1 /* $OpenBSD: subr_hibernate.c,v 1.126 2021/03/10 10:21:47 jsg Exp $ */ 2 3 /* 4 * Copyright (c) 2011 Ariane van der Steldt <ariane@stack.nl> 5 * Copyright (c) 2011 Mike Larkin <mlarkin@openbsd.org> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 #include <sys/hibernate.h> 21 #include <sys/malloc.h> 22 #include <sys/param.h> 23 #include <sys/tree.h> 24 #include <sys/systm.h> 25 #include <sys/disklabel.h> 26 #include <sys/disk.h> 27 #include <sys/conf.h> 28 #include <sys/buf.h> 29 #include <sys/fcntl.h> 30 #include <sys/stat.h> 31 #include <sys/atomic.h> 32 33 #include <uvm/uvm.h> 34 #include <uvm/uvm_swap.h> 35 36 #include <machine/hibernate.h> 37 38 /* 39 * Hibernate piglet layout information 40 * 41 * The piglet is a scratch area of memory allocated by the suspending kernel. 42 * Its phys and virt addrs are recorded in the signature block. The piglet is 43 * used to guarantee an unused area of memory that can be used by the resuming 44 * kernel for various things. The piglet is excluded during unpack operations. 45 * The piglet size is presently 4*HIBERNATE_CHUNK_SIZE (typically 4*4MB). 46 * 47 * Offset from piglet_base Purpose 48 * ---------------------------------------------------------------------------- 49 * 0 Private page for suspend I/O write functions 50 * 1*PAGE_SIZE I/O page used during hibernate suspend 51 * 2*PAGE_SIZE I/O page used during hibernate suspend 52 * 3*PAGE_SIZE copy page used during hibernate suspend 53 * 4*PAGE_SIZE final chunk ordering list (24 pages) 54 * 28*PAGE_SIZE RLE utility page 55 * 29*PAGE_SIZE start of hiballoc area 56 * 30*PAGE_SIZE preserved entropy 57 * 110*PAGE_SIZE end of hiballoc area (80 pages) 58 * 366*PAGE_SIZE end of retguard preservation region (256 pages) 59 * ... unused 60 * HIBERNATE_CHUNK_SIZE start of hibernate chunk table 61 * 2*HIBERNATE_CHUNK_SIZE bounce area for chunks being unpacked 62 * 4*HIBERNATE_CHUNK_SIZE end of piglet 63 */ 64 65 /* Temporary vaddr ranges used during hibernate */ 66 vaddr_t hibernate_temp_page; 67 vaddr_t hibernate_copy_page; 68 vaddr_t hibernate_rle_page; 69 70 /* Hibernate info as read from disk during resume */ 71 union hibernate_info disk_hib; 72 73 /* 74 * Global copy of the pig start address. This needs to be a global as we 75 * switch stacks after computing it - it can't be stored on the stack. 76 */ 77 paddr_t global_pig_start; 78 79 /* 80 * Global copies of the piglet start addresses (PA/VA). We store these 81 * as globals to avoid having to carry them around as parameters, as the 82 * piglet is allocated early and freed late - its lifecycle extends beyond 83 * that of the hibernate info union which is calculated on suspend/resume. 84 */ 85 vaddr_t global_piglet_va; 86 paddr_t global_piglet_pa; 87 88 /* #define HIB_DEBUG */ 89 #ifdef HIB_DEBUG 90 int hib_debug = 99; 91 #define DPRINTF(x...) do { if (hib_debug) printf(x); } while (0) 92 #define DNPRINTF(n,x...) do { if (hib_debug > (n)) printf(x); } while (0) 93 #else 94 #define DPRINTF(x...) 95 #define DNPRINTF(n,x...) 96 #endif 97 98 #ifndef NO_PROPOLICE 99 extern long __guard_local; 100 #endif /* ! NO_PROPOLICE */ 101 102 void hibernate_copy_chunk_to_piglet(paddr_t, vaddr_t, size_t); 103 int hibernate_calc_rle(paddr_t, paddr_t); 104 int hibernate_write_rle(union hibernate_info *, paddr_t, paddr_t, daddr_t *, 105 size_t *); 106 107 #define MAX_RLE (HIBERNATE_CHUNK_SIZE / PAGE_SIZE) 108 109 /* 110 * Hib alloc enforced alignment. 111 */ 112 #define HIB_ALIGN 8 /* bytes alignment */ 113 114 /* 115 * sizeof builtin operation, but with alignment constraint. 116 */ 117 #define HIB_SIZEOF(_type) roundup(sizeof(_type), HIB_ALIGN) 118 119 struct hiballoc_entry { 120 size_t hibe_use; 121 size_t hibe_space; 122 RBT_ENTRY(hiballoc_entry) hibe_entry; 123 }; 124 125 /* 126 * Sort hibernate memory ranges by ascending PA 127 */ 128 void 129 hibernate_sort_ranges(union hibernate_info *hib_info) 130 { 131 int i, j; 132 struct hibernate_memory_range *ranges; 133 paddr_t base, end; 134 135 ranges = hib_info->ranges; 136 137 for (i = 1; i < hib_info->nranges; i++) { 138 j = i; 139 while (j > 0 && ranges[j - 1].base > ranges[j].base) { 140 base = ranges[j].base; 141 end = ranges[j].end; 142 ranges[j].base = ranges[j - 1].base; 143 ranges[j].end = ranges[j - 1].end; 144 ranges[j - 1].base = base; 145 ranges[j - 1].end = end; 146 j--; 147 } 148 } 149 } 150 151 /* 152 * Compare hiballoc entries based on the address they manage. 153 * 154 * Since the address is fixed, relative to struct hiballoc_entry, 155 * we just compare the hiballoc_entry pointers. 156 */ 157 static __inline int 158 hibe_cmp(const struct hiballoc_entry *l, const struct hiballoc_entry *r) 159 { 160 vaddr_t vl = (vaddr_t)l; 161 vaddr_t vr = (vaddr_t)r; 162 163 return vl < vr ? -1 : (vl > vr); 164 } 165 166 RBT_PROTOTYPE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) 167 168 /* 169 * Given a hiballoc entry, return the address it manages. 170 */ 171 static __inline void * 172 hib_entry_to_addr(struct hiballoc_entry *entry) 173 { 174 caddr_t addr; 175 176 addr = (caddr_t)entry; 177 addr += HIB_SIZEOF(struct hiballoc_entry); 178 return addr; 179 } 180 181 /* 182 * Given an address, find the hiballoc that corresponds. 183 */ 184 static __inline struct hiballoc_entry* 185 hib_addr_to_entry(void *addr_param) 186 { 187 caddr_t addr; 188 189 addr = (caddr_t)addr_param; 190 addr -= HIB_SIZEOF(struct hiballoc_entry); 191 return (struct hiballoc_entry*)addr; 192 } 193 194 RBT_GENERATE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp); 195 196 /* 197 * Allocate memory from the arena. 198 * 199 * Returns NULL if no memory is available. 200 */ 201 void * 202 hib_alloc(struct hiballoc_arena *arena, size_t alloc_sz) 203 { 204 struct hiballoc_entry *entry, *new_entry; 205 size_t find_sz; 206 207 /* 208 * Enforce alignment of HIB_ALIGN bytes. 209 * 210 * Note that, because the entry is put in front of the allocation, 211 * 0-byte allocations are guaranteed a unique address. 212 */ 213 alloc_sz = roundup(alloc_sz, HIB_ALIGN); 214 215 /* 216 * Find an entry with hibe_space >= find_sz. 217 * 218 * If the root node is not large enough, we switch to tree traversal. 219 * Because all entries are made at the bottom of the free space, 220 * traversal from the end has a slightly better chance of yielding 221 * a sufficiently large space. 222 */ 223 find_sz = alloc_sz + HIB_SIZEOF(struct hiballoc_entry); 224 entry = RBT_ROOT(hiballoc_addr, &arena->hib_addrs); 225 if (entry != NULL && entry->hibe_space < find_sz) { 226 RBT_FOREACH_REVERSE(entry, hiballoc_addr, &arena->hib_addrs) { 227 if (entry->hibe_space >= find_sz) 228 break; 229 } 230 } 231 232 /* 233 * Insufficient or too fragmented memory. 234 */ 235 if (entry == NULL) 236 return NULL; 237 238 /* 239 * Create new entry in allocated space. 240 */ 241 new_entry = (struct hiballoc_entry*)( 242 (caddr_t)hib_entry_to_addr(entry) + entry->hibe_use); 243 new_entry->hibe_space = entry->hibe_space - find_sz; 244 new_entry->hibe_use = alloc_sz; 245 246 /* 247 * Insert entry. 248 */ 249 if (RBT_INSERT(hiballoc_addr, &arena->hib_addrs, new_entry) != NULL) 250 panic("hib_alloc: insert failure"); 251 entry->hibe_space = 0; 252 253 /* Return address managed by entry. */ 254 return hib_entry_to_addr(new_entry); 255 } 256 257 void 258 hib_getentropy(char **bufp, size_t *bufplen) 259 { 260 if (!bufp || !bufplen) 261 return; 262 263 *bufp = (char *)(global_piglet_va + (29 * PAGE_SIZE)); 264 *bufplen = PAGE_SIZE; 265 } 266 267 /* 268 * Free a pointer previously allocated from this arena. 269 * 270 * If addr is NULL, this will be silently accepted. 271 */ 272 void 273 hib_free(struct hiballoc_arena *arena, void *addr) 274 { 275 struct hiballoc_entry *entry, *prev; 276 277 if (addr == NULL) 278 return; 279 280 /* 281 * Derive entry from addr and check it is really in this arena. 282 */ 283 entry = hib_addr_to_entry(addr); 284 if (RBT_FIND(hiballoc_addr, &arena->hib_addrs, entry) != entry) 285 panic("hib_free: freed item %p not in hib arena", addr); 286 287 /* 288 * Give the space in entry to its predecessor. 289 * 290 * If entry has no predecessor, change its used space into free space 291 * instead. 292 */ 293 prev = RBT_PREV(hiballoc_addr, entry); 294 if (prev != NULL && 295 (void *)((caddr_t)prev + HIB_SIZEOF(struct hiballoc_entry) + 296 prev->hibe_use + prev->hibe_space) == entry) { 297 /* Merge entry. */ 298 RBT_REMOVE(hiballoc_addr, &arena->hib_addrs, entry); 299 prev->hibe_space += HIB_SIZEOF(struct hiballoc_entry) + 300 entry->hibe_use + entry->hibe_space; 301 } else { 302 /* Flip used memory to free space. */ 303 entry->hibe_space += entry->hibe_use; 304 entry->hibe_use = 0; 305 } 306 } 307 308 /* 309 * Initialize hiballoc. 310 * 311 * The allocator will manage memory at ptr, which is len bytes. 312 */ 313 int 314 hiballoc_init(struct hiballoc_arena *arena, void *p_ptr, size_t p_len) 315 { 316 struct hiballoc_entry *entry; 317 caddr_t ptr; 318 size_t len; 319 320 RBT_INIT(hiballoc_addr, &arena->hib_addrs); 321 322 /* 323 * Hib allocator enforces HIB_ALIGN alignment. 324 * Fixup ptr and len. 325 */ 326 ptr = (caddr_t)roundup((vaddr_t)p_ptr, HIB_ALIGN); 327 len = p_len - ((size_t)ptr - (size_t)p_ptr); 328 len &= ~((size_t)HIB_ALIGN - 1); 329 330 /* 331 * Insufficient memory to be able to allocate and also do bookkeeping. 332 */ 333 if (len <= HIB_SIZEOF(struct hiballoc_entry)) 334 return ENOMEM; 335 336 /* 337 * Create entry describing space. 338 */ 339 entry = (struct hiballoc_entry*)ptr; 340 entry->hibe_use = 0; 341 entry->hibe_space = len - HIB_SIZEOF(struct hiballoc_entry); 342 RBT_INSERT(hiballoc_addr, &arena->hib_addrs, entry); 343 344 return 0; 345 } 346 347 /* 348 * Zero all free memory. 349 */ 350 void 351 uvm_pmr_zero_everything(void) 352 { 353 struct uvm_pmemrange *pmr; 354 struct vm_page *pg; 355 int i; 356 357 uvm_lock_fpageq(); 358 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 359 /* Zero single pages. */ 360 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_DIRTY])) 361 != NULL) { 362 uvm_pmr_remove(pmr, pg); 363 uvm_pagezero(pg); 364 atomic_setbits_int(&pg->pg_flags, PG_ZERO); 365 uvmexp.zeropages++; 366 uvm_pmr_insert(pmr, pg, 0); 367 } 368 369 /* Zero multi page ranges. */ 370 while ((pg = RBT_ROOT(uvm_pmr_size, 371 &pmr->size[UVM_PMR_MEMTYPE_DIRTY])) != NULL) { 372 pg--; /* Size tree always has second page. */ 373 uvm_pmr_remove(pmr, pg); 374 for (i = 0; i < pg->fpgsz; i++) { 375 uvm_pagezero(&pg[i]); 376 atomic_setbits_int(&pg[i].pg_flags, PG_ZERO); 377 uvmexp.zeropages++; 378 } 379 uvm_pmr_insert(pmr, pg, 0); 380 } 381 } 382 uvm_unlock_fpageq(); 383 } 384 385 /* 386 * Mark all memory as dirty. 387 * 388 * Used to inform the system that the clean memory isn't clean for some 389 * reason, for example because we just came back from hibernate. 390 */ 391 void 392 uvm_pmr_dirty_everything(void) 393 { 394 struct uvm_pmemrange *pmr; 395 struct vm_page *pg; 396 int i; 397 398 uvm_lock_fpageq(); 399 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 400 /* Dirty single pages. */ 401 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_ZERO])) 402 != NULL) { 403 uvm_pmr_remove(pmr, pg); 404 atomic_clearbits_int(&pg->pg_flags, PG_ZERO); 405 uvm_pmr_insert(pmr, pg, 0); 406 } 407 408 /* Dirty multi page ranges. */ 409 while ((pg = RBT_ROOT(uvm_pmr_size, 410 &pmr->size[UVM_PMR_MEMTYPE_ZERO])) != NULL) { 411 pg--; /* Size tree always has second page. */ 412 uvm_pmr_remove(pmr, pg); 413 for (i = 0; i < pg->fpgsz; i++) 414 atomic_clearbits_int(&pg[i].pg_flags, PG_ZERO); 415 uvm_pmr_insert(pmr, pg, 0); 416 } 417 } 418 419 uvmexp.zeropages = 0; 420 uvm_unlock_fpageq(); 421 } 422 423 /* 424 * Allocate an area that can hold sz bytes and doesn't overlap with 425 * the piglet at piglet_pa. 426 */ 427 int 428 uvm_pmr_alloc_pig(paddr_t *pa, psize_t sz, paddr_t piglet_pa) 429 { 430 struct uvm_constraint_range pig_constraint; 431 struct kmem_pa_mode kp_pig = { 432 .kp_constraint = &pig_constraint, 433 .kp_maxseg = 1 434 }; 435 vaddr_t va; 436 437 sz = round_page(sz); 438 439 pig_constraint.ucr_low = piglet_pa + 4 * HIBERNATE_CHUNK_SIZE; 440 pig_constraint.ucr_high = -1; 441 442 va = (vaddr_t)km_alloc(sz, &kv_any, &kp_pig, &kd_nowait); 443 if (va == 0) { 444 pig_constraint.ucr_low = 0; 445 pig_constraint.ucr_high = piglet_pa - 1; 446 447 va = (vaddr_t)km_alloc(sz, &kv_any, &kp_pig, &kd_nowait); 448 if (va == 0) 449 return ENOMEM; 450 } 451 452 pmap_extract(pmap_kernel(), va, pa); 453 return 0; 454 } 455 456 /* 457 * Allocate a piglet area. 458 * 459 * This needs to be in DMA-safe memory. 460 * Piglets are aligned. 461 * 462 * sz and align in bytes. 463 * 464 * The call will sleep for the pagedaemon to attempt to free memory. 465 * The pagedaemon may decide its not possible to free enough memory, causing 466 * the allocation to fail. 467 */ 468 int 469 uvm_pmr_alloc_piglet(vaddr_t *va, paddr_t *pa, vsize_t sz, paddr_t align) 470 { 471 struct kmem_pa_mode kp_piglet = { 472 .kp_constraint = &dma_constraint, 473 .kp_align = align, 474 .kp_maxseg = 1 475 }; 476 477 /* Ensure align is a power of 2 */ 478 KASSERT((align & (align - 1)) == 0); 479 480 /* 481 * Fixup arguments: align must be at least PAGE_SIZE, 482 * sz will be converted to pagecount, since that is what 483 * pmemrange uses internally. 484 */ 485 if (align < PAGE_SIZE) 486 kp_piglet.kp_align = PAGE_SIZE; 487 488 sz = round_page(sz); 489 490 *va = (vaddr_t)km_alloc(sz, &kv_any, &kp_piglet, &kd_nowait); 491 if (*va == 0) 492 return ENOMEM; 493 494 pmap_extract(pmap_kernel(), *va, pa); 495 return 0; 496 } 497 498 /* 499 * Free a piglet area. 500 */ 501 void 502 uvm_pmr_free_piglet(vaddr_t va, vsize_t sz) 503 { 504 /* 505 * Fix parameters. 506 */ 507 sz = round_page(sz); 508 509 /* 510 * Free the physical and virtual memory. 511 */ 512 km_free((void *)va, sz, &kv_any, &kp_dma_contig); 513 } 514 515 /* 516 * Physmem RLE compression support. 517 * 518 * Given a physical page address, return the number of pages starting at the 519 * address that are free. Clamps to the number of pages in 520 * HIBERNATE_CHUNK_SIZE. Returns 0 if the page at addr is not free. 521 */ 522 int 523 uvm_page_rle(paddr_t addr) 524 { 525 struct vm_page *pg, *pg_end; 526 struct vm_physseg *vmp; 527 int pseg_idx, off_idx; 528 529 pseg_idx = vm_physseg_find(atop(addr), &off_idx); 530 if (pseg_idx == -1) 531 return 0; 532 533 vmp = &vm_physmem[pseg_idx]; 534 pg = &vmp->pgs[off_idx]; 535 if (!(pg->pg_flags & PQ_FREE)) 536 return 0; 537 538 /* 539 * Search for the first non-free page after pg. 540 * Note that the page may not be the first page in a free pmemrange, 541 * therefore pg->fpgsz cannot be used. 542 */ 543 for (pg_end = pg; pg_end <= vmp->lastpg && 544 (pg_end->pg_flags & PQ_FREE) == PQ_FREE; pg_end++) 545 ; 546 return min((pg_end - pg), HIBERNATE_CHUNK_SIZE/PAGE_SIZE); 547 } 548 549 /* 550 * Calculate a hopefully unique version # for this kernel, based upon 551 * how it was linked. 552 */ 553 u_int32_t 554 hibsum(void) 555 { 556 return ((long)malloc ^ (long)km_alloc ^ (long)printf ^ (long)strlen); 557 } 558 559 560 /* 561 * Fills out the hibernate_info union pointed to by hib 562 * with information about this machine (swap signature block 563 * offsets, number of memory ranges, kernel in use, etc) 564 */ 565 int 566 get_hibernate_info(union hibernate_info *hib, int suspend) 567 { 568 struct disklabel dl; 569 char err_string[128], *dl_ret; 570 571 #ifndef NO_PROPOLICE 572 /* Save propolice guard */ 573 hib->guard = __guard_local; 574 #endif /* ! NO_PROPOLICE */ 575 576 /* Determine I/O function to use */ 577 hib->io_func = get_hibernate_io_function(swdevt[0].sw_dev); 578 if (hib->io_func == NULL) 579 return (1); 580 581 /* Calculate hibernate device */ 582 hib->dev = swdevt[0].sw_dev; 583 584 /* Read disklabel (used to calculate signature and image offsets) */ 585 dl_ret = disk_readlabel(&dl, hib->dev, err_string, sizeof(err_string)); 586 587 if (dl_ret) { 588 printf("Hibernate error reading disklabel: %s\n", dl_ret); 589 return (1); 590 } 591 592 /* Make sure we have a swap partition. */ 593 if (dl.d_partitions[1].p_fstype != FS_SWAP || 594 DL_GETPSIZE(&dl.d_partitions[1]) == 0) 595 return (1); 596 597 /* Make sure the signature can fit in one block */ 598 if (sizeof(union hibernate_info) > DEV_BSIZE) 599 return (1); 600 601 /* Magic number */ 602 hib->magic = HIBERNATE_MAGIC; 603 604 /* Calculate signature block location */ 605 hib->sig_offset = DL_GETPSIZE(&dl.d_partitions[1]) - 606 sizeof(union hibernate_info)/DEV_BSIZE; 607 608 /* Stash kernel version information */ 609 memset(&hib->kernel_version, 0, 128); 610 bcopy(version, &hib->kernel_version, 611 min(strlen(version), sizeof(hib->kernel_version)-1)); 612 hib->kernel_sum = hibsum(); 613 614 if (suspend) { 615 /* Grab the previously-allocated piglet addresses */ 616 hib->piglet_va = global_piglet_va; 617 hib->piglet_pa = global_piglet_pa; 618 hib->io_page = (void *)hib->piglet_va; 619 620 /* 621 * Initialization of the hibernate IO function for drivers 622 * that need to do prep work (such as allocating memory or 623 * setting up data structures that cannot safely be done 624 * during suspend without causing side effects). There is 625 * a matching HIB_DONE call performed after the write is 626 * completed. 627 */ 628 if (hib->io_func(hib->dev, DL_GETPOFFSET(&dl.d_partitions[1]), 629 (vaddr_t)NULL, DL_GETPSIZE(&dl.d_partitions[1]), 630 HIB_INIT, hib->io_page)) 631 goto fail; 632 633 } else { 634 /* 635 * Resuming kernels use a regular private page for the driver 636 * No need to free this I/O page as it will vanish as part of 637 * the resume. 638 */ 639 hib->io_page = malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT); 640 if (!hib->io_page) 641 goto fail; 642 } 643 644 if (get_hibernate_info_md(hib)) 645 goto fail; 646 647 return (0); 648 649 fail: 650 return (1); 651 } 652 653 /* 654 * Allocate nitems*size bytes from the hiballoc area presently in use 655 */ 656 void * 657 hibernate_zlib_alloc(void *unused, int nitems, int size) 658 { 659 struct hibernate_zlib_state *hibernate_state; 660 661 hibernate_state = 662 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 663 664 return hib_alloc(&hibernate_state->hiballoc_arena, nitems*size); 665 } 666 667 /* 668 * Free the memory pointed to by addr in the hiballoc area presently in 669 * use 670 */ 671 void 672 hibernate_zlib_free(void *unused, void *addr) 673 { 674 struct hibernate_zlib_state *hibernate_state; 675 676 hibernate_state = 677 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 678 679 hib_free(&hibernate_state->hiballoc_arena, addr); 680 } 681 682 /* 683 * Inflate next page of data from the image stream. 684 * The rle parameter is modified on exit to contain the number of pages to 685 * skip in the output stream (or 0 if this page was inflated into). 686 * 687 * Returns 0 if the stream contains additional data, or 1 if the stream is 688 * finished. 689 */ 690 int 691 hibernate_inflate_page(int *rle) 692 { 693 struct hibernate_zlib_state *hibernate_state; 694 int i; 695 696 hibernate_state = 697 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 698 699 /* Set up the stream for RLE code inflate */ 700 hibernate_state->hib_stream.next_out = (unsigned char *)rle; 701 hibernate_state->hib_stream.avail_out = sizeof(*rle); 702 703 /* Inflate RLE code */ 704 i = inflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH); 705 if (i != Z_OK && i != Z_STREAM_END) { 706 /* 707 * XXX - this will likely reboot/hang most machines 708 * since the console output buffer will be unmapped, 709 * but there's not much else we can do here. 710 */ 711 panic("rle inflate stream error"); 712 } 713 714 if (hibernate_state->hib_stream.avail_out != 0) { 715 /* 716 * XXX - this will likely reboot/hang most machines 717 * since the console output buffer will be unmapped, 718 * but there's not much else we can do here. 719 */ 720 panic("rle short inflate error"); 721 } 722 723 if (*rle < 0 || *rle > 1024) { 724 /* 725 * XXX - this will likely reboot/hang most machines 726 * since the console output buffer will be unmapped, 727 * but there's not much else we can do here. 728 */ 729 panic("invalid rle count"); 730 } 731 732 if (i == Z_STREAM_END) 733 return (1); 734 735 if (*rle != 0) 736 return (0); 737 738 /* Set up the stream for page inflate */ 739 hibernate_state->hib_stream.next_out = 740 (unsigned char *)HIBERNATE_INFLATE_PAGE; 741 hibernate_state->hib_stream.avail_out = PAGE_SIZE; 742 743 /* Process next block of data */ 744 i = inflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH); 745 if (i != Z_OK && i != Z_STREAM_END) { 746 /* 747 * XXX - this will likely reboot/hang most machines 748 * since the console output buffer will be unmapped, 749 * but there's not much else we can do here. 750 */ 751 panic("inflate error"); 752 } 753 754 /* We should always have extracted a full page ... */ 755 if (hibernate_state->hib_stream.avail_out != 0) { 756 /* 757 * XXX - this will likely reboot/hang most machines 758 * since the console output buffer will be unmapped, 759 * but there's not much else we can do here. 760 */ 761 panic("incomplete page"); 762 } 763 764 return (i == Z_STREAM_END); 765 } 766 767 /* 768 * Inflate size bytes from src into dest, skipping any pages in 769 * [src..dest] that are special (see hibernate_inflate_skip) 770 * 771 * This function executes while using the resume-time stack 772 * and pmap, and therefore cannot use ddb/printf/etc. Doing so 773 * will likely hang or reset the machine since the console output buffer 774 * will be unmapped. 775 */ 776 void 777 hibernate_inflate_region(union hibernate_info *hib, paddr_t dest, 778 paddr_t src, size_t size) 779 { 780 int end_stream = 0, rle, skip; 781 struct hibernate_zlib_state *hibernate_state; 782 783 hibernate_state = 784 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 785 786 hibernate_state->hib_stream.next_in = (unsigned char *)src; 787 hibernate_state->hib_stream.avail_in = size; 788 789 do { 790 /* 791 * Is this a special page? If yes, redirect the 792 * inflate output to a scratch page (eg, discard it) 793 */ 794 skip = hibernate_inflate_skip(hib, dest); 795 if (skip == HIB_SKIP) { 796 hibernate_enter_resume_mapping( 797 HIBERNATE_INFLATE_PAGE, 798 HIBERNATE_INFLATE_PAGE, 0); 799 } else if (skip == HIB_MOVE) { 800 /* 801 * Special case : retguard region. This gets moved 802 * temporarily into the piglet region and copied into 803 * place immediately before resume 804 */ 805 hibernate_enter_resume_mapping( 806 HIBERNATE_INFLATE_PAGE, 807 hib->piglet_pa + (110 * PAGE_SIZE) + 808 hib->retguard_ofs, 0); 809 hib->retguard_ofs += PAGE_SIZE; 810 if (hib->retguard_ofs > 255 * PAGE_SIZE) { 811 /* 812 * XXX - this will likely reboot/hang most 813 * machines since the console output 814 * buffer will be unmapped, but there's 815 * not much else we can do here. 816 */ 817 panic("retguard move error, out of space"); 818 } 819 } else { 820 hibernate_enter_resume_mapping( 821 HIBERNATE_INFLATE_PAGE, dest, 0); 822 } 823 824 hibernate_flush(); 825 end_stream = hibernate_inflate_page(&rle); 826 827 if (rle == 0) 828 dest += PAGE_SIZE; 829 else 830 dest += (rle * PAGE_SIZE); 831 } while (!end_stream); 832 } 833 834 /* 835 * deflate from src into the I/O page, up to 'remaining' bytes 836 * 837 * Returns number of input bytes consumed, and may reset 838 * the 'remaining' parameter if not all the output space was consumed 839 * (this information is needed to know how much to write to disk 840 */ 841 size_t 842 hibernate_deflate(union hibernate_info *hib, paddr_t src, 843 size_t *remaining) 844 { 845 vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE; 846 struct hibernate_zlib_state *hibernate_state; 847 848 hibernate_state = 849 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 850 851 /* Set up the stream for deflate */ 852 hibernate_state->hib_stream.next_in = (unsigned char *)src; 853 hibernate_state->hib_stream.avail_in = PAGE_SIZE - (src & PAGE_MASK); 854 hibernate_state->hib_stream.next_out = 855 (unsigned char *)hibernate_io_page + (PAGE_SIZE - *remaining); 856 hibernate_state->hib_stream.avail_out = *remaining; 857 858 /* Process next block of data */ 859 if (deflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH) != Z_OK) 860 panic("hibernate zlib deflate error"); 861 862 /* Update pointers and return number of bytes consumed */ 863 *remaining = hibernate_state->hib_stream.avail_out; 864 return (PAGE_SIZE - (src & PAGE_MASK)) - 865 hibernate_state->hib_stream.avail_in; 866 } 867 868 /* 869 * Write the hibernation information specified in hiber_info 870 * to the location in swap previously calculated (last block of 871 * swap), called the "signature block". 872 */ 873 int 874 hibernate_write_signature(union hibernate_info *hib) 875 { 876 /* Write hibernate info to disk */ 877 return (hib->io_func(hib->dev, hib->sig_offset, 878 (vaddr_t)hib, DEV_BSIZE, HIB_W, 879 hib->io_page)); 880 } 881 882 /* 883 * Write the memory chunk table to the area in swap immediately 884 * preceding the signature block. The chunk table is stored 885 * in the piglet when this function is called. Returns errno. 886 */ 887 int 888 hibernate_write_chunktable(union hibernate_info *hib) 889 { 890 vaddr_t hibernate_chunk_table_start; 891 size_t hibernate_chunk_table_size; 892 int i, err; 893 894 hibernate_chunk_table_size = HIBERNATE_CHUNK_TABLE_SIZE; 895 896 hibernate_chunk_table_start = hib->piglet_va + 897 HIBERNATE_CHUNK_SIZE; 898 899 /* Write chunk table */ 900 for (i = 0; i < hibernate_chunk_table_size; i += MAXPHYS) { 901 if ((err = hib->io_func(hib->dev, 902 hib->chunktable_offset + (i/DEV_BSIZE), 903 (vaddr_t)(hibernate_chunk_table_start + i), 904 MAXPHYS, HIB_W, hib->io_page))) { 905 DPRINTF("chunktable write error: %d\n", err); 906 return (err); 907 } 908 } 909 910 return (0); 911 } 912 913 /* 914 * Write an empty hiber_info to the swap signature block, which is 915 * guaranteed to not match any valid hib. 916 */ 917 int 918 hibernate_clear_signature(void) 919 { 920 union hibernate_info blank_hiber_info; 921 union hibernate_info hib; 922 923 /* Zero out a blank hiber_info */ 924 memset(&blank_hiber_info, 0, sizeof(union hibernate_info)); 925 926 /* Get the signature block location */ 927 if (get_hibernate_info(&hib, 0)) 928 return (1); 929 930 /* Write (zeroed) hibernate info to disk */ 931 DPRINTF("clearing hibernate signature block location: %lld\n", 932 hib.sig_offset); 933 if (hibernate_block_io(&hib, 934 hib.sig_offset, 935 DEV_BSIZE, (vaddr_t)&blank_hiber_info, 1)) 936 printf("Warning: could not clear hibernate signature\n"); 937 938 return (0); 939 } 940 941 /* 942 * Compare two hibernate_infos to determine if they are the same (eg, 943 * we should be performing a hibernate resume on this machine. 944 * Not all fields are checked - just enough to verify that the machine 945 * has the same memory configuration and kernel as the one that 946 * wrote the signature previously. 947 */ 948 int 949 hibernate_compare_signature(union hibernate_info *mine, 950 union hibernate_info *disk) 951 { 952 u_int i; 953 954 if (mine->nranges != disk->nranges) { 955 printf("unhibernate failed: memory layout changed\n"); 956 return (1); 957 } 958 959 if (strcmp(mine->kernel_version, disk->kernel_version) != 0) { 960 printf("unhibernate failed: original kernel changed\n"); 961 return (1); 962 } 963 964 if (hibsum() != disk->kernel_sum) { 965 printf("unhibernate failed: original kernel changed\n"); 966 return (1); 967 } 968 969 for (i = 0; i < mine->nranges; i++) { 970 if ((mine->ranges[i].base != disk->ranges[i].base) || 971 (mine->ranges[i].end != disk->ranges[i].end) ) { 972 DPRINTF("hib range %d mismatch [%p-%p != %p-%p]\n", 973 i, 974 (void *)mine->ranges[i].base, 975 (void *)mine->ranges[i].end, 976 (void *)disk->ranges[i].base, 977 (void *)disk->ranges[i].end); 978 printf("unhibernate failed: memory size changed\n"); 979 return (1); 980 } 981 } 982 983 return (0); 984 } 985 986 /* 987 * Transfers xfer_size bytes between the hibernate device specified in 988 * hib_info at offset blkctr and the vaddr specified at dest. 989 * 990 * Separate offsets and pages are used to handle misaligned reads (reads 991 * that span a page boundary). 992 * 993 * blkctr specifies a relative offset (relative to the start of swap), 994 * not an absolute disk offset 995 * 996 */ 997 int 998 hibernate_block_io(union hibernate_info *hib, daddr_t blkctr, 999 size_t xfer_size, vaddr_t dest, int iswrite) 1000 { 1001 struct buf *bp; 1002 struct bdevsw *bdsw; 1003 int error; 1004 1005 bp = geteblk(xfer_size); 1006 bdsw = &bdevsw[major(hib->dev)]; 1007 1008 error = (*bdsw->d_open)(hib->dev, FREAD, S_IFCHR, curproc); 1009 if (error) { 1010 printf("hibernate_block_io open failed\n"); 1011 return (1); 1012 } 1013 1014 if (iswrite) 1015 bcopy((caddr_t)dest, bp->b_data, xfer_size); 1016 1017 bp->b_bcount = xfer_size; 1018 bp->b_blkno = blkctr; 1019 CLR(bp->b_flags, B_READ | B_WRITE | B_DONE); 1020 SET(bp->b_flags, B_BUSY | (iswrite ? B_WRITE : B_READ) | B_RAW); 1021 bp->b_dev = hib->dev; 1022 (*bdsw->d_strategy)(bp); 1023 1024 error = biowait(bp); 1025 if (error) { 1026 printf("hib block_io biowait error %d blk %lld size %zu\n", 1027 error, (long long)blkctr, xfer_size); 1028 error = (*bdsw->d_close)(hib->dev, 0, S_IFCHR, 1029 curproc); 1030 if (error) 1031 printf("hibernate_block_io error close failed\n"); 1032 return (1); 1033 } 1034 1035 error = (*bdsw->d_close)(hib->dev, FREAD, S_IFCHR, curproc); 1036 if (error) { 1037 printf("hibernate_block_io close failed\n"); 1038 return (1); 1039 } 1040 1041 if (!iswrite) 1042 bcopy(bp->b_data, (caddr_t)dest, xfer_size); 1043 1044 bp->b_flags |= B_INVAL; 1045 brelse(bp); 1046 1047 return (0); 1048 } 1049 1050 /* 1051 * Preserve one page worth of random data, generated from the resuming 1052 * kernel's arc4random. After resume, this preserved entropy can be used 1053 * to further improve the un-hibernated machine's entropy pool. This 1054 * random data is stored in the piglet, which is preserved across the 1055 * unpack operation, and is restored later in the resume process (see 1056 * hib_getentropy) 1057 */ 1058 void 1059 hibernate_preserve_entropy(union hibernate_info *hib) 1060 { 1061 void *entropy; 1062 1063 entropy = km_alloc(PAGE_SIZE, &kv_any, &kp_none, &kd_nowait); 1064 1065 if (!entropy) 1066 return; 1067 1068 pmap_activate(curproc); 1069 pmap_kenter_pa((vaddr_t)entropy, 1070 (paddr_t)(hib->piglet_pa + (29 * PAGE_SIZE)), 1071 PROT_READ | PROT_WRITE); 1072 1073 arc4random_buf((void *)entropy, PAGE_SIZE); 1074 pmap_kremove((vaddr_t)entropy, PAGE_SIZE); 1075 km_free(entropy, PAGE_SIZE, &kv_any, &kp_none); 1076 } 1077 1078 #ifndef NO_PROPOLICE 1079 vaddr_t 1080 hibernate_unprotect_ssp(void) 1081 { 1082 struct kmem_dyn_mode kd_avoidalias; 1083 vaddr_t va = trunc_page((vaddr_t)&__guard_local); 1084 paddr_t pa; 1085 1086 pmap_extract(pmap_kernel(), va, &pa); 1087 1088 memset(&kd_avoidalias, 0, sizeof kd_avoidalias); 1089 kd_avoidalias.kd_prefer = pa; 1090 kd_avoidalias.kd_waitok = 1; 1091 va = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, &kp_none, &kd_avoidalias); 1092 if (!va) 1093 panic("hibernate_unprotect_ssp"); 1094 1095 pmap_kenter_pa(va, pa, PROT_READ | PROT_WRITE); 1096 pmap_update(pmap_kernel()); 1097 1098 return va; 1099 } 1100 1101 void 1102 hibernate_reprotect_ssp(vaddr_t va) 1103 { 1104 pmap_kremove(va, PAGE_SIZE); 1105 km_free((void *)va, PAGE_SIZE, &kv_any, &kp_none); 1106 } 1107 #endif /* NO_PROPOLICE */ 1108 1109 /* 1110 * Reads the signature block from swap, checks against the current machine's 1111 * information. If the information matches, perform a resume by reading the 1112 * saved image into the pig area, and unpacking. 1113 * 1114 * Must be called with interrupts enabled. 1115 */ 1116 void 1117 hibernate_resume(void) 1118 { 1119 union hibernate_info hib; 1120 int s; 1121 #ifndef NO_PROPOLICE 1122 vsize_t off = (vaddr_t)&__guard_local - 1123 trunc_page((vaddr_t)&__guard_local); 1124 vaddr_t guard_va; 1125 #endif 1126 1127 /* Get current running machine's hibernate info */ 1128 memset(&hib, 0, sizeof(hib)); 1129 if (get_hibernate_info(&hib, 0)) { 1130 DPRINTF("couldn't retrieve machine's hibernate info\n"); 1131 return; 1132 } 1133 1134 /* Read hibernate info from disk */ 1135 s = splbio(); 1136 1137 DPRINTF("reading hibernate signature block location: %lld\n", 1138 hib.sig_offset); 1139 1140 if (hibernate_block_io(&hib, 1141 hib.sig_offset, 1142 DEV_BSIZE, (vaddr_t)&disk_hib, 0)) { 1143 DPRINTF("error in hibernate read"); 1144 splx(s); 1145 return; 1146 } 1147 1148 /* Check magic number */ 1149 if (disk_hib.magic != HIBERNATE_MAGIC) { 1150 DPRINTF("wrong magic number in hibernate signature: %x\n", 1151 disk_hib.magic); 1152 splx(s); 1153 return; 1154 } 1155 1156 /* 1157 * We (possibly) found a hibernate signature. Clear signature first, 1158 * to prevent accidental resume or endless resume cycles later. 1159 */ 1160 if (hibernate_clear_signature()) { 1161 DPRINTF("error clearing hibernate signature block\n"); 1162 splx(s); 1163 return; 1164 } 1165 1166 /* 1167 * If on-disk and in-memory hibernate signatures match, 1168 * this means we should do a resume from hibernate. 1169 */ 1170 if (hibernate_compare_signature(&hib, &disk_hib)) { 1171 DPRINTF("mismatched hibernate signature block\n"); 1172 splx(s); 1173 return; 1174 } 1175 1176 #ifdef MULTIPROCESSOR 1177 /* XXX - if we fail later, we may need to rehatch APs on some archs */ 1178 DPRINTF("hibernate: quiescing APs\n"); 1179 hibernate_quiesce_cpus(); 1180 #endif /* MULTIPROCESSOR */ 1181 1182 /* Read the image from disk into the image (pig) area */ 1183 if (hibernate_read_image(&disk_hib)) 1184 goto fail; 1185 1186 DPRINTF("hibernate: quiescing devices\n"); 1187 if (config_suspend_all(DVACT_QUIESCE) != 0) 1188 goto fail; 1189 1190 #ifndef NO_PROPOLICE 1191 guard_va = hibernate_unprotect_ssp(); 1192 #endif /* NO_PROPOLICE */ 1193 1194 (void) splhigh(); 1195 hibernate_disable_intr_machdep(); 1196 cold = 1; 1197 1198 DPRINTF("hibernate: suspending devices\n"); 1199 if (config_suspend_all(DVACT_SUSPEND) != 0) { 1200 cold = 0; 1201 hibernate_enable_intr_machdep(); 1202 #ifndef NO_PROPOLICE 1203 hibernate_reprotect_ssp(guard_va); 1204 #endif /* ! NO_PROPOLICE */ 1205 goto fail; 1206 } 1207 1208 hibernate_preserve_entropy(&disk_hib); 1209 1210 printf("Unpacking image...\n"); 1211 1212 /* Switch stacks */ 1213 DPRINTF("hibernate: switching stacks\n"); 1214 hibernate_switch_stack_machdep(); 1215 1216 #ifndef NO_PROPOLICE 1217 /* Start using suspended kernel's propolice guard */ 1218 *(long *)(guard_va + off) = disk_hib.guard; 1219 hibernate_reprotect_ssp(guard_va); 1220 #endif /* ! NO_PROPOLICE */ 1221 1222 /* Unpack and resume */ 1223 hibernate_unpack_image(&disk_hib); 1224 1225 fail: 1226 splx(s); 1227 printf("\nUnable to resume hibernated image\n"); 1228 } 1229 1230 /* 1231 * Unpack image from pig area to original location by looping through the 1232 * list of output chunks in the order they should be restored (fchunks). 1233 * 1234 * Note that due to the stack smash protector and the fact that we have 1235 * switched stacks, it is not permitted to return from this function. 1236 */ 1237 void 1238 hibernate_unpack_image(union hibernate_info *hib) 1239 { 1240 struct hibernate_disk_chunk *chunks; 1241 union hibernate_info local_hib; 1242 paddr_t image_cur = global_pig_start; 1243 short i, *fchunks; 1244 char *pva; 1245 1246 /* Piglet will be identity mapped (VA == PA) */ 1247 pva = (char *)hib->piglet_pa; 1248 1249 fchunks = (short *)(pva + (4 * PAGE_SIZE)); 1250 1251 chunks = (struct hibernate_disk_chunk *)(pva + HIBERNATE_CHUNK_SIZE); 1252 1253 /* Can't use hiber_info that's passed in after this point */ 1254 bcopy(hib, &local_hib, sizeof(union hibernate_info)); 1255 local_hib.retguard_ofs = 0; 1256 1257 /* VA == PA */ 1258 local_hib.piglet_va = local_hib.piglet_pa; 1259 1260 /* 1261 * Point of no return. Once we pass this point, only kernel code can 1262 * be accessed. No global variables or other kernel data structures 1263 * are guaranteed to be coherent after unpack starts. 1264 * 1265 * The image is now in high memory (pig area), we unpack from the pig 1266 * to the correct location in memory. We'll eventually end up copying 1267 * on top of ourself, but we are assured the kernel code here is the 1268 * same between the hibernated and resuming kernel, and we are running 1269 * on our own stack, so the overwrite is ok. 1270 */ 1271 DPRINTF("hibernate: activating alt. pagetable and starting unpack\n"); 1272 hibernate_activate_resume_pt_machdep(); 1273 1274 for (i = 0; i < local_hib.chunk_ctr; i++) { 1275 /* Reset zlib for inflate */ 1276 if (hibernate_zlib_reset(&local_hib, 0) != Z_OK) 1277 panic("hibernate failed to reset zlib for inflate"); 1278 1279 hibernate_process_chunk(&local_hib, &chunks[fchunks[i]], 1280 image_cur); 1281 1282 image_cur += chunks[fchunks[i]].compressed_size; 1283 1284 } 1285 1286 /* 1287 * Resume the loaded kernel by jumping to the MD resume vector. 1288 * We won't be returning from this call. We pass the location of 1289 * the retguard save area so the MD code can replace it before 1290 * resuming. See the piglet layout at the top of this file for 1291 * more information on the layout of the piglet area. 1292 * 1293 * We use 'global_piglet_va' here since by the time we are at 1294 * this point, we have already unpacked the image, and we want 1295 * the suspended kernel's view of what the piglet was, before 1296 * suspend occurred (since we will need to use that in the retguard 1297 * copy code in hibernate_resume_machdep.) 1298 */ 1299 hibernate_resume_machdep(global_piglet_va + (110 * PAGE_SIZE)); 1300 } 1301 1302 /* 1303 * Bounce a compressed image chunk to the piglet, entering mappings for the 1304 * copied pages as needed 1305 */ 1306 void 1307 hibernate_copy_chunk_to_piglet(paddr_t img_cur, vaddr_t piglet, size_t size) 1308 { 1309 size_t ct, ofs; 1310 paddr_t src = img_cur; 1311 vaddr_t dest = piglet; 1312 1313 /* Copy first partial page */ 1314 ct = (PAGE_SIZE) - (src & PAGE_MASK); 1315 ofs = (src & PAGE_MASK); 1316 1317 if (ct < PAGE_SIZE) { 1318 hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE, 1319 (src - ofs), 0); 1320 hibernate_flush(); 1321 bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE + ofs), (caddr_t)dest, ct); 1322 src += ct; 1323 dest += ct; 1324 } 1325 1326 /* Copy remaining pages */ 1327 while (src < size + img_cur) { 1328 hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE, src, 0); 1329 hibernate_flush(); 1330 ct = PAGE_SIZE; 1331 bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE), (caddr_t)dest, ct); 1332 hibernate_flush(); 1333 src += ct; 1334 dest += ct; 1335 } 1336 } 1337 1338 /* 1339 * Process a chunk by bouncing it to the piglet, followed by unpacking 1340 */ 1341 void 1342 hibernate_process_chunk(union hibernate_info *hib, 1343 struct hibernate_disk_chunk *chunk, paddr_t img_cur) 1344 { 1345 char *pva = (char *)hib->piglet_va; 1346 1347 hibernate_copy_chunk_to_piglet(img_cur, 1348 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), chunk->compressed_size); 1349 hibernate_inflate_region(hib, chunk->base, 1350 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), 1351 chunk->compressed_size); 1352 } 1353 1354 /* 1355 * Calculate RLE component for 'inaddr'. Clamps to max RLE pages between 1356 * inaddr and range_end. 1357 */ 1358 int 1359 hibernate_calc_rle(paddr_t inaddr, paddr_t range_end) 1360 { 1361 int rle; 1362 1363 rle = uvm_page_rle(inaddr); 1364 KASSERT(rle >= 0 && rle <= MAX_RLE); 1365 1366 /* Clamp RLE to range end */ 1367 if (rle > 0 && inaddr + (rle * PAGE_SIZE) > range_end) 1368 rle = (range_end - inaddr) / PAGE_SIZE; 1369 1370 return (rle); 1371 } 1372 1373 /* 1374 * Write the RLE byte for page at 'inaddr' to the output stream. 1375 * Returns the number of pages to be skipped at 'inaddr'. 1376 */ 1377 int 1378 hibernate_write_rle(union hibernate_info *hib, paddr_t inaddr, 1379 paddr_t range_end, daddr_t *blkctr, 1380 size_t *out_remaining) 1381 { 1382 int rle, err, *rleloc; 1383 struct hibernate_zlib_state *hibernate_state; 1384 vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE; 1385 1386 hibernate_state = 1387 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1388 1389 rle = hibernate_calc_rle(inaddr, range_end); 1390 1391 rleloc = (int *)hibernate_rle_page + MAX_RLE - 1; 1392 *rleloc = rle; 1393 1394 /* Deflate the RLE byte into the stream */ 1395 hibernate_deflate(hib, (paddr_t)rleloc, out_remaining); 1396 1397 /* Did we fill the output page? If so, flush to disk */ 1398 if (*out_remaining == 0) { 1399 if ((err = hib->io_func(hib->dev, *blkctr + hib->image_offset, 1400 (vaddr_t)hibernate_io_page, PAGE_SIZE, HIB_W, 1401 hib->io_page))) { 1402 DPRINTF("hib write error %d\n", err); 1403 return (err); 1404 } 1405 1406 *blkctr += PAGE_SIZE / DEV_BSIZE; 1407 *out_remaining = PAGE_SIZE; 1408 1409 /* If we didn't deflate the entire RLE byte, finish it now */ 1410 if (hibernate_state->hib_stream.avail_in != 0) 1411 hibernate_deflate(hib, 1412 (vaddr_t)hibernate_state->hib_stream.next_in, 1413 out_remaining); 1414 } 1415 1416 return (rle); 1417 } 1418 1419 /* 1420 * Write a compressed version of this machine's memory to disk, at the 1421 * precalculated swap offset: 1422 * 1423 * end of swap - signature block size - chunk table size - memory size 1424 * 1425 * The function begins by looping through each phys mem range, cutting each 1426 * one into MD sized chunks. These chunks are then compressed individually 1427 * and written out to disk, in phys mem order. Some chunks might compress 1428 * more than others, and for this reason, each chunk's size is recorded 1429 * in the chunk table, which is written to disk after the image has 1430 * properly been compressed and written (in hibernate_write_chunktable). 1431 * 1432 * When this function is called, the machine is nearly suspended - most 1433 * devices are quiesced/suspended, interrupts are off, and cold has 1434 * been set. This means that there can be no side effects once the 1435 * write has started, and the write function itself can also have no 1436 * side effects. This also means no printfs are permitted (since printf 1437 * has side effects.) 1438 * 1439 * Return values : 1440 * 1441 * 0 - success 1442 * EIO - I/O error occurred writing the chunks 1443 * EINVAL - Failed to write a complete range 1444 * ENOMEM - Memory allocation failure during preparation of the zlib arena 1445 */ 1446 int 1447 hibernate_write_chunks(union hibernate_info *hib) 1448 { 1449 paddr_t range_base, range_end, inaddr, temp_inaddr; 1450 size_t nblocks, out_remaining, used; 1451 struct hibernate_disk_chunk *chunks; 1452 vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE; 1453 daddr_t blkctr = 0; 1454 int i, rle, err; 1455 struct hibernate_zlib_state *hibernate_state; 1456 1457 hibernate_state = 1458 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1459 1460 hib->chunk_ctr = 0; 1461 1462 /* 1463 * Map the utility VAs to the piglet. See the piglet map at the 1464 * top of this file for piglet layout information. 1465 */ 1466 hibernate_copy_page = hib->piglet_va + 3 * PAGE_SIZE; 1467 hibernate_rle_page = hib->piglet_va + 28 * PAGE_SIZE; 1468 1469 chunks = (struct hibernate_disk_chunk *)(hib->piglet_va + 1470 HIBERNATE_CHUNK_SIZE); 1471 1472 /* Calculate the chunk regions */ 1473 for (i = 0; i < hib->nranges; i++) { 1474 range_base = hib->ranges[i].base; 1475 range_end = hib->ranges[i].end; 1476 1477 inaddr = range_base; 1478 1479 while (inaddr < range_end) { 1480 chunks[hib->chunk_ctr].base = inaddr; 1481 if (inaddr + HIBERNATE_CHUNK_SIZE < range_end) 1482 chunks[hib->chunk_ctr].end = inaddr + 1483 HIBERNATE_CHUNK_SIZE; 1484 else 1485 chunks[hib->chunk_ctr].end = range_end; 1486 1487 inaddr += HIBERNATE_CHUNK_SIZE; 1488 hib->chunk_ctr ++; 1489 } 1490 } 1491 1492 uvm_pmr_dirty_everything(); 1493 uvm_pmr_zero_everything(); 1494 1495 /* Compress and write the chunks in the chunktable */ 1496 for (i = 0; i < hib->chunk_ctr; i++) { 1497 range_base = chunks[i].base; 1498 range_end = chunks[i].end; 1499 1500 chunks[i].offset = blkctr + hib->image_offset; 1501 1502 /* Reset zlib for deflate */ 1503 if (hibernate_zlib_reset(hib, 1) != Z_OK) { 1504 DPRINTF("hibernate_zlib_reset failed for deflate\n"); 1505 return (ENOMEM); 1506 } 1507 1508 inaddr = range_base; 1509 1510 /* 1511 * For each range, loop through its phys mem region 1512 * and write out the chunks (the last chunk might be 1513 * smaller than the chunk size). 1514 */ 1515 while (inaddr < range_end) { 1516 out_remaining = PAGE_SIZE; 1517 while (out_remaining > 0 && inaddr < range_end) { 1518 /* 1519 * Adjust for regions that are not evenly 1520 * divisible by PAGE_SIZE or overflowed 1521 * pages from the previous iteration. 1522 */ 1523 temp_inaddr = (inaddr & PAGE_MASK) + 1524 hibernate_copy_page; 1525 1526 /* Deflate from temp_inaddr to IO page */ 1527 if (inaddr != range_end) { 1528 if (inaddr % PAGE_SIZE == 0) { 1529 rle = hibernate_write_rle(hib, 1530 inaddr, 1531 range_end, 1532 &blkctr, 1533 &out_remaining); 1534 } 1535 1536 if (rle == 0) { 1537 pmap_kenter_pa(hibernate_temp_page, 1538 inaddr & PMAP_PA_MASK, 1539 PROT_READ); 1540 1541 bcopy((caddr_t)hibernate_temp_page, 1542 (caddr_t)hibernate_copy_page, 1543 PAGE_SIZE); 1544 inaddr += hibernate_deflate(hib, 1545 temp_inaddr, 1546 &out_remaining); 1547 } else { 1548 inaddr += rle * PAGE_SIZE; 1549 if (inaddr > range_end) 1550 inaddr = range_end; 1551 } 1552 1553 } 1554 1555 if (out_remaining == 0) { 1556 /* Filled up the page */ 1557 nblocks = PAGE_SIZE / DEV_BSIZE; 1558 1559 if ((err = hib->io_func(hib->dev, 1560 blkctr + hib->image_offset, 1561 (vaddr_t)hibernate_io_page, 1562 PAGE_SIZE, HIB_W, hib->io_page))) { 1563 DPRINTF("hib write error %d\n", 1564 err); 1565 return (err); 1566 } 1567 1568 blkctr += nblocks; 1569 } 1570 } 1571 } 1572 1573 if (inaddr != range_end) { 1574 DPRINTF("deflate range ended prematurely\n"); 1575 return (EINVAL); 1576 } 1577 1578 /* 1579 * End of range. Round up to next secsize bytes 1580 * after finishing compress 1581 */ 1582 if (out_remaining == 0) 1583 out_remaining = PAGE_SIZE; 1584 1585 /* Finish compress */ 1586 hibernate_state->hib_stream.next_in = (unsigned char *)inaddr; 1587 hibernate_state->hib_stream.avail_in = 0; 1588 hibernate_state->hib_stream.next_out = 1589 (unsigned char *)hibernate_io_page + 1590 (PAGE_SIZE - out_remaining); 1591 1592 /* We have an extra output page available for finalize */ 1593 hibernate_state->hib_stream.avail_out = 1594 out_remaining + PAGE_SIZE; 1595 1596 if ((err = deflate(&hibernate_state->hib_stream, Z_FINISH)) != 1597 Z_STREAM_END) { 1598 DPRINTF("deflate error in output stream: %d\n", err); 1599 return (err); 1600 } 1601 1602 out_remaining = hibernate_state->hib_stream.avail_out; 1603 1604 used = 2 * PAGE_SIZE - out_remaining; 1605 nblocks = used / DEV_BSIZE; 1606 1607 /* Round up to next block if needed */ 1608 if (used % DEV_BSIZE != 0) 1609 nblocks ++; 1610 1611 /* Write final block(s) for this chunk */ 1612 if ((err = hib->io_func(hib->dev, blkctr + hib->image_offset, 1613 (vaddr_t)hibernate_io_page, nblocks*DEV_BSIZE, 1614 HIB_W, hib->io_page))) { 1615 DPRINTF("hib final write error %d\n", err); 1616 return (err); 1617 } 1618 1619 blkctr += nblocks; 1620 1621 chunks[i].compressed_size = (blkctr + hib->image_offset - 1622 chunks[i].offset) * DEV_BSIZE; 1623 } 1624 1625 hib->chunktable_offset = hib->image_offset + blkctr; 1626 return (0); 1627 } 1628 1629 /* 1630 * Reset the zlib stream state and allocate a new hiballoc area for either 1631 * inflate or deflate. This function is called once for each hibernate chunk. 1632 * Calling hiballoc_init multiple times is acceptable since the memory it is 1633 * provided is unmanaged memory (stolen). We use the memory provided to us 1634 * by the piglet allocated via the supplied hib. 1635 */ 1636 int 1637 hibernate_zlib_reset(union hibernate_info *hib, int deflate) 1638 { 1639 vaddr_t hibernate_zlib_start; 1640 size_t hibernate_zlib_size; 1641 char *pva = (char *)hib->piglet_va; 1642 struct hibernate_zlib_state *hibernate_state; 1643 1644 hibernate_state = 1645 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1646 1647 if (!deflate) 1648 pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK)); 1649 1650 /* 1651 * See piglet layout information at the start of this file for 1652 * information on the zlib page assignments. 1653 */ 1654 hibernate_zlib_start = (vaddr_t)(pva + (30 * PAGE_SIZE)); 1655 hibernate_zlib_size = 80 * PAGE_SIZE; 1656 1657 memset((void *)hibernate_zlib_start, 0, hibernate_zlib_size); 1658 memset(hibernate_state, 0, PAGE_SIZE); 1659 1660 /* Set up stream structure */ 1661 hibernate_state->hib_stream.zalloc = (alloc_func)hibernate_zlib_alloc; 1662 hibernate_state->hib_stream.zfree = (free_func)hibernate_zlib_free; 1663 1664 /* Initialize the hiballoc arena for zlib allocs/frees */ 1665 hiballoc_init(&hibernate_state->hiballoc_arena, 1666 (caddr_t)hibernate_zlib_start, hibernate_zlib_size); 1667 1668 if (deflate) { 1669 return deflateInit(&hibernate_state->hib_stream, 1670 Z_BEST_SPEED); 1671 } else 1672 return inflateInit(&hibernate_state->hib_stream); 1673 } 1674 1675 /* 1676 * Reads the hibernated memory image from disk, whose location and 1677 * size are recorded in hib. Begin by reading the persisted 1678 * chunk table, which records the original chunk placement location 1679 * and compressed size for each. Next, allocate a pig region of 1680 * sufficient size to hold the compressed image. Next, read the 1681 * chunks into the pig area (calling hibernate_read_chunks to do this), 1682 * and finally, if all of the above succeeds, clear the hibernate signature. 1683 * The function will then return to hibernate_resume, which will proceed 1684 * to unpack the pig image to the correct place in memory. 1685 */ 1686 int 1687 hibernate_read_image(union hibernate_info *hib) 1688 { 1689 size_t compressed_size, disk_size, chunktable_size, pig_sz; 1690 paddr_t image_start, image_end, pig_start, pig_end; 1691 struct hibernate_disk_chunk *chunks; 1692 daddr_t blkctr; 1693 vaddr_t chunktable = (vaddr_t)NULL; 1694 paddr_t piglet_chunktable = hib->piglet_pa + 1695 HIBERNATE_CHUNK_SIZE; 1696 int i, status; 1697 1698 status = 0; 1699 pmap_activate(curproc); 1700 1701 /* Calculate total chunk table size in disk blocks */ 1702 chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / DEV_BSIZE; 1703 1704 blkctr = hib->chunktable_offset; 1705 1706 chunktable = (vaddr_t)km_alloc(HIBERNATE_CHUNK_TABLE_SIZE, &kv_any, 1707 &kp_none, &kd_nowait); 1708 1709 if (!chunktable) 1710 return (1); 1711 1712 /* Map chunktable pages */ 1713 for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE; i += PAGE_SIZE) 1714 pmap_kenter_pa(chunktable + i, piglet_chunktable + i, 1715 PROT_READ | PROT_WRITE); 1716 pmap_update(pmap_kernel()); 1717 1718 /* Read the chunktable from disk into the piglet chunktable */ 1719 for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE; 1720 i += MAXPHYS, blkctr += MAXPHYS/DEV_BSIZE) 1721 hibernate_block_io(hib, blkctr, MAXPHYS, 1722 chunktable + i, 0); 1723 1724 blkctr = hib->image_offset; 1725 compressed_size = 0; 1726 1727 chunks = (struct hibernate_disk_chunk *)chunktable; 1728 1729 for (i = 0; i < hib->chunk_ctr; i++) 1730 compressed_size += chunks[i].compressed_size; 1731 1732 disk_size = compressed_size; 1733 1734 printf("unhibernating @ block %lld length %lu bytes\n", 1735 hib->sig_offset - chunktable_size, 1736 compressed_size); 1737 1738 /* Allocate the pig area */ 1739 pig_sz = compressed_size + HIBERNATE_CHUNK_SIZE; 1740 if (uvm_pmr_alloc_pig(&pig_start, pig_sz, hib->piglet_pa) == ENOMEM) { 1741 status = 1; 1742 goto unmap; 1743 } 1744 1745 pig_end = pig_start + pig_sz; 1746 1747 /* Calculate image extents. Pig image must end on a chunk boundary. */ 1748 image_end = pig_end & ~(HIBERNATE_CHUNK_SIZE - 1); 1749 image_start = image_end - disk_size; 1750 1751 hibernate_read_chunks(hib, image_start, image_end, disk_size, 1752 chunks); 1753 1754 /* Prepare the resume time pmap/page table */ 1755 hibernate_populate_resume_pt(hib, image_start, image_end); 1756 1757 unmap: 1758 /* Unmap chunktable pages */ 1759 pmap_kremove(chunktable, HIBERNATE_CHUNK_TABLE_SIZE); 1760 pmap_update(pmap_kernel()); 1761 1762 return (status); 1763 } 1764 1765 /* 1766 * Read the hibernated memory chunks from disk (chunk information at this 1767 * point is stored in the piglet) into the pig area specified by 1768 * [pig_start .. pig_end]. Order the chunks so that the final chunk is the 1769 * only chunk with overlap possibilities. 1770 */ 1771 int 1772 hibernate_read_chunks(union hibernate_info *hib, paddr_t pig_start, 1773 paddr_t pig_end, size_t image_compr_size, 1774 struct hibernate_disk_chunk *chunks) 1775 { 1776 paddr_t img_cur, piglet_base; 1777 daddr_t blkctr; 1778 size_t processed, compressed_size, read_size; 1779 int nchunks, nfchunks, num_io_pages; 1780 vaddr_t tempva, hibernate_fchunk_area; 1781 short *fchunks, i, j; 1782 1783 tempva = (vaddr_t)NULL; 1784 hibernate_fchunk_area = (vaddr_t)NULL; 1785 nfchunks = 0; 1786 piglet_base = hib->piglet_pa; 1787 global_pig_start = pig_start; 1788 1789 /* 1790 * These mappings go into the resuming kernel's page table, and are 1791 * used only during image read. They disappear from existence 1792 * when the suspended kernel is unpacked on top of us. 1793 */ 1794 tempva = (vaddr_t)km_alloc(MAXPHYS + PAGE_SIZE, &kv_any, &kp_none, 1795 &kd_nowait); 1796 if (!tempva) 1797 return (1); 1798 hibernate_fchunk_area = (vaddr_t)km_alloc(24 * PAGE_SIZE, &kv_any, 1799 &kp_none, &kd_nowait); 1800 if (!hibernate_fchunk_area) 1801 return (1); 1802 1803 /* Final output chunk ordering VA */ 1804 fchunks = (short *)hibernate_fchunk_area; 1805 1806 /* Map the chunk ordering region */ 1807 for(i = 0; i < 24 ; i++) 1808 pmap_kenter_pa(hibernate_fchunk_area + (i * PAGE_SIZE), 1809 piglet_base + ((4 + i) * PAGE_SIZE), 1810 PROT_READ | PROT_WRITE); 1811 pmap_update(pmap_kernel()); 1812 1813 nchunks = hib->chunk_ctr; 1814 1815 /* Initially start all chunks as unplaced */ 1816 for (i = 0; i < nchunks; i++) 1817 chunks[i].flags = 0; 1818 1819 /* 1820 * Search the list for chunks that are outside the pig area. These 1821 * can be placed first in the final output list. 1822 */ 1823 for (i = 0; i < nchunks; i++) { 1824 if (chunks[i].end <= pig_start || chunks[i].base >= pig_end) { 1825 fchunks[nfchunks] = i; 1826 nfchunks++; 1827 chunks[i].flags |= HIBERNATE_CHUNK_PLACED; 1828 } 1829 } 1830 1831 /* 1832 * Walk the ordering, place the chunks in ascending memory order. 1833 */ 1834 for (i = 0; i < nchunks; i++) { 1835 if (chunks[i].flags != HIBERNATE_CHUNK_PLACED) { 1836 fchunks[nfchunks] = i; 1837 nfchunks++; 1838 chunks[i].flags = HIBERNATE_CHUNK_PLACED; 1839 } 1840 } 1841 1842 img_cur = pig_start; 1843 1844 for (i = 0; i < nfchunks; i++) { 1845 blkctr = chunks[fchunks[i]].offset; 1846 processed = 0; 1847 compressed_size = chunks[fchunks[i]].compressed_size; 1848 1849 while (processed < compressed_size) { 1850 if (compressed_size - processed >= MAXPHYS) 1851 read_size = MAXPHYS; 1852 else 1853 read_size = compressed_size - processed; 1854 1855 /* 1856 * We're reading read_size bytes, offset from the 1857 * start of a page by img_cur % PAGE_SIZE, so the 1858 * end will be read_size + (img_cur % PAGE_SIZE) 1859 * from the start of the first page. Round that 1860 * up to the next page size. 1861 */ 1862 num_io_pages = (read_size + (img_cur % PAGE_SIZE) 1863 + PAGE_SIZE - 1) / PAGE_SIZE; 1864 1865 KASSERT(num_io_pages <= MAXPHYS/PAGE_SIZE + 1); 1866 1867 /* Map pages for this read */ 1868 for (j = 0; j < num_io_pages; j ++) 1869 pmap_kenter_pa(tempva + j * PAGE_SIZE, 1870 img_cur + j * PAGE_SIZE, 1871 PROT_READ | PROT_WRITE); 1872 1873 pmap_update(pmap_kernel()); 1874 1875 hibernate_block_io(hib, blkctr, read_size, 1876 tempva + (img_cur & PAGE_MASK), 0); 1877 1878 blkctr += (read_size / DEV_BSIZE); 1879 1880 pmap_kremove(tempva, num_io_pages * PAGE_SIZE); 1881 pmap_update(pmap_kernel()); 1882 1883 processed += read_size; 1884 img_cur += read_size; 1885 } 1886 } 1887 1888 pmap_kremove(hibernate_fchunk_area, 24 * PAGE_SIZE); 1889 pmap_update(pmap_kernel()); 1890 1891 return (0); 1892 } 1893 1894 /* 1895 * Hibernating a machine comprises the following operations: 1896 * 1. Calculating this machine's hibernate_info information 1897 * 2. Allocating a piglet and saving the piglet's physaddr 1898 * 3. Calculating the memory chunks 1899 * 4. Writing the compressed chunks to disk 1900 * 5. Writing the chunk table 1901 * 6. Writing the signature block (hibernate_info) 1902 * 1903 * On most architectures, the function calling hibernate_suspend would 1904 * then power off the machine using some MD-specific implementation. 1905 */ 1906 int 1907 hibernate_suspend(void) 1908 { 1909 union hibernate_info hib; 1910 u_long start, end; 1911 1912 /* 1913 * Calculate memory ranges, swap offsets, etc. 1914 * This also allocates a piglet whose physaddr is stored in 1915 * hib->piglet_pa and vaddr stored in hib->piglet_va 1916 */ 1917 if (get_hibernate_info(&hib, 1)) { 1918 DPRINTF("failed to obtain hibernate info\n"); 1919 return (1); 1920 } 1921 1922 /* Find a page-addressed region in swap [start,end] */ 1923 if (uvm_hibswap(hib.dev, &start, &end)) { 1924 printf("hibernate: cannot find any swap\n"); 1925 return (1); 1926 } 1927 1928 if (end - start < 1000) { 1929 printf("hibernate: insufficient swap (%lu is too small)\n", 1930 end - start); 1931 return (1); 1932 } 1933 1934 /* Calculate block offsets in swap */ 1935 hib.image_offset = ctod(start); 1936 1937 DPRINTF("hibernate @ block %lld max-length %lu blocks\n", 1938 hib.image_offset, ctod(end) - ctod(start)); 1939 1940 pmap_activate(curproc); 1941 DPRINTF("hibernate: writing chunks\n"); 1942 if (hibernate_write_chunks(&hib)) { 1943 DPRINTF("hibernate_write_chunks failed\n"); 1944 return (1); 1945 } 1946 1947 DPRINTF("hibernate: writing chunktable\n"); 1948 if (hibernate_write_chunktable(&hib)) { 1949 DPRINTF("hibernate_write_chunktable failed\n"); 1950 return (1); 1951 } 1952 1953 DPRINTF("hibernate: writing signature\n"); 1954 if (hibernate_write_signature(&hib)) { 1955 DPRINTF("hibernate_write_signature failed\n"); 1956 return (1); 1957 } 1958 1959 /* Allow the disk to settle */ 1960 delay(500000); 1961 1962 /* 1963 * Give the device-specific I/O function a notification that we're 1964 * done, and that it can clean up or shutdown as needed. 1965 */ 1966 hib.io_func(hib.dev, 0, (vaddr_t)NULL, 0, HIB_DONE, hib.io_page); 1967 return (0); 1968 } 1969 1970 int 1971 hibernate_alloc(void) 1972 { 1973 KASSERT(global_piglet_va == 0); 1974 KASSERT(hibernate_temp_page == 0); 1975 1976 pmap_activate(curproc); 1977 pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE, 1978 PROT_READ | PROT_WRITE); 1979 1980 /* Allocate a piglet, store its addresses in the supplied globals */ 1981 if (uvm_pmr_alloc_piglet(&global_piglet_va, &global_piglet_pa, 1982 HIBERNATE_CHUNK_SIZE * 4, HIBERNATE_CHUNK_SIZE)) 1983 goto unmap; 1984 1985 /* 1986 * Allocate VA for the temp page. 1987 * 1988 * This will become part of the suspended kernel and will 1989 * be freed in hibernate_free, upon resume (or hibernate 1990 * failure) 1991 */ 1992 hibernate_temp_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 1993 &kp_none, &kd_nowait); 1994 if (!hibernate_temp_page) { 1995 uvm_pmr_free_piglet(global_piglet_va, 1996 4 * HIBERNATE_CHUNK_SIZE); 1997 global_piglet_va = 0; 1998 goto unmap; 1999 } 2000 return (0); 2001 unmap: 2002 pmap_kremove(HIBERNATE_HIBALLOC_PAGE, PAGE_SIZE); 2003 pmap_update(pmap_kernel()); 2004 return (ENOMEM); 2005 } 2006 2007 /* 2008 * Free items allocated by hibernate_alloc() 2009 */ 2010 void 2011 hibernate_free(void) 2012 { 2013 pmap_activate(curproc); 2014 2015 if (global_piglet_va) 2016 uvm_pmr_free_piglet(global_piglet_va, 2017 4 * HIBERNATE_CHUNK_SIZE); 2018 2019 if (hibernate_temp_page) { 2020 pmap_kremove(hibernate_temp_page, PAGE_SIZE); 2021 km_free((void *)hibernate_temp_page, PAGE_SIZE, 2022 &kv_any, &kp_none); 2023 } 2024 2025 global_piglet_va = 0; 2026 hibernate_temp_page = 0; 2027 pmap_kremove(HIBERNATE_HIBALLOC_PAGE, PAGE_SIZE); 2028 pmap_update(pmap_kernel()); 2029 } 2030