 520 int s; 521 522 if (p == spc->spc_idleproc || spc->spc_spinning) 523 return; 524 525 SCHED_LOCK(s); 526 newcpu = ESTCPULIM(p->p_estcpu + 1); 527 setpriority(p, newcpu, p->p_p->ps_nice); 528 SCHED_UNLOCK(s); 529 } 530 531 void (*cpu_setperf)(int); 532 533 #define PERFPOL_MANUAL 0 534 #define PERFPOL_AUTO 1 535 #define PERFPOL_HIGH 2 536 int perflevel = 100; 537 int perfpolicy = PERFPOL_MANUAL; 538 539 #ifndef SMALL_KERNEL 540 /* 541 * The code below handles CPU throttling. 542 */ 543 #include <sys/sysctl.h> 544 545 void setperf_auto(void *); 546 struct timeout setperf_to = TIMEOUT_INITIALIZER(setperf_auto, NULL); 547 548 void 549 setperf_auto(void *v) 550 { 551 static uint64_t *idleticks, *totalticks; 552 static int downbeats; 553 554 int i, j; 555 int speedup; 556 CPU_INFO_ITERATOR cii; 557 struct cpu_info *ci; 558 uint64_t idle, total, allidle, alltotal; 559 560 if (perfpolicy != PERFPOL_AUTO) 561 return; 562 563 if (!idleticks) 564 if (!(idleticks = mallocarray(ncpusfound, sizeof(*idleticks), 565 M_DEVBUF, M_NOWAIT | M_ZERO))) 566 return; 567 if (!totalticks) 568 if (!(totalticks = mallocarray(ncpusfound, sizeof(*totalticks), 569 M_DEVBUF, M_NOWAIT | M_ZERO))) { 570 free(idleticks, M_DEVBUF, 571 sizeof(*idleticks) * ncpusfound); 572 return; 573 } 574 575 alltotal = allidle = 0; 576 j = 0; 577 speedup = 0; 578 CPU_INFO_FOREACH(cii, ci) { 579 if (!cpu_is_online(ci)) 580 continue; 581 total = 0; 582 for (i = 0; i < CPUSTATES; i++) { 583 total += ci->ci_schedstate.spc_cp_time[i]; 584 } 585 total -= totalticks[j]; 586 idle = ci->ci_schedstate.spc_cp_time[CP_IDLE] - idleticks[j]; 587 if (idle < total / 3) 588 speedup = 1; 589 alltotal += total; 590 allidle += idle; 591 idleticks[j] += idle; 592 totalticks[j] += total; 593 j++; 594 } 595 if (allidle < alltotal / 2) 596 speedup = 1; 597 if (speedup) 598 downbeats = 5; 599 600 if (speedup && perflevel != 100) { 601 perflevel = 100; 602 cpu_setperf(perflevel); 603 } else if (!speedup && perflevel != 0 && --downbeats <= 0) { 604 perflevel = 0; 605 cpu_setperf(perflevel); 606 } 607 608 timeout_add_msec(&setperf_to, 100); 609 } 610 611 int 612 sysctl_hwsetperf(void *oldp, size_t *oldlenp, void *newp, size_t newlen) 613 { 614 int err, newperf; 615 616 if (!cpu_setperf) 617 return EOPNOTSUPP; 618 619 if (perfpolicy != PERFPOL_MANUAL) 620 return sysctl_rdint(oldp, oldlenp, newp, perflevel); 621 622 newperf = perflevel; 623 err = sysctl_int(oldp, oldlenp, newp, newlen, &newperf); 624 if (err) 625 return err; 626 if (newperf > 100) 627 newperf = 100; 628 if (newperf < 0) 629 newperf = 0; 630 perflevel = newperf; 631 cpu_setperf(perflevel); 632 633 return 0; 634 } 635 636 int 637 sysctl_hwperfpolicy(void *oldp, size_t *oldlenp, void *newp, size_t newlen) 638 { 639 char policy[32]; 640 int err; 641 642 if (!cpu_setperf) 643 return EOPNOTSUPP; 644 645 switch (perfpolicy) { 646 case PERFPOL_MANUAL: 647 strlcpy(policy, "manual", sizeof(policy)); 648 break; 649 case PERFPOL_AUTO: 650 strlcpy(policy, "auto", sizeof(policy)); 651 break; 652 case PERFPOL_HIGH: 653 strlcpy(policy, "high", sizeof(policy)); 654 break; 655 default: 656 strlcpy(policy, "unknown", sizeof(policy)); 657 break; 658 } 659 660 if (newp == NULL) 661 return sysctl_rdstring(oldp, oldlenp, newp, policy); 662 663 err = sysctl_string(oldp, oldlenp, newp, newlen, policy, sizeof(policy)); 664 if (err) 665 return err; 666 if (strcmp(policy, "manual") == 0) 667 perfpolicy = PERFPOL_MANUAL; 668 else if (strcmp(policy, "auto") == 0) 669 perfpolicy = PERFPOL_AUTO; 670 else if (strcmp(policy, "high") == 0) 671 perfpolicy = PERFPOL_HIGH; 672 else 673 return EINVAL; 674 675 if (perfpolicy == PERFPOL_AUTO) { 676 timeout_add_msec(&setperf_to, 200); 677 } else if (perfpolicy == PERFPOL_HIGH) { 678 perflevel = 100; 679 cpu_setperf(perflevel); 680 } 681 return 0; 682 } 683 #endif 684