xref: /openbsd/sys/kern/subr_hibernate.c (revision 097a140d)
1 /*	$OpenBSD: subr_hibernate.c,v 1.126 2021/03/10 10:21:47 jsg Exp $	*/
2 
3 /*
4  * Copyright (c) 2011 Ariane van der Steldt <ariane@stack.nl>
5  * Copyright (c) 2011 Mike Larkin <mlarkin@openbsd.org>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <sys/hibernate.h>
21 #include <sys/malloc.h>
22 #include <sys/param.h>
23 #include <sys/tree.h>
24 #include <sys/systm.h>
25 #include <sys/disklabel.h>
26 #include <sys/disk.h>
27 #include <sys/conf.h>
28 #include <sys/buf.h>
29 #include <sys/fcntl.h>
30 #include <sys/stat.h>
31 #include <sys/atomic.h>
32 
33 #include <uvm/uvm.h>
34 #include <uvm/uvm_swap.h>
35 
36 #include <machine/hibernate.h>
37 
38 /*
39  * Hibernate piglet layout information
40  *
41  * The piglet is a scratch area of memory allocated by the suspending kernel.
42  * Its phys and virt addrs are recorded in the signature block. The piglet is
43  * used to guarantee an unused area of memory that can be used by the resuming
44  * kernel for various things. The piglet is excluded during unpack operations.
45  * The piglet size is presently 4*HIBERNATE_CHUNK_SIZE (typically 4*4MB).
46  *
47  * Offset from piglet_base	Purpose
48  * ----------------------------------------------------------------------------
49  * 0				Private page for suspend I/O write functions
50  * 1*PAGE_SIZE			I/O page used during hibernate suspend
51  * 2*PAGE_SIZE			I/O page used during hibernate suspend
52  * 3*PAGE_SIZE			copy page used during hibernate suspend
53  * 4*PAGE_SIZE			final chunk ordering list (24 pages)
54  * 28*PAGE_SIZE			RLE utility page
55  * 29*PAGE_SIZE			start of hiballoc area
56  * 30*PAGE_SIZE			preserved entropy
57  * 110*PAGE_SIZE		end of hiballoc area (80 pages)
58  * 366*PAGE_SIZE		end of retguard preservation region (256 pages)
59  * ...				unused
60  * HIBERNATE_CHUNK_SIZE		start of hibernate chunk table
61  * 2*HIBERNATE_CHUNK_SIZE	bounce area for chunks being unpacked
62  * 4*HIBERNATE_CHUNK_SIZE	end of piglet
63  */
64 
65 /* Temporary vaddr ranges used during hibernate */
66 vaddr_t hibernate_temp_page;
67 vaddr_t hibernate_copy_page;
68 vaddr_t hibernate_rle_page;
69 
70 /* Hibernate info as read from disk during resume */
71 union hibernate_info disk_hib;
72 
73 /*
74  * Global copy of the pig start address. This needs to be a global as we
75  * switch stacks after computing it - it can't be stored on the stack.
76  */
77 paddr_t global_pig_start;
78 
79 /*
80  * Global copies of the piglet start addresses (PA/VA). We store these
81  * as globals to avoid having to carry them around as parameters, as the
82  * piglet is allocated early and freed late - its lifecycle extends beyond
83  * that of the hibernate info union which is calculated on suspend/resume.
84  */
85 vaddr_t global_piglet_va;
86 paddr_t global_piglet_pa;
87 
88 /* #define HIB_DEBUG */
89 #ifdef HIB_DEBUG
90 int	hib_debug = 99;
91 #define DPRINTF(x...)     do { if (hib_debug) printf(x); } while (0)
92 #define DNPRINTF(n,x...)  do { if (hib_debug > (n)) printf(x); } while (0)
93 #else
94 #define DPRINTF(x...)
95 #define DNPRINTF(n,x...)
96 #endif
97 
98 #ifndef NO_PROPOLICE
99 extern long __guard_local;
100 #endif /* ! NO_PROPOLICE */
101 
102 void hibernate_copy_chunk_to_piglet(paddr_t, vaddr_t, size_t);
103 int hibernate_calc_rle(paddr_t, paddr_t);
104 int hibernate_write_rle(union hibernate_info *, paddr_t, paddr_t, daddr_t *,
105 	size_t *);
106 
107 #define MAX_RLE (HIBERNATE_CHUNK_SIZE / PAGE_SIZE)
108 
109 /*
110  * Hib alloc enforced alignment.
111  */
112 #define HIB_ALIGN		8 /* bytes alignment */
113 
114 /*
115  * sizeof builtin operation, but with alignment constraint.
116  */
117 #define HIB_SIZEOF(_type)	roundup(sizeof(_type), HIB_ALIGN)
118 
119 struct hiballoc_entry {
120 	size_t			hibe_use;
121 	size_t			hibe_space;
122 	RBT_ENTRY(hiballoc_entry) hibe_entry;
123 };
124 
125 /*
126  * Sort hibernate memory ranges by ascending PA
127  */
128 void
129 hibernate_sort_ranges(union hibernate_info *hib_info)
130 {
131 	int i, j;
132 	struct hibernate_memory_range *ranges;
133 	paddr_t base, end;
134 
135 	ranges = hib_info->ranges;
136 
137 	for (i = 1; i < hib_info->nranges; i++) {
138 		j = i;
139 		while (j > 0 && ranges[j - 1].base > ranges[j].base) {
140 			base = ranges[j].base;
141 			end = ranges[j].end;
142 			ranges[j].base = ranges[j - 1].base;
143 			ranges[j].end = ranges[j - 1].end;
144 			ranges[j - 1].base = base;
145 			ranges[j - 1].end = end;
146 			j--;
147 		}
148 	}
149 }
150 
151 /*
152  * Compare hiballoc entries based on the address they manage.
153  *
154  * Since the address is fixed, relative to struct hiballoc_entry,
155  * we just compare the hiballoc_entry pointers.
156  */
157 static __inline int
158 hibe_cmp(const struct hiballoc_entry *l, const struct hiballoc_entry *r)
159 {
160 	vaddr_t vl = (vaddr_t)l;
161 	vaddr_t vr = (vaddr_t)r;
162 
163 	return vl < vr ? -1 : (vl > vr);
164 }
165 
166 RBT_PROTOTYPE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp)
167 
168 /*
169  * Given a hiballoc entry, return the address it manages.
170  */
171 static __inline void *
172 hib_entry_to_addr(struct hiballoc_entry *entry)
173 {
174 	caddr_t addr;
175 
176 	addr = (caddr_t)entry;
177 	addr += HIB_SIZEOF(struct hiballoc_entry);
178 	return addr;
179 }
180 
181 /*
182  * Given an address, find the hiballoc that corresponds.
183  */
184 static __inline struct hiballoc_entry*
185 hib_addr_to_entry(void *addr_param)
186 {
187 	caddr_t addr;
188 
189 	addr = (caddr_t)addr_param;
190 	addr -= HIB_SIZEOF(struct hiballoc_entry);
191 	return (struct hiballoc_entry*)addr;
192 }
193 
194 RBT_GENERATE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp);
195 
196 /*
197  * Allocate memory from the arena.
198  *
199  * Returns NULL if no memory is available.
200  */
201 void *
202 hib_alloc(struct hiballoc_arena *arena, size_t alloc_sz)
203 {
204 	struct hiballoc_entry *entry, *new_entry;
205 	size_t find_sz;
206 
207 	/*
208 	 * Enforce alignment of HIB_ALIGN bytes.
209 	 *
210 	 * Note that, because the entry is put in front of the allocation,
211 	 * 0-byte allocations are guaranteed a unique address.
212 	 */
213 	alloc_sz = roundup(alloc_sz, HIB_ALIGN);
214 
215 	/*
216 	 * Find an entry with hibe_space >= find_sz.
217 	 *
218 	 * If the root node is not large enough, we switch to tree traversal.
219 	 * Because all entries are made at the bottom of the free space,
220 	 * traversal from the end has a slightly better chance of yielding
221 	 * a sufficiently large space.
222 	 */
223 	find_sz = alloc_sz + HIB_SIZEOF(struct hiballoc_entry);
224 	entry = RBT_ROOT(hiballoc_addr, &arena->hib_addrs);
225 	if (entry != NULL && entry->hibe_space < find_sz) {
226 		RBT_FOREACH_REVERSE(entry, hiballoc_addr, &arena->hib_addrs) {
227 			if (entry->hibe_space >= find_sz)
228 				break;
229 		}
230 	}
231 
232 	/*
233 	 * Insufficient or too fragmented memory.
234 	 */
235 	if (entry == NULL)
236 		return NULL;
237 
238 	/*
239 	 * Create new entry in allocated space.
240 	 */
241 	new_entry = (struct hiballoc_entry*)(
242 	    (caddr_t)hib_entry_to_addr(entry) + entry->hibe_use);
243 	new_entry->hibe_space = entry->hibe_space - find_sz;
244 	new_entry->hibe_use = alloc_sz;
245 
246 	/*
247 	 * Insert entry.
248 	 */
249 	if (RBT_INSERT(hiballoc_addr, &arena->hib_addrs, new_entry) != NULL)
250 		panic("hib_alloc: insert failure");
251 	entry->hibe_space = 0;
252 
253 	/* Return address managed by entry. */
254 	return hib_entry_to_addr(new_entry);
255 }
256 
257 void
258 hib_getentropy(char **bufp, size_t *bufplen)
259 {
260 	if (!bufp || !bufplen)
261 		return;
262 
263 	*bufp = (char *)(global_piglet_va + (29 * PAGE_SIZE));
264 	*bufplen = PAGE_SIZE;
265 }
266 
267 /*
268  * Free a pointer previously allocated from this arena.
269  *
270  * If addr is NULL, this will be silently accepted.
271  */
272 void
273 hib_free(struct hiballoc_arena *arena, void *addr)
274 {
275 	struct hiballoc_entry *entry, *prev;
276 
277 	if (addr == NULL)
278 		return;
279 
280 	/*
281 	 * Derive entry from addr and check it is really in this arena.
282 	 */
283 	entry = hib_addr_to_entry(addr);
284 	if (RBT_FIND(hiballoc_addr, &arena->hib_addrs, entry) != entry)
285 		panic("hib_free: freed item %p not in hib arena", addr);
286 
287 	/*
288 	 * Give the space in entry to its predecessor.
289 	 *
290 	 * If entry has no predecessor, change its used space into free space
291 	 * instead.
292 	 */
293 	prev = RBT_PREV(hiballoc_addr, entry);
294 	if (prev != NULL &&
295 	    (void *)((caddr_t)prev + HIB_SIZEOF(struct hiballoc_entry) +
296 	    prev->hibe_use + prev->hibe_space) == entry) {
297 		/* Merge entry. */
298 		RBT_REMOVE(hiballoc_addr, &arena->hib_addrs, entry);
299 		prev->hibe_space += HIB_SIZEOF(struct hiballoc_entry) +
300 		    entry->hibe_use + entry->hibe_space;
301 	} else {
302 		/* Flip used memory to free space. */
303 		entry->hibe_space += entry->hibe_use;
304 		entry->hibe_use = 0;
305 	}
306 }
307 
308 /*
309  * Initialize hiballoc.
310  *
311  * The allocator will manage memory at ptr, which is len bytes.
312  */
313 int
314 hiballoc_init(struct hiballoc_arena *arena, void *p_ptr, size_t p_len)
315 {
316 	struct hiballoc_entry *entry;
317 	caddr_t ptr;
318 	size_t len;
319 
320 	RBT_INIT(hiballoc_addr, &arena->hib_addrs);
321 
322 	/*
323 	 * Hib allocator enforces HIB_ALIGN alignment.
324 	 * Fixup ptr and len.
325 	 */
326 	ptr = (caddr_t)roundup((vaddr_t)p_ptr, HIB_ALIGN);
327 	len = p_len - ((size_t)ptr - (size_t)p_ptr);
328 	len &= ~((size_t)HIB_ALIGN - 1);
329 
330 	/*
331 	 * Insufficient memory to be able to allocate and also do bookkeeping.
332 	 */
333 	if (len <= HIB_SIZEOF(struct hiballoc_entry))
334 		return ENOMEM;
335 
336 	/*
337 	 * Create entry describing space.
338 	 */
339 	entry = (struct hiballoc_entry*)ptr;
340 	entry->hibe_use = 0;
341 	entry->hibe_space = len - HIB_SIZEOF(struct hiballoc_entry);
342 	RBT_INSERT(hiballoc_addr, &arena->hib_addrs, entry);
343 
344 	return 0;
345 }
346 
347 /*
348  * Zero all free memory.
349  */
350 void
351 uvm_pmr_zero_everything(void)
352 {
353 	struct uvm_pmemrange	*pmr;
354 	struct vm_page		*pg;
355 	int			 i;
356 
357 	uvm_lock_fpageq();
358 	TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) {
359 		/* Zero single pages. */
360 		while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_DIRTY]))
361 		    != NULL) {
362 			uvm_pmr_remove(pmr, pg);
363 			uvm_pagezero(pg);
364 			atomic_setbits_int(&pg->pg_flags, PG_ZERO);
365 			uvmexp.zeropages++;
366 			uvm_pmr_insert(pmr, pg, 0);
367 		}
368 
369 		/* Zero multi page ranges. */
370 		while ((pg = RBT_ROOT(uvm_pmr_size,
371 		    &pmr->size[UVM_PMR_MEMTYPE_DIRTY])) != NULL) {
372 			pg--; /* Size tree always has second page. */
373 			uvm_pmr_remove(pmr, pg);
374 			for (i = 0; i < pg->fpgsz; i++) {
375 				uvm_pagezero(&pg[i]);
376 				atomic_setbits_int(&pg[i].pg_flags, PG_ZERO);
377 				uvmexp.zeropages++;
378 			}
379 			uvm_pmr_insert(pmr, pg, 0);
380 		}
381 	}
382 	uvm_unlock_fpageq();
383 }
384 
385 /*
386  * Mark all memory as dirty.
387  *
388  * Used to inform the system that the clean memory isn't clean for some
389  * reason, for example because we just came back from hibernate.
390  */
391 void
392 uvm_pmr_dirty_everything(void)
393 {
394 	struct uvm_pmemrange	*pmr;
395 	struct vm_page		*pg;
396 	int			 i;
397 
398 	uvm_lock_fpageq();
399 	TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) {
400 		/* Dirty single pages. */
401 		while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_ZERO]))
402 		    != NULL) {
403 			uvm_pmr_remove(pmr, pg);
404 			atomic_clearbits_int(&pg->pg_flags, PG_ZERO);
405 			uvm_pmr_insert(pmr, pg, 0);
406 		}
407 
408 		/* Dirty multi page ranges. */
409 		while ((pg = RBT_ROOT(uvm_pmr_size,
410 		    &pmr->size[UVM_PMR_MEMTYPE_ZERO])) != NULL) {
411 			pg--; /* Size tree always has second page. */
412 			uvm_pmr_remove(pmr, pg);
413 			for (i = 0; i < pg->fpgsz; i++)
414 				atomic_clearbits_int(&pg[i].pg_flags, PG_ZERO);
415 			uvm_pmr_insert(pmr, pg, 0);
416 		}
417 	}
418 
419 	uvmexp.zeropages = 0;
420 	uvm_unlock_fpageq();
421 }
422 
423 /*
424  * Allocate an area that can hold sz bytes and doesn't overlap with
425  * the piglet at piglet_pa.
426  */
427 int
428 uvm_pmr_alloc_pig(paddr_t *pa, psize_t sz, paddr_t piglet_pa)
429 {
430 	struct uvm_constraint_range pig_constraint;
431 	struct kmem_pa_mode kp_pig = {
432 		.kp_constraint = &pig_constraint,
433 		.kp_maxseg = 1
434 	};
435 	vaddr_t va;
436 
437 	sz = round_page(sz);
438 
439 	pig_constraint.ucr_low = piglet_pa + 4 * HIBERNATE_CHUNK_SIZE;
440 	pig_constraint.ucr_high = -1;
441 
442 	va = (vaddr_t)km_alloc(sz, &kv_any, &kp_pig, &kd_nowait);
443 	if (va == 0) {
444 		pig_constraint.ucr_low = 0;
445 		pig_constraint.ucr_high = piglet_pa - 1;
446 
447 		va = (vaddr_t)km_alloc(sz, &kv_any, &kp_pig, &kd_nowait);
448 		if (va == 0)
449 			return ENOMEM;
450 	}
451 
452 	pmap_extract(pmap_kernel(), va, pa);
453 	return 0;
454 }
455 
456 /*
457  * Allocate a piglet area.
458  *
459  * This needs to be in DMA-safe memory.
460  * Piglets are aligned.
461  *
462  * sz and align in bytes.
463  *
464  * The call will sleep for the pagedaemon to attempt to free memory.
465  * The pagedaemon may decide its not possible to free enough memory, causing
466  * the allocation to fail.
467  */
468 int
469 uvm_pmr_alloc_piglet(vaddr_t *va, paddr_t *pa, vsize_t sz, paddr_t align)
470 {
471 	struct kmem_pa_mode kp_piglet = {
472 		.kp_constraint = &dma_constraint,
473 		.kp_align = align,
474 		.kp_maxseg = 1
475 	};
476 
477 	/* Ensure align is a power of 2 */
478 	KASSERT((align & (align - 1)) == 0);
479 
480 	/*
481 	 * Fixup arguments: align must be at least PAGE_SIZE,
482 	 * sz will be converted to pagecount, since that is what
483 	 * pmemrange uses internally.
484 	 */
485 	if (align < PAGE_SIZE)
486 		kp_piglet.kp_align = PAGE_SIZE;
487 
488 	sz = round_page(sz);
489 
490 	*va = (vaddr_t)km_alloc(sz, &kv_any, &kp_piglet, &kd_nowait);
491 	if (*va == 0)
492 		return ENOMEM;
493 
494 	pmap_extract(pmap_kernel(), *va, pa);
495 	return 0;
496 }
497 
498 /*
499  * Free a piglet area.
500  */
501 void
502 uvm_pmr_free_piglet(vaddr_t va, vsize_t sz)
503 {
504 	/*
505 	 * Fix parameters.
506 	 */
507 	sz = round_page(sz);
508 
509 	/*
510 	 * Free the physical and virtual memory.
511 	 */
512 	km_free((void *)va, sz, &kv_any, &kp_dma_contig);
513 }
514 
515 /*
516  * Physmem RLE compression support.
517  *
518  * Given a physical page address, return the number of pages starting at the
519  * address that are free.  Clamps to the number of pages in
520  * HIBERNATE_CHUNK_SIZE. Returns 0 if the page at addr is not free.
521  */
522 int
523 uvm_page_rle(paddr_t addr)
524 {
525 	struct vm_page		*pg, *pg_end;
526 	struct vm_physseg	*vmp;
527 	int			 pseg_idx, off_idx;
528 
529 	pseg_idx = vm_physseg_find(atop(addr), &off_idx);
530 	if (pseg_idx == -1)
531 		return 0;
532 
533 	vmp = &vm_physmem[pseg_idx];
534 	pg = &vmp->pgs[off_idx];
535 	if (!(pg->pg_flags & PQ_FREE))
536 		return 0;
537 
538 	/*
539 	 * Search for the first non-free page after pg.
540 	 * Note that the page may not be the first page in a free pmemrange,
541 	 * therefore pg->fpgsz cannot be used.
542 	 */
543 	for (pg_end = pg; pg_end <= vmp->lastpg &&
544 	    (pg_end->pg_flags & PQ_FREE) == PQ_FREE; pg_end++)
545 		;
546 	return min((pg_end - pg), HIBERNATE_CHUNK_SIZE/PAGE_SIZE);
547 }
548 
549 /*
550  * Calculate a hopefully unique version # for this kernel, based upon
551  * how it was linked.
552  */
553 u_int32_t
554 hibsum(void)
555 {
556 	return ((long)malloc ^ (long)km_alloc ^ (long)printf ^ (long)strlen);
557 }
558 
559 
560 /*
561  * Fills out the hibernate_info union pointed to by hib
562  * with information about this machine (swap signature block
563  * offsets, number of memory ranges, kernel in use, etc)
564  */
565 int
566 get_hibernate_info(union hibernate_info *hib, int suspend)
567 {
568 	struct disklabel dl;
569 	char err_string[128], *dl_ret;
570 
571 #ifndef NO_PROPOLICE
572 	/* Save propolice guard */
573 	hib->guard = __guard_local;
574 #endif /* ! NO_PROPOLICE */
575 
576 	/* Determine I/O function to use */
577 	hib->io_func = get_hibernate_io_function(swdevt[0].sw_dev);
578 	if (hib->io_func == NULL)
579 		return (1);
580 
581 	/* Calculate hibernate device */
582 	hib->dev = swdevt[0].sw_dev;
583 
584 	/* Read disklabel (used to calculate signature and image offsets) */
585 	dl_ret = disk_readlabel(&dl, hib->dev, err_string, sizeof(err_string));
586 
587 	if (dl_ret) {
588 		printf("Hibernate error reading disklabel: %s\n", dl_ret);
589 		return (1);
590 	}
591 
592 	/* Make sure we have a swap partition. */
593 	if (dl.d_partitions[1].p_fstype != FS_SWAP ||
594 	    DL_GETPSIZE(&dl.d_partitions[1]) == 0)
595 		return (1);
596 
597 	/* Make sure the signature can fit in one block */
598 	if (sizeof(union hibernate_info) > DEV_BSIZE)
599 		return (1);
600 
601 	/* Magic number */
602 	hib->magic = HIBERNATE_MAGIC;
603 
604 	/* Calculate signature block location */
605 	hib->sig_offset = DL_GETPSIZE(&dl.d_partitions[1]) -
606 	    sizeof(union hibernate_info)/DEV_BSIZE;
607 
608 	/* Stash kernel version information */
609 	memset(&hib->kernel_version, 0, 128);
610 	bcopy(version, &hib->kernel_version,
611 	    min(strlen(version), sizeof(hib->kernel_version)-1));
612 	hib->kernel_sum = hibsum();
613 
614 	if (suspend) {
615 		/* Grab the previously-allocated piglet addresses */
616 		hib->piglet_va = global_piglet_va;
617 		hib->piglet_pa = global_piglet_pa;
618 		hib->io_page = (void *)hib->piglet_va;
619 
620 		/*
621 		 * Initialization of the hibernate IO function for drivers
622 		 * that need to do prep work (such as allocating memory or
623 		 * setting up data structures that cannot safely be done
624 		 * during suspend without causing side effects). There is
625 		 * a matching HIB_DONE call performed after the write is
626 		 * completed.
627 		 */
628 		if (hib->io_func(hib->dev, DL_GETPOFFSET(&dl.d_partitions[1]),
629 		    (vaddr_t)NULL, DL_GETPSIZE(&dl.d_partitions[1]),
630 		    HIB_INIT, hib->io_page))
631 			goto fail;
632 
633 	} else {
634 		/*
635 		 * Resuming kernels use a regular private page for the driver
636 		 * No need to free this I/O page as it will vanish as part of
637 		 * the resume.
638 		 */
639 		hib->io_page = malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT);
640 		if (!hib->io_page)
641 			goto fail;
642 	}
643 
644 	if (get_hibernate_info_md(hib))
645 		goto fail;
646 
647 	return (0);
648 
649 fail:
650 	return (1);
651 }
652 
653 /*
654  * Allocate nitems*size bytes from the hiballoc area presently in use
655  */
656 void *
657 hibernate_zlib_alloc(void *unused, int nitems, int size)
658 {
659 	struct hibernate_zlib_state *hibernate_state;
660 
661 	hibernate_state =
662 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
663 
664 	return hib_alloc(&hibernate_state->hiballoc_arena, nitems*size);
665 }
666 
667 /*
668  * Free the memory pointed to by addr in the hiballoc area presently in
669  * use
670  */
671 void
672 hibernate_zlib_free(void *unused, void *addr)
673 {
674 	struct hibernate_zlib_state *hibernate_state;
675 
676 	hibernate_state =
677 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
678 
679 	hib_free(&hibernate_state->hiballoc_arena, addr);
680 }
681 
682 /*
683  * Inflate next page of data from the image stream.
684  * The rle parameter is modified on exit to contain the number of pages to
685  * skip in the output stream (or 0 if this page was inflated into).
686  *
687  * Returns 0 if the stream contains additional data, or 1 if the stream is
688  * finished.
689  */
690 int
691 hibernate_inflate_page(int *rle)
692 {
693 	struct hibernate_zlib_state *hibernate_state;
694 	int i;
695 
696 	hibernate_state =
697 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
698 
699 	/* Set up the stream for RLE code inflate */
700 	hibernate_state->hib_stream.next_out = (unsigned char *)rle;
701 	hibernate_state->hib_stream.avail_out = sizeof(*rle);
702 
703 	/* Inflate RLE code */
704 	i = inflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH);
705 	if (i != Z_OK && i != Z_STREAM_END) {
706 		/*
707 		 * XXX - this will likely reboot/hang most machines
708 		 *       since the console output buffer will be unmapped,
709 		 *       but there's not much else we can do here.
710 		 */
711 		panic("rle inflate stream error");
712 	}
713 
714 	if (hibernate_state->hib_stream.avail_out != 0) {
715 		/*
716 		 * XXX - this will likely reboot/hang most machines
717 		 *       since the console output buffer will be unmapped,
718 		 *       but there's not much else we can do here.
719 		 */
720 		panic("rle short inflate error");
721 	}
722 
723 	if (*rle < 0 || *rle > 1024) {
724 		/*
725 		 * XXX - this will likely reboot/hang most machines
726 		 *       since the console output buffer will be unmapped,
727 		 *       but there's not much else we can do here.
728 		 */
729 		panic("invalid rle count");
730 	}
731 
732 	if (i == Z_STREAM_END)
733 		return (1);
734 
735 	if (*rle != 0)
736 		return (0);
737 
738 	/* Set up the stream for page inflate */
739 	hibernate_state->hib_stream.next_out =
740 		(unsigned char *)HIBERNATE_INFLATE_PAGE;
741 	hibernate_state->hib_stream.avail_out = PAGE_SIZE;
742 
743 	/* Process next block of data */
744 	i = inflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH);
745 	if (i != Z_OK && i != Z_STREAM_END) {
746 		/*
747 		 * XXX - this will likely reboot/hang most machines
748 		 *       since the console output buffer will be unmapped,
749 		 *       but there's not much else we can do here.
750 		 */
751 		panic("inflate error");
752 	}
753 
754 	/* We should always have extracted a full page ... */
755 	if (hibernate_state->hib_stream.avail_out != 0) {
756 		/*
757 		 * XXX - this will likely reboot/hang most machines
758 		 *       since the console output buffer will be unmapped,
759 		 *       but there's not much else we can do here.
760 		 */
761 		panic("incomplete page");
762 	}
763 
764 	return (i == Z_STREAM_END);
765 }
766 
767 /*
768  * Inflate size bytes from src into dest, skipping any pages in
769  * [src..dest] that are special (see hibernate_inflate_skip)
770  *
771  * This function executes while using the resume-time stack
772  * and pmap, and therefore cannot use ddb/printf/etc. Doing so
773  * will likely hang or reset the machine since the console output buffer
774  * will be unmapped.
775  */
776 void
777 hibernate_inflate_region(union hibernate_info *hib, paddr_t dest,
778     paddr_t src, size_t size)
779 {
780 	int end_stream = 0, rle, skip;
781 	struct hibernate_zlib_state *hibernate_state;
782 
783 	hibernate_state =
784 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
785 
786 	hibernate_state->hib_stream.next_in = (unsigned char *)src;
787 	hibernate_state->hib_stream.avail_in = size;
788 
789 	do {
790 		/*
791 		 * Is this a special page? If yes, redirect the
792 		 * inflate output to a scratch page (eg, discard it)
793 		 */
794 		skip = hibernate_inflate_skip(hib, dest);
795 		if (skip == HIB_SKIP) {
796 			hibernate_enter_resume_mapping(
797 			    HIBERNATE_INFLATE_PAGE,
798 			    HIBERNATE_INFLATE_PAGE, 0);
799 		} else if (skip == HIB_MOVE) {
800 			/*
801 			 * Special case : retguard region. This gets moved
802 			 * temporarily into the piglet region and copied into
803 			 * place immediately before resume
804 			 */
805 			hibernate_enter_resume_mapping(
806 			    HIBERNATE_INFLATE_PAGE,
807 			    hib->piglet_pa + (110 * PAGE_SIZE) +
808 			    hib->retguard_ofs, 0);
809 			hib->retguard_ofs += PAGE_SIZE;
810 			if (hib->retguard_ofs > 255 * PAGE_SIZE) {
811 				/*
812 				 * XXX - this will likely reboot/hang most
813 				 *       machines since the console output
814 				 *       buffer will be unmapped, but there's
815 				 *       not much else we can do here.
816 				 */
817 				panic("retguard move error, out of space");
818 			}
819 		} else {
820 			hibernate_enter_resume_mapping(
821 			    HIBERNATE_INFLATE_PAGE, dest, 0);
822 		}
823 
824 		hibernate_flush();
825 		end_stream = hibernate_inflate_page(&rle);
826 
827 		if (rle == 0)
828 			dest += PAGE_SIZE;
829 		else
830 			dest += (rle * PAGE_SIZE);
831 	} while (!end_stream);
832 }
833 
834 /*
835  * deflate from src into the I/O page, up to 'remaining' bytes
836  *
837  * Returns number of input bytes consumed, and may reset
838  * the 'remaining' parameter if not all the output space was consumed
839  * (this information is needed to know how much to write to disk
840  */
841 size_t
842 hibernate_deflate(union hibernate_info *hib, paddr_t src,
843     size_t *remaining)
844 {
845 	vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE;
846 	struct hibernate_zlib_state *hibernate_state;
847 
848 	hibernate_state =
849 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
850 
851 	/* Set up the stream for deflate */
852 	hibernate_state->hib_stream.next_in = (unsigned char *)src;
853 	hibernate_state->hib_stream.avail_in = PAGE_SIZE - (src & PAGE_MASK);
854 	hibernate_state->hib_stream.next_out =
855 		(unsigned char *)hibernate_io_page + (PAGE_SIZE - *remaining);
856 	hibernate_state->hib_stream.avail_out = *remaining;
857 
858 	/* Process next block of data */
859 	if (deflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH) != Z_OK)
860 		panic("hibernate zlib deflate error");
861 
862 	/* Update pointers and return number of bytes consumed */
863 	*remaining = hibernate_state->hib_stream.avail_out;
864 	return (PAGE_SIZE - (src & PAGE_MASK)) -
865 	    hibernate_state->hib_stream.avail_in;
866 }
867 
868 /*
869  * Write the hibernation information specified in hiber_info
870  * to the location in swap previously calculated (last block of
871  * swap), called the "signature block".
872  */
873 int
874 hibernate_write_signature(union hibernate_info *hib)
875 {
876 	/* Write hibernate info to disk */
877 	return (hib->io_func(hib->dev, hib->sig_offset,
878 	    (vaddr_t)hib, DEV_BSIZE, HIB_W,
879 	    hib->io_page));
880 }
881 
882 /*
883  * Write the memory chunk table to the area in swap immediately
884  * preceding the signature block. The chunk table is stored
885  * in the piglet when this function is called.  Returns errno.
886  */
887 int
888 hibernate_write_chunktable(union hibernate_info *hib)
889 {
890 	vaddr_t hibernate_chunk_table_start;
891 	size_t hibernate_chunk_table_size;
892 	int i, err;
893 
894 	hibernate_chunk_table_size = HIBERNATE_CHUNK_TABLE_SIZE;
895 
896 	hibernate_chunk_table_start = hib->piglet_va +
897 	    HIBERNATE_CHUNK_SIZE;
898 
899 	/* Write chunk table */
900 	for (i = 0; i < hibernate_chunk_table_size; i += MAXPHYS) {
901 		if ((err = hib->io_func(hib->dev,
902 		    hib->chunktable_offset + (i/DEV_BSIZE),
903 		    (vaddr_t)(hibernate_chunk_table_start + i),
904 		    MAXPHYS, HIB_W, hib->io_page))) {
905 			DPRINTF("chunktable write error: %d\n", err);
906 			return (err);
907 		}
908 	}
909 
910 	return (0);
911 }
912 
913 /*
914  * Write an empty hiber_info to the swap signature block, which is
915  * guaranteed to not match any valid hib.
916  */
917 int
918 hibernate_clear_signature(void)
919 {
920 	union hibernate_info blank_hiber_info;
921 	union hibernate_info hib;
922 
923 	/* Zero out a blank hiber_info */
924 	memset(&blank_hiber_info, 0, sizeof(union hibernate_info));
925 
926 	/* Get the signature block location */
927 	if (get_hibernate_info(&hib, 0))
928 		return (1);
929 
930 	/* Write (zeroed) hibernate info to disk */
931 	DPRINTF("clearing hibernate signature block location: %lld\n",
932 		hib.sig_offset);
933 	if (hibernate_block_io(&hib,
934 	    hib.sig_offset,
935 	    DEV_BSIZE, (vaddr_t)&blank_hiber_info, 1))
936 		printf("Warning: could not clear hibernate signature\n");
937 
938 	return (0);
939 }
940 
941 /*
942  * Compare two hibernate_infos to determine if they are the same (eg,
943  * we should be performing a hibernate resume on this machine.
944  * Not all fields are checked - just enough to verify that the machine
945  * has the same memory configuration and kernel as the one that
946  * wrote the signature previously.
947  */
948 int
949 hibernate_compare_signature(union hibernate_info *mine,
950     union hibernate_info *disk)
951 {
952 	u_int i;
953 
954 	if (mine->nranges != disk->nranges) {
955 		printf("unhibernate failed: memory layout changed\n");
956 		return (1);
957 	}
958 
959 	if (strcmp(mine->kernel_version, disk->kernel_version) != 0) {
960 		printf("unhibernate failed: original kernel changed\n");
961 		return (1);
962 	}
963 
964 	if (hibsum() != disk->kernel_sum) {
965 		printf("unhibernate failed: original kernel changed\n");
966 		return (1);
967 	}
968 
969 	for (i = 0; i < mine->nranges; i++) {
970 		if ((mine->ranges[i].base != disk->ranges[i].base) ||
971 		    (mine->ranges[i].end != disk->ranges[i].end) ) {
972 			DPRINTF("hib range %d mismatch [%p-%p != %p-%p]\n",
973 				i,
974 				(void *)mine->ranges[i].base,
975 				(void *)mine->ranges[i].end,
976 				(void *)disk->ranges[i].base,
977 				(void *)disk->ranges[i].end);
978 			printf("unhibernate failed: memory size changed\n");
979 			return (1);
980 		}
981 	}
982 
983 	return (0);
984 }
985 
986 /*
987  * Transfers xfer_size bytes between the hibernate device specified in
988  * hib_info at offset blkctr and the vaddr specified at dest.
989  *
990  * Separate offsets and pages are used to handle misaligned reads (reads
991  * that span a page boundary).
992  *
993  * blkctr specifies a relative offset (relative to the start of swap),
994  * not an absolute disk offset
995  *
996  */
997 int
998 hibernate_block_io(union hibernate_info *hib, daddr_t blkctr,
999     size_t xfer_size, vaddr_t dest, int iswrite)
1000 {
1001 	struct buf *bp;
1002 	struct bdevsw *bdsw;
1003 	int error;
1004 
1005 	bp = geteblk(xfer_size);
1006 	bdsw = &bdevsw[major(hib->dev)];
1007 
1008 	error = (*bdsw->d_open)(hib->dev, FREAD, S_IFCHR, curproc);
1009 	if (error) {
1010 		printf("hibernate_block_io open failed\n");
1011 		return (1);
1012 	}
1013 
1014 	if (iswrite)
1015 		bcopy((caddr_t)dest, bp->b_data, xfer_size);
1016 
1017 	bp->b_bcount = xfer_size;
1018 	bp->b_blkno = blkctr;
1019 	CLR(bp->b_flags, B_READ | B_WRITE | B_DONE);
1020 	SET(bp->b_flags, B_BUSY | (iswrite ? B_WRITE : B_READ) | B_RAW);
1021 	bp->b_dev = hib->dev;
1022 	(*bdsw->d_strategy)(bp);
1023 
1024 	error = biowait(bp);
1025 	if (error) {
1026 		printf("hib block_io biowait error %d blk %lld size %zu\n",
1027 			error, (long long)blkctr, xfer_size);
1028 		error = (*bdsw->d_close)(hib->dev, 0, S_IFCHR,
1029 		    curproc);
1030 		if (error)
1031 			printf("hibernate_block_io error close failed\n");
1032 		return (1);
1033 	}
1034 
1035 	error = (*bdsw->d_close)(hib->dev, FREAD, S_IFCHR, curproc);
1036 	if (error) {
1037 		printf("hibernate_block_io close failed\n");
1038 		return (1);
1039 	}
1040 
1041 	if (!iswrite)
1042 		bcopy(bp->b_data, (caddr_t)dest, xfer_size);
1043 
1044 	bp->b_flags |= B_INVAL;
1045 	brelse(bp);
1046 
1047 	return (0);
1048 }
1049 
1050 /*
1051  * Preserve one page worth of random data, generated from the resuming
1052  * kernel's arc4random. After resume, this preserved entropy can be used
1053  * to further improve the un-hibernated machine's entropy pool. This
1054  * random data is stored in the piglet, which is preserved across the
1055  * unpack operation, and is restored later in the resume process (see
1056  * hib_getentropy)
1057  */
1058 void
1059 hibernate_preserve_entropy(union hibernate_info *hib)
1060 {
1061 	void *entropy;
1062 
1063 	entropy = km_alloc(PAGE_SIZE, &kv_any, &kp_none, &kd_nowait);
1064 
1065 	if (!entropy)
1066 		return;
1067 
1068 	pmap_activate(curproc);
1069 	pmap_kenter_pa((vaddr_t)entropy,
1070 	    (paddr_t)(hib->piglet_pa + (29 * PAGE_SIZE)),
1071 	    PROT_READ | PROT_WRITE);
1072 
1073 	arc4random_buf((void *)entropy, PAGE_SIZE);
1074 	pmap_kremove((vaddr_t)entropy, PAGE_SIZE);
1075 	km_free(entropy, PAGE_SIZE, &kv_any, &kp_none);
1076 }
1077 
1078 #ifndef NO_PROPOLICE
1079 vaddr_t
1080 hibernate_unprotect_ssp(void)
1081 {
1082 	struct kmem_dyn_mode kd_avoidalias;
1083 	vaddr_t va = trunc_page((vaddr_t)&__guard_local);
1084 	paddr_t pa;
1085 
1086 	pmap_extract(pmap_kernel(), va, &pa);
1087 
1088 	memset(&kd_avoidalias, 0, sizeof kd_avoidalias);
1089 	kd_avoidalias.kd_prefer = pa;
1090 	kd_avoidalias.kd_waitok = 1;
1091 	va = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, &kp_none, &kd_avoidalias);
1092 	if (!va)
1093 		panic("hibernate_unprotect_ssp");
1094 
1095 	pmap_kenter_pa(va, pa, PROT_READ | PROT_WRITE);
1096 	pmap_update(pmap_kernel());
1097 
1098 	return va;
1099 }
1100 
1101 void
1102 hibernate_reprotect_ssp(vaddr_t va)
1103 {
1104 	pmap_kremove(va, PAGE_SIZE);
1105 	km_free((void *)va, PAGE_SIZE, &kv_any, &kp_none);
1106 }
1107 #endif /* NO_PROPOLICE */
1108 
1109 /*
1110  * Reads the signature block from swap, checks against the current machine's
1111  * information. If the information matches, perform a resume by reading the
1112  * saved image into the pig area, and unpacking.
1113  *
1114  * Must be called with interrupts enabled.
1115  */
1116 void
1117 hibernate_resume(void)
1118 {
1119 	union hibernate_info hib;
1120 	int s;
1121 #ifndef NO_PROPOLICE
1122 	vsize_t off = (vaddr_t)&__guard_local -
1123 	    trunc_page((vaddr_t)&__guard_local);
1124 	vaddr_t guard_va;
1125 #endif
1126 
1127 	/* Get current running machine's hibernate info */
1128 	memset(&hib, 0, sizeof(hib));
1129 	if (get_hibernate_info(&hib, 0)) {
1130 		DPRINTF("couldn't retrieve machine's hibernate info\n");
1131 		return;
1132 	}
1133 
1134 	/* Read hibernate info from disk */
1135 	s = splbio();
1136 
1137 	DPRINTF("reading hibernate signature block location: %lld\n",
1138 		hib.sig_offset);
1139 
1140 	if (hibernate_block_io(&hib,
1141 	    hib.sig_offset,
1142 	    DEV_BSIZE, (vaddr_t)&disk_hib, 0)) {
1143 		DPRINTF("error in hibernate read");
1144 		splx(s);
1145 		return;
1146 	}
1147 
1148 	/* Check magic number */
1149 	if (disk_hib.magic != HIBERNATE_MAGIC) {
1150 		DPRINTF("wrong magic number in hibernate signature: %x\n",
1151 			disk_hib.magic);
1152 		splx(s);
1153 		return;
1154 	}
1155 
1156 	/*
1157 	 * We (possibly) found a hibernate signature. Clear signature first,
1158 	 * to prevent accidental resume or endless resume cycles later.
1159 	 */
1160 	if (hibernate_clear_signature()) {
1161 		DPRINTF("error clearing hibernate signature block\n");
1162 		splx(s);
1163 		return;
1164 	}
1165 
1166 	/*
1167 	 * If on-disk and in-memory hibernate signatures match,
1168 	 * this means we should do a resume from hibernate.
1169 	 */
1170 	if (hibernate_compare_signature(&hib, &disk_hib)) {
1171 		DPRINTF("mismatched hibernate signature block\n");
1172 		splx(s);
1173 		return;
1174 	}
1175 
1176 #ifdef MULTIPROCESSOR
1177 	/* XXX - if we fail later, we may need to rehatch APs on some archs */
1178 	DPRINTF("hibernate: quiescing APs\n");
1179 	hibernate_quiesce_cpus();
1180 #endif /* MULTIPROCESSOR */
1181 
1182 	/* Read the image from disk into the image (pig) area */
1183 	if (hibernate_read_image(&disk_hib))
1184 		goto fail;
1185 
1186 	DPRINTF("hibernate: quiescing devices\n");
1187 	if (config_suspend_all(DVACT_QUIESCE) != 0)
1188 		goto fail;
1189 
1190 #ifndef NO_PROPOLICE
1191 	guard_va = hibernate_unprotect_ssp();
1192 #endif /* NO_PROPOLICE */
1193 
1194 	(void) splhigh();
1195 	hibernate_disable_intr_machdep();
1196 	cold = 1;
1197 
1198 	DPRINTF("hibernate: suspending devices\n");
1199 	if (config_suspend_all(DVACT_SUSPEND) != 0) {
1200 		cold = 0;
1201 		hibernate_enable_intr_machdep();
1202 #ifndef NO_PROPOLICE
1203 		hibernate_reprotect_ssp(guard_va);
1204 #endif /* ! NO_PROPOLICE */
1205 		goto fail;
1206 	}
1207 
1208 	hibernate_preserve_entropy(&disk_hib);
1209 
1210 	printf("Unpacking image...\n");
1211 
1212 	/* Switch stacks */
1213 	DPRINTF("hibernate: switching stacks\n");
1214 	hibernate_switch_stack_machdep();
1215 
1216 #ifndef NO_PROPOLICE
1217 	/* Start using suspended kernel's propolice guard */
1218 	*(long *)(guard_va + off) = disk_hib.guard;
1219 	hibernate_reprotect_ssp(guard_va);
1220 #endif /* ! NO_PROPOLICE */
1221 
1222 	/* Unpack and resume */
1223 	hibernate_unpack_image(&disk_hib);
1224 
1225 fail:
1226 	splx(s);
1227 	printf("\nUnable to resume hibernated image\n");
1228 }
1229 
1230 /*
1231  * Unpack image from pig area to original location by looping through the
1232  * list of output chunks in the order they should be restored (fchunks).
1233  *
1234  * Note that due to the stack smash protector and the fact that we have
1235  * switched stacks, it is not permitted to return from this function.
1236  */
1237 void
1238 hibernate_unpack_image(union hibernate_info *hib)
1239 {
1240 	struct hibernate_disk_chunk *chunks;
1241 	union hibernate_info local_hib;
1242 	paddr_t image_cur = global_pig_start;
1243 	short i, *fchunks;
1244 	char *pva;
1245 
1246 	/* Piglet will be identity mapped (VA == PA) */
1247 	pva = (char *)hib->piglet_pa;
1248 
1249 	fchunks = (short *)(pva + (4 * PAGE_SIZE));
1250 
1251 	chunks = (struct hibernate_disk_chunk *)(pva + HIBERNATE_CHUNK_SIZE);
1252 
1253 	/* Can't use hiber_info that's passed in after this point */
1254 	bcopy(hib, &local_hib, sizeof(union hibernate_info));
1255 	local_hib.retguard_ofs = 0;
1256 
1257 	/* VA == PA */
1258 	local_hib.piglet_va = local_hib.piglet_pa;
1259 
1260 	/*
1261 	 * Point of no return. Once we pass this point, only kernel code can
1262 	 * be accessed. No global variables or other kernel data structures
1263 	 * are guaranteed to be coherent after unpack starts.
1264 	 *
1265 	 * The image is now in high memory (pig area), we unpack from the pig
1266 	 * to the correct location in memory. We'll eventually end up copying
1267 	 * on top of ourself, but we are assured the kernel code here is the
1268 	 * same between the hibernated and resuming kernel, and we are running
1269 	 * on our own stack, so the overwrite is ok.
1270 	 */
1271 	DPRINTF("hibernate: activating alt. pagetable and starting unpack\n");
1272 	hibernate_activate_resume_pt_machdep();
1273 
1274 	for (i = 0; i < local_hib.chunk_ctr; i++) {
1275 		/* Reset zlib for inflate */
1276 		if (hibernate_zlib_reset(&local_hib, 0) != Z_OK)
1277 			panic("hibernate failed to reset zlib for inflate");
1278 
1279 		hibernate_process_chunk(&local_hib, &chunks[fchunks[i]],
1280 		    image_cur);
1281 
1282 		image_cur += chunks[fchunks[i]].compressed_size;
1283 
1284 	}
1285 
1286 	/*
1287 	 * Resume the loaded kernel by jumping to the MD resume vector.
1288 	 * We won't be returning from this call. We pass the location of
1289 	 * the retguard save area so the MD code can replace it before
1290 	 * resuming. See the piglet layout at the top of this file for
1291 	 * more information on the layout of the piglet area.
1292 	 *
1293 	 * We use 'global_piglet_va' here since by the time we are at
1294 	 * this point, we have already unpacked the image, and we want
1295 	 * the suspended kernel's view of what the piglet was, before
1296 	 * suspend occurred (since we will need to use that in the retguard
1297 	 * copy code in hibernate_resume_machdep.)
1298 	 */
1299 	hibernate_resume_machdep(global_piglet_va + (110 * PAGE_SIZE));
1300 }
1301 
1302 /*
1303  * Bounce a compressed image chunk to the piglet, entering mappings for the
1304  * copied pages as needed
1305  */
1306 void
1307 hibernate_copy_chunk_to_piglet(paddr_t img_cur, vaddr_t piglet, size_t size)
1308 {
1309 	size_t ct, ofs;
1310 	paddr_t src = img_cur;
1311 	vaddr_t dest = piglet;
1312 
1313 	/* Copy first partial page */
1314 	ct = (PAGE_SIZE) - (src & PAGE_MASK);
1315 	ofs = (src & PAGE_MASK);
1316 
1317 	if (ct < PAGE_SIZE) {
1318 		hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE,
1319 			(src - ofs), 0);
1320 		hibernate_flush();
1321 		bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE + ofs), (caddr_t)dest, ct);
1322 		src += ct;
1323 		dest += ct;
1324 	}
1325 
1326 	/* Copy remaining pages */
1327 	while (src < size + img_cur) {
1328 		hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE, src, 0);
1329 		hibernate_flush();
1330 		ct = PAGE_SIZE;
1331 		bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE), (caddr_t)dest, ct);
1332 		hibernate_flush();
1333 		src += ct;
1334 		dest += ct;
1335 	}
1336 }
1337 
1338 /*
1339  * Process a chunk by bouncing it to the piglet, followed by unpacking
1340  */
1341 void
1342 hibernate_process_chunk(union hibernate_info *hib,
1343     struct hibernate_disk_chunk *chunk, paddr_t img_cur)
1344 {
1345 	char *pva = (char *)hib->piglet_va;
1346 
1347 	hibernate_copy_chunk_to_piglet(img_cur,
1348 	 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), chunk->compressed_size);
1349 	hibernate_inflate_region(hib, chunk->base,
1350 	    (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)),
1351 	    chunk->compressed_size);
1352 }
1353 
1354 /*
1355  * Calculate RLE component for 'inaddr'. Clamps to max RLE pages between
1356  * inaddr and range_end.
1357  */
1358 int
1359 hibernate_calc_rle(paddr_t inaddr, paddr_t range_end)
1360 {
1361 	int rle;
1362 
1363 	rle = uvm_page_rle(inaddr);
1364 	KASSERT(rle >= 0 && rle <= MAX_RLE);
1365 
1366 	/* Clamp RLE to range end */
1367 	if (rle > 0 && inaddr + (rle * PAGE_SIZE) > range_end)
1368 		rle = (range_end - inaddr) / PAGE_SIZE;
1369 
1370 	return (rle);
1371 }
1372 
1373 /*
1374  * Write the RLE byte for page at 'inaddr' to the output stream.
1375  * Returns the number of pages to be skipped at 'inaddr'.
1376  */
1377 int
1378 hibernate_write_rle(union hibernate_info *hib, paddr_t inaddr,
1379 	paddr_t range_end, daddr_t *blkctr,
1380 	size_t *out_remaining)
1381 {
1382 	int rle, err, *rleloc;
1383 	struct hibernate_zlib_state *hibernate_state;
1384 	vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE;
1385 
1386 	hibernate_state =
1387 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
1388 
1389 	rle = hibernate_calc_rle(inaddr, range_end);
1390 
1391 	rleloc = (int *)hibernate_rle_page + MAX_RLE - 1;
1392 	*rleloc = rle;
1393 
1394 	/* Deflate the RLE byte into the stream */
1395 	hibernate_deflate(hib, (paddr_t)rleloc, out_remaining);
1396 
1397 	/* Did we fill the output page? If so, flush to disk */
1398 	if (*out_remaining == 0) {
1399 		if ((err = hib->io_func(hib->dev, *blkctr + hib->image_offset,
1400 			(vaddr_t)hibernate_io_page, PAGE_SIZE, HIB_W,
1401 			hib->io_page))) {
1402 				DPRINTF("hib write error %d\n", err);
1403 				return (err);
1404 		}
1405 
1406 		*blkctr += PAGE_SIZE / DEV_BSIZE;
1407 		*out_remaining = PAGE_SIZE;
1408 
1409 		/* If we didn't deflate the entire RLE byte, finish it now */
1410 		if (hibernate_state->hib_stream.avail_in != 0)
1411 			hibernate_deflate(hib,
1412 				(vaddr_t)hibernate_state->hib_stream.next_in,
1413 				out_remaining);
1414 	}
1415 
1416 	return (rle);
1417 }
1418 
1419 /*
1420  * Write a compressed version of this machine's memory to disk, at the
1421  * precalculated swap offset:
1422  *
1423  * end of swap - signature block size - chunk table size - memory size
1424  *
1425  * The function begins by looping through each phys mem range, cutting each
1426  * one into MD sized chunks. These chunks are then compressed individually
1427  * and written out to disk, in phys mem order. Some chunks might compress
1428  * more than others, and for this reason, each chunk's size is recorded
1429  * in the chunk table, which is written to disk after the image has
1430  * properly been compressed and written (in hibernate_write_chunktable).
1431  *
1432  * When this function is called, the machine is nearly suspended - most
1433  * devices are quiesced/suspended, interrupts are off, and cold has
1434  * been set. This means that there can be no side effects once the
1435  * write has started, and the write function itself can also have no
1436  * side effects. This also means no printfs are permitted (since printf
1437  * has side effects.)
1438  *
1439  * Return values :
1440  *
1441  * 0      - success
1442  * EIO    - I/O error occurred writing the chunks
1443  * EINVAL - Failed to write a complete range
1444  * ENOMEM - Memory allocation failure during preparation of the zlib arena
1445  */
1446 int
1447 hibernate_write_chunks(union hibernate_info *hib)
1448 {
1449 	paddr_t range_base, range_end, inaddr, temp_inaddr;
1450 	size_t nblocks, out_remaining, used;
1451 	struct hibernate_disk_chunk *chunks;
1452 	vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE;
1453 	daddr_t blkctr = 0;
1454 	int i, rle, err;
1455 	struct hibernate_zlib_state *hibernate_state;
1456 
1457 	hibernate_state =
1458 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
1459 
1460 	hib->chunk_ctr = 0;
1461 
1462 	/*
1463 	 * Map the utility VAs to the piglet. See the piglet map at the
1464 	 * top of this file for piglet layout information.
1465 	 */
1466 	hibernate_copy_page = hib->piglet_va + 3 * PAGE_SIZE;
1467 	hibernate_rle_page = hib->piglet_va + 28 * PAGE_SIZE;
1468 
1469 	chunks = (struct hibernate_disk_chunk *)(hib->piglet_va +
1470 	    HIBERNATE_CHUNK_SIZE);
1471 
1472 	/* Calculate the chunk regions */
1473 	for (i = 0; i < hib->nranges; i++) {
1474 		range_base = hib->ranges[i].base;
1475 		range_end = hib->ranges[i].end;
1476 
1477 		inaddr = range_base;
1478 
1479 		while (inaddr < range_end) {
1480 			chunks[hib->chunk_ctr].base = inaddr;
1481 			if (inaddr + HIBERNATE_CHUNK_SIZE < range_end)
1482 				chunks[hib->chunk_ctr].end = inaddr +
1483 				    HIBERNATE_CHUNK_SIZE;
1484 			else
1485 				chunks[hib->chunk_ctr].end = range_end;
1486 
1487 			inaddr += HIBERNATE_CHUNK_SIZE;
1488 			hib->chunk_ctr ++;
1489 		}
1490 	}
1491 
1492 	uvm_pmr_dirty_everything();
1493 	uvm_pmr_zero_everything();
1494 
1495 	/* Compress and write the chunks in the chunktable */
1496 	for (i = 0; i < hib->chunk_ctr; i++) {
1497 		range_base = chunks[i].base;
1498 		range_end = chunks[i].end;
1499 
1500 		chunks[i].offset = blkctr + hib->image_offset;
1501 
1502 		/* Reset zlib for deflate */
1503 		if (hibernate_zlib_reset(hib, 1) != Z_OK) {
1504 			DPRINTF("hibernate_zlib_reset failed for deflate\n");
1505 			return (ENOMEM);
1506 		}
1507 
1508 		inaddr = range_base;
1509 
1510 		/*
1511 		 * For each range, loop through its phys mem region
1512 		 * and write out the chunks (the last chunk might be
1513 		 * smaller than the chunk size).
1514 		 */
1515 		while (inaddr < range_end) {
1516 			out_remaining = PAGE_SIZE;
1517 			while (out_remaining > 0 && inaddr < range_end) {
1518 				/*
1519 				 * Adjust for regions that are not evenly
1520 				 * divisible by PAGE_SIZE or overflowed
1521 				 * pages from the previous iteration.
1522 				 */
1523 				temp_inaddr = (inaddr & PAGE_MASK) +
1524 				    hibernate_copy_page;
1525 
1526 				/* Deflate from temp_inaddr to IO page */
1527 				if (inaddr != range_end) {
1528 					if (inaddr % PAGE_SIZE == 0) {
1529 						rle = hibernate_write_rle(hib,
1530 							inaddr,
1531 							range_end,
1532 							&blkctr,
1533 							&out_remaining);
1534 					}
1535 
1536 					if (rle == 0) {
1537 						pmap_kenter_pa(hibernate_temp_page,
1538 							inaddr & PMAP_PA_MASK,
1539 							PROT_READ);
1540 
1541 						bcopy((caddr_t)hibernate_temp_page,
1542 							(caddr_t)hibernate_copy_page,
1543 							PAGE_SIZE);
1544 						inaddr += hibernate_deflate(hib,
1545 							temp_inaddr,
1546 							&out_remaining);
1547 					} else {
1548 						inaddr += rle * PAGE_SIZE;
1549 						if (inaddr > range_end)
1550 							inaddr = range_end;
1551 					}
1552 
1553 				}
1554 
1555 				if (out_remaining == 0) {
1556 					/* Filled up the page */
1557 					nblocks = PAGE_SIZE / DEV_BSIZE;
1558 
1559 					if ((err = hib->io_func(hib->dev,
1560 					    blkctr + hib->image_offset,
1561 					    (vaddr_t)hibernate_io_page,
1562 					    PAGE_SIZE, HIB_W, hib->io_page))) {
1563 						DPRINTF("hib write error %d\n",
1564 						    err);
1565 						return (err);
1566 					}
1567 
1568 					blkctr += nblocks;
1569 				}
1570 			}
1571 		}
1572 
1573 		if (inaddr != range_end) {
1574 			DPRINTF("deflate range ended prematurely\n");
1575 			return (EINVAL);
1576 		}
1577 
1578 		/*
1579 		 * End of range. Round up to next secsize bytes
1580 		 * after finishing compress
1581 		 */
1582 		if (out_remaining == 0)
1583 			out_remaining = PAGE_SIZE;
1584 
1585 		/* Finish compress */
1586 		hibernate_state->hib_stream.next_in = (unsigned char *)inaddr;
1587 		hibernate_state->hib_stream.avail_in = 0;
1588 		hibernate_state->hib_stream.next_out =
1589 		    (unsigned char *)hibernate_io_page +
1590 			(PAGE_SIZE - out_remaining);
1591 
1592 		/* We have an extra output page available for finalize */
1593 		hibernate_state->hib_stream.avail_out =
1594 			out_remaining + PAGE_SIZE;
1595 
1596 		if ((err = deflate(&hibernate_state->hib_stream, Z_FINISH)) !=
1597 		    Z_STREAM_END) {
1598 			DPRINTF("deflate error in output stream: %d\n", err);
1599 			return (err);
1600 		}
1601 
1602 		out_remaining = hibernate_state->hib_stream.avail_out;
1603 
1604 		used = 2 * PAGE_SIZE - out_remaining;
1605 		nblocks = used / DEV_BSIZE;
1606 
1607 		/* Round up to next block if needed */
1608 		if (used % DEV_BSIZE != 0)
1609 			nblocks ++;
1610 
1611 		/* Write final block(s) for this chunk */
1612 		if ((err = hib->io_func(hib->dev, blkctr + hib->image_offset,
1613 		    (vaddr_t)hibernate_io_page, nblocks*DEV_BSIZE,
1614 		    HIB_W, hib->io_page))) {
1615 			DPRINTF("hib final write error %d\n", err);
1616 			return (err);
1617 		}
1618 
1619 		blkctr += nblocks;
1620 
1621 		chunks[i].compressed_size = (blkctr + hib->image_offset -
1622 		    chunks[i].offset) * DEV_BSIZE;
1623 	}
1624 
1625 	hib->chunktable_offset = hib->image_offset + blkctr;
1626 	return (0);
1627 }
1628 
1629 /*
1630  * Reset the zlib stream state and allocate a new hiballoc area for either
1631  * inflate or deflate. This function is called once for each hibernate chunk.
1632  * Calling hiballoc_init multiple times is acceptable since the memory it is
1633  * provided is unmanaged memory (stolen). We use the memory provided to us
1634  * by the piglet allocated via the supplied hib.
1635  */
1636 int
1637 hibernate_zlib_reset(union hibernate_info *hib, int deflate)
1638 {
1639 	vaddr_t hibernate_zlib_start;
1640 	size_t hibernate_zlib_size;
1641 	char *pva = (char *)hib->piglet_va;
1642 	struct hibernate_zlib_state *hibernate_state;
1643 
1644 	hibernate_state =
1645 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
1646 
1647 	if (!deflate)
1648 		pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK));
1649 
1650 	/*
1651 	 * See piglet layout information at the start of this file for
1652 	 * information on the zlib page assignments.
1653 	 */
1654 	hibernate_zlib_start = (vaddr_t)(pva + (30 * PAGE_SIZE));
1655 	hibernate_zlib_size = 80 * PAGE_SIZE;
1656 
1657 	memset((void *)hibernate_zlib_start, 0, hibernate_zlib_size);
1658 	memset(hibernate_state, 0, PAGE_SIZE);
1659 
1660 	/* Set up stream structure */
1661 	hibernate_state->hib_stream.zalloc = (alloc_func)hibernate_zlib_alloc;
1662 	hibernate_state->hib_stream.zfree = (free_func)hibernate_zlib_free;
1663 
1664 	/* Initialize the hiballoc arena for zlib allocs/frees */
1665 	hiballoc_init(&hibernate_state->hiballoc_arena,
1666 	    (caddr_t)hibernate_zlib_start, hibernate_zlib_size);
1667 
1668 	if (deflate) {
1669 		return deflateInit(&hibernate_state->hib_stream,
1670 		    Z_BEST_SPEED);
1671 	} else
1672 		return inflateInit(&hibernate_state->hib_stream);
1673 }
1674 
1675 /*
1676  * Reads the hibernated memory image from disk, whose location and
1677  * size are recorded in hib. Begin by reading the persisted
1678  * chunk table, which records the original chunk placement location
1679  * and compressed size for each. Next, allocate a pig region of
1680  * sufficient size to hold the compressed image. Next, read the
1681  * chunks into the pig area (calling hibernate_read_chunks to do this),
1682  * and finally, if all of the above succeeds, clear the hibernate signature.
1683  * The function will then return to hibernate_resume, which will proceed
1684  * to unpack the pig image to the correct place in memory.
1685  */
1686 int
1687 hibernate_read_image(union hibernate_info *hib)
1688 {
1689 	size_t compressed_size, disk_size, chunktable_size, pig_sz;
1690 	paddr_t image_start, image_end, pig_start, pig_end;
1691 	struct hibernate_disk_chunk *chunks;
1692 	daddr_t blkctr;
1693 	vaddr_t chunktable = (vaddr_t)NULL;
1694 	paddr_t piglet_chunktable = hib->piglet_pa +
1695 	    HIBERNATE_CHUNK_SIZE;
1696 	int i, status;
1697 
1698 	status = 0;
1699 	pmap_activate(curproc);
1700 
1701 	/* Calculate total chunk table size in disk blocks */
1702 	chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / DEV_BSIZE;
1703 
1704 	blkctr = hib->chunktable_offset;
1705 
1706 	chunktable = (vaddr_t)km_alloc(HIBERNATE_CHUNK_TABLE_SIZE, &kv_any,
1707 	    &kp_none, &kd_nowait);
1708 
1709 	if (!chunktable)
1710 		return (1);
1711 
1712 	/* Map chunktable pages */
1713 	for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE; i += PAGE_SIZE)
1714 		pmap_kenter_pa(chunktable + i, piglet_chunktable + i,
1715 		    PROT_READ | PROT_WRITE);
1716 	pmap_update(pmap_kernel());
1717 
1718 	/* Read the chunktable from disk into the piglet chunktable */
1719 	for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE;
1720 	    i += MAXPHYS, blkctr += MAXPHYS/DEV_BSIZE)
1721 		hibernate_block_io(hib, blkctr, MAXPHYS,
1722 		    chunktable + i, 0);
1723 
1724 	blkctr = hib->image_offset;
1725 	compressed_size = 0;
1726 
1727 	chunks = (struct hibernate_disk_chunk *)chunktable;
1728 
1729 	for (i = 0; i < hib->chunk_ctr; i++)
1730 		compressed_size += chunks[i].compressed_size;
1731 
1732 	disk_size = compressed_size;
1733 
1734 	printf("unhibernating @ block %lld length %lu bytes\n",
1735 	    hib->sig_offset - chunktable_size,
1736 	    compressed_size);
1737 
1738 	/* Allocate the pig area */
1739 	pig_sz = compressed_size + HIBERNATE_CHUNK_SIZE;
1740 	if (uvm_pmr_alloc_pig(&pig_start, pig_sz, hib->piglet_pa) == ENOMEM) {
1741 		status = 1;
1742 		goto unmap;
1743 	}
1744 
1745 	pig_end = pig_start + pig_sz;
1746 
1747 	/* Calculate image extents. Pig image must end on a chunk boundary. */
1748 	image_end = pig_end & ~(HIBERNATE_CHUNK_SIZE - 1);
1749 	image_start = image_end - disk_size;
1750 
1751 	hibernate_read_chunks(hib, image_start, image_end, disk_size,
1752 	    chunks);
1753 
1754 	/* Prepare the resume time pmap/page table */
1755 	hibernate_populate_resume_pt(hib, image_start, image_end);
1756 
1757 unmap:
1758 	/* Unmap chunktable pages */
1759 	pmap_kremove(chunktable, HIBERNATE_CHUNK_TABLE_SIZE);
1760 	pmap_update(pmap_kernel());
1761 
1762 	return (status);
1763 }
1764 
1765 /*
1766  * Read the hibernated memory chunks from disk (chunk information at this
1767  * point is stored in the piglet) into the pig area specified by
1768  * [pig_start .. pig_end]. Order the chunks so that the final chunk is the
1769  * only chunk with overlap possibilities.
1770  */
1771 int
1772 hibernate_read_chunks(union hibernate_info *hib, paddr_t pig_start,
1773     paddr_t pig_end, size_t image_compr_size,
1774     struct hibernate_disk_chunk *chunks)
1775 {
1776 	paddr_t img_cur, piglet_base;
1777 	daddr_t blkctr;
1778 	size_t processed, compressed_size, read_size;
1779 	int nchunks, nfchunks, num_io_pages;
1780 	vaddr_t tempva, hibernate_fchunk_area;
1781 	short *fchunks, i, j;
1782 
1783 	tempva = (vaddr_t)NULL;
1784 	hibernate_fchunk_area = (vaddr_t)NULL;
1785 	nfchunks = 0;
1786 	piglet_base = hib->piglet_pa;
1787 	global_pig_start = pig_start;
1788 
1789 	/*
1790 	 * These mappings go into the resuming kernel's page table, and are
1791 	 * used only during image read. They disappear from existence
1792 	 * when the suspended kernel is unpacked on top of us.
1793 	 */
1794 	tempva = (vaddr_t)km_alloc(MAXPHYS + PAGE_SIZE, &kv_any, &kp_none,
1795 		&kd_nowait);
1796 	if (!tempva)
1797 		return (1);
1798 	hibernate_fchunk_area = (vaddr_t)km_alloc(24 * PAGE_SIZE, &kv_any,
1799 	    &kp_none, &kd_nowait);
1800 	if (!hibernate_fchunk_area)
1801 		return (1);
1802 
1803 	/* Final output chunk ordering VA */
1804 	fchunks = (short *)hibernate_fchunk_area;
1805 
1806 	/* Map the chunk ordering region */
1807 	for(i = 0; i < 24 ; i++)
1808 		pmap_kenter_pa(hibernate_fchunk_area + (i * PAGE_SIZE),
1809 			piglet_base + ((4 + i) * PAGE_SIZE),
1810 			PROT_READ | PROT_WRITE);
1811 	pmap_update(pmap_kernel());
1812 
1813 	nchunks = hib->chunk_ctr;
1814 
1815 	/* Initially start all chunks as unplaced */
1816 	for (i = 0; i < nchunks; i++)
1817 		chunks[i].flags = 0;
1818 
1819 	/*
1820 	 * Search the list for chunks that are outside the pig area. These
1821 	 * can be placed first in the final output list.
1822 	 */
1823 	for (i = 0; i < nchunks; i++) {
1824 		if (chunks[i].end <= pig_start || chunks[i].base >= pig_end) {
1825 			fchunks[nfchunks] = i;
1826 			nfchunks++;
1827 			chunks[i].flags |= HIBERNATE_CHUNK_PLACED;
1828 		}
1829 	}
1830 
1831 	/*
1832 	 * Walk the ordering, place the chunks in ascending memory order.
1833 	 */
1834 	for (i = 0; i < nchunks; i++) {
1835 		if (chunks[i].flags != HIBERNATE_CHUNK_PLACED) {
1836 			fchunks[nfchunks] = i;
1837 			nfchunks++;
1838 			chunks[i].flags = HIBERNATE_CHUNK_PLACED;
1839 		}
1840 	}
1841 
1842 	img_cur = pig_start;
1843 
1844 	for (i = 0; i < nfchunks; i++) {
1845 		blkctr = chunks[fchunks[i]].offset;
1846 		processed = 0;
1847 		compressed_size = chunks[fchunks[i]].compressed_size;
1848 
1849 		while (processed < compressed_size) {
1850 			if (compressed_size - processed >= MAXPHYS)
1851 				read_size = MAXPHYS;
1852 			else
1853 				read_size = compressed_size - processed;
1854 
1855 			/*
1856 			 * We're reading read_size bytes, offset from the
1857 			 * start of a page by img_cur % PAGE_SIZE, so the
1858 			 * end will be read_size + (img_cur % PAGE_SIZE)
1859 			 * from the start of the first page.  Round that
1860 			 * up to the next page size.
1861 			 */
1862 			num_io_pages = (read_size + (img_cur % PAGE_SIZE)
1863 				+ PAGE_SIZE - 1) / PAGE_SIZE;
1864 
1865 			KASSERT(num_io_pages <= MAXPHYS/PAGE_SIZE + 1);
1866 
1867 			/* Map pages for this read */
1868 			for (j = 0; j < num_io_pages; j ++)
1869 				pmap_kenter_pa(tempva + j * PAGE_SIZE,
1870 				    img_cur + j * PAGE_SIZE,
1871 				    PROT_READ | PROT_WRITE);
1872 
1873 			pmap_update(pmap_kernel());
1874 
1875 			hibernate_block_io(hib, blkctr, read_size,
1876 			    tempva + (img_cur & PAGE_MASK), 0);
1877 
1878 			blkctr += (read_size / DEV_BSIZE);
1879 
1880 			pmap_kremove(tempva, num_io_pages * PAGE_SIZE);
1881 			pmap_update(pmap_kernel());
1882 
1883 			processed += read_size;
1884 			img_cur += read_size;
1885 		}
1886 	}
1887 
1888 	pmap_kremove(hibernate_fchunk_area, 24 * PAGE_SIZE);
1889 	pmap_update(pmap_kernel());
1890 
1891 	return (0);
1892 }
1893 
1894 /*
1895  * Hibernating a machine comprises the following operations:
1896  *  1. Calculating this machine's hibernate_info information
1897  *  2. Allocating a piglet and saving the piglet's physaddr
1898  *  3. Calculating the memory chunks
1899  *  4. Writing the compressed chunks to disk
1900  *  5. Writing the chunk table
1901  *  6. Writing the signature block (hibernate_info)
1902  *
1903  * On most architectures, the function calling hibernate_suspend would
1904  * then power off the machine using some MD-specific implementation.
1905  */
1906 int
1907 hibernate_suspend(void)
1908 {
1909 	union hibernate_info hib;
1910 	u_long start, end;
1911 
1912 	/*
1913 	 * Calculate memory ranges, swap offsets, etc.
1914 	 * This also allocates a piglet whose physaddr is stored in
1915 	 * hib->piglet_pa and vaddr stored in hib->piglet_va
1916 	 */
1917 	if (get_hibernate_info(&hib, 1)) {
1918 		DPRINTF("failed to obtain hibernate info\n");
1919 		return (1);
1920 	}
1921 
1922 	/* Find a page-addressed region in swap [start,end] */
1923 	if (uvm_hibswap(hib.dev, &start, &end)) {
1924 		printf("hibernate: cannot find any swap\n");
1925 		return (1);
1926 	}
1927 
1928 	if (end - start < 1000) {
1929 		printf("hibernate: insufficient swap (%lu is too small)\n",
1930 			end - start);
1931 		return (1);
1932 	}
1933 
1934 	/* Calculate block offsets in swap */
1935 	hib.image_offset = ctod(start);
1936 
1937 	DPRINTF("hibernate @ block %lld max-length %lu blocks\n",
1938 	    hib.image_offset, ctod(end) - ctod(start));
1939 
1940 	pmap_activate(curproc);
1941 	DPRINTF("hibernate: writing chunks\n");
1942 	if (hibernate_write_chunks(&hib)) {
1943 		DPRINTF("hibernate_write_chunks failed\n");
1944 		return (1);
1945 	}
1946 
1947 	DPRINTF("hibernate: writing chunktable\n");
1948 	if (hibernate_write_chunktable(&hib)) {
1949 		DPRINTF("hibernate_write_chunktable failed\n");
1950 		return (1);
1951 	}
1952 
1953 	DPRINTF("hibernate: writing signature\n");
1954 	if (hibernate_write_signature(&hib)) {
1955 		DPRINTF("hibernate_write_signature failed\n");
1956 		return (1);
1957 	}
1958 
1959 	/* Allow the disk to settle */
1960 	delay(500000);
1961 
1962 	/*
1963 	 * Give the device-specific I/O function a notification that we're
1964 	 * done, and that it can clean up or shutdown as needed.
1965 	 */
1966 	hib.io_func(hib.dev, 0, (vaddr_t)NULL, 0, HIB_DONE, hib.io_page);
1967 	return (0);
1968 }
1969 
1970 int
1971 hibernate_alloc(void)
1972 {
1973 	KASSERT(global_piglet_va == 0);
1974 	KASSERT(hibernate_temp_page == 0);
1975 
1976 	pmap_activate(curproc);
1977 	pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE,
1978 	    PROT_READ | PROT_WRITE);
1979 
1980 	/* Allocate a piglet, store its addresses in the supplied globals */
1981 	if (uvm_pmr_alloc_piglet(&global_piglet_va, &global_piglet_pa,
1982 	    HIBERNATE_CHUNK_SIZE * 4, HIBERNATE_CHUNK_SIZE))
1983 		goto unmap;
1984 
1985 	/*
1986 	 * Allocate VA for the temp page.
1987 	 *
1988 	 * This will become part of the suspended kernel and will
1989 	 * be freed in hibernate_free, upon resume (or hibernate
1990 	 * failure)
1991 	 */
1992 	hibernate_temp_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any,
1993 	    &kp_none, &kd_nowait);
1994 	if (!hibernate_temp_page) {
1995 		uvm_pmr_free_piglet(global_piglet_va,
1996 		    4 * HIBERNATE_CHUNK_SIZE);
1997 		global_piglet_va = 0;
1998 		goto unmap;
1999 	}
2000 	return (0);
2001 unmap:
2002 	pmap_kremove(HIBERNATE_HIBALLOC_PAGE, PAGE_SIZE);
2003 	pmap_update(pmap_kernel());
2004 	return (ENOMEM);
2005 }
2006 
2007 /*
2008  * Free items allocated by hibernate_alloc()
2009  */
2010 void
2011 hibernate_free(void)
2012 {
2013 	pmap_activate(curproc);
2014 
2015 	if (global_piglet_va)
2016 		uvm_pmr_free_piglet(global_piglet_va,
2017 		    4 * HIBERNATE_CHUNK_SIZE);
2018 
2019 	if (hibernate_temp_page) {
2020 		pmap_kremove(hibernate_temp_page, PAGE_SIZE);
2021 		km_free((void *)hibernate_temp_page, PAGE_SIZE,
2022 		    &kv_any, &kp_none);
2023 	}
2024 
2025 	global_piglet_va = 0;
2026 	hibernate_temp_page = 0;
2027 	pmap_kremove(HIBERNATE_HIBALLOC_PAGE, PAGE_SIZE);
2028 	pmap_update(pmap_kernel());
2029 }
2030