xref: /openbsd/sys/kern/sched_bsd.c (revision 73471bf0)
1 /*	$OpenBSD: sched_bsd.c,v 1.70 2021/10/30 23:24:48 deraadt Exp $	*/
2 /*	$NetBSD: kern_synch.c,v 1.37 1996/04/22 01:38:37 christos Exp $	*/
3 
4 /*-
5  * Copyright (c) 1982, 1986, 1990, 1991, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  * (c) UNIX System Laboratories, Inc.
8  * All or some portions of this file are derived from material licensed
9  * to the University of California by American Telephone and Telegraph
10  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
11  * the permission of UNIX System Laboratories, Inc.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	@(#)kern_synch.c	8.6 (Berkeley) 1/21/94
38  */
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/kernel.h>
44 #include <sys/malloc.h>
45 #include <sys/signalvar.h>
46 #include <sys/resourcevar.h>
47 #include <uvm/uvm_extern.h>
48 #include <sys/sched.h>
49 #include <sys/timeout.h>
50 #include <sys/smr.h>
51 #include <sys/tracepoint.h>
52 
53 #ifdef KTRACE
54 #include <sys/ktrace.h>
55 #endif
56 
57 
58 int	lbolt;			/* once a second sleep address */
59 int	rrticks_init;		/* # of hardclock ticks per roundrobin() */
60 
61 #ifdef MULTIPROCESSOR
62 struct __mp_lock sched_lock;
63 #endif
64 
65 void			schedcpu(void *);
66 uint32_t		decay_aftersleep(uint32_t, uint32_t);
67 
68 /*
69  * Force switch among equal priority processes every 100ms.
70  */
71 void
72 roundrobin(struct cpu_info *ci)
73 {
74 	struct schedstate_percpu *spc = &ci->ci_schedstate;
75 
76 	spc->spc_rrticks = rrticks_init;
77 
78 	if (ci->ci_curproc != NULL) {
79 		if (spc->spc_schedflags & SPCF_SEENRR) {
80 			/*
81 			 * The process has already been through a roundrobin
82 			 * without switching and may be hogging the CPU.
83 			 * Indicate that the process should yield.
84 			 */
85 			atomic_setbits_int(&spc->spc_schedflags,
86 			    SPCF_SHOULDYIELD);
87 		} else {
88 			atomic_setbits_int(&spc->spc_schedflags,
89 			    SPCF_SEENRR);
90 		}
91 	}
92 
93 	if (spc->spc_nrun)
94 		need_resched(ci);
95 }
96 
97 /*
98  * Constants for digital decay and forget:
99  *	90% of (p_estcpu) usage in 5 * loadav time
100  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
101  *          Note that, as ps(1) mentions, this can let percentages
102  *          total over 100% (I've seen 137.9% for 3 processes).
103  *
104  * Note that hardclock updates p_estcpu and p_cpticks independently.
105  *
106  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
107  * That is, the system wants to compute a value of decay such
108  * that the following for loop:
109  * 	for (i = 0; i < (5 * loadavg); i++)
110  * 		p_estcpu *= decay;
111  * will compute
112  * 	p_estcpu *= 0.1;
113  * for all values of loadavg:
114  *
115  * Mathematically this loop can be expressed by saying:
116  * 	decay ** (5 * loadavg) ~= .1
117  *
118  * The system computes decay as:
119  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
120  *
121  * We wish to prove that the system's computation of decay
122  * will always fulfill the equation:
123  * 	decay ** (5 * loadavg) ~= .1
124  *
125  * If we compute b as:
126  * 	b = 2 * loadavg
127  * then
128  * 	decay = b / (b + 1)
129  *
130  * We now need to prove two things:
131  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
132  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
133  *
134  * Facts:
135  *         For x close to zero, exp(x) =~ 1 + x, since
136  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
137  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
138  *         For x close to zero, ln(1+x) =~ x, since
139  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
140  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
141  *         ln(.1) =~ -2.30
142  *
143  * Proof of (1):
144  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
145  *	solving for factor,
146  *      ln(factor) =~ (-2.30/5*loadav), or
147  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
148  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
149  *
150  * Proof of (2):
151  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
152  *	solving for power,
153  *      power*ln(b/(b+1)) =~ -2.30, or
154  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
155  *
156  * Actual power values for the implemented algorithm are as follows:
157  *      loadav: 1       2       3       4
158  *      power:  5.68    10.32   14.94   19.55
159  */
160 
161 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
162 #define	loadfactor(loadav)	(2 * (loadav))
163 #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
164 
165 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
166 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
167 
168 /*
169  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
170  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
171  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
172  *
173  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
174  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
175  *
176  * If you don't want to bother with the faster/more-accurate formula, you
177  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
178  * (more general) method of calculating the %age of CPU used by a process.
179  */
180 #define	CCPU_SHIFT	11
181 
182 /*
183  * Recompute process priorities, every second.
184  */
185 void
186 schedcpu(void *arg)
187 {
188 	struct timeout *to = (struct timeout *)arg;
189 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
190 	struct proc *p;
191 	int s;
192 	unsigned int newcpu;
193 	int phz;
194 
195 	/*
196 	 * If we have a statistics clock, use that to calculate CPU
197 	 * time, otherwise revert to using the profiling clock (which,
198 	 * in turn, defaults to hz if there is no separate profiling
199 	 * clock available)
200 	 */
201 	phz = stathz ? stathz : profhz;
202 	KASSERT(phz);
203 
204 	LIST_FOREACH(p, &allproc, p_list) {
205 		/*
206 		 * Idle threads are never placed on the runqueue,
207 		 * therefore computing their priority is pointless.
208 		 */
209 		if (p->p_cpu != NULL &&
210 		    p->p_cpu->ci_schedstate.spc_idleproc == p)
211 			continue;
212 		/*
213 		 * Increment sleep time (if sleeping). We ignore overflow.
214 		 */
215 		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
216 			p->p_slptime++;
217 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
218 		/*
219 		 * If the process has slept the entire second,
220 		 * stop recalculating its priority until it wakes up.
221 		 */
222 		if (p->p_slptime > 1)
223 			continue;
224 		SCHED_LOCK(s);
225 		/*
226 		 * p_pctcpu is only for diagnostic tools such as ps.
227 		 */
228 #if	(FSHIFT >= CCPU_SHIFT)
229 		p->p_pctcpu += (phz == 100)?
230 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
231                 	100 * (((fixpt_t) p->p_cpticks)
232 				<< (FSHIFT - CCPU_SHIFT)) / phz;
233 #else
234 		p->p_pctcpu += ((FSCALE - ccpu) *
235 			(p->p_cpticks * FSCALE / phz)) >> FSHIFT;
236 #endif
237 		p->p_cpticks = 0;
238 		newcpu = (u_int) decay_cpu(loadfac, p->p_estcpu);
239 		setpriority(p, newcpu, p->p_p->ps_nice);
240 
241 		if (p->p_stat == SRUN &&
242 		    (p->p_runpri / SCHED_PPQ) != (p->p_usrpri / SCHED_PPQ)) {
243 			remrunqueue(p);
244 			setrunqueue(p->p_cpu, p, p->p_usrpri);
245 		}
246 		SCHED_UNLOCK(s);
247 	}
248 	uvm_meter();
249 	wakeup(&lbolt);
250 	timeout_add_sec(to, 1);
251 }
252 
253 /*
254  * Recalculate the priority of a process after it has slept for a while.
255  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
256  * least six times the loadfactor will decay p_estcpu to zero.
257  */
258 uint32_t
259 decay_aftersleep(uint32_t estcpu, uint32_t slptime)
260 {
261 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
262 	uint32_t newcpu;
263 
264 	if (slptime > 5 * loadfac)
265 		newcpu = 0;
266 	else {
267 		newcpu = estcpu;
268 		slptime--;	/* the first time was done in schedcpu */
269 		while (newcpu && --slptime)
270 			newcpu = decay_cpu(loadfac, newcpu);
271 
272 	}
273 
274 	return (newcpu);
275 }
276 
277 /*
278  * General yield call.  Puts the current process back on its run queue and
279  * performs a voluntary context switch.
280  */
281 void
282 yield(void)
283 {
284 	struct proc *p = curproc;
285 	int s;
286 
287 	SCHED_LOCK(s);
288 	setrunqueue(p->p_cpu, p, p->p_usrpri);
289 	p->p_ru.ru_nvcsw++;
290 	mi_switch();
291 	SCHED_UNLOCK(s);
292 }
293 
294 /*
295  * General preemption call.  Puts the current process back on its run queue
296  * and performs an involuntary context switch.  If a process is supplied,
297  * we switch to that process.  Otherwise, we use the normal process selection
298  * criteria.
299  */
300 void
301 preempt(void)
302 {
303 	struct proc *p = curproc;
304 	int s;
305 
306 	SCHED_LOCK(s);
307 	setrunqueue(p->p_cpu, p, p->p_usrpri);
308 	p->p_ru.ru_nivcsw++;
309 	mi_switch();
310 	SCHED_UNLOCK(s);
311 }
312 
313 void
314 mi_switch(void)
315 {
316 	struct schedstate_percpu *spc = &curcpu()->ci_schedstate;
317 	struct proc *p = curproc;
318 	struct proc *nextproc;
319 	struct process *pr = p->p_p;
320 	struct timespec ts;
321 #ifdef MULTIPROCESSOR
322 	int hold_count;
323 	int sched_count;
324 #endif
325 
326 	assertwaitok();
327 	KASSERT(p->p_stat != SONPROC);
328 
329 	SCHED_ASSERT_LOCKED();
330 
331 #ifdef MULTIPROCESSOR
332 	/*
333 	 * Release the kernel_lock, as we are about to yield the CPU.
334 	 */
335 	sched_count = __mp_release_all_but_one(&sched_lock);
336 	if (_kernel_lock_held())
337 		hold_count = __mp_release_all(&kernel_lock);
338 	else
339 		hold_count = 0;
340 #endif
341 
342 	/*
343 	 * Compute the amount of time during which the current
344 	 * process was running, and add that to its total so far.
345 	 */
346 	nanouptime(&ts);
347 	if (timespeccmp(&ts, &spc->spc_runtime, <)) {
348 #if 0
349 		printf("uptime is not monotonic! "
350 		    "ts=%lld.%09lu, runtime=%lld.%09lu\n",
351 		    (long long)tv.tv_sec, tv.tv_nsec,
352 		    (long long)spc->spc_runtime.tv_sec,
353 		    spc->spc_runtime.tv_nsec);
354 #endif
355 	} else {
356 		timespecsub(&ts, &spc->spc_runtime, &ts);
357 		timespecadd(&p->p_rtime, &ts, &p->p_rtime);
358 	}
359 
360 	/* add the time counts for this thread to the process's total */
361 	tuagg_unlocked(pr, p);
362 
363 	/*
364 	 * Process is about to yield the CPU; clear the appropriate
365 	 * scheduling flags.
366 	 */
367 	atomic_clearbits_int(&spc->spc_schedflags, SPCF_SWITCHCLEAR);
368 
369 	nextproc = sched_chooseproc();
370 
371 	if (p != nextproc) {
372 		uvmexp.swtch++;
373 		TRACEPOINT(sched, off__cpu, nextproc->p_tid + THREAD_PID_OFFSET,
374 		    nextproc->p_p->ps_pid);
375 		cpu_switchto(p, nextproc);
376 		TRACEPOINT(sched, on__cpu, NULL);
377 	} else {
378 		TRACEPOINT(sched, remain__cpu, NULL);
379 		p->p_stat = SONPROC;
380 	}
381 
382 	clear_resched(curcpu());
383 
384 	SCHED_ASSERT_LOCKED();
385 
386 	/*
387 	 * To preserve lock ordering, we need to release the sched lock
388 	 * and grab it after we grab the big lock.
389 	 * In the future, when the sched lock isn't recursive, we'll
390 	 * just release it here.
391 	 */
392 #ifdef MULTIPROCESSOR
393 	__mp_unlock(&sched_lock);
394 #endif
395 
396 	SCHED_ASSERT_UNLOCKED();
397 
398 	smr_idle();
399 
400 	/*
401 	 * We're running again; record our new start time.  We might
402 	 * be running on a new CPU now, so don't use the cache'd
403 	 * schedstate_percpu pointer.
404 	 */
405 	KASSERT(p->p_cpu == curcpu());
406 
407 	nanouptime(&p->p_cpu->ci_schedstate.spc_runtime);
408 
409 #ifdef MULTIPROCESSOR
410 	/*
411 	 * Reacquire the kernel_lock now.  We do this after we've
412 	 * released the scheduler lock to avoid deadlock, and before
413 	 * we reacquire the interlock and the scheduler lock.
414 	 */
415 	if (hold_count)
416 		__mp_acquire_count(&kernel_lock, hold_count);
417 	__mp_acquire_count(&sched_lock, sched_count + 1);
418 #endif
419 }
420 
421 /*
422  * Change process state to be runnable,
423  * placing it on the run queue.
424  */
425 void
426 setrunnable(struct proc *p)
427 {
428 	struct process *pr = p->p_p;
429 	u_char prio;
430 
431 	SCHED_ASSERT_LOCKED();
432 
433 	switch (p->p_stat) {
434 	case 0:
435 	case SRUN:
436 	case SONPROC:
437 	case SDEAD:
438 	case SIDL:
439 	default:
440 		panic("setrunnable");
441 	case SSTOP:
442 		/*
443 		 * If we're being traced (possibly because someone attached us
444 		 * while we were stopped), check for a signal from the debugger.
445 		 */
446 		if ((pr->ps_flags & PS_TRACED) != 0 && pr->ps_xsig != 0)
447 			atomic_setbits_int(&p->p_siglist, sigmask(pr->ps_xsig));
448 		prio = p->p_usrpri;
449 		unsleep(p);
450 		break;
451 	case SSLEEP:
452 		prio = p->p_slppri;
453 		unsleep(p);		/* e.g. when sending signals */
454 		break;
455 	}
456 	setrunqueue(NULL, p, prio);
457 	if (p->p_slptime > 1) {
458 		uint32_t newcpu;
459 
460 		newcpu = decay_aftersleep(p->p_estcpu, p->p_slptime);
461 		setpriority(p, newcpu, pr->ps_nice);
462 	}
463 	p->p_slptime = 0;
464 }
465 
466 /*
467  * Compute the priority of a process.
468  */
469 void
470 setpriority(struct proc *p, uint32_t newcpu, uint8_t nice)
471 {
472 	unsigned int newprio;
473 
474 	newprio = min((PUSER + newcpu + NICE_WEIGHT * (nice - NZERO)), MAXPRI);
475 
476 	SCHED_ASSERT_LOCKED();
477 	p->p_estcpu = newcpu;
478 	p->p_usrpri = newprio;
479 }
480 
481 /*
482  * We adjust the priority of the current process.  The priority of a process
483  * gets worse as it accumulates CPU time.  The cpu usage estimator (p_estcpu)
484  * is increased here.  The formula for computing priorities (in kern_synch.c)
485  * will compute a different value each time p_estcpu increases. This can
486  * cause a switch, but unless the priority crosses a PPQ boundary the actual
487  * queue will not change.  The cpu usage estimator ramps up quite quickly
488  * when the process is running (linearly), and decays away exponentially, at
489  * a rate which is proportionally slower when the system is busy.  The basic
490  * principle is that the system will 90% forget that the process used a lot
491  * of CPU time in 5 * loadav seconds.  This causes the system to favor
492  * processes which haven't run much recently, and to round-robin among other
493  * processes.
494  */
495 void
496 schedclock(struct proc *p)
497 {
498 	struct cpu_info *ci = curcpu();
499 	struct schedstate_percpu *spc = &ci->ci_schedstate;
500 	uint32_t newcpu;
501 	int s;
502 
503 	if (p == spc->spc_idleproc || spc->spc_spinning)
504 		return;
505 
506 	SCHED_LOCK(s);
507 	newcpu = ESTCPULIM(p->p_estcpu + 1);
508 	setpriority(p, newcpu, p->p_p->ps_nice);
509 	SCHED_UNLOCK(s);
510 }
511 
512 void (*cpu_setperf)(int);
513 
514 #define PERFPOL_MANUAL 0
515 #define PERFPOL_AUTO 1
516 #define PERFPOL_HIGH 2
517 int perflevel = 100;
518 int perfpolicy = PERFPOL_AUTO;
519 
520 #ifndef SMALL_KERNEL
521 /*
522  * The code below handles CPU throttling.
523  */
524 #include <sys/sysctl.h>
525 
526 void setperf_auto(void *);
527 struct timeout setperf_to = TIMEOUT_INITIALIZER(setperf_auto, NULL);
528 extern int hw_power;
529 
530 void
531 setperf_auto(void *v)
532 {
533 	static uint64_t *idleticks, *totalticks;
534 	static int downbeats;
535 	int i, j = 0;
536 	int speedup = 0;
537 	CPU_INFO_ITERATOR cii;
538 	struct cpu_info *ci;
539 	uint64_t idle, total, allidle = 0, alltotal = 0;
540 
541 	if (perfpolicy != PERFPOL_AUTO)
542 		return;
543 
544 	if (cpu_setperf == NULL)
545 		return;
546 
547 	if (hw_power) {
548 		speedup = 1;
549 		goto faster;
550 	}
551 
552 	if (!idleticks)
553 		if (!(idleticks = mallocarray(ncpusfound, sizeof(*idleticks),
554 		    M_DEVBUF, M_NOWAIT | M_ZERO)))
555 			return;
556 	if (!totalticks)
557 		if (!(totalticks = mallocarray(ncpusfound, sizeof(*totalticks),
558 		    M_DEVBUF, M_NOWAIT | M_ZERO))) {
559 			free(idleticks, M_DEVBUF,
560 			    sizeof(*idleticks) * ncpusfound);
561 			return;
562 		}
563 	CPU_INFO_FOREACH(cii, ci) {
564 		if (!cpu_is_online(ci))
565 			continue;
566 		total = 0;
567 		for (i = 0; i < CPUSTATES; i++) {
568 			total += ci->ci_schedstate.spc_cp_time[i];
569 		}
570 		total -= totalticks[j];
571 		idle = ci->ci_schedstate.spc_cp_time[CP_IDLE] - idleticks[j];
572 		if (idle < total / 3)
573 			speedup = 1;
574 		alltotal += total;
575 		allidle += idle;
576 		idleticks[j] += idle;
577 		totalticks[j] += total;
578 		j++;
579 	}
580 	if (allidle < alltotal / 2)
581 		speedup = 1;
582 	if (speedup)
583 		downbeats = 5;
584 
585 	if (speedup && perflevel != 100) {
586 faster:
587 		perflevel = 100;
588 		cpu_setperf(perflevel);
589 	} else if (!speedup && perflevel != 0 && --downbeats <= 0) {
590 		perflevel = 0;
591 		cpu_setperf(perflevel);
592 	}
593 
594 	timeout_add_msec(&setperf_to, 100);
595 }
596 
597 int
598 sysctl_hwsetperf(void *oldp, size_t *oldlenp, void *newp, size_t newlen)
599 {
600 	int err;
601 
602 	if (!cpu_setperf)
603 		return EOPNOTSUPP;
604 
605 	if (perfpolicy != PERFPOL_MANUAL)
606 		return sysctl_rdint(oldp, oldlenp, newp, perflevel);
607 
608 	err = sysctl_int_bounded(oldp, oldlenp, newp, newlen,
609 	    &perflevel, 0, 100);
610 	if (err)
611 		return err;
612 
613 	if (newp != NULL)
614 		cpu_setperf(perflevel);
615 
616 	return 0;
617 }
618 
619 int
620 sysctl_hwperfpolicy(void *oldp, size_t *oldlenp, void *newp, size_t newlen)
621 {
622 	char policy[32];
623 	int err;
624 
625 	if (!cpu_setperf)
626 		return EOPNOTSUPP;
627 
628 	switch (perfpolicy) {
629 	case PERFPOL_MANUAL:
630 		strlcpy(policy, "manual", sizeof(policy));
631 		break;
632 	case PERFPOL_AUTO:
633 		strlcpy(policy, "auto", sizeof(policy));
634 		break;
635 	case PERFPOL_HIGH:
636 		strlcpy(policy, "high", sizeof(policy));
637 		break;
638 	default:
639 		strlcpy(policy, "unknown", sizeof(policy));
640 		break;
641 	}
642 
643 	if (newp == NULL)
644 		return sysctl_rdstring(oldp, oldlenp, newp, policy);
645 
646 	err = sysctl_string(oldp, oldlenp, newp, newlen, policy, sizeof(policy));
647 	if (err)
648 		return err;
649 	if (strcmp(policy, "manual") == 0)
650 		perfpolicy = PERFPOL_MANUAL;
651 	else if (strcmp(policy, "auto") == 0)
652 		perfpolicy = PERFPOL_AUTO;
653 	else if (strcmp(policy, "high") == 0)
654 		perfpolicy = PERFPOL_HIGH;
655 	else
656 		return EINVAL;
657 
658 	if (perfpolicy == PERFPOL_AUTO) {
659 		timeout_add_msec(&setperf_to, 200);
660 	} else if (perfpolicy == PERFPOL_HIGH) {
661 		perflevel = 100;
662 		cpu_setperf(perflevel);
663 	}
664 	return 0;
665 }
666 #endif
667 
668 void
669 scheduler_start(void)
670 {
671 	static struct timeout schedcpu_to;
672 
673 	/*
674 	 * We avoid polluting the global namespace by keeping the scheduler
675 	 * timeouts static in this function.
676 	 * We setup the timeout here and kick schedcpu once to make it do
677 	 * its job.
678 	 */
679 	timeout_set(&schedcpu_to, schedcpu, &schedcpu_to);
680 
681 	rrticks_init = hz / 10;
682 	schedcpu(&schedcpu_to);
683 
684 #ifndef SMALL_KERNEL
685 	if (perfpolicy == PERFPOL_AUTO)
686 		timeout_add_msec(&setperf_to, 200);
687 #endif
688 }
689 
690