1 /* $OpenBSD: subr_hibernate.c,v 1.129 2021/08/31 14:45:25 deraadt Exp $ */ 2 3 /* 4 * Copyright (c) 2011 Ariane van der Steldt <ariane@stack.nl> 5 * Copyright (c) 2011 Mike Larkin <mlarkin@openbsd.org> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 #include <sys/hibernate.h> 21 #include <sys/malloc.h> 22 #include <sys/param.h> 23 #include <sys/tree.h> 24 #include <sys/systm.h> 25 #include <sys/disklabel.h> 26 #include <sys/disk.h> 27 #include <sys/conf.h> 28 #include <sys/buf.h> 29 #include <sys/fcntl.h> 30 #include <sys/stat.h> 31 #include <sys/atomic.h> 32 33 #include <uvm/uvm.h> 34 #include <uvm/uvm_swap.h> 35 36 #include <machine/hibernate.h> 37 38 /* 39 * Hibernate piglet layout information 40 * 41 * The piglet is a scratch area of memory allocated by the suspending kernel. 42 * Its phys and virt addrs are recorded in the signature block. The piglet is 43 * used to guarantee an unused area of memory that can be used by the resuming 44 * kernel for various things. The piglet is excluded during unpack operations. 45 * The piglet size is presently 4*HIBERNATE_CHUNK_SIZE (typically 4*4MB). 46 * 47 * Offset from piglet_base Purpose 48 * ---------------------------------------------------------------------------- 49 * 0 Private page for suspend I/O write functions 50 * 1*PAGE_SIZE I/O page used during hibernate suspend 51 * 2*PAGE_SIZE I/O page used during hibernate suspend 52 * 3*PAGE_SIZE copy page used during hibernate suspend 53 * 4*PAGE_SIZE final chunk ordering list (24 pages) 54 * 28*PAGE_SIZE RLE utility page 55 * 29*PAGE_SIZE start of hiballoc area 56 * 30*PAGE_SIZE preserved entropy 57 * 110*PAGE_SIZE end of hiballoc area (80 pages) 58 * 366*PAGE_SIZE end of retguard preservation region (256 pages) 59 * ... unused 60 * HIBERNATE_CHUNK_SIZE start of hibernate chunk table 61 * 2*HIBERNATE_CHUNK_SIZE bounce area for chunks being unpacked 62 * 4*HIBERNATE_CHUNK_SIZE end of piglet 63 */ 64 65 /* Temporary vaddr ranges used during hibernate */ 66 vaddr_t hibernate_temp_page; 67 vaddr_t hibernate_copy_page; 68 vaddr_t hibernate_rle_page; 69 70 /* Hibernate info as read from disk during resume */ 71 union hibernate_info disk_hib; 72 73 /* 74 * Global copy of the pig start address. This needs to be a global as we 75 * switch stacks after computing it - it can't be stored on the stack. 76 */ 77 paddr_t global_pig_start; 78 79 /* 80 * Global copies of the piglet start addresses (PA/VA). We store these 81 * as globals to avoid having to carry them around as parameters, as the 82 * piglet is allocated early and freed late - its lifecycle extends beyond 83 * that of the hibernate info union which is calculated on suspend/resume. 84 */ 85 vaddr_t global_piglet_va; 86 paddr_t global_piglet_pa; 87 88 /* #define HIB_DEBUG */ 89 #ifdef HIB_DEBUG 90 int hib_debug = 99; 91 #define DPRINTF(x...) do { if (hib_debug) printf(x); } while (0) 92 #define DNPRINTF(n,x...) do { if (hib_debug > (n)) printf(x); } while (0) 93 #else 94 #define DPRINTF(x...) 95 #define DNPRINTF(n,x...) 96 #endif 97 98 #ifndef NO_PROPOLICE 99 extern long __guard_local; 100 #endif /* ! NO_PROPOLICE */ 101 102 void hibernate_copy_chunk_to_piglet(paddr_t, vaddr_t, size_t); 103 int hibernate_calc_rle(paddr_t, paddr_t); 104 int hibernate_write_rle(union hibernate_info *, paddr_t, paddr_t, daddr_t *, 105 size_t *); 106 107 #define MAX_RLE (HIBERNATE_CHUNK_SIZE / PAGE_SIZE) 108 109 /* 110 * Hib alloc enforced alignment. 111 */ 112 #define HIB_ALIGN 8 /* bytes alignment */ 113 114 /* 115 * sizeof builtin operation, but with alignment constraint. 116 */ 117 #define HIB_SIZEOF(_type) roundup(sizeof(_type), HIB_ALIGN) 118 119 struct hiballoc_entry { 120 size_t hibe_use; 121 size_t hibe_space; 122 RBT_ENTRY(hiballoc_entry) hibe_entry; 123 }; 124 125 /* 126 * Sort hibernate memory ranges by ascending PA 127 */ 128 void 129 hibernate_sort_ranges(union hibernate_info *hib_info) 130 { 131 int i, j; 132 struct hibernate_memory_range *ranges; 133 paddr_t base, end; 134 135 ranges = hib_info->ranges; 136 137 for (i = 1; i < hib_info->nranges; i++) { 138 j = i; 139 while (j > 0 && ranges[j - 1].base > ranges[j].base) { 140 base = ranges[j].base; 141 end = ranges[j].end; 142 ranges[j].base = ranges[j - 1].base; 143 ranges[j].end = ranges[j - 1].end; 144 ranges[j - 1].base = base; 145 ranges[j - 1].end = end; 146 j--; 147 } 148 } 149 } 150 151 /* 152 * Compare hiballoc entries based on the address they manage. 153 * 154 * Since the address is fixed, relative to struct hiballoc_entry, 155 * we just compare the hiballoc_entry pointers. 156 */ 157 static __inline int 158 hibe_cmp(const struct hiballoc_entry *l, const struct hiballoc_entry *r) 159 { 160 vaddr_t vl = (vaddr_t)l; 161 vaddr_t vr = (vaddr_t)r; 162 163 return vl < vr ? -1 : (vl > vr); 164 } 165 166 RBT_PROTOTYPE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) 167 168 /* 169 * Given a hiballoc entry, return the address it manages. 170 */ 171 static __inline void * 172 hib_entry_to_addr(struct hiballoc_entry *entry) 173 { 174 caddr_t addr; 175 176 addr = (caddr_t)entry; 177 addr += HIB_SIZEOF(struct hiballoc_entry); 178 return addr; 179 } 180 181 /* 182 * Given an address, find the hiballoc that corresponds. 183 */ 184 static __inline struct hiballoc_entry* 185 hib_addr_to_entry(void *addr_param) 186 { 187 caddr_t addr; 188 189 addr = (caddr_t)addr_param; 190 addr -= HIB_SIZEOF(struct hiballoc_entry); 191 return (struct hiballoc_entry*)addr; 192 } 193 194 RBT_GENERATE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp); 195 196 /* 197 * Allocate memory from the arena. 198 * 199 * Returns NULL if no memory is available. 200 */ 201 void * 202 hib_alloc(struct hiballoc_arena *arena, size_t alloc_sz) 203 { 204 struct hiballoc_entry *entry, *new_entry; 205 size_t find_sz; 206 207 /* 208 * Enforce alignment of HIB_ALIGN bytes. 209 * 210 * Note that, because the entry is put in front of the allocation, 211 * 0-byte allocations are guaranteed a unique address. 212 */ 213 alloc_sz = roundup(alloc_sz, HIB_ALIGN); 214 215 /* 216 * Find an entry with hibe_space >= find_sz. 217 * 218 * If the root node is not large enough, we switch to tree traversal. 219 * Because all entries are made at the bottom of the free space, 220 * traversal from the end has a slightly better chance of yielding 221 * a sufficiently large space. 222 */ 223 find_sz = alloc_sz + HIB_SIZEOF(struct hiballoc_entry); 224 entry = RBT_ROOT(hiballoc_addr, &arena->hib_addrs); 225 if (entry != NULL && entry->hibe_space < find_sz) { 226 RBT_FOREACH_REVERSE(entry, hiballoc_addr, &arena->hib_addrs) { 227 if (entry->hibe_space >= find_sz) 228 break; 229 } 230 } 231 232 /* 233 * Insufficient or too fragmented memory. 234 */ 235 if (entry == NULL) 236 return NULL; 237 238 /* 239 * Create new entry in allocated space. 240 */ 241 new_entry = (struct hiballoc_entry*)( 242 (caddr_t)hib_entry_to_addr(entry) + entry->hibe_use); 243 new_entry->hibe_space = entry->hibe_space - find_sz; 244 new_entry->hibe_use = alloc_sz; 245 246 /* 247 * Insert entry. 248 */ 249 if (RBT_INSERT(hiballoc_addr, &arena->hib_addrs, new_entry) != NULL) 250 panic("hib_alloc: insert failure"); 251 entry->hibe_space = 0; 252 253 /* Return address managed by entry. */ 254 return hib_entry_to_addr(new_entry); 255 } 256 257 void 258 hib_getentropy(char **bufp, size_t *bufplen) 259 { 260 if (!bufp || !bufplen) 261 return; 262 263 *bufp = (char *)(global_piglet_va + (29 * PAGE_SIZE)); 264 *bufplen = PAGE_SIZE; 265 } 266 267 /* 268 * Free a pointer previously allocated from this arena. 269 * 270 * If addr is NULL, this will be silently accepted. 271 */ 272 void 273 hib_free(struct hiballoc_arena *arena, void *addr) 274 { 275 struct hiballoc_entry *entry, *prev; 276 277 if (addr == NULL) 278 return; 279 280 /* 281 * Derive entry from addr and check it is really in this arena. 282 */ 283 entry = hib_addr_to_entry(addr); 284 if (RBT_FIND(hiballoc_addr, &arena->hib_addrs, entry) != entry) 285 panic("hib_free: freed item %p not in hib arena", addr); 286 287 /* 288 * Give the space in entry to its predecessor. 289 * 290 * If entry has no predecessor, change its used space into free space 291 * instead. 292 */ 293 prev = RBT_PREV(hiballoc_addr, entry); 294 if (prev != NULL && 295 (void *)((caddr_t)prev + HIB_SIZEOF(struct hiballoc_entry) + 296 prev->hibe_use + prev->hibe_space) == entry) { 297 /* Merge entry. */ 298 RBT_REMOVE(hiballoc_addr, &arena->hib_addrs, entry); 299 prev->hibe_space += HIB_SIZEOF(struct hiballoc_entry) + 300 entry->hibe_use + entry->hibe_space; 301 } else { 302 /* Flip used memory to free space. */ 303 entry->hibe_space += entry->hibe_use; 304 entry->hibe_use = 0; 305 } 306 } 307 308 /* 309 * Initialize hiballoc. 310 * 311 * The allocator will manage memory at ptr, which is len bytes. 312 */ 313 int 314 hiballoc_init(struct hiballoc_arena *arena, void *p_ptr, size_t p_len) 315 { 316 struct hiballoc_entry *entry; 317 caddr_t ptr; 318 size_t len; 319 320 RBT_INIT(hiballoc_addr, &arena->hib_addrs); 321 322 /* 323 * Hib allocator enforces HIB_ALIGN alignment. 324 * Fixup ptr and len. 325 */ 326 ptr = (caddr_t)roundup((vaddr_t)p_ptr, HIB_ALIGN); 327 len = p_len - ((size_t)ptr - (size_t)p_ptr); 328 len &= ~((size_t)HIB_ALIGN - 1); 329 330 /* 331 * Insufficient memory to be able to allocate and also do bookkeeping. 332 */ 333 if (len <= HIB_SIZEOF(struct hiballoc_entry)) 334 return ENOMEM; 335 336 /* 337 * Create entry describing space. 338 */ 339 entry = (struct hiballoc_entry*)ptr; 340 entry->hibe_use = 0; 341 entry->hibe_space = len - HIB_SIZEOF(struct hiballoc_entry); 342 RBT_INSERT(hiballoc_addr, &arena->hib_addrs, entry); 343 344 return 0; 345 } 346 347 /* 348 * Zero all free memory. 349 */ 350 void 351 uvm_pmr_zero_everything(void) 352 { 353 struct uvm_pmemrange *pmr; 354 struct vm_page *pg; 355 int i; 356 357 uvm_lock_fpageq(); 358 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 359 /* Zero single pages. */ 360 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_DIRTY])) 361 != NULL) { 362 uvm_pmr_remove(pmr, pg); 363 uvm_pagezero(pg); 364 atomic_setbits_int(&pg->pg_flags, PG_ZERO); 365 uvmexp.zeropages++; 366 uvm_pmr_insert(pmr, pg, 0); 367 } 368 369 /* Zero multi page ranges. */ 370 while ((pg = RBT_ROOT(uvm_pmr_size, 371 &pmr->size[UVM_PMR_MEMTYPE_DIRTY])) != NULL) { 372 pg--; /* Size tree always has second page. */ 373 uvm_pmr_remove(pmr, pg); 374 for (i = 0; i < pg->fpgsz; i++) { 375 uvm_pagezero(&pg[i]); 376 atomic_setbits_int(&pg[i].pg_flags, PG_ZERO); 377 uvmexp.zeropages++; 378 } 379 uvm_pmr_insert(pmr, pg, 0); 380 } 381 } 382 uvm_unlock_fpageq(); 383 } 384 385 /* 386 * Mark all memory as dirty. 387 * 388 * Used to inform the system that the clean memory isn't clean for some 389 * reason, for example because we just came back from hibernate. 390 */ 391 void 392 uvm_pmr_dirty_everything(void) 393 { 394 struct uvm_pmemrange *pmr; 395 struct vm_page *pg; 396 int i; 397 398 uvm_lock_fpageq(); 399 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 400 /* Dirty single pages. */ 401 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_ZERO])) 402 != NULL) { 403 uvm_pmr_remove(pmr, pg); 404 atomic_clearbits_int(&pg->pg_flags, PG_ZERO); 405 uvm_pmr_insert(pmr, pg, 0); 406 } 407 408 /* Dirty multi page ranges. */ 409 while ((pg = RBT_ROOT(uvm_pmr_size, 410 &pmr->size[UVM_PMR_MEMTYPE_ZERO])) != NULL) { 411 pg--; /* Size tree always has second page. */ 412 uvm_pmr_remove(pmr, pg); 413 for (i = 0; i < pg->fpgsz; i++) 414 atomic_clearbits_int(&pg[i].pg_flags, PG_ZERO); 415 uvm_pmr_insert(pmr, pg, 0); 416 } 417 } 418 419 uvmexp.zeropages = 0; 420 uvm_unlock_fpageq(); 421 } 422 423 /* 424 * Allocate an area that can hold sz bytes and doesn't overlap with 425 * the piglet at piglet_pa. 426 */ 427 int 428 uvm_pmr_alloc_pig(paddr_t *pa, psize_t sz, paddr_t piglet_pa) 429 { 430 struct uvm_constraint_range pig_constraint; 431 struct kmem_pa_mode kp_pig = { 432 .kp_constraint = &pig_constraint, 433 .kp_maxseg = 1 434 }; 435 vaddr_t va; 436 437 sz = round_page(sz); 438 439 pig_constraint.ucr_low = piglet_pa + 4 * HIBERNATE_CHUNK_SIZE; 440 pig_constraint.ucr_high = -1; 441 442 va = (vaddr_t)km_alloc(sz, &kv_any, &kp_pig, &kd_nowait); 443 if (va == 0) { 444 pig_constraint.ucr_low = 0; 445 pig_constraint.ucr_high = piglet_pa - 1; 446 447 va = (vaddr_t)km_alloc(sz, &kv_any, &kp_pig, &kd_nowait); 448 if (va == 0) 449 return ENOMEM; 450 } 451 452 pmap_extract(pmap_kernel(), va, pa); 453 return 0; 454 } 455 456 /* 457 * Allocate a piglet area. 458 * 459 * This needs to be in DMA-safe memory. 460 * Piglets are aligned. 461 * 462 * sz and align in bytes. 463 * 464 * The call will sleep for the pagedaemon to attempt to free memory. 465 * The pagedaemon may decide its not possible to free enough memory, causing 466 * the allocation to fail. 467 */ 468 int 469 uvm_pmr_alloc_piglet(vaddr_t *va, paddr_t *pa, vsize_t sz, paddr_t align) 470 { 471 struct kmem_pa_mode kp_piglet = { 472 .kp_constraint = &dma_constraint, 473 .kp_align = align, 474 .kp_maxseg = 1 475 }; 476 477 /* Ensure align is a power of 2 */ 478 KASSERT((align & (align - 1)) == 0); 479 480 /* 481 * Fixup arguments: align must be at least PAGE_SIZE, 482 * sz will be converted to pagecount, since that is what 483 * pmemrange uses internally. 484 */ 485 if (align < PAGE_SIZE) 486 kp_piglet.kp_align = PAGE_SIZE; 487 488 sz = round_page(sz); 489 490 *va = (vaddr_t)km_alloc(sz, &kv_any, &kp_piglet, &kd_nowait); 491 if (*va == 0) 492 return ENOMEM; 493 494 pmap_extract(pmap_kernel(), *va, pa); 495 return 0; 496 } 497 498 /* 499 * Free a piglet area. 500 */ 501 void 502 uvm_pmr_free_piglet(vaddr_t va, vsize_t sz) 503 { 504 /* 505 * Fix parameters. 506 */ 507 sz = round_page(sz); 508 509 /* 510 * Free the physical and virtual memory. 511 */ 512 km_free((void *)va, sz, &kv_any, &kp_dma_contig); 513 } 514 515 /* 516 * Physmem RLE compression support. 517 * 518 * Given a physical page address, return the number of pages starting at the 519 * address that are free. Clamps to the number of pages in 520 * HIBERNATE_CHUNK_SIZE. Returns 0 if the page at addr is not free. 521 */ 522 int 523 uvm_page_rle(paddr_t addr) 524 { 525 struct vm_page *pg, *pg_end; 526 struct vm_physseg *vmp; 527 int pseg_idx, off_idx; 528 529 pseg_idx = vm_physseg_find(atop(addr), &off_idx); 530 if (pseg_idx == -1) 531 return 0; 532 533 vmp = &vm_physmem[pseg_idx]; 534 pg = &vmp->pgs[off_idx]; 535 if (!(pg->pg_flags & PQ_FREE)) 536 return 0; 537 538 /* 539 * Search for the first non-free page after pg. 540 * Note that the page may not be the first page in a free pmemrange, 541 * therefore pg->fpgsz cannot be used. 542 */ 543 for (pg_end = pg; pg_end <= vmp->lastpg && 544 (pg_end->pg_flags & PQ_FREE) == PQ_FREE && 545 (pg_end - pg) < HIBERNATE_CHUNK_SIZE/PAGE_SIZE; pg_end++) 546 ; 547 return pg_end - pg; 548 } 549 550 /* 551 * Calculate a hopefully unique version # for this kernel, based upon 552 * how it was linked. 553 */ 554 u_int32_t 555 hibsum(void) 556 { 557 return ((long)malloc ^ (long)km_alloc ^ (long)printf ^ (long)strlen); 558 } 559 560 561 /* 562 * Fills out the hibernate_info union pointed to by hib 563 * with information about this machine (swap signature block 564 * offsets, number of memory ranges, kernel in use, etc) 565 */ 566 int 567 get_hibernate_info(union hibernate_info *hib, int suspend) 568 { 569 struct disklabel dl; 570 char err_string[128], *dl_ret; 571 572 #ifndef NO_PROPOLICE 573 /* Save propolice guard */ 574 hib->guard = __guard_local; 575 #endif /* ! NO_PROPOLICE */ 576 577 /* Determine I/O function to use */ 578 hib->io_func = get_hibernate_io_function(swdevt[0].sw_dev); 579 if (hib->io_func == NULL) 580 return (1); 581 582 /* Calculate hibernate device */ 583 hib->dev = swdevt[0].sw_dev; 584 585 /* Read disklabel (used to calculate signature and image offsets) */ 586 dl_ret = disk_readlabel(&dl, hib->dev, err_string, sizeof(err_string)); 587 588 if (dl_ret) { 589 printf("Hibernate error reading disklabel: %s\n", dl_ret); 590 return (1); 591 } 592 593 /* Make sure we have a swap partition. */ 594 if (dl.d_partitions[1].p_fstype != FS_SWAP || 595 DL_GETPSIZE(&dl.d_partitions[1]) == 0) 596 return (1); 597 598 /* Make sure the signature can fit in one block */ 599 if (sizeof(union hibernate_info) > DEV_BSIZE) 600 return (1); 601 602 /* Magic number */ 603 hib->magic = HIBERNATE_MAGIC; 604 605 /* Calculate signature block location */ 606 hib->sig_offset = DL_GETPSIZE(&dl.d_partitions[1]) - 607 sizeof(union hibernate_info)/DEV_BSIZE; 608 609 /* Stash kernel version information */ 610 memset(&hib->kernel_version, 0, 128); 611 bcopy(version, &hib->kernel_version, 612 min(strlen(version), sizeof(hib->kernel_version)-1)); 613 hib->kernel_sum = hibsum(); 614 615 if (suspend) { 616 /* Grab the previously-allocated piglet addresses */ 617 hib->piglet_va = global_piglet_va; 618 hib->piglet_pa = global_piglet_pa; 619 hib->io_page = (void *)hib->piglet_va; 620 621 /* 622 * Initialization of the hibernate IO function for drivers 623 * that need to do prep work (such as allocating memory or 624 * setting up data structures that cannot safely be done 625 * during suspend without causing side effects). There is 626 * a matching HIB_DONE call performed after the write is 627 * completed. 628 */ 629 if (hib->io_func(hib->dev, DL_GETPOFFSET(&dl.d_partitions[1]), 630 (vaddr_t)NULL, DL_GETPSIZE(&dl.d_partitions[1]), 631 HIB_INIT, hib->io_page)) 632 goto fail; 633 634 } else { 635 /* 636 * Resuming kernels use a regular private page for the driver 637 * No need to free this I/O page as it will vanish as part of 638 * the resume. 639 */ 640 hib->io_page = malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT); 641 if (!hib->io_page) 642 goto fail; 643 } 644 645 if (get_hibernate_info_md(hib)) 646 goto fail; 647 648 return (0); 649 650 fail: 651 return (1); 652 } 653 654 /* 655 * Allocate nitems*size bytes from the hiballoc area presently in use 656 */ 657 void * 658 hibernate_zlib_alloc(void *unused, int nitems, int size) 659 { 660 struct hibernate_zlib_state *hibernate_state; 661 662 hibernate_state = 663 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 664 665 return hib_alloc(&hibernate_state->hiballoc_arena, nitems*size); 666 } 667 668 /* 669 * Free the memory pointed to by addr in the hiballoc area presently in 670 * use 671 */ 672 void 673 hibernate_zlib_free(void *unused, void *addr) 674 { 675 struct hibernate_zlib_state *hibernate_state; 676 677 hibernate_state = 678 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 679 680 hib_free(&hibernate_state->hiballoc_arena, addr); 681 } 682 683 /* 684 * Inflate next page of data from the image stream. 685 * The rle parameter is modified on exit to contain the number of pages to 686 * skip in the output stream (or 0 if this page was inflated into). 687 * 688 * Returns 0 if the stream contains additional data, or 1 if the stream is 689 * finished. 690 */ 691 int 692 hibernate_inflate_page(int *rle) 693 { 694 struct hibernate_zlib_state *hibernate_state; 695 int i; 696 697 hibernate_state = 698 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 699 700 /* Set up the stream for RLE code inflate */ 701 hibernate_state->hib_stream.next_out = (unsigned char *)rle; 702 hibernate_state->hib_stream.avail_out = sizeof(*rle); 703 704 /* Inflate RLE code */ 705 i = inflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH); 706 if (i != Z_OK && i != Z_STREAM_END) { 707 /* 708 * XXX - this will likely reboot/hang most machines 709 * since the console output buffer will be unmapped, 710 * but there's not much else we can do here. 711 */ 712 panic("rle inflate stream error"); 713 } 714 715 if (hibernate_state->hib_stream.avail_out != 0) { 716 /* 717 * XXX - this will likely reboot/hang most machines 718 * since the console output buffer will be unmapped, 719 * but there's not much else we can do here. 720 */ 721 panic("rle short inflate error"); 722 } 723 724 if (*rle < 0 || *rle > 1024) { 725 /* 726 * XXX - this will likely reboot/hang most machines 727 * since the console output buffer will be unmapped, 728 * but there's not much else we can do here. 729 */ 730 panic("invalid rle count"); 731 } 732 733 if (i == Z_STREAM_END) 734 return (1); 735 736 if (*rle != 0) 737 return (0); 738 739 /* Set up the stream for page inflate */ 740 hibernate_state->hib_stream.next_out = 741 (unsigned char *)HIBERNATE_INFLATE_PAGE; 742 hibernate_state->hib_stream.avail_out = PAGE_SIZE; 743 744 /* Process next block of data */ 745 i = inflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH); 746 if (i != Z_OK && i != Z_STREAM_END) { 747 /* 748 * XXX - this will likely reboot/hang most machines 749 * since the console output buffer will be unmapped, 750 * but there's not much else we can do here. 751 */ 752 panic("inflate error"); 753 } 754 755 /* We should always have extracted a full page ... */ 756 if (hibernate_state->hib_stream.avail_out != 0) { 757 /* 758 * XXX - this will likely reboot/hang most machines 759 * since the console output buffer will be unmapped, 760 * but there's not much else we can do here. 761 */ 762 panic("incomplete page"); 763 } 764 765 return (i == Z_STREAM_END); 766 } 767 768 /* 769 * Inflate size bytes from src into dest, skipping any pages in 770 * [src..dest] that are special (see hibernate_inflate_skip) 771 * 772 * This function executes while using the resume-time stack 773 * and pmap, and therefore cannot use ddb/printf/etc. Doing so 774 * will likely hang or reset the machine since the console output buffer 775 * will be unmapped. 776 */ 777 void 778 hibernate_inflate_region(union hibernate_info *hib, paddr_t dest, 779 paddr_t src, size_t size) 780 { 781 int end_stream = 0, rle, skip; 782 struct hibernate_zlib_state *hibernate_state; 783 784 hibernate_state = 785 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 786 787 hibernate_state->hib_stream.next_in = (unsigned char *)src; 788 hibernate_state->hib_stream.avail_in = size; 789 790 do { 791 /* 792 * Is this a special page? If yes, redirect the 793 * inflate output to a scratch page (eg, discard it) 794 */ 795 skip = hibernate_inflate_skip(hib, dest); 796 if (skip == HIB_SKIP) { 797 hibernate_enter_resume_mapping( 798 HIBERNATE_INFLATE_PAGE, 799 HIBERNATE_INFLATE_PAGE, 0); 800 } else if (skip == HIB_MOVE) { 801 /* 802 * Special case : retguard region. This gets moved 803 * temporarily into the piglet region and copied into 804 * place immediately before resume 805 */ 806 hibernate_enter_resume_mapping( 807 HIBERNATE_INFLATE_PAGE, 808 hib->piglet_pa + (110 * PAGE_SIZE) + 809 hib->retguard_ofs, 0); 810 hib->retguard_ofs += PAGE_SIZE; 811 if (hib->retguard_ofs > 255 * PAGE_SIZE) { 812 /* 813 * XXX - this will likely reboot/hang most 814 * machines since the console output 815 * buffer will be unmapped, but there's 816 * not much else we can do here. 817 */ 818 panic("retguard move error, out of space"); 819 } 820 } else { 821 hibernate_enter_resume_mapping( 822 HIBERNATE_INFLATE_PAGE, dest, 0); 823 } 824 825 hibernate_flush(); 826 end_stream = hibernate_inflate_page(&rle); 827 828 if (rle == 0) 829 dest += PAGE_SIZE; 830 else 831 dest += (rle * PAGE_SIZE); 832 } while (!end_stream); 833 } 834 835 /* 836 * deflate from src into the I/O page, up to 'remaining' bytes 837 * 838 * Returns number of input bytes consumed, and may reset 839 * the 'remaining' parameter if not all the output space was consumed 840 * (this information is needed to know how much to write to disk) 841 */ 842 size_t 843 hibernate_deflate(union hibernate_info *hib, paddr_t src, 844 size_t *remaining) 845 { 846 vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE; 847 struct hibernate_zlib_state *hibernate_state; 848 849 hibernate_state = 850 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 851 852 /* Set up the stream for deflate */ 853 hibernate_state->hib_stream.next_in = (unsigned char *)src; 854 hibernate_state->hib_stream.avail_in = PAGE_SIZE - (src & PAGE_MASK); 855 hibernate_state->hib_stream.next_out = 856 (unsigned char *)hibernate_io_page + (PAGE_SIZE - *remaining); 857 hibernate_state->hib_stream.avail_out = *remaining; 858 859 /* Process next block of data */ 860 if (deflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH) != Z_OK) 861 panic("hibernate zlib deflate error"); 862 863 /* Update pointers and return number of bytes consumed */ 864 *remaining = hibernate_state->hib_stream.avail_out; 865 return (PAGE_SIZE - (src & PAGE_MASK)) - 866 hibernate_state->hib_stream.avail_in; 867 } 868 869 /* 870 * Write the hibernation information specified in hiber_info 871 * to the location in swap previously calculated (last block of 872 * swap), called the "signature block". 873 */ 874 int 875 hibernate_write_signature(union hibernate_info *hib) 876 { 877 /* Write hibernate info to disk */ 878 return (hib->io_func(hib->dev, hib->sig_offset, 879 (vaddr_t)hib, DEV_BSIZE, HIB_W, 880 hib->io_page)); 881 } 882 883 /* 884 * Write the memory chunk table to the area in swap immediately 885 * preceding the signature block. The chunk table is stored 886 * in the piglet when this function is called. Returns errno. 887 */ 888 int 889 hibernate_write_chunktable(union hibernate_info *hib) 890 { 891 vaddr_t hibernate_chunk_table_start; 892 size_t hibernate_chunk_table_size; 893 int i, err; 894 895 hibernate_chunk_table_size = HIBERNATE_CHUNK_TABLE_SIZE; 896 897 hibernate_chunk_table_start = hib->piglet_va + 898 HIBERNATE_CHUNK_SIZE; 899 900 /* Write chunk table */ 901 for (i = 0; i < hibernate_chunk_table_size; i += MAXPHYS) { 902 if ((err = hib->io_func(hib->dev, 903 hib->chunktable_offset + (i/DEV_BSIZE), 904 (vaddr_t)(hibernate_chunk_table_start + i), 905 MAXPHYS, HIB_W, hib->io_page))) { 906 DPRINTF("chunktable write error: %d\n", err); 907 return (err); 908 } 909 } 910 911 return (0); 912 } 913 914 /* 915 * Write an empty hiber_info to the swap signature block, which is 916 * guaranteed to not match any valid hib. 917 */ 918 int 919 hibernate_clear_signature(void) 920 { 921 union hibernate_info blank_hiber_info; 922 union hibernate_info hib; 923 924 /* Zero out a blank hiber_info */ 925 memset(&blank_hiber_info, 0, sizeof(union hibernate_info)); 926 927 /* Get the signature block location */ 928 if (get_hibernate_info(&hib, 0)) 929 return (1); 930 931 /* Write (zeroed) hibernate info to disk */ 932 DPRINTF("clearing hibernate signature block location: %lld\n", 933 hib.sig_offset); 934 if (hibernate_block_io(&hib, 935 hib.sig_offset, 936 DEV_BSIZE, (vaddr_t)&blank_hiber_info, 1)) 937 printf("Warning: could not clear hibernate signature\n"); 938 939 return (0); 940 } 941 942 /* 943 * Compare two hibernate_infos to determine if they are the same (eg, 944 * we should be performing a hibernate resume on this machine. 945 * Not all fields are checked - just enough to verify that the machine 946 * has the same memory configuration and kernel as the one that 947 * wrote the signature previously. 948 */ 949 int 950 hibernate_compare_signature(union hibernate_info *mine, 951 union hibernate_info *disk) 952 { 953 u_int i; 954 955 if (mine->nranges != disk->nranges) { 956 printf("unhibernate failed: memory layout changed\n"); 957 return (1); 958 } 959 960 if (strcmp(mine->kernel_version, disk->kernel_version) != 0) { 961 printf("unhibernate failed: original kernel changed\n"); 962 return (1); 963 } 964 965 if (hibsum() != disk->kernel_sum) { 966 printf("unhibernate failed: original kernel changed\n"); 967 return (1); 968 } 969 970 for (i = 0; i < mine->nranges; i++) { 971 if ((mine->ranges[i].base != disk->ranges[i].base) || 972 (mine->ranges[i].end != disk->ranges[i].end) ) { 973 DPRINTF("hib range %d mismatch [%p-%p != %p-%p]\n", 974 i, 975 (void *)mine->ranges[i].base, 976 (void *)mine->ranges[i].end, 977 (void *)disk->ranges[i].base, 978 (void *)disk->ranges[i].end); 979 printf("unhibernate failed: memory size changed\n"); 980 return (1); 981 } 982 } 983 984 return (0); 985 } 986 987 /* 988 * Transfers xfer_size bytes between the hibernate device specified in 989 * hib_info at offset blkctr and the vaddr specified at dest. 990 * 991 * Separate offsets and pages are used to handle misaligned reads (reads 992 * that span a page boundary). 993 * 994 * blkctr specifies a relative offset (relative to the start of swap), 995 * not an absolute disk offset 996 * 997 */ 998 int 999 hibernate_block_io(union hibernate_info *hib, daddr_t blkctr, 1000 size_t xfer_size, vaddr_t dest, int iswrite) 1001 { 1002 struct buf *bp; 1003 struct bdevsw *bdsw; 1004 int error; 1005 1006 bp = geteblk(xfer_size); 1007 bdsw = &bdevsw[major(hib->dev)]; 1008 1009 error = (*bdsw->d_open)(hib->dev, FREAD, S_IFCHR, curproc); 1010 if (error) { 1011 printf("hibernate_block_io open failed\n"); 1012 return (1); 1013 } 1014 1015 if (iswrite) 1016 bcopy((caddr_t)dest, bp->b_data, xfer_size); 1017 1018 bp->b_bcount = xfer_size; 1019 bp->b_blkno = blkctr; 1020 CLR(bp->b_flags, B_READ | B_WRITE | B_DONE); 1021 SET(bp->b_flags, B_BUSY | (iswrite ? B_WRITE : B_READ) | B_RAW); 1022 bp->b_dev = hib->dev; 1023 (*bdsw->d_strategy)(bp); 1024 1025 error = biowait(bp); 1026 if (error) { 1027 printf("hib block_io biowait error %d blk %lld size %zu\n", 1028 error, (long long)blkctr, xfer_size); 1029 error = (*bdsw->d_close)(hib->dev, 0, S_IFCHR, 1030 curproc); 1031 if (error) 1032 printf("hibernate_block_io error close failed\n"); 1033 return (1); 1034 } 1035 1036 error = (*bdsw->d_close)(hib->dev, FREAD, S_IFCHR, curproc); 1037 if (error) { 1038 printf("hibernate_block_io close failed\n"); 1039 return (1); 1040 } 1041 1042 if (!iswrite) 1043 bcopy(bp->b_data, (caddr_t)dest, xfer_size); 1044 1045 bp->b_flags |= B_INVAL; 1046 brelse(bp); 1047 1048 return (0); 1049 } 1050 1051 /* 1052 * Preserve one page worth of random data, generated from the resuming 1053 * kernel's arc4random. After resume, this preserved entropy can be used 1054 * to further improve the un-hibernated machine's entropy pool. This 1055 * random data is stored in the piglet, which is preserved across the 1056 * unpack operation, and is restored later in the resume process (see 1057 * hib_getentropy) 1058 */ 1059 void 1060 hibernate_preserve_entropy(union hibernate_info *hib) 1061 { 1062 void *entropy; 1063 1064 entropy = km_alloc(PAGE_SIZE, &kv_any, &kp_none, &kd_nowait); 1065 1066 if (!entropy) 1067 return; 1068 1069 pmap_activate(curproc); 1070 pmap_kenter_pa((vaddr_t)entropy, 1071 (paddr_t)(hib->piglet_pa + (29 * PAGE_SIZE)), 1072 PROT_READ | PROT_WRITE); 1073 1074 arc4random_buf((void *)entropy, PAGE_SIZE); 1075 pmap_kremove((vaddr_t)entropy, PAGE_SIZE); 1076 km_free(entropy, PAGE_SIZE, &kv_any, &kp_none); 1077 } 1078 1079 #ifndef NO_PROPOLICE 1080 vaddr_t 1081 hibernate_unprotect_ssp(void) 1082 { 1083 struct kmem_dyn_mode kd_avoidalias; 1084 vaddr_t va = trunc_page((vaddr_t)&__guard_local); 1085 paddr_t pa; 1086 1087 pmap_extract(pmap_kernel(), va, &pa); 1088 1089 memset(&kd_avoidalias, 0, sizeof kd_avoidalias); 1090 kd_avoidalias.kd_prefer = pa; 1091 kd_avoidalias.kd_waitok = 1; 1092 va = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, &kp_none, &kd_avoidalias); 1093 if (!va) 1094 panic("hibernate_unprotect_ssp"); 1095 1096 pmap_kenter_pa(va, pa, PROT_READ | PROT_WRITE); 1097 pmap_update(pmap_kernel()); 1098 1099 return va; 1100 } 1101 1102 void 1103 hibernate_reprotect_ssp(vaddr_t va) 1104 { 1105 pmap_kremove(va, PAGE_SIZE); 1106 km_free((void *)va, PAGE_SIZE, &kv_any, &kp_none); 1107 } 1108 #endif /* NO_PROPOLICE */ 1109 1110 /* 1111 * Reads the signature block from swap, checks against the current machine's 1112 * information. If the information matches, perform a resume by reading the 1113 * saved image into the pig area, and unpacking. 1114 * 1115 * Must be called with interrupts enabled. 1116 */ 1117 void 1118 hibernate_resume(void) 1119 { 1120 union hibernate_info hib; 1121 int s; 1122 #ifndef NO_PROPOLICE 1123 vsize_t off = (vaddr_t)&__guard_local - 1124 trunc_page((vaddr_t)&__guard_local); 1125 vaddr_t guard_va; 1126 #endif 1127 1128 /* Get current running machine's hibernate info */ 1129 memset(&hib, 0, sizeof(hib)); 1130 if (get_hibernate_info(&hib, 0)) { 1131 DPRINTF("couldn't retrieve machine's hibernate info\n"); 1132 return; 1133 } 1134 1135 /* Read hibernate info from disk */ 1136 s = splbio(); 1137 1138 DPRINTF("reading hibernate signature block location: %lld\n", 1139 hib.sig_offset); 1140 1141 if (hibernate_block_io(&hib, 1142 hib.sig_offset, 1143 DEV_BSIZE, (vaddr_t)&disk_hib, 0)) { 1144 DPRINTF("error in hibernate read"); 1145 splx(s); 1146 return; 1147 } 1148 1149 /* Check magic number */ 1150 if (disk_hib.magic != HIBERNATE_MAGIC) { 1151 DPRINTF("wrong magic number in hibernate signature: %x\n", 1152 disk_hib.magic); 1153 splx(s); 1154 return; 1155 } 1156 1157 /* 1158 * We (possibly) found a hibernate signature. Clear signature first, 1159 * to prevent accidental resume or endless resume cycles later. 1160 */ 1161 if (hibernate_clear_signature()) { 1162 DPRINTF("error clearing hibernate signature block\n"); 1163 splx(s); 1164 return; 1165 } 1166 1167 /* 1168 * If on-disk and in-memory hibernate signatures match, 1169 * this means we should do a resume from hibernate. 1170 */ 1171 if (hibernate_compare_signature(&hib, &disk_hib)) { 1172 DPRINTF("mismatched hibernate signature block\n"); 1173 splx(s); 1174 return; 1175 } 1176 1177 #ifdef MULTIPROCESSOR 1178 /* XXX - if we fail later, we may need to rehatch APs on some archs */ 1179 DPRINTF("hibernate: quiescing APs\n"); 1180 hibernate_quiesce_cpus(); 1181 #endif /* MULTIPROCESSOR */ 1182 1183 /* Read the image from disk into the image (pig) area */ 1184 if (hibernate_read_image(&disk_hib)) 1185 goto fail; 1186 1187 DPRINTF("hibernate: quiescing devices\n"); 1188 if (config_suspend_all(DVACT_QUIESCE) != 0) 1189 goto fail; 1190 1191 #ifndef NO_PROPOLICE 1192 guard_va = hibernate_unprotect_ssp(); 1193 #endif /* NO_PROPOLICE */ 1194 1195 (void) splhigh(); 1196 hibernate_disable_intr_machdep(); 1197 cold = 1; 1198 1199 DPRINTF("hibernate: suspending devices\n"); 1200 if (config_suspend_all(DVACT_SUSPEND) != 0) { 1201 cold = 0; 1202 hibernate_enable_intr_machdep(); 1203 #ifndef NO_PROPOLICE 1204 hibernate_reprotect_ssp(guard_va); 1205 #endif /* ! NO_PROPOLICE */ 1206 goto fail; 1207 } 1208 1209 hibernate_preserve_entropy(&disk_hib); 1210 1211 printf("Unpacking image...\n"); 1212 1213 /* Switch stacks */ 1214 DPRINTF("hibernate: switching stacks\n"); 1215 hibernate_switch_stack_machdep(); 1216 1217 #ifndef NO_PROPOLICE 1218 /* Start using suspended kernel's propolice guard */ 1219 *(long *)(guard_va + off) = disk_hib.guard; 1220 hibernate_reprotect_ssp(guard_va); 1221 #endif /* ! NO_PROPOLICE */ 1222 1223 /* Unpack and resume */ 1224 hibernate_unpack_image(&disk_hib); 1225 1226 fail: 1227 splx(s); 1228 printf("\nUnable to resume hibernated image\n"); 1229 } 1230 1231 /* 1232 * Unpack image from pig area to original location by looping through the 1233 * list of output chunks in the order they should be restored (fchunks). 1234 * 1235 * Note that due to the stack smash protector and the fact that we have 1236 * switched stacks, it is not permitted to return from this function. 1237 */ 1238 void 1239 hibernate_unpack_image(union hibernate_info *hib) 1240 { 1241 struct hibernate_disk_chunk *chunks; 1242 union hibernate_info local_hib; 1243 paddr_t image_cur = global_pig_start; 1244 short i, *fchunks; 1245 char *pva; 1246 1247 /* Piglet will be identity mapped (VA == PA) */ 1248 pva = (char *)hib->piglet_pa; 1249 1250 fchunks = (short *)(pva + (4 * PAGE_SIZE)); 1251 1252 chunks = (struct hibernate_disk_chunk *)(pva + HIBERNATE_CHUNK_SIZE); 1253 1254 /* Can't use hiber_info that's passed in after this point */ 1255 bcopy(hib, &local_hib, sizeof(union hibernate_info)); 1256 local_hib.retguard_ofs = 0; 1257 1258 /* VA == PA */ 1259 local_hib.piglet_va = local_hib.piglet_pa; 1260 1261 /* 1262 * Point of no return. Once we pass this point, only kernel code can 1263 * be accessed. No global variables or other kernel data structures 1264 * are guaranteed to be coherent after unpack starts. 1265 * 1266 * The image is now in high memory (pig area), we unpack from the pig 1267 * to the correct location in memory. We'll eventually end up copying 1268 * on top of ourself, but we are assured the kernel code here is the 1269 * same between the hibernated and resuming kernel, and we are running 1270 * on our own stack, so the overwrite is ok. 1271 */ 1272 DPRINTF("hibernate: activating alt. pagetable and starting unpack\n"); 1273 hibernate_activate_resume_pt_machdep(); 1274 1275 for (i = 0; i < local_hib.chunk_ctr; i++) { 1276 /* Reset zlib for inflate */ 1277 if (hibernate_zlib_reset(&local_hib, 0) != Z_OK) 1278 panic("hibernate failed to reset zlib for inflate"); 1279 1280 hibernate_process_chunk(&local_hib, &chunks[fchunks[i]], 1281 image_cur); 1282 1283 image_cur += chunks[fchunks[i]].compressed_size; 1284 1285 } 1286 1287 /* 1288 * Resume the loaded kernel by jumping to the MD resume vector. 1289 * We won't be returning from this call. We pass the location of 1290 * the retguard save area so the MD code can replace it before 1291 * resuming. See the piglet layout at the top of this file for 1292 * more information on the layout of the piglet area. 1293 * 1294 * We use 'global_piglet_va' here since by the time we are at 1295 * this point, we have already unpacked the image, and we want 1296 * the suspended kernel's view of what the piglet was, before 1297 * suspend occurred (since we will need to use that in the retguard 1298 * copy code in hibernate_resume_machdep.) 1299 */ 1300 hibernate_resume_machdep(global_piglet_va + (110 * PAGE_SIZE)); 1301 } 1302 1303 /* 1304 * Bounce a compressed image chunk to the piglet, entering mappings for the 1305 * copied pages as needed 1306 */ 1307 void 1308 hibernate_copy_chunk_to_piglet(paddr_t img_cur, vaddr_t piglet, size_t size) 1309 { 1310 size_t ct, ofs; 1311 paddr_t src = img_cur; 1312 vaddr_t dest = piglet; 1313 1314 /* Copy first partial page */ 1315 ct = (PAGE_SIZE) - (src & PAGE_MASK); 1316 ofs = (src & PAGE_MASK); 1317 1318 if (ct < PAGE_SIZE) { 1319 hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE, 1320 (src - ofs), 0); 1321 hibernate_flush(); 1322 bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE + ofs), (caddr_t)dest, ct); 1323 src += ct; 1324 dest += ct; 1325 } 1326 1327 /* Copy remaining pages */ 1328 while (src < size + img_cur) { 1329 hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE, src, 0); 1330 hibernate_flush(); 1331 ct = PAGE_SIZE; 1332 bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE), (caddr_t)dest, ct); 1333 hibernate_flush(); 1334 src += ct; 1335 dest += ct; 1336 } 1337 } 1338 1339 /* 1340 * Process a chunk by bouncing it to the piglet, followed by unpacking 1341 */ 1342 void 1343 hibernate_process_chunk(union hibernate_info *hib, 1344 struct hibernate_disk_chunk *chunk, paddr_t img_cur) 1345 { 1346 char *pva = (char *)hib->piglet_va; 1347 1348 hibernate_copy_chunk_to_piglet(img_cur, 1349 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), chunk->compressed_size); 1350 hibernate_inflate_region(hib, chunk->base, 1351 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), 1352 chunk->compressed_size); 1353 } 1354 1355 /* 1356 * Calculate RLE component for 'inaddr'. Clamps to max RLE pages between 1357 * inaddr and range_end. 1358 */ 1359 int 1360 hibernate_calc_rle(paddr_t inaddr, paddr_t range_end) 1361 { 1362 int rle; 1363 1364 rle = uvm_page_rle(inaddr); 1365 KASSERT(rle >= 0 && rle <= MAX_RLE); 1366 1367 /* Clamp RLE to range end */ 1368 if (rle > 0 && inaddr + (rle * PAGE_SIZE) > range_end) 1369 rle = (range_end - inaddr) / PAGE_SIZE; 1370 1371 return (rle); 1372 } 1373 1374 /* 1375 * Write the RLE byte for page at 'inaddr' to the output stream. 1376 * Returns the number of pages to be skipped at 'inaddr'. 1377 */ 1378 int 1379 hibernate_write_rle(union hibernate_info *hib, paddr_t inaddr, 1380 paddr_t range_end, daddr_t *blkctr, 1381 size_t *out_remaining) 1382 { 1383 int rle, err, *rleloc; 1384 struct hibernate_zlib_state *hibernate_state; 1385 vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE; 1386 1387 hibernate_state = 1388 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1389 1390 rle = hibernate_calc_rle(inaddr, range_end); 1391 1392 rleloc = (int *)hibernate_rle_page + MAX_RLE - 1; 1393 *rleloc = rle; 1394 1395 /* Deflate the RLE byte into the stream */ 1396 hibernate_deflate(hib, (paddr_t)rleloc, out_remaining); 1397 1398 /* Did we fill the output page? If so, flush to disk */ 1399 if (*out_remaining == 0) { 1400 if ((err = hib->io_func(hib->dev, *blkctr + hib->image_offset, 1401 (vaddr_t)hibernate_io_page, PAGE_SIZE, HIB_W, 1402 hib->io_page))) { 1403 DPRINTF("hib write error %d\n", err); 1404 return (err); 1405 } 1406 1407 *blkctr += PAGE_SIZE / DEV_BSIZE; 1408 *out_remaining = PAGE_SIZE; 1409 1410 /* If we didn't deflate the entire RLE byte, finish it now */ 1411 if (hibernate_state->hib_stream.avail_in != 0) 1412 hibernate_deflate(hib, 1413 (vaddr_t)hibernate_state->hib_stream.next_in, 1414 out_remaining); 1415 } 1416 1417 return (rle); 1418 } 1419 1420 /* 1421 * Write a compressed version of this machine's memory to disk, at the 1422 * precalculated swap offset: 1423 * 1424 * end of swap - signature block size - chunk table size - memory size 1425 * 1426 * The function begins by looping through each phys mem range, cutting each 1427 * one into MD sized chunks. These chunks are then compressed individually 1428 * and written out to disk, in phys mem order. Some chunks might compress 1429 * more than others, and for this reason, each chunk's size is recorded 1430 * in the chunk table, which is written to disk after the image has 1431 * properly been compressed and written (in hibernate_write_chunktable). 1432 * 1433 * When this function is called, the machine is nearly suspended - most 1434 * devices are quiesced/suspended, interrupts are off, and cold has 1435 * been set. This means that there can be no side effects once the 1436 * write has started, and the write function itself can also have no 1437 * side effects. This also means no printfs are permitted (since printf 1438 * has side effects.) 1439 * 1440 * Return values : 1441 * 1442 * 0 - success 1443 * EIO - I/O error occurred writing the chunks 1444 * EINVAL - Failed to write a complete range 1445 * ENOMEM - Memory allocation failure during preparation of the zlib arena 1446 */ 1447 int 1448 hibernate_write_chunks(union hibernate_info *hib) 1449 { 1450 paddr_t range_base, range_end, inaddr, temp_inaddr; 1451 size_t nblocks, out_remaining, used; 1452 struct hibernate_disk_chunk *chunks; 1453 vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE; 1454 daddr_t blkctr = 0; 1455 int i, rle, err; 1456 struct hibernate_zlib_state *hibernate_state; 1457 1458 hibernate_state = 1459 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1460 1461 hib->chunk_ctr = 0; 1462 1463 /* 1464 * Map the utility VAs to the piglet. See the piglet map at the 1465 * top of this file for piglet layout information. 1466 */ 1467 hibernate_copy_page = hib->piglet_va + 3 * PAGE_SIZE; 1468 hibernate_rle_page = hib->piglet_va + 28 * PAGE_SIZE; 1469 1470 chunks = (struct hibernate_disk_chunk *)(hib->piglet_va + 1471 HIBERNATE_CHUNK_SIZE); 1472 1473 /* Calculate the chunk regions */ 1474 for (i = 0; i < hib->nranges; i++) { 1475 range_base = hib->ranges[i].base; 1476 range_end = hib->ranges[i].end; 1477 1478 inaddr = range_base; 1479 1480 while (inaddr < range_end) { 1481 chunks[hib->chunk_ctr].base = inaddr; 1482 if (inaddr + HIBERNATE_CHUNK_SIZE < range_end) 1483 chunks[hib->chunk_ctr].end = inaddr + 1484 HIBERNATE_CHUNK_SIZE; 1485 else 1486 chunks[hib->chunk_ctr].end = range_end; 1487 1488 inaddr += HIBERNATE_CHUNK_SIZE; 1489 hib->chunk_ctr ++; 1490 } 1491 } 1492 1493 uvm_pmr_dirty_everything(); 1494 uvm_pmr_zero_everything(); 1495 1496 /* Compress and write the chunks in the chunktable */ 1497 for (i = 0; i < hib->chunk_ctr; i++) { 1498 range_base = chunks[i].base; 1499 range_end = chunks[i].end; 1500 1501 chunks[i].offset = blkctr + hib->image_offset; 1502 1503 /* Reset zlib for deflate */ 1504 if (hibernate_zlib_reset(hib, 1) != Z_OK) { 1505 DPRINTF("hibernate_zlib_reset failed for deflate\n"); 1506 return (ENOMEM); 1507 } 1508 1509 inaddr = range_base; 1510 1511 /* 1512 * For each range, loop through its phys mem region 1513 * and write out the chunks (the last chunk might be 1514 * smaller than the chunk size). 1515 */ 1516 while (inaddr < range_end) { 1517 out_remaining = PAGE_SIZE; 1518 while (out_remaining > 0 && inaddr < range_end) { 1519 /* 1520 * Adjust for regions that are not evenly 1521 * divisible by PAGE_SIZE or overflowed 1522 * pages from the previous iteration. 1523 */ 1524 temp_inaddr = (inaddr & PAGE_MASK) + 1525 hibernate_copy_page; 1526 1527 /* Deflate from temp_inaddr to IO page */ 1528 if (inaddr != range_end) { 1529 if (inaddr % PAGE_SIZE == 0) { 1530 rle = hibernate_write_rle(hib, 1531 inaddr, 1532 range_end, 1533 &blkctr, 1534 &out_remaining); 1535 } 1536 1537 if (rle == 0) { 1538 pmap_kenter_pa(hibernate_temp_page, 1539 inaddr & PMAP_PA_MASK, 1540 PROT_READ); 1541 1542 bcopy((caddr_t)hibernate_temp_page, 1543 (caddr_t)hibernate_copy_page, 1544 PAGE_SIZE); 1545 inaddr += hibernate_deflate(hib, 1546 temp_inaddr, 1547 &out_remaining); 1548 } else { 1549 inaddr += rle * PAGE_SIZE; 1550 if (inaddr > range_end) 1551 inaddr = range_end; 1552 } 1553 1554 } 1555 1556 if (out_remaining == 0) { 1557 /* Filled up the page */ 1558 nblocks = PAGE_SIZE / DEV_BSIZE; 1559 1560 if ((err = hib->io_func(hib->dev, 1561 blkctr + hib->image_offset, 1562 (vaddr_t)hibernate_io_page, 1563 PAGE_SIZE, HIB_W, hib->io_page))) { 1564 DPRINTF("hib write error %d\n", 1565 err); 1566 return (err); 1567 } 1568 1569 blkctr += nblocks; 1570 } 1571 } 1572 } 1573 1574 if (inaddr != range_end) { 1575 DPRINTF("deflate range ended prematurely\n"); 1576 return (EINVAL); 1577 } 1578 1579 /* 1580 * End of range. Round up to next secsize bytes 1581 * after finishing compress 1582 */ 1583 if (out_remaining == 0) 1584 out_remaining = PAGE_SIZE; 1585 1586 /* Finish compress */ 1587 hibernate_state->hib_stream.next_in = (unsigned char *)inaddr; 1588 hibernate_state->hib_stream.avail_in = 0; 1589 hibernate_state->hib_stream.next_out = 1590 (unsigned char *)hibernate_io_page + 1591 (PAGE_SIZE - out_remaining); 1592 1593 /* We have an extra output page available for finalize */ 1594 hibernate_state->hib_stream.avail_out = 1595 out_remaining + PAGE_SIZE; 1596 1597 if ((err = deflate(&hibernate_state->hib_stream, Z_FINISH)) != 1598 Z_STREAM_END) { 1599 DPRINTF("deflate error in output stream: %d\n", err); 1600 return (err); 1601 } 1602 1603 out_remaining = hibernate_state->hib_stream.avail_out; 1604 1605 used = 2 * PAGE_SIZE - out_remaining; 1606 nblocks = used / DEV_BSIZE; 1607 1608 /* Round up to next block if needed */ 1609 if (used % DEV_BSIZE != 0) 1610 nblocks ++; 1611 1612 /* Write final block(s) for this chunk */ 1613 if ((err = hib->io_func(hib->dev, blkctr + hib->image_offset, 1614 (vaddr_t)hibernate_io_page, nblocks*DEV_BSIZE, 1615 HIB_W, hib->io_page))) { 1616 DPRINTF("hib final write error %d\n", err); 1617 return (err); 1618 } 1619 1620 blkctr += nblocks; 1621 1622 chunks[i].compressed_size = (blkctr + hib->image_offset - 1623 chunks[i].offset) * DEV_BSIZE; 1624 } 1625 1626 hib->chunktable_offset = hib->image_offset + blkctr; 1627 return (0); 1628 } 1629 1630 /* 1631 * Reset the zlib stream state and allocate a new hiballoc area for either 1632 * inflate or deflate. This function is called once for each hibernate chunk. 1633 * Calling hiballoc_init multiple times is acceptable since the memory it is 1634 * provided is unmanaged memory (stolen). We use the memory provided to us 1635 * by the piglet allocated via the supplied hib. 1636 */ 1637 int 1638 hibernate_zlib_reset(union hibernate_info *hib, int deflate) 1639 { 1640 vaddr_t hibernate_zlib_start; 1641 size_t hibernate_zlib_size; 1642 char *pva = (char *)hib->piglet_va; 1643 struct hibernate_zlib_state *hibernate_state; 1644 1645 hibernate_state = 1646 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1647 1648 if (!deflate) 1649 pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK)); 1650 1651 /* 1652 * See piglet layout information at the start of this file for 1653 * information on the zlib page assignments. 1654 */ 1655 hibernate_zlib_start = (vaddr_t)(pva + (30 * PAGE_SIZE)); 1656 hibernate_zlib_size = 80 * PAGE_SIZE; 1657 1658 memset((void *)hibernate_zlib_start, 0, hibernate_zlib_size); 1659 memset(hibernate_state, 0, PAGE_SIZE); 1660 1661 /* Set up stream structure */ 1662 hibernate_state->hib_stream.zalloc = (alloc_func)hibernate_zlib_alloc; 1663 hibernate_state->hib_stream.zfree = (free_func)hibernate_zlib_free; 1664 1665 /* Initialize the hiballoc arena for zlib allocs/frees */ 1666 hiballoc_init(&hibernate_state->hiballoc_arena, 1667 (caddr_t)hibernate_zlib_start, hibernate_zlib_size); 1668 1669 if (deflate) { 1670 return deflateInit(&hibernate_state->hib_stream, 1671 Z_BEST_SPEED); 1672 } else 1673 return inflateInit(&hibernate_state->hib_stream); 1674 } 1675 1676 /* 1677 * Reads the hibernated memory image from disk, whose location and 1678 * size are recorded in hib. Begin by reading the persisted 1679 * chunk table, which records the original chunk placement location 1680 * and compressed size for each. Next, allocate a pig region of 1681 * sufficient size to hold the compressed image. Next, read the 1682 * chunks into the pig area (calling hibernate_read_chunks to do this), 1683 * and finally, if all of the above succeeds, clear the hibernate signature. 1684 * The function will then return to hibernate_resume, which will proceed 1685 * to unpack the pig image to the correct place in memory. 1686 */ 1687 int 1688 hibernate_read_image(union hibernate_info *hib) 1689 { 1690 size_t compressed_size, disk_size, chunktable_size, pig_sz; 1691 paddr_t image_start, image_end, pig_start, pig_end; 1692 struct hibernate_disk_chunk *chunks; 1693 daddr_t blkctr; 1694 vaddr_t chunktable = (vaddr_t)NULL; 1695 paddr_t piglet_chunktable = hib->piglet_pa + 1696 HIBERNATE_CHUNK_SIZE; 1697 int i, status; 1698 1699 status = 0; 1700 pmap_activate(curproc); 1701 1702 /* Calculate total chunk table size in disk blocks */ 1703 chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / DEV_BSIZE; 1704 1705 blkctr = hib->chunktable_offset; 1706 1707 chunktable = (vaddr_t)km_alloc(HIBERNATE_CHUNK_TABLE_SIZE, &kv_any, 1708 &kp_none, &kd_nowait); 1709 1710 if (!chunktable) 1711 return (1); 1712 1713 /* Map chunktable pages */ 1714 for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE; i += PAGE_SIZE) 1715 pmap_kenter_pa(chunktable + i, piglet_chunktable + i, 1716 PROT_READ | PROT_WRITE); 1717 pmap_update(pmap_kernel()); 1718 1719 /* Read the chunktable from disk into the piglet chunktable */ 1720 for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE; 1721 i += MAXPHYS, blkctr += MAXPHYS/DEV_BSIZE) 1722 hibernate_block_io(hib, blkctr, MAXPHYS, 1723 chunktable + i, 0); 1724 1725 blkctr = hib->image_offset; 1726 compressed_size = 0; 1727 1728 chunks = (struct hibernate_disk_chunk *)chunktable; 1729 1730 for (i = 0; i < hib->chunk_ctr; i++) 1731 compressed_size += chunks[i].compressed_size; 1732 1733 disk_size = compressed_size; 1734 1735 printf("unhibernating @ block %lld length %luMB\n", 1736 hib->sig_offset - chunktable_size, 1737 compressed_size / (1024 * 1024)); 1738 1739 /* Allocate the pig area */ 1740 pig_sz = compressed_size + HIBERNATE_CHUNK_SIZE; 1741 if (uvm_pmr_alloc_pig(&pig_start, pig_sz, hib->piglet_pa) == ENOMEM) { 1742 status = 1; 1743 goto unmap; 1744 } 1745 1746 pig_end = pig_start + pig_sz; 1747 1748 /* Calculate image extents. Pig image must end on a chunk boundary. */ 1749 image_end = pig_end & ~(HIBERNATE_CHUNK_SIZE - 1); 1750 image_start = image_end - disk_size; 1751 1752 hibernate_read_chunks(hib, image_start, image_end, disk_size, 1753 chunks); 1754 1755 /* Prepare the resume time pmap/page table */ 1756 hibernate_populate_resume_pt(hib, image_start, image_end); 1757 1758 unmap: 1759 /* Unmap chunktable pages */ 1760 pmap_kremove(chunktable, HIBERNATE_CHUNK_TABLE_SIZE); 1761 pmap_update(pmap_kernel()); 1762 1763 return (status); 1764 } 1765 1766 /* 1767 * Read the hibernated memory chunks from disk (chunk information at this 1768 * point is stored in the piglet) into the pig area specified by 1769 * [pig_start .. pig_end]. Order the chunks so that the final chunk is the 1770 * only chunk with overlap possibilities. 1771 */ 1772 int 1773 hibernate_read_chunks(union hibernate_info *hib, paddr_t pig_start, 1774 paddr_t pig_end, size_t image_compr_size, 1775 struct hibernate_disk_chunk *chunks) 1776 { 1777 paddr_t img_cur, piglet_base; 1778 daddr_t blkctr; 1779 size_t processed, compressed_size, read_size; 1780 int nchunks, nfchunks, num_io_pages; 1781 vaddr_t tempva, hibernate_fchunk_area; 1782 short *fchunks, i, j; 1783 1784 tempva = (vaddr_t)NULL; 1785 hibernate_fchunk_area = (vaddr_t)NULL; 1786 nfchunks = 0; 1787 piglet_base = hib->piglet_pa; 1788 global_pig_start = pig_start; 1789 1790 /* 1791 * These mappings go into the resuming kernel's page table, and are 1792 * used only during image read. They disappear from existence 1793 * when the suspended kernel is unpacked on top of us. 1794 */ 1795 tempva = (vaddr_t)km_alloc(MAXPHYS + PAGE_SIZE, &kv_any, &kp_none, 1796 &kd_nowait); 1797 if (!tempva) 1798 return (1); 1799 hibernate_fchunk_area = (vaddr_t)km_alloc(24 * PAGE_SIZE, &kv_any, 1800 &kp_none, &kd_nowait); 1801 if (!hibernate_fchunk_area) 1802 return (1); 1803 1804 /* Final output chunk ordering VA */ 1805 fchunks = (short *)hibernate_fchunk_area; 1806 1807 /* Map the chunk ordering region */ 1808 for(i = 0; i < 24 ; i++) 1809 pmap_kenter_pa(hibernate_fchunk_area + (i * PAGE_SIZE), 1810 piglet_base + ((4 + i) * PAGE_SIZE), 1811 PROT_READ | PROT_WRITE); 1812 pmap_update(pmap_kernel()); 1813 1814 nchunks = hib->chunk_ctr; 1815 1816 /* Initially start all chunks as unplaced */ 1817 for (i = 0; i < nchunks; i++) 1818 chunks[i].flags = 0; 1819 1820 /* 1821 * Search the list for chunks that are outside the pig area. These 1822 * can be placed first in the final output list. 1823 */ 1824 for (i = 0; i < nchunks; i++) { 1825 if (chunks[i].end <= pig_start || chunks[i].base >= pig_end) { 1826 fchunks[nfchunks] = i; 1827 nfchunks++; 1828 chunks[i].flags |= HIBERNATE_CHUNK_PLACED; 1829 } 1830 } 1831 1832 /* 1833 * Walk the ordering, place the chunks in ascending memory order. 1834 */ 1835 for (i = 0; i < nchunks; i++) { 1836 if (chunks[i].flags != HIBERNATE_CHUNK_PLACED) { 1837 fchunks[nfchunks] = i; 1838 nfchunks++; 1839 chunks[i].flags = HIBERNATE_CHUNK_PLACED; 1840 } 1841 } 1842 1843 img_cur = pig_start; 1844 1845 for (i = 0; i < nfchunks; i++) { 1846 blkctr = chunks[fchunks[i]].offset; 1847 processed = 0; 1848 compressed_size = chunks[fchunks[i]].compressed_size; 1849 1850 while (processed < compressed_size) { 1851 if (compressed_size - processed >= MAXPHYS) 1852 read_size = MAXPHYS; 1853 else 1854 read_size = compressed_size - processed; 1855 1856 /* 1857 * We're reading read_size bytes, offset from the 1858 * start of a page by img_cur % PAGE_SIZE, so the 1859 * end will be read_size + (img_cur % PAGE_SIZE) 1860 * from the start of the first page. Round that 1861 * up to the next page size. 1862 */ 1863 num_io_pages = (read_size + (img_cur % PAGE_SIZE) 1864 + PAGE_SIZE - 1) / PAGE_SIZE; 1865 1866 KASSERT(num_io_pages <= MAXPHYS/PAGE_SIZE + 1); 1867 1868 /* Map pages for this read */ 1869 for (j = 0; j < num_io_pages; j ++) 1870 pmap_kenter_pa(tempva + j * PAGE_SIZE, 1871 img_cur + j * PAGE_SIZE, 1872 PROT_READ | PROT_WRITE); 1873 1874 pmap_update(pmap_kernel()); 1875 1876 hibernate_block_io(hib, blkctr, read_size, 1877 tempva + (img_cur & PAGE_MASK), 0); 1878 1879 blkctr += (read_size / DEV_BSIZE); 1880 1881 pmap_kremove(tempva, num_io_pages * PAGE_SIZE); 1882 pmap_update(pmap_kernel()); 1883 1884 processed += read_size; 1885 img_cur += read_size; 1886 } 1887 } 1888 1889 pmap_kremove(hibernate_fchunk_area, 24 * PAGE_SIZE); 1890 pmap_update(pmap_kernel()); 1891 1892 return (0); 1893 } 1894 1895 /* 1896 * Hibernating a machine comprises the following operations: 1897 * 1. Calculating this machine's hibernate_info information 1898 * 2. Allocating a piglet and saving the piglet's physaddr 1899 * 3. Calculating the memory chunks 1900 * 4. Writing the compressed chunks to disk 1901 * 5. Writing the chunk table 1902 * 6. Writing the signature block (hibernate_info) 1903 * 1904 * On most architectures, the function calling hibernate_suspend would 1905 * then power off the machine using some MD-specific implementation. 1906 */ 1907 int 1908 hibernate_suspend(void) 1909 { 1910 union hibernate_info hib; 1911 u_long start, end; 1912 1913 /* 1914 * Calculate memory ranges, swap offsets, etc. 1915 * This also allocates a piglet whose physaddr is stored in 1916 * hib->piglet_pa and vaddr stored in hib->piglet_va 1917 */ 1918 if (get_hibernate_info(&hib, 1)) { 1919 DPRINTF("failed to obtain hibernate info\n"); 1920 return (1); 1921 } 1922 1923 /* Find a page-addressed region in swap [start,end] */ 1924 if (uvm_hibswap(hib.dev, &start, &end)) { 1925 printf("hibernate: cannot find any swap\n"); 1926 return (1); 1927 } 1928 1929 if (end - start < 1000) { 1930 printf("hibernate: insufficient swap (%lu is too small)\n", 1931 end - start); 1932 return (1); 1933 } 1934 1935 /* Calculate block offsets in swap */ 1936 hib.image_offset = ctod(start); 1937 1938 DPRINTF("hibernate @ block %lld max-length %lu blocks\n", 1939 hib.image_offset, ctod(end) - ctod(start)); 1940 1941 pmap_activate(curproc); 1942 DPRINTF("hibernate: writing chunks\n"); 1943 if (hibernate_write_chunks(&hib)) { 1944 DPRINTF("hibernate_write_chunks failed\n"); 1945 return (1); 1946 } 1947 1948 DPRINTF("hibernate: writing chunktable\n"); 1949 if (hibernate_write_chunktable(&hib)) { 1950 DPRINTF("hibernate_write_chunktable failed\n"); 1951 return (1); 1952 } 1953 1954 DPRINTF("hibernate: writing signature\n"); 1955 if (hibernate_write_signature(&hib)) { 1956 DPRINTF("hibernate_write_signature failed\n"); 1957 return (1); 1958 } 1959 1960 /* Allow the disk to settle */ 1961 delay(500000); 1962 1963 /* 1964 * Give the device-specific I/O function a notification that we're 1965 * done, and that it can clean up or shutdown as needed. 1966 */ 1967 hib.io_func(hib.dev, 0, (vaddr_t)NULL, 0, HIB_DONE, hib.io_page); 1968 return (0); 1969 } 1970 1971 int 1972 hibernate_alloc(void) 1973 { 1974 KASSERT(global_piglet_va == 0); 1975 KASSERT(hibernate_temp_page == 0); 1976 1977 pmap_activate(curproc); 1978 pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE, 1979 PROT_READ | PROT_WRITE); 1980 1981 /* Allocate a piglet, store its addresses in the supplied globals */ 1982 if (uvm_pmr_alloc_piglet(&global_piglet_va, &global_piglet_pa, 1983 HIBERNATE_CHUNK_SIZE * 4, HIBERNATE_CHUNK_SIZE)) 1984 goto unmap; 1985 1986 /* 1987 * Allocate VA for the temp page. 1988 * 1989 * This will become part of the suspended kernel and will 1990 * be freed in hibernate_free, upon resume (or hibernate 1991 * failure) 1992 */ 1993 hibernate_temp_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 1994 &kp_none, &kd_nowait); 1995 if (!hibernate_temp_page) { 1996 uvm_pmr_free_piglet(global_piglet_va, 1997 4 * HIBERNATE_CHUNK_SIZE); 1998 global_piglet_va = 0; 1999 goto unmap; 2000 } 2001 return (0); 2002 unmap: 2003 pmap_kremove(HIBERNATE_HIBALLOC_PAGE, PAGE_SIZE); 2004 pmap_update(pmap_kernel()); 2005 return (ENOMEM); 2006 } 2007 2008 /* 2009 * Free items allocated by hibernate_alloc() 2010 */ 2011 void 2012 hibernate_free(void) 2013 { 2014 pmap_activate(curproc); 2015 2016 if (global_piglet_va) 2017 uvm_pmr_free_piglet(global_piglet_va, 2018 4 * HIBERNATE_CHUNK_SIZE); 2019 2020 if (hibernate_temp_page) { 2021 pmap_kremove(hibernate_temp_page, PAGE_SIZE); 2022 km_free((void *)hibernate_temp_page, PAGE_SIZE, 2023 &kv_any, &kp_none); 2024 } 2025 2026 global_piglet_va = 0; 2027 hibernate_temp_page = 0; 2028 pmap_kremove(HIBERNATE_HIBALLOC_PAGE, PAGE_SIZE); 2029 pmap_update(pmap_kernel()); 2030 } 2031