xref: /openbsd/sys/kern/subr_hibernate.c (revision d89ec533)
1 /*	$OpenBSD: subr_hibernate.c,v 1.129 2021/08/31 14:45:25 deraadt Exp $	*/
2 
3 /*
4  * Copyright (c) 2011 Ariane van der Steldt <ariane@stack.nl>
5  * Copyright (c) 2011 Mike Larkin <mlarkin@openbsd.org>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <sys/hibernate.h>
21 #include <sys/malloc.h>
22 #include <sys/param.h>
23 #include <sys/tree.h>
24 #include <sys/systm.h>
25 #include <sys/disklabel.h>
26 #include <sys/disk.h>
27 #include <sys/conf.h>
28 #include <sys/buf.h>
29 #include <sys/fcntl.h>
30 #include <sys/stat.h>
31 #include <sys/atomic.h>
32 
33 #include <uvm/uvm.h>
34 #include <uvm/uvm_swap.h>
35 
36 #include <machine/hibernate.h>
37 
38 /*
39  * Hibernate piglet layout information
40  *
41  * The piglet is a scratch area of memory allocated by the suspending kernel.
42  * Its phys and virt addrs are recorded in the signature block. The piglet is
43  * used to guarantee an unused area of memory that can be used by the resuming
44  * kernel for various things. The piglet is excluded during unpack operations.
45  * The piglet size is presently 4*HIBERNATE_CHUNK_SIZE (typically 4*4MB).
46  *
47  * Offset from piglet_base	Purpose
48  * ----------------------------------------------------------------------------
49  * 0				Private page for suspend I/O write functions
50  * 1*PAGE_SIZE			I/O page used during hibernate suspend
51  * 2*PAGE_SIZE			I/O page used during hibernate suspend
52  * 3*PAGE_SIZE			copy page used during hibernate suspend
53  * 4*PAGE_SIZE			final chunk ordering list (24 pages)
54  * 28*PAGE_SIZE			RLE utility page
55  * 29*PAGE_SIZE			start of hiballoc area
56  * 30*PAGE_SIZE			preserved entropy
57  * 110*PAGE_SIZE		end of hiballoc area (80 pages)
58  * 366*PAGE_SIZE		end of retguard preservation region (256 pages)
59  * ...				unused
60  * HIBERNATE_CHUNK_SIZE		start of hibernate chunk table
61  * 2*HIBERNATE_CHUNK_SIZE	bounce area for chunks being unpacked
62  * 4*HIBERNATE_CHUNK_SIZE	end of piglet
63  */
64 
65 /* Temporary vaddr ranges used during hibernate */
66 vaddr_t hibernate_temp_page;
67 vaddr_t hibernate_copy_page;
68 vaddr_t hibernate_rle_page;
69 
70 /* Hibernate info as read from disk during resume */
71 union hibernate_info disk_hib;
72 
73 /*
74  * Global copy of the pig start address. This needs to be a global as we
75  * switch stacks after computing it - it can't be stored on the stack.
76  */
77 paddr_t global_pig_start;
78 
79 /*
80  * Global copies of the piglet start addresses (PA/VA). We store these
81  * as globals to avoid having to carry them around as parameters, as the
82  * piglet is allocated early and freed late - its lifecycle extends beyond
83  * that of the hibernate info union which is calculated on suspend/resume.
84  */
85 vaddr_t global_piglet_va;
86 paddr_t global_piglet_pa;
87 
88 /* #define HIB_DEBUG */
89 #ifdef HIB_DEBUG
90 int	hib_debug = 99;
91 #define DPRINTF(x...)     do { if (hib_debug) printf(x); } while (0)
92 #define DNPRINTF(n,x...)  do { if (hib_debug > (n)) printf(x); } while (0)
93 #else
94 #define DPRINTF(x...)
95 #define DNPRINTF(n,x...)
96 #endif
97 
98 #ifndef NO_PROPOLICE
99 extern long __guard_local;
100 #endif /* ! NO_PROPOLICE */
101 
102 void hibernate_copy_chunk_to_piglet(paddr_t, vaddr_t, size_t);
103 int hibernate_calc_rle(paddr_t, paddr_t);
104 int hibernate_write_rle(union hibernate_info *, paddr_t, paddr_t, daddr_t *,
105 	size_t *);
106 
107 #define MAX_RLE (HIBERNATE_CHUNK_SIZE / PAGE_SIZE)
108 
109 /*
110  * Hib alloc enforced alignment.
111  */
112 #define HIB_ALIGN		8 /* bytes alignment */
113 
114 /*
115  * sizeof builtin operation, but with alignment constraint.
116  */
117 #define HIB_SIZEOF(_type)	roundup(sizeof(_type), HIB_ALIGN)
118 
119 struct hiballoc_entry {
120 	size_t			hibe_use;
121 	size_t			hibe_space;
122 	RBT_ENTRY(hiballoc_entry) hibe_entry;
123 };
124 
125 /*
126  * Sort hibernate memory ranges by ascending PA
127  */
128 void
129 hibernate_sort_ranges(union hibernate_info *hib_info)
130 {
131 	int i, j;
132 	struct hibernate_memory_range *ranges;
133 	paddr_t base, end;
134 
135 	ranges = hib_info->ranges;
136 
137 	for (i = 1; i < hib_info->nranges; i++) {
138 		j = i;
139 		while (j > 0 && ranges[j - 1].base > ranges[j].base) {
140 			base = ranges[j].base;
141 			end = ranges[j].end;
142 			ranges[j].base = ranges[j - 1].base;
143 			ranges[j].end = ranges[j - 1].end;
144 			ranges[j - 1].base = base;
145 			ranges[j - 1].end = end;
146 			j--;
147 		}
148 	}
149 }
150 
151 /*
152  * Compare hiballoc entries based on the address they manage.
153  *
154  * Since the address is fixed, relative to struct hiballoc_entry,
155  * we just compare the hiballoc_entry pointers.
156  */
157 static __inline int
158 hibe_cmp(const struct hiballoc_entry *l, const struct hiballoc_entry *r)
159 {
160 	vaddr_t vl = (vaddr_t)l;
161 	vaddr_t vr = (vaddr_t)r;
162 
163 	return vl < vr ? -1 : (vl > vr);
164 }
165 
166 RBT_PROTOTYPE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp)
167 
168 /*
169  * Given a hiballoc entry, return the address it manages.
170  */
171 static __inline void *
172 hib_entry_to_addr(struct hiballoc_entry *entry)
173 {
174 	caddr_t addr;
175 
176 	addr = (caddr_t)entry;
177 	addr += HIB_SIZEOF(struct hiballoc_entry);
178 	return addr;
179 }
180 
181 /*
182  * Given an address, find the hiballoc that corresponds.
183  */
184 static __inline struct hiballoc_entry*
185 hib_addr_to_entry(void *addr_param)
186 {
187 	caddr_t addr;
188 
189 	addr = (caddr_t)addr_param;
190 	addr -= HIB_SIZEOF(struct hiballoc_entry);
191 	return (struct hiballoc_entry*)addr;
192 }
193 
194 RBT_GENERATE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp);
195 
196 /*
197  * Allocate memory from the arena.
198  *
199  * Returns NULL if no memory is available.
200  */
201 void *
202 hib_alloc(struct hiballoc_arena *arena, size_t alloc_sz)
203 {
204 	struct hiballoc_entry *entry, *new_entry;
205 	size_t find_sz;
206 
207 	/*
208 	 * Enforce alignment of HIB_ALIGN bytes.
209 	 *
210 	 * Note that, because the entry is put in front of the allocation,
211 	 * 0-byte allocations are guaranteed a unique address.
212 	 */
213 	alloc_sz = roundup(alloc_sz, HIB_ALIGN);
214 
215 	/*
216 	 * Find an entry with hibe_space >= find_sz.
217 	 *
218 	 * If the root node is not large enough, we switch to tree traversal.
219 	 * Because all entries are made at the bottom of the free space,
220 	 * traversal from the end has a slightly better chance of yielding
221 	 * a sufficiently large space.
222 	 */
223 	find_sz = alloc_sz + HIB_SIZEOF(struct hiballoc_entry);
224 	entry = RBT_ROOT(hiballoc_addr, &arena->hib_addrs);
225 	if (entry != NULL && entry->hibe_space < find_sz) {
226 		RBT_FOREACH_REVERSE(entry, hiballoc_addr, &arena->hib_addrs) {
227 			if (entry->hibe_space >= find_sz)
228 				break;
229 		}
230 	}
231 
232 	/*
233 	 * Insufficient or too fragmented memory.
234 	 */
235 	if (entry == NULL)
236 		return NULL;
237 
238 	/*
239 	 * Create new entry in allocated space.
240 	 */
241 	new_entry = (struct hiballoc_entry*)(
242 	    (caddr_t)hib_entry_to_addr(entry) + entry->hibe_use);
243 	new_entry->hibe_space = entry->hibe_space - find_sz;
244 	new_entry->hibe_use = alloc_sz;
245 
246 	/*
247 	 * Insert entry.
248 	 */
249 	if (RBT_INSERT(hiballoc_addr, &arena->hib_addrs, new_entry) != NULL)
250 		panic("hib_alloc: insert failure");
251 	entry->hibe_space = 0;
252 
253 	/* Return address managed by entry. */
254 	return hib_entry_to_addr(new_entry);
255 }
256 
257 void
258 hib_getentropy(char **bufp, size_t *bufplen)
259 {
260 	if (!bufp || !bufplen)
261 		return;
262 
263 	*bufp = (char *)(global_piglet_va + (29 * PAGE_SIZE));
264 	*bufplen = PAGE_SIZE;
265 }
266 
267 /*
268  * Free a pointer previously allocated from this arena.
269  *
270  * If addr is NULL, this will be silently accepted.
271  */
272 void
273 hib_free(struct hiballoc_arena *arena, void *addr)
274 {
275 	struct hiballoc_entry *entry, *prev;
276 
277 	if (addr == NULL)
278 		return;
279 
280 	/*
281 	 * Derive entry from addr and check it is really in this arena.
282 	 */
283 	entry = hib_addr_to_entry(addr);
284 	if (RBT_FIND(hiballoc_addr, &arena->hib_addrs, entry) != entry)
285 		panic("hib_free: freed item %p not in hib arena", addr);
286 
287 	/*
288 	 * Give the space in entry to its predecessor.
289 	 *
290 	 * If entry has no predecessor, change its used space into free space
291 	 * instead.
292 	 */
293 	prev = RBT_PREV(hiballoc_addr, entry);
294 	if (prev != NULL &&
295 	    (void *)((caddr_t)prev + HIB_SIZEOF(struct hiballoc_entry) +
296 	    prev->hibe_use + prev->hibe_space) == entry) {
297 		/* Merge entry. */
298 		RBT_REMOVE(hiballoc_addr, &arena->hib_addrs, entry);
299 		prev->hibe_space += HIB_SIZEOF(struct hiballoc_entry) +
300 		    entry->hibe_use + entry->hibe_space;
301 	} else {
302 		/* Flip used memory to free space. */
303 		entry->hibe_space += entry->hibe_use;
304 		entry->hibe_use = 0;
305 	}
306 }
307 
308 /*
309  * Initialize hiballoc.
310  *
311  * The allocator will manage memory at ptr, which is len bytes.
312  */
313 int
314 hiballoc_init(struct hiballoc_arena *arena, void *p_ptr, size_t p_len)
315 {
316 	struct hiballoc_entry *entry;
317 	caddr_t ptr;
318 	size_t len;
319 
320 	RBT_INIT(hiballoc_addr, &arena->hib_addrs);
321 
322 	/*
323 	 * Hib allocator enforces HIB_ALIGN alignment.
324 	 * Fixup ptr and len.
325 	 */
326 	ptr = (caddr_t)roundup((vaddr_t)p_ptr, HIB_ALIGN);
327 	len = p_len - ((size_t)ptr - (size_t)p_ptr);
328 	len &= ~((size_t)HIB_ALIGN - 1);
329 
330 	/*
331 	 * Insufficient memory to be able to allocate and also do bookkeeping.
332 	 */
333 	if (len <= HIB_SIZEOF(struct hiballoc_entry))
334 		return ENOMEM;
335 
336 	/*
337 	 * Create entry describing space.
338 	 */
339 	entry = (struct hiballoc_entry*)ptr;
340 	entry->hibe_use = 0;
341 	entry->hibe_space = len - HIB_SIZEOF(struct hiballoc_entry);
342 	RBT_INSERT(hiballoc_addr, &arena->hib_addrs, entry);
343 
344 	return 0;
345 }
346 
347 /*
348  * Zero all free memory.
349  */
350 void
351 uvm_pmr_zero_everything(void)
352 {
353 	struct uvm_pmemrange	*pmr;
354 	struct vm_page		*pg;
355 	int			 i;
356 
357 	uvm_lock_fpageq();
358 	TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) {
359 		/* Zero single pages. */
360 		while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_DIRTY]))
361 		    != NULL) {
362 			uvm_pmr_remove(pmr, pg);
363 			uvm_pagezero(pg);
364 			atomic_setbits_int(&pg->pg_flags, PG_ZERO);
365 			uvmexp.zeropages++;
366 			uvm_pmr_insert(pmr, pg, 0);
367 		}
368 
369 		/* Zero multi page ranges. */
370 		while ((pg = RBT_ROOT(uvm_pmr_size,
371 		    &pmr->size[UVM_PMR_MEMTYPE_DIRTY])) != NULL) {
372 			pg--; /* Size tree always has second page. */
373 			uvm_pmr_remove(pmr, pg);
374 			for (i = 0; i < pg->fpgsz; i++) {
375 				uvm_pagezero(&pg[i]);
376 				atomic_setbits_int(&pg[i].pg_flags, PG_ZERO);
377 				uvmexp.zeropages++;
378 			}
379 			uvm_pmr_insert(pmr, pg, 0);
380 		}
381 	}
382 	uvm_unlock_fpageq();
383 }
384 
385 /*
386  * Mark all memory as dirty.
387  *
388  * Used to inform the system that the clean memory isn't clean for some
389  * reason, for example because we just came back from hibernate.
390  */
391 void
392 uvm_pmr_dirty_everything(void)
393 {
394 	struct uvm_pmemrange	*pmr;
395 	struct vm_page		*pg;
396 	int			 i;
397 
398 	uvm_lock_fpageq();
399 	TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) {
400 		/* Dirty single pages. */
401 		while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_ZERO]))
402 		    != NULL) {
403 			uvm_pmr_remove(pmr, pg);
404 			atomic_clearbits_int(&pg->pg_flags, PG_ZERO);
405 			uvm_pmr_insert(pmr, pg, 0);
406 		}
407 
408 		/* Dirty multi page ranges. */
409 		while ((pg = RBT_ROOT(uvm_pmr_size,
410 		    &pmr->size[UVM_PMR_MEMTYPE_ZERO])) != NULL) {
411 			pg--; /* Size tree always has second page. */
412 			uvm_pmr_remove(pmr, pg);
413 			for (i = 0; i < pg->fpgsz; i++)
414 				atomic_clearbits_int(&pg[i].pg_flags, PG_ZERO);
415 			uvm_pmr_insert(pmr, pg, 0);
416 		}
417 	}
418 
419 	uvmexp.zeropages = 0;
420 	uvm_unlock_fpageq();
421 }
422 
423 /*
424  * Allocate an area that can hold sz bytes and doesn't overlap with
425  * the piglet at piglet_pa.
426  */
427 int
428 uvm_pmr_alloc_pig(paddr_t *pa, psize_t sz, paddr_t piglet_pa)
429 {
430 	struct uvm_constraint_range pig_constraint;
431 	struct kmem_pa_mode kp_pig = {
432 		.kp_constraint = &pig_constraint,
433 		.kp_maxseg = 1
434 	};
435 	vaddr_t va;
436 
437 	sz = round_page(sz);
438 
439 	pig_constraint.ucr_low = piglet_pa + 4 * HIBERNATE_CHUNK_SIZE;
440 	pig_constraint.ucr_high = -1;
441 
442 	va = (vaddr_t)km_alloc(sz, &kv_any, &kp_pig, &kd_nowait);
443 	if (va == 0) {
444 		pig_constraint.ucr_low = 0;
445 		pig_constraint.ucr_high = piglet_pa - 1;
446 
447 		va = (vaddr_t)km_alloc(sz, &kv_any, &kp_pig, &kd_nowait);
448 		if (va == 0)
449 			return ENOMEM;
450 	}
451 
452 	pmap_extract(pmap_kernel(), va, pa);
453 	return 0;
454 }
455 
456 /*
457  * Allocate a piglet area.
458  *
459  * This needs to be in DMA-safe memory.
460  * Piglets are aligned.
461  *
462  * sz and align in bytes.
463  *
464  * The call will sleep for the pagedaemon to attempt to free memory.
465  * The pagedaemon may decide its not possible to free enough memory, causing
466  * the allocation to fail.
467  */
468 int
469 uvm_pmr_alloc_piglet(vaddr_t *va, paddr_t *pa, vsize_t sz, paddr_t align)
470 {
471 	struct kmem_pa_mode kp_piglet = {
472 		.kp_constraint = &dma_constraint,
473 		.kp_align = align,
474 		.kp_maxseg = 1
475 	};
476 
477 	/* Ensure align is a power of 2 */
478 	KASSERT((align & (align - 1)) == 0);
479 
480 	/*
481 	 * Fixup arguments: align must be at least PAGE_SIZE,
482 	 * sz will be converted to pagecount, since that is what
483 	 * pmemrange uses internally.
484 	 */
485 	if (align < PAGE_SIZE)
486 		kp_piglet.kp_align = PAGE_SIZE;
487 
488 	sz = round_page(sz);
489 
490 	*va = (vaddr_t)km_alloc(sz, &kv_any, &kp_piglet, &kd_nowait);
491 	if (*va == 0)
492 		return ENOMEM;
493 
494 	pmap_extract(pmap_kernel(), *va, pa);
495 	return 0;
496 }
497 
498 /*
499  * Free a piglet area.
500  */
501 void
502 uvm_pmr_free_piglet(vaddr_t va, vsize_t sz)
503 {
504 	/*
505 	 * Fix parameters.
506 	 */
507 	sz = round_page(sz);
508 
509 	/*
510 	 * Free the physical and virtual memory.
511 	 */
512 	km_free((void *)va, sz, &kv_any, &kp_dma_contig);
513 }
514 
515 /*
516  * Physmem RLE compression support.
517  *
518  * Given a physical page address, return the number of pages starting at the
519  * address that are free.  Clamps to the number of pages in
520  * HIBERNATE_CHUNK_SIZE. Returns 0 if the page at addr is not free.
521  */
522 int
523 uvm_page_rle(paddr_t addr)
524 {
525 	struct vm_page		*pg, *pg_end;
526 	struct vm_physseg	*vmp;
527 	int			 pseg_idx, off_idx;
528 
529 	pseg_idx = vm_physseg_find(atop(addr), &off_idx);
530 	if (pseg_idx == -1)
531 		return 0;
532 
533 	vmp = &vm_physmem[pseg_idx];
534 	pg = &vmp->pgs[off_idx];
535 	if (!(pg->pg_flags & PQ_FREE))
536 		return 0;
537 
538 	/*
539 	 * Search for the first non-free page after pg.
540 	 * Note that the page may not be the first page in a free pmemrange,
541 	 * therefore pg->fpgsz cannot be used.
542 	 */
543 	for (pg_end = pg; pg_end <= vmp->lastpg &&
544 	    (pg_end->pg_flags & PQ_FREE) == PQ_FREE &&
545 	    (pg_end - pg) < HIBERNATE_CHUNK_SIZE/PAGE_SIZE; pg_end++)
546 		;
547 	return pg_end - pg;
548 }
549 
550 /*
551  * Calculate a hopefully unique version # for this kernel, based upon
552  * how it was linked.
553  */
554 u_int32_t
555 hibsum(void)
556 {
557 	return ((long)malloc ^ (long)km_alloc ^ (long)printf ^ (long)strlen);
558 }
559 
560 
561 /*
562  * Fills out the hibernate_info union pointed to by hib
563  * with information about this machine (swap signature block
564  * offsets, number of memory ranges, kernel in use, etc)
565  */
566 int
567 get_hibernate_info(union hibernate_info *hib, int suspend)
568 {
569 	struct disklabel dl;
570 	char err_string[128], *dl_ret;
571 
572 #ifndef NO_PROPOLICE
573 	/* Save propolice guard */
574 	hib->guard = __guard_local;
575 #endif /* ! NO_PROPOLICE */
576 
577 	/* Determine I/O function to use */
578 	hib->io_func = get_hibernate_io_function(swdevt[0].sw_dev);
579 	if (hib->io_func == NULL)
580 		return (1);
581 
582 	/* Calculate hibernate device */
583 	hib->dev = swdevt[0].sw_dev;
584 
585 	/* Read disklabel (used to calculate signature and image offsets) */
586 	dl_ret = disk_readlabel(&dl, hib->dev, err_string, sizeof(err_string));
587 
588 	if (dl_ret) {
589 		printf("Hibernate error reading disklabel: %s\n", dl_ret);
590 		return (1);
591 	}
592 
593 	/* Make sure we have a swap partition. */
594 	if (dl.d_partitions[1].p_fstype != FS_SWAP ||
595 	    DL_GETPSIZE(&dl.d_partitions[1]) == 0)
596 		return (1);
597 
598 	/* Make sure the signature can fit in one block */
599 	if (sizeof(union hibernate_info) > DEV_BSIZE)
600 		return (1);
601 
602 	/* Magic number */
603 	hib->magic = HIBERNATE_MAGIC;
604 
605 	/* Calculate signature block location */
606 	hib->sig_offset = DL_GETPSIZE(&dl.d_partitions[1]) -
607 	    sizeof(union hibernate_info)/DEV_BSIZE;
608 
609 	/* Stash kernel version information */
610 	memset(&hib->kernel_version, 0, 128);
611 	bcopy(version, &hib->kernel_version,
612 	    min(strlen(version), sizeof(hib->kernel_version)-1));
613 	hib->kernel_sum = hibsum();
614 
615 	if (suspend) {
616 		/* Grab the previously-allocated piglet addresses */
617 		hib->piglet_va = global_piglet_va;
618 		hib->piglet_pa = global_piglet_pa;
619 		hib->io_page = (void *)hib->piglet_va;
620 
621 		/*
622 		 * Initialization of the hibernate IO function for drivers
623 		 * that need to do prep work (such as allocating memory or
624 		 * setting up data structures that cannot safely be done
625 		 * during suspend without causing side effects). There is
626 		 * a matching HIB_DONE call performed after the write is
627 		 * completed.
628 		 */
629 		if (hib->io_func(hib->dev, DL_GETPOFFSET(&dl.d_partitions[1]),
630 		    (vaddr_t)NULL, DL_GETPSIZE(&dl.d_partitions[1]),
631 		    HIB_INIT, hib->io_page))
632 			goto fail;
633 
634 	} else {
635 		/*
636 		 * Resuming kernels use a regular private page for the driver
637 		 * No need to free this I/O page as it will vanish as part of
638 		 * the resume.
639 		 */
640 		hib->io_page = malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT);
641 		if (!hib->io_page)
642 			goto fail;
643 	}
644 
645 	if (get_hibernate_info_md(hib))
646 		goto fail;
647 
648 	return (0);
649 
650 fail:
651 	return (1);
652 }
653 
654 /*
655  * Allocate nitems*size bytes from the hiballoc area presently in use
656  */
657 void *
658 hibernate_zlib_alloc(void *unused, int nitems, int size)
659 {
660 	struct hibernate_zlib_state *hibernate_state;
661 
662 	hibernate_state =
663 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
664 
665 	return hib_alloc(&hibernate_state->hiballoc_arena, nitems*size);
666 }
667 
668 /*
669  * Free the memory pointed to by addr in the hiballoc area presently in
670  * use
671  */
672 void
673 hibernate_zlib_free(void *unused, void *addr)
674 {
675 	struct hibernate_zlib_state *hibernate_state;
676 
677 	hibernate_state =
678 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
679 
680 	hib_free(&hibernate_state->hiballoc_arena, addr);
681 }
682 
683 /*
684  * Inflate next page of data from the image stream.
685  * The rle parameter is modified on exit to contain the number of pages to
686  * skip in the output stream (or 0 if this page was inflated into).
687  *
688  * Returns 0 if the stream contains additional data, or 1 if the stream is
689  * finished.
690  */
691 int
692 hibernate_inflate_page(int *rle)
693 {
694 	struct hibernate_zlib_state *hibernate_state;
695 	int i;
696 
697 	hibernate_state =
698 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
699 
700 	/* Set up the stream for RLE code inflate */
701 	hibernate_state->hib_stream.next_out = (unsigned char *)rle;
702 	hibernate_state->hib_stream.avail_out = sizeof(*rle);
703 
704 	/* Inflate RLE code */
705 	i = inflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH);
706 	if (i != Z_OK && i != Z_STREAM_END) {
707 		/*
708 		 * XXX - this will likely reboot/hang most machines
709 		 *       since the console output buffer will be unmapped,
710 		 *       but there's not much else we can do here.
711 		 */
712 		panic("rle inflate stream error");
713 	}
714 
715 	if (hibernate_state->hib_stream.avail_out != 0) {
716 		/*
717 		 * XXX - this will likely reboot/hang most machines
718 		 *       since the console output buffer will be unmapped,
719 		 *       but there's not much else we can do here.
720 		 */
721 		panic("rle short inflate error");
722 	}
723 
724 	if (*rle < 0 || *rle > 1024) {
725 		/*
726 		 * XXX - this will likely reboot/hang most machines
727 		 *       since the console output buffer will be unmapped,
728 		 *       but there's not much else we can do here.
729 		 */
730 		panic("invalid rle count");
731 	}
732 
733 	if (i == Z_STREAM_END)
734 		return (1);
735 
736 	if (*rle != 0)
737 		return (0);
738 
739 	/* Set up the stream for page inflate */
740 	hibernate_state->hib_stream.next_out =
741 		(unsigned char *)HIBERNATE_INFLATE_PAGE;
742 	hibernate_state->hib_stream.avail_out = PAGE_SIZE;
743 
744 	/* Process next block of data */
745 	i = inflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH);
746 	if (i != Z_OK && i != Z_STREAM_END) {
747 		/*
748 		 * XXX - this will likely reboot/hang most machines
749 		 *       since the console output buffer will be unmapped,
750 		 *       but there's not much else we can do here.
751 		 */
752 		panic("inflate error");
753 	}
754 
755 	/* We should always have extracted a full page ... */
756 	if (hibernate_state->hib_stream.avail_out != 0) {
757 		/*
758 		 * XXX - this will likely reboot/hang most machines
759 		 *       since the console output buffer will be unmapped,
760 		 *       but there's not much else we can do here.
761 		 */
762 		panic("incomplete page");
763 	}
764 
765 	return (i == Z_STREAM_END);
766 }
767 
768 /*
769  * Inflate size bytes from src into dest, skipping any pages in
770  * [src..dest] that are special (see hibernate_inflate_skip)
771  *
772  * This function executes while using the resume-time stack
773  * and pmap, and therefore cannot use ddb/printf/etc. Doing so
774  * will likely hang or reset the machine since the console output buffer
775  * will be unmapped.
776  */
777 void
778 hibernate_inflate_region(union hibernate_info *hib, paddr_t dest,
779     paddr_t src, size_t size)
780 {
781 	int end_stream = 0, rle, skip;
782 	struct hibernate_zlib_state *hibernate_state;
783 
784 	hibernate_state =
785 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
786 
787 	hibernate_state->hib_stream.next_in = (unsigned char *)src;
788 	hibernate_state->hib_stream.avail_in = size;
789 
790 	do {
791 		/*
792 		 * Is this a special page? If yes, redirect the
793 		 * inflate output to a scratch page (eg, discard it)
794 		 */
795 		skip = hibernate_inflate_skip(hib, dest);
796 		if (skip == HIB_SKIP) {
797 			hibernate_enter_resume_mapping(
798 			    HIBERNATE_INFLATE_PAGE,
799 			    HIBERNATE_INFLATE_PAGE, 0);
800 		} else if (skip == HIB_MOVE) {
801 			/*
802 			 * Special case : retguard region. This gets moved
803 			 * temporarily into the piglet region and copied into
804 			 * place immediately before resume
805 			 */
806 			hibernate_enter_resume_mapping(
807 			    HIBERNATE_INFLATE_PAGE,
808 			    hib->piglet_pa + (110 * PAGE_SIZE) +
809 			    hib->retguard_ofs, 0);
810 			hib->retguard_ofs += PAGE_SIZE;
811 			if (hib->retguard_ofs > 255 * PAGE_SIZE) {
812 				/*
813 				 * XXX - this will likely reboot/hang most
814 				 *       machines since the console output
815 				 *       buffer will be unmapped, but there's
816 				 *       not much else we can do here.
817 				 */
818 				panic("retguard move error, out of space");
819 			}
820 		} else {
821 			hibernate_enter_resume_mapping(
822 			    HIBERNATE_INFLATE_PAGE, dest, 0);
823 		}
824 
825 		hibernate_flush();
826 		end_stream = hibernate_inflate_page(&rle);
827 
828 		if (rle == 0)
829 			dest += PAGE_SIZE;
830 		else
831 			dest += (rle * PAGE_SIZE);
832 	} while (!end_stream);
833 }
834 
835 /*
836  * deflate from src into the I/O page, up to 'remaining' bytes
837  *
838  * Returns number of input bytes consumed, and may reset
839  * the 'remaining' parameter if not all the output space was consumed
840  * (this information is needed to know how much to write to disk)
841  */
842 size_t
843 hibernate_deflate(union hibernate_info *hib, paddr_t src,
844     size_t *remaining)
845 {
846 	vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE;
847 	struct hibernate_zlib_state *hibernate_state;
848 
849 	hibernate_state =
850 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
851 
852 	/* Set up the stream for deflate */
853 	hibernate_state->hib_stream.next_in = (unsigned char *)src;
854 	hibernate_state->hib_stream.avail_in = PAGE_SIZE - (src & PAGE_MASK);
855 	hibernate_state->hib_stream.next_out =
856 		(unsigned char *)hibernate_io_page + (PAGE_SIZE - *remaining);
857 	hibernate_state->hib_stream.avail_out = *remaining;
858 
859 	/* Process next block of data */
860 	if (deflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH) != Z_OK)
861 		panic("hibernate zlib deflate error");
862 
863 	/* Update pointers and return number of bytes consumed */
864 	*remaining = hibernate_state->hib_stream.avail_out;
865 	return (PAGE_SIZE - (src & PAGE_MASK)) -
866 	    hibernate_state->hib_stream.avail_in;
867 }
868 
869 /*
870  * Write the hibernation information specified in hiber_info
871  * to the location in swap previously calculated (last block of
872  * swap), called the "signature block".
873  */
874 int
875 hibernate_write_signature(union hibernate_info *hib)
876 {
877 	/* Write hibernate info to disk */
878 	return (hib->io_func(hib->dev, hib->sig_offset,
879 	    (vaddr_t)hib, DEV_BSIZE, HIB_W,
880 	    hib->io_page));
881 }
882 
883 /*
884  * Write the memory chunk table to the area in swap immediately
885  * preceding the signature block. The chunk table is stored
886  * in the piglet when this function is called.  Returns errno.
887  */
888 int
889 hibernate_write_chunktable(union hibernate_info *hib)
890 {
891 	vaddr_t hibernate_chunk_table_start;
892 	size_t hibernate_chunk_table_size;
893 	int i, err;
894 
895 	hibernate_chunk_table_size = HIBERNATE_CHUNK_TABLE_SIZE;
896 
897 	hibernate_chunk_table_start = hib->piglet_va +
898 	    HIBERNATE_CHUNK_SIZE;
899 
900 	/* Write chunk table */
901 	for (i = 0; i < hibernate_chunk_table_size; i += MAXPHYS) {
902 		if ((err = hib->io_func(hib->dev,
903 		    hib->chunktable_offset + (i/DEV_BSIZE),
904 		    (vaddr_t)(hibernate_chunk_table_start + i),
905 		    MAXPHYS, HIB_W, hib->io_page))) {
906 			DPRINTF("chunktable write error: %d\n", err);
907 			return (err);
908 		}
909 	}
910 
911 	return (0);
912 }
913 
914 /*
915  * Write an empty hiber_info to the swap signature block, which is
916  * guaranteed to not match any valid hib.
917  */
918 int
919 hibernate_clear_signature(void)
920 {
921 	union hibernate_info blank_hiber_info;
922 	union hibernate_info hib;
923 
924 	/* Zero out a blank hiber_info */
925 	memset(&blank_hiber_info, 0, sizeof(union hibernate_info));
926 
927 	/* Get the signature block location */
928 	if (get_hibernate_info(&hib, 0))
929 		return (1);
930 
931 	/* Write (zeroed) hibernate info to disk */
932 	DPRINTF("clearing hibernate signature block location: %lld\n",
933 		hib.sig_offset);
934 	if (hibernate_block_io(&hib,
935 	    hib.sig_offset,
936 	    DEV_BSIZE, (vaddr_t)&blank_hiber_info, 1))
937 		printf("Warning: could not clear hibernate signature\n");
938 
939 	return (0);
940 }
941 
942 /*
943  * Compare two hibernate_infos to determine if they are the same (eg,
944  * we should be performing a hibernate resume on this machine.
945  * Not all fields are checked - just enough to verify that the machine
946  * has the same memory configuration and kernel as the one that
947  * wrote the signature previously.
948  */
949 int
950 hibernate_compare_signature(union hibernate_info *mine,
951     union hibernate_info *disk)
952 {
953 	u_int i;
954 
955 	if (mine->nranges != disk->nranges) {
956 		printf("unhibernate failed: memory layout changed\n");
957 		return (1);
958 	}
959 
960 	if (strcmp(mine->kernel_version, disk->kernel_version) != 0) {
961 		printf("unhibernate failed: original kernel changed\n");
962 		return (1);
963 	}
964 
965 	if (hibsum() != disk->kernel_sum) {
966 		printf("unhibernate failed: original kernel changed\n");
967 		return (1);
968 	}
969 
970 	for (i = 0; i < mine->nranges; i++) {
971 		if ((mine->ranges[i].base != disk->ranges[i].base) ||
972 		    (mine->ranges[i].end != disk->ranges[i].end) ) {
973 			DPRINTF("hib range %d mismatch [%p-%p != %p-%p]\n",
974 				i,
975 				(void *)mine->ranges[i].base,
976 				(void *)mine->ranges[i].end,
977 				(void *)disk->ranges[i].base,
978 				(void *)disk->ranges[i].end);
979 			printf("unhibernate failed: memory size changed\n");
980 			return (1);
981 		}
982 	}
983 
984 	return (0);
985 }
986 
987 /*
988  * Transfers xfer_size bytes between the hibernate device specified in
989  * hib_info at offset blkctr and the vaddr specified at dest.
990  *
991  * Separate offsets and pages are used to handle misaligned reads (reads
992  * that span a page boundary).
993  *
994  * blkctr specifies a relative offset (relative to the start of swap),
995  * not an absolute disk offset
996  *
997  */
998 int
999 hibernate_block_io(union hibernate_info *hib, daddr_t blkctr,
1000     size_t xfer_size, vaddr_t dest, int iswrite)
1001 {
1002 	struct buf *bp;
1003 	struct bdevsw *bdsw;
1004 	int error;
1005 
1006 	bp = geteblk(xfer_size);
1007 	bdsw = &bdevsw[major(hib->dev)];
1008 
1009 	error = (*bdsw->d_open)(hib->dev, FREAD, S_IFCHR, curproc);
1010 	if (error) {
1011 		printf("hibernate_block_io open failed\n");
1012 		return (1);
1013 	}
1014 
1015 	if (iswrite)
1016 		bcopy((caddr_t)dest, bp->b_data, xfer_size);
1017 
1018 	bp->b_bcount = xfer_size;
1019 	bp->b_blkno = blkctr;
1020 	CLR(bp->b_flags, B_READ | B_WRITE | B_DONE);
1021 	SET(bp->b_flags, B_BUSY | (iswrite ? B_WRITE : B_READ) | B_RAW);
1022 	bp->b_dev = hib->dev;
1023 	(*bdsw->d_strategy)(bp);
1024 
1025 	error = biowait(bp);
1026 	if (error) {
1027 		printf("hib block_io biowait error %d blk %lld size %zu\n",
1028 			error, (long long)blkctr, xfer_size);
1029 		error = (*bdsw->d_close)(hib->dev, 0, S_IFCHR,
1030 		    curproc);
1031 		if (error)
1032 			printf("hibernate_block_io error close failed\n");
1033 		return (1);
1034 	}
1035 
1036 	error = (*bdsw->d_close)(hib->dev, FREAD, S_IFCHR, curproc);
1037 	if (error) {
1038 		printf("hibernate_block_io close failed\n");
1039 		return (1);
1040 	}
1041 
1042 	if (!iswrite)
1043 		bcopy(bp->b_data, (caddr_t)dest, xfer_size);
1044 
1045 	bp->b_flags |= B_INVAL;
1046 	brelse(bp);
1047 
1048 	return (0);
1049 }
1050 
1051 /*
1052  * Preserve one page worth of random data, generated from the resuming
1053  * kernel's arc4random. After resume, this preserved entropy can be used
1054  * to further improve the un-hibernated machine's entropy pool. This
1055  * random data is stored in the piglet, which is preserved across the
1056  * unpack operation, and is restored later in the resume process (see
1057  * hib_getentropy)
1058  */
1059 void
1060 hibernate_preserve_entropy(union hibernate_info *hib)
1061 {
1062 	void *entropy;
1063 
1064 	entropy = km_alloc(PAGE_SIZE, &kv_any, &kp_none, &kd_nowait);
1065 
1066 	if (!entropy)
1067 		return;
1068 
1069 	pmap_activate(curproc);
1070 	pmap_kenter_pa((vaddr_t)entropy,
1071 	    (paddr_t)(hib->piglet_pa + (29 * PAGE_SIZE)),
1072 	    PROT_READ | PROT_WRITE);
1073 
1074 	arc4random_buf((void *)entropy, PAGE_SIZE);
1075 	pmap_kremove((vaddr_t)entropy, PAGE_SIZE);
1076 	km_free(entropy, PAGE_SIZE, &kv_any, &kp_none);
1077 }
1078 
1079 #ifndef NO_PROPOLICE
1080 vaddr_t
1081 hibernate_unprotect_ssp(void)
1082 {
1083 	struct kmem_dyn_mode kd_avoidalias;
1084 	vaddr_t va = trunc_page((vaddr_t)&__guard_local);
1085 	paddr_t pa;
1086 
1087 	pmap_extract(pmap_kernel(), va, &pa);
1088 
1089 	memset(&kd_avoidalias, 0, sizeof kd_avoidalias);
1090 	kd_avoidalias.kd_prefer = pa;
1091 	kd_avoidalias.kd_waitok = 1;
1092 	va = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, &kp_none, &kd_avoidalias);
1093 	if (!va)
1094 		panic("hibernate_unprotect_ssp");
1095 
1096 	pmap_kenter_pa(va, pa, PROT_READ | PROT_WRITE);
1097 	pmap_update(pmap_kernel());
1098 
1099 	return va;
1100 }
1101 
1102 void
1103 hibernate_reprotect_ssp(vaddr_t va)
1104 {
1105 	pmap_kremove(va, PAGE_SIZE);
1106 	km_free((void *)va, PAGE_SIZE, &kv_any, &kp_none);
1107 }
1108 #endif /* NO_PROPOLICE */
1109 
1110 /*
1111  * Reads the signature block from swap, checks against the current machine's
1112  * information. If the information matches, perform a resume by reading the
1113  * saved image into the pig area, and unpacking.
1114  *
1115  * Must be called with interrupts enabled.
1116  */
1117 void
1118 hibernate_resume(void)
1119 {
1120 	union hibernate_info hib;
1121 	int s;
1122 #ifndef NO_PROPOLICE
1123 	vsize_t off = (vaddr_t)&__guard_local -
1124 	    trunc_page((vaddr_t)&__guard_local);
1125 	vaddr_t guard_va;
1126 #endif
1127 
1128 	/* Get current running machine's hibernate info */
1129 	memset(&hib, 0, sizeof(hib));
1130 	if (get_hibernate_info(&hib, 0)) {
1131 		DPRINTF("couldn't retrieve machine's hibernate info\n");
1132 		return;
1133 	}
1134 
1135 	/* Read hibernate info from disk */
1136 	s = splbio();
1137 
1138 	DPRINTF("reading hibernate signature block location: %lld\n",
1139 		hib.sig_offset);
1140 
1141 	if (hibernate_block_io(&hib,
1142 	    hib.sig_offset,
1143 	    DEV_BSIZE, (vaddr_t)&disk_hib, 0)) {
1144 		DPRINTF("error in hibernate read");
1145 		splx(s);
1146 		return;
1147 	}
1148 
1149 	/* Check magic number */
1150 	if (disk_hib.magic != HIBERNATE_MAGIC) {
1151 		DPRINTF("wrong magic number in hibernate signature: %x\n",
1152 			disk_hib.magic);
1153 		splx(s);
1154 		return;
1155 	}
1156 
1157 	/*
1158 	 * We (possibly) found a hibernate signature. Clear signature first,
1159 	 * to prevent accidental resume or endless resume cycles later.
1160 	 */
1161 	if (hibernate_clear_signature()) {
1162 		DPRINTF("error clearing hibernate signature block\n");
1163 		splx(s);
1164 		return;
1165 	}
1166 
1167 	/*
1168 	 * If on-disk and in-memory hibernate signatures match,
1169 	 * this means we should do a resume from hibernate.
1170 	 */
1171 	if (hibernate_compare_signature(&hib, &disk_hib)) {
1172 		DPRINTF("mismatched hibernate signature block\n");
1173 		splx(s);
1174 		return;
1175 	}
1176 
1177 #ifdef MULTIPROCESSOR
1178 	/* XXX - if we fail later, we may need to rehatch APs on some archs */
1179 	DPRINTF("hibernate: quiescing APs\n");
1180 	hibernate_quiesce_cpus();
1181 #endif /* MULTIPROCESSOR */
1182 
1183 	/* Read the image from disk into the image (pig) area */
1184 	if (hibernate_read_image(&disk_hib))
1185 		goto fail;
1186 
1187 	DPRINTF("hibernate: quiescing devices\n");
1188 	if (config_suspend_all(DVACT_QUIESCE) != 0)
1189 		goto fail;
1190 
1191 #ifndef NO_PROPOLICE
1192 	guard_va = hibernate_unprotect_ssp();
1193 #endif /* NO_PROPOLICE */
1194 
1195 	(void) splhigh();
1196 	hibernate_disable_intr_machdep();
1197 	cold = 1;
1198 
1199 	DPRINTF("hibernate: suspending devices\n");
1200 	if (config_suspend_all(DVACT_SUSPEND) != 0) {
1201 		cold = 0;
1202 		hibernate_enable_intr_machdep();
1203 #ifndef NO_PROPOLICE
1204 		hibernate_reprotect_ssp(guard_va);
1205 #endif /* ! NO_PROPOLICE */
1206 		goto fail;
1207 	}
1208 
1209 	hibernate_preserve_entropy(&disk_hib);
1210 
1211 	printf("Unpacking image...\n");
1212 
1213 	/* Switch stacks */
1214 	DPRINTF("hibernate: switching stacks\n");
1215 	hibernate_switch_stack_machdep();
1216 
1217 #ifndef NO_PROPOLICE
1218 	/* Start using suspended kernel's propolice guard */
1219 	*(long *)(guard_va + off) = disk_hib.guard;
1220 	hibernate_reprotect_ssp(guard_va);
1221 #endif /* ! NO_PROPOLICE */
1222 
1223 	/* Unpack and resume */
1224 	hibernate_unpack_image(&disk_hib);
1225 
1226 fail:
1227 	splx(s);
1228 	printf("\nUnable to resume hibernated image\n");
1229 }
1230 
1231 /*
1232  * Unpack image from pig area to original location by looping through the
1233  * list of output chunks in the order they should be restored (fchunks).
1234  *
1235  * Note that due to the stack smash protector and the fact that we have
1236  * switched stacks, it is not permitted to return from this function.
1237  */
1238 void
1239 hibernate_unpack_image(union hibernate_info *hib)
1240 {
1241 	struct hibernate_disk_chunk *chunks;
1242 	union hibernate_info local_hib;
1243 	paddr_t image_cur = global_pig_start;
1244 	short i, *fchunks;
1245 	char *pva;
1246 
1247 	/* Piglet will be identity mapped (VA == PA) */
1248 	pva = (char *)hib->piglet_pa;
1249 
1250 	fchunks = (short *)(pva + (4 * PAGE_SIZE));
1251 
1252 	chunks = (struct hibernate_disk_chunk *)(pva + HIBERNATE_CHUNK_SIZE);
1253 
1254 	/* Can't use hiber_info that's passed in after this point */
1255 	bcopy(hib, &local_hib, sizeof(union hibernate_info));
1256 	local_hib.retguard_ofs = 0;
1257 
1258 	/* VA == PA */
1259 	local_hib.piglet_va = local_hib.piglet_pa;
1260 
1261 	/*
1262 	 * Point of no return. Once we pass this point, only kernel code can
1263 	 * be accessed. No global variables or other kernel data structures
1264 	 * are guaranteed to be coherent after unpack starts.
1265 	 *
1266 	 * The image is now in high memory (pig area), we unpack from the pig
1267 	 * to the correct location in memory. We'll eventually end up copying
1268 	 * on top of ourself, but we are assured the kernel code here is the
1269 	 * same between the hibernated and resuming kernel, and we are running
1270 	 * on our own stack, so the overwrite is ok.
1271 	 */
1272 	DPRINTF("hibernate: activating alt. pagetable and starting unpack\n");
1273 	hibernate_activate_resume_pt_machdep();
1274 
1275 	for (i = 0; i < local_hib.chunk_ctr; i++) {
1276 		/* Reset zlib for inflate */
1277 		if (hibernate_zlib_reset(&local_hib, 0) != Z_OK)
1278 			panic("hibernate failed to reset zlib for inflate");
1279 
1280 		hibernate_process_chunk(&local_hib, &chunks[fchunks[i]],
1281 		    image_cur);
1282 
1283 		image_cur += chunks[fchunks[i]].compressed_size;
1284 
1285 	}
1286 
1287 	/*
1288 	 * Resume the loaded kernel by jumping to the MD resume vector.
1289 	 * We won't be returning from this call. We pass the location of
1290 	 * the retguard save area so the MD code can replace it before
1291 	 * resuming. See the piglet layout at the top of this file for
1292 	 * more information on the layout of the piglet area.
1293 	 *
1294 	 * We use 'global_piglet_va' here since by the time we are at
1295 	 * this point, we have already unpacked the image, and we want
1296 	 * the suspended kernel's view of what the piglet was, before
1297 	 * suspend occurred (since we will need to use that in the retguard
1298 	 * copy code in hibernate_resume_machdep.)
1299 	 */
1300 	hibernate_resume_machdep(global_piglet_va + (110 * PAGE_SIZE));
1301 }
1302 
1303 /*
1304  * Bounce a compressed image chunk to the piglet, entering mappings for the
1305  * copied pages as needed
1306  */
1307 void
1308 hibernate_copy_chunk_to_piglet(paddr_t img_cur, vaddr_t piglet, size_t size)
1309 {
1310 	size_t ct, ofs;
1311 	paddr_t src = img_cur;
1312 	vaddr_t dest = piglet;
1313 
1314 	/* Copy first partial page */
1315 	ct = (PAGE_SIZE) - (src & PAGE_MASK);
1316 	ofs = (src & PAGE_MASK);
1317 
1318 	if (ct < PAGE_SIZE) {
1319 		hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE,
1320 			(src - ofs), 0);
1321 		hibernate_flush();
1322 		bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE + ofs), (caddr_t)dest, ct);
1323 		src += ct;
1324 		dest += ct;
1325 	}
1326 
1327 	/* Copy remaining pages */
1328 	while (src < size + img_cur) {
1329 		hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE, src, 0);
1330 		hibernate_flush();
1331 		ct = PAGE_SIZE;
1332 		bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE), (caddr_t)dest, ct);
1333 		hibernate_flush();
1334 		src += ct;
1335 		dest += ct;
1336 	}
1337 }
1338 
1339 /*
1340  * Process a chunk by bouncing it to the piglet, followed by unpacking
1341  */
1342 void
1343 hibernate_process_chunk(union hibernate_info *hib,
1344     struct hibernate_disk_chunk *chunk, paddr_t img_cur)
1345 {
1346 	char *pva = (char *)hib->piglet_va;
1347 
1348 	hibernate_copy_chunk_to_piglet(img_cur,
1349 	 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), chunk->compressed_size);
1350 	hibernate_inflate_region(hib, chunk->base,
1351 	    (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)),
1352 	    chunk->compressed_size);
1353 }
1354 
1355 /*
1356  * Calculate RLE component for 'inaddr'. Clamps to max RLE pages between
1357  * inaddr and range_end.
1358  */
1359 int
1360 hibernate_calc_rle(paddr_t inaddr, paddr_t range_end)
1361 {
1362 	int rle;
1363 
1364 	rle = uvm_page_rle(inaddr);
1365 	KASSERT(rle >= 0 && rle <= MAX_RLE);
1366 
1367 	/* Clamp RLE to range end */
1368 	if (rle > 0 && inaddr + (rle * PAGE_SIZE) > range_end)
1369 		rle = (range_end - inaddr) / PAGE_SIZE;
1370 
1371 	return (rle);
1372 }
1373 
1374 /*
1375  * Write the RLE byte for page at 'inaddr' to the output stream.
1376  * Returns the number of pages to be skipped at 'inaddr'.
1377  */
1378 int
1379 hibernate_write_rle(union hibernate_info *hib, paddr_t inaddr,
1380 	paddr_t range_end, daddr_t *blkctr,
1381 	size_t *out_remaining)
1382 {
1383 	int rle, err, *rleloc;
1384 	struct hibernate_zlib_state *hibernate_state;
1385 	vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE;
1386 
1387 	hibernate_state =
1388 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
1389 
1390 	rle = hibernate_calc_rle(inaddr, range_end);
1391 
1392 	rleloc = (int *)hibernate_rle_page + MAX_RLE - 1;
1393 	*rleloc = rle;
1394 
1395 	/* Deflate the RLE byte into the stream */
1396 	hibernate_deflate(hib, (paddr_t)rleloc, out_remaining);
1397 
1398 	/* Did we fill the output page? If so, flush to disk */
1399 	if (*out_remaining == 0) {
1400 		if ((err = hib->io_func(hib->dev, *blkctr + hib->image_offset,
1401 			(vaddr_t)hibernate_io_page, PAGE_SIZE, HIB_W,
1402 			hib->io_page))) {
1403 				DPRINTF("hib write error %d\n", err);
1404 				return (err);
1405 		}
1406 
1407 		*blkctr += PAGE_SIZE / DEV_BSIZE;
1408 		*out_remaining = PAGE_SIZE;
1409 
1410 		/* If we didn't deflate the entire RLE byte, finish it now */
1411 		if (hibernate_state->hib_stream.avail_in != 0)
1412 			hibernate_deflate(hib,
1413 				(vaddr_t)hibernate_state->hib_stream.next_in,
1414 				out_remaining);
1415 	}
1416 
1417 	return (rle);
1418 }
1419 
1420 /*
1421  * Write a compressed version of this machine's memory to disk, at the
1422  * precalculated swap offset:
1423  *
1424  * end of swap - signature block size - chunk table size - memory size
1425  *
1426  * The function begins by looping through each phys mem range, cutting each
1427  * one into MD sized chunks. These chunks are then compressed individually
1428  * and written out to disk, in phys mem order. Some chunks might compress
1429  * more than others, and for this reason, each chunk's size is recorded
1430  * in the chunk table, which is written to disk after the image has
1431  * properly been compressed and written (in hibernate_write_chunktable).
1432  *
1433  * When this function is called, the machine is nearly suspended - most
1434  * devices are quiesced/suspended, interrupts are off, and cold has
1435  * been set. This means that there can be no side effects once the
1436  * write has started, and the write function itself can also have no
1437  * side effects. This also means no printfs are permitted (since printf
1438  * has side effects.)
1439  *
1440  * Return values :
1441  *
1442  * 0      - success
1443  * EIO    - I/O error occurred writing the chunks
1444  * EINVAL - Failed to write a complete range
1445  * ENOMEM - Memory allocation failure during preparation of the zlib arena
1446  */
1447 int
1448 hibernate_write_chunks(union hibernate_info *hib)
1449 {
1450 	paddr_t range_base, range_end, inaddr, temp_inaddr;
1451 	size_t nblocks, out_remaining, used;
1452 	struct hibernate_disk_chunk *chunks;
1453 	vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE;
1454 	daddr_t blkctr = 0;
1455 	int i, rle, err;
1456 	struct hibernate_zlib_state *hibernate_state;
1457 
1458 	hibernate_state =
1459 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
1460 
1461 	hib->chunk_ctr = 0;
1462 
1463 	/*
1464 	 * Map the utility VAs to the piglet. See the piglet map at the
1465 	 * top of this file for piglet layout information.
1466 	 */
1467 	hibernate_copy_page = hib->piglet_va + 3 * PAGE_SIZE;
1468 	hibernate_rle_page = hib->piglet_va + 28 * PAGE_SIZE;
1469 
1470 	chunks = (struct hibernate_disk_chunk *)(hib->piglet_va +
1471 	    HIBERNATE_CHUNK_SIZE);
1472 
1473 	/* Calculate the chunk regions */
1474 	for (i = 0; i < hib->nranges; i++) {
1475 		range_base = hib->ranges[i].base;
1476 		range_end = hib->ranges[i].end;
1477 
1478 		inaddr = range_base;
1479 
1480 		while (inaddr < range_end) {
1481 			chunks[hib->chunk_ctr].base = inaddr;
1482 			if (inaddr + HIBERNATE_CHUNK_SIZE < range_end)
1483 				chunks[hib->chunk_ctr].end = inaddr +
1484 				    HIBERNATE_CHUNK_SIZE;
1485 			else
1486 				chunks[hib->chunk_ctr].end = range_end;
1487 
1488 			inaddr += HIBERNATE_CHUNK_SIZE;
1489 			hib->chunk_ctr ++;
1490 		}
1491 	}
1492 
1493 	uvm_pmr_dirty_everything();
1494 	uvm_pmr_zero_everything();
1495 
1496 	/* Compress and write the chunks in the chunktable */
1497 	for (i = 0; i < hib->chunk_ctr; i++) {
1498 		range_base = chunks[i].base;
1499 		range_end = chunks[i].end;
1500 
1501 		chunks[i].offset = blkctr + hib->image_offset;
1502 
1503 		/* Reset zlib for deflate */
1504 		if (hibernate_zlib_reset(hib, 1) != Z_OK) {
1505 			DPRINTF("hibernate_zlib_reset failed for deflate\n");
1506 			return (ENOMEM);
1507 		}
1508 
1509 		inaddr = range_base;
1510 
1511 		/*
1512 		 * For each range, loop through its phys mem region
1513 		 * and write out the chunks (the last chunk might be
1514 		 * smaller than the chunk size).
1515 		 */
1516 		while (inaddr < range_end) {
1517 			out_remaining = PAGE_SIZE;
1518 			while (out_remaining > 0 && inaddr < range_end) {
1519 				/*
1520 				 * Adjust for regions that are not evenly
1521 				 * divisible by PAGE_SIZE or overflowed
1522 				 * pages from the previous iteration.
1523 				 */
1524 				temp_inaddr = (inaddr & PAGE_MASK) +
1525 				    hibernate_copy_page;
1526 
1527 				/* Deflate from temp_inaddr to IO page */
1528 				if (inaddr != range_end) {
1529 					if (inaddr % PAGE_SIZE == 0) {
1530 						rle = hibernate_write_rle(hib,
1531 							inaddr,
1532 							range_end,
1533 							&blkctr,
1534 							&out_remaining);
1535 					}
1536 
1537 					if (rle == 0) {
1538 						pmap_kenter_pa(hibernate_temp_page,
1539 							inaddr & PMAP_PA_MASK,
1540 							PROT_READ);
1541 
1542 						bcopy((caddr_t)hibernate_temp_page,
1543 							(caddr_t)hibernate_copy_page,
1544 							PAGE_SIZE);
1545 						inaddr += hibernate_deflate(hib,
1546 							temp_inaddr,
1547 							&out_remaining);
1548 					} else {
1549 						inaddr += rle * PAGE_SIZE;
1550 						if (inaddr > range_end)
1551 							inaddr = range_end;
1552 					}
1553 
1554 				}
1555 
1556 				if (out_remaining == 0) {
1557 					/* Filled up the page */
1558 					nblocks = PAGE_SIZE / DEV_BSIZE;
1559 
1560 					if ((err = hib->io_func(hib->dev,
1561 					    blkctr + hib->image_offset,
1562 					    (vaddr_t)hibernate_io_page,
1563 					    PAGE_SIZE, HIB_W, hib->io_page))) {
1564 						DPRINTF("hib write error %d\n",
1565 						    err);
1566 						return (err);
1567 					}
1568 
1569 					blkctr += nblocks;
1570 				}
1571 			}
1572 		}
1573 
1574 		if (inaddr != range_end) {
1575 			DPRINTF("deflate range ended prematurely\n");
1576 			return (EINVAL);
1577 		}
1578 
1579 		/*
1580 		 * End of range. Round up to next secsize bytes
1581 		 * after finishing compress
1582 		 */
1583 		if (out_remaining == 0)
1584 			out_remaining = PAGE_SIZE;
1585 
1586 		/* Finish compress */
1587 		hibernate_state->hib_stream.next_in = (unsigned char *)inaddr;
1588 		hibernate_state->hib_stream.avail_in = 0;
1589 		hibernate_state->hib_stream.next_out =
1590 		    (unsigned char *)hibernate_io_page +
1591 			(PAGE_SIZE - out_remaining);
1592 
1593 		/* We have an extra output page available for finalize */
1594 		hibernate_state->hib_stream.avail_out =
1595 			out_remaining + PAGE_SIZE;
1596 
1597 		if ((err = deflate(&hibernate_state->hib_stream, Z_FINISH)) !=
1598 		    Z_STREAM_END) {
1599 			DPRINTF("deflate error in output stream: %d\n", err);
1600 			return (err);
1601 		}
1602 
1603 		out_remaining = hibernate_state->hib_stream.avail_out;
1604 
1605 		used = 2 * PAGE_SIZE - out_remaining;
1606 		nblocks = used / DEV_BSIZE;
1607 
1608 		/* Round up to next block if needed */
1609 		if (used % DEV_BSIZE != 0)
1610 			nblocks ++;
1611 
1612 		/* Write final block(s) for this chunk */
1613 		if ((err = hib->io_func(hib->dev, blkctr + hib->image_offset,
1614 		    (vaddr_t)hibernate_io_page, nblocks*DEV_BSIZE,
1615 		    HIB_W, hib->io_page))) {
1616 			DPRINTF("hib final write error %d\n", err);
1617 			return (err);
1618 		}
1619 
1620 		blkctr += nblocks;
1621 
1622 		chunks[i].compressed_size = (blkctr + hib->image_offset -
1623 		    chunks[i].offset) * DEV_BSIZE;
1624 	}
1625 
1626 	hib->chunktable_offset = hib->image_offset + blkctr;
1627 	return (0);
1628 }
1629 
1630 /*
1631  * Reset the zlib stream state and allocate a new hiballoc area for either
1632  * inflate or deflate. This function is called once for each hibernate chunk.
1633  * Calling hiballoc_init multiple times is acceptable since the memory it is
1634  * provided is unmanaged memory (stolen). We use the memory provided to us
1635  * by the piglet allocated via the supplied hib.
1636  */
1637 int
1638 hibernate_zlib_reset(union hibernate_info *hib, int deflate)
1639 {
1640 	vaddr_t hibernate_zlib_start;
1641 	size_t hibernate_zlib_size;
1642 	char *pva = (char *)hib->piglet_va;
1643 	struct hibernate_zlib_state *hibernate_state;
1644 
1645 	hibernate_state =
1646 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
1647 
1648 	if (!deflate)
1649 		pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK));
1650 
1651 	/*
1652 	 * See piglet layout information at the start of this file for
1653 	 * information on the zlib page assignments.
1654 	 */
1655 	hibernate_zlib_start = (vaddr_t)(pva + (30 * PAGE_SIZE));
1656 	hibernate_zlib_size = 80 * PAGE_SIZE;
1657 
1658 	memset((void *)hibernate_zlib_start, 0, hibernate_zlib_size);
1659 	memset(hibernate_state, 0, PAGE_SIZE);
1660 
1661 	/* Set up stream structure */
1662 	hibernate_state->hib_stream.zalloc = (alloc_func)hibernate_zlib_alloc;
1663 	hibernate_state->hib_stream.zfree = (free_func)hibernate_zlib_free;
1664 
1665 	/* Initialize the hiballoc arena for zlib allocs/frees */
1666 	hiballoc_init(&hibernate_state->hiballoc_arena,
1667 	    (caddr_t)hibernate_zlib_start, hibernate_zlib_size);
1668 
1669 	if (deflate) {
1670 		return deflateInit(&hibernate_state->hib_stream,
1671 		    Z_BEST_SPEED);
1672 	} else
1673 		return inflateInit(&hibernate_state->hib_stream);
1674 }
1675 
1676 /*
1677  * Reads the hibernated memory image from disk, whose location and
1678  * size are recorded in hib. Begin by reading the persisted
1679  * chunk table, which records the original chunk placement location
1680  * and compressed size for each. Next, allocate a pig region of
1681  * sufficient size to hold the compressed image. Next, read the
1682  * chunks into the pig area (calling hibernate_read_chunks to do this),
1683  * and finally, if all of the above succeeds, clear the hibernate signature.
1684  * The function will then return to hibernate_resume, which will proceed
1685  * to unpack the pig image to the correct place in memory.
1686  */
1687 int
1688 hibernate_read_image(union hibernate_info *hib)
1689 {
1690 	size_t compressed_size, disk_size, chunktable_size, pig_sz;
1691 	paddr_t image_start, image_end, pig_start, pig_end;
1692 	struct hibernate_disk_chunk *chunks;
1693 	daddr_t blkctr;
1694 	vaddr_t chunktable = (vaddr_t)NULL;
1695 	paddr_t piglet_chunktable = hib->piglet_pa +
1696 	    HIBERNATE_CHUNK_SIZE;
1697 	int i, status;
1698 
1699 	status = 0;
1700 	pmap_activate(curproc);
1701 
1702 	/* Calculate total chunk table size in disk blocks */
1703 	chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / DEV_BSIZE;
1704 
1705 	blkctr = hib->chunktable_offset;
1706 
1707 	chunktable = (vaddr_t)km_alloc(HIBERNATE_CHUNK_TABLE_SIZE, &kv_any,
1708 	    &kp_none, &kd_nowait);
1709 
1710 	if (!chunktable)
1711 		return (1);
1712 
1713 	/* Map chunktable pages */
1714 	for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE; i += PAGE_SIZE)
1715 		pmap_kenter_pa(chunktable + i, piglet_chunktable + i,
1716 		    PROT_READ | PROT_WRITE);
1717 	pmap_update(pmap_kernel());
1718 
1719 	/* Read the chunktable from disk into the piglet chunktable */
1720 	for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE;
1721 	    i += MAXPHYS, blkctr += MAXPHYS/DEV_BSIZE)
1722 		hibernate_block_io(hib, blkctr, MAXPHYS,
1723 		    chunktable + i, 0);
1724 
1725 	blkctr = hib->image_offset;
1726 	compressed_size = 0;
1727 
1728 	chunks = (struct hibernate_disk_chunk *)chunktable;
1729 
1730 	for (i = 0; i < hib->chunk_ctr; i++)
1731 		compressed_size += chunks[i].compressed_size;
1732 
1733 	disk_size = compressed_size;
1734 
1735 	printf("unhibernating @ block %lld length %luMB\n",
1736 	    hib->sig_offset - chunktable_size,
1737 	    compressed_size / (1024 * 1024));
1738 
1739 	/* Allocate the pig area */
1740 	pig_sz = compressed_size + HIBERNATE_CHUNK_SIZE;
1741 	if (uvm_pmr_alloc_pig(&pig_start, pig_sz, hib->piglet_pa) == ENOMEM) {
1742 		status = 1;
1743 		goto unmap;
1744 	}
1745 
1746 	pig_end = pig_start + pig_sz;
1747 
1748 	/* Calculate image extents. Pig image must end on a chunk boundary. */
1749 	image_end = pig_end & ~(HIBERNATE_CHUNK_SIZE - 1);
1750 	image_start = image_end - disk_size;
1751 
1752 	hibernate_read_chunks(hib, image_start, image_end, disk_size,
1753 	    chunks);
1754 
1755 	/* Prepare the resume time pmap/page table */
1756 	hibernate_populate_resume_pt(hib, image_start, image_end);
1757 
1758 unmap:
1759 	/* Unmap chunktable pages */
1760 	pmap_kremove(chunktable, HIBERNATE_CHUNK_TABLE_SIZE);
1761 	pmap_update(pmap_kernel());
1762 
1763 	return (status);
1764 }
1765 
1766 /*
1767  * Read the hibernated memory chunks from disk (chunk information at this
1768  * point is stored in the piglet) into the pig area specified by
1769  * [pig_start .. pig_end]. Order the chunks so that the final chunk is the
1770  * only chunk with overlap possibilities.
1771  */
1772 int
1773 hibernate_read_chunks(union hibernate_info *hib, paddr_t pig_start,
1774     paddr_t pig_end, size_t image_compr_size,
1775     struct hibernate_disk_chunk *chunks)
1776 {
1777 	paddr_t img_cur, piglet_base;
1778 	daddr_t blkctr;
1779 	size_t processed, compressed_size, read_size;
1780 	int nchunks, nfchunks, num_io_pages;
1781 	vaddr_t tempva, hibernate_fchunk_area;
1782 	short *fchunks, i, j;
1783 
1784 	tempva = (vaddr_t)NULL;
1785 	hibernate_fchunk_area = (vaddr_t)NULL;
1786 	nfchunks = 0;
1787 	piglet_base = hib->piglet_pa;
1788 	global_pig_start = pig_start;
1789 
1790 	/*
1791 	 * These mappings go into the resuming kernel's page table, and are
1792 	 * used only during image read. They disappear from existence
1793 	 * when the suspended kernel is unpacked on top of us.
1794 	 */
1795 	tempva = (vaddr_t)km_alloc(MAXPHYS + PAGE_SIZE, &kv_any, &kp_none,
1796 		&kd_nowait);
1797 	if (!tempva)
1798 		return (1);
1799 	hibernate_fchunk_area = (vaddr_t)km_alloc(24 * PAGE_SIZE, &kv_any,
1800 	    &kp_none, &kd_nowait);
1801 	if (!hibernate_fchunk_area)
1802 		return (1);
1803 
1804 	/* Final output chunk ordering VA */
1805 	fchunks = (short *)hibernate_fchunk_area;
1806 
1807 	/* Map the chunk ordering region */
1808 	for(i = 0; i < 24 ; i++)
1809 		pmap_kenter_pa(hibernate_fchunk_area + (i * PAGE_SIZE),
1810 			piglet_base + ((4 + i) * PAGE_SIZE),
1811 			PROT_READ | PROT_WRITE);
1812 	pmap_update(pmap_kernel());
1813 
1814 	nchunks = hib->chunk_ctr;
1815 
1816 	/* Initially start all chunks as unplaced */
1817 	for (i = 0; i < nchunks; i++)
1818 		chunks[i].flags = 0;
1819 
1820 	/*
1821 	 * Search the list for chunks that are outside the pig area. These
1822 	 * can be placed first in the final output list.
1823 	 */
1824 	for (i = 0; i < nchunks; i++) {
1825 		if (chunks[i].end <= pig_start || chunks[i].base >= pig_end) {
1826 			fchunks[nfchunks] = i;
1827 			nfchunks++;
1828 			chunks[i].flags |= HIBERNATE_CHUNK_PLACED;
1829 		}
1830 	}
1831 
1832 	/*
1833 	 * Walk the ordering, place the chunks in ascending memory order.
1834 	 */
1835 	for (i = 0; i < nchunks; i++) {
1836 		if (chunks[i].flags != HIBERNATE_CHUNK_PLACED) {
1837 			fchunks[nfchunks] = i;
1838 			nfchunks++;
1839 			chunks[i].flags = HIBERNATE_CHUNK_PLACED;
1840 		}
1841 	}
1842 
1843 	img_cur = pig_start;
1844 
1845 	for (i = 0; i < nfchunks; i++) {
1846 		blkctr = chunks[fchunks[i]].offset;
1847 		processed = 0;
1848 		compressed_size = chunks[fchunks[i]].compressed_size;
1849 
1850 		while (processed < compressed_size) {
1851 			if (compressed_size - processed >= MAXPHYS)
1852 				read_size = MAXPHYS;
1853 			else
1854 				read_size = compressed_size - processed;
1855 
1856 			/*
1857 			 * We're reading read_size bytes, offset from the
1858 			 * start of a page by img_cur % PAGE_SIZE, so the
1859 			 * end will be read_size + (img_cur % PAGE_SIZE)
1860 			 * from the start of the first page.  Round that
1861 			 * up to the next page size.
1862 			 */
1863 			num_io_pages = (read_size + (img_cur % PAGE_SIZE)
1864 				+ PAGE_SIZE - 1) / PAGE_SIZE;
1865 
1866 			KASSERT(num_io_pages <= MAXPHYS/PAGE_SIZE + 1);
1867 
1868 			/* Map pages for this read */
1869 			for (j = 0; j < num_io_pages; j ++)
1870 				pmap_kenter_pa(tempva + j * PAGE_SIZE,
1871 				    img_cur + j * PAGE_SIZE,
1872 				    PROT_READ | PROT_WRITE);
1873 
1874 			pmap_update(pmap_kernel());
1875 
1876 			hibernate_block_io(hib, blkctr, read_size,
1877 			    tempva + (img_cur & PAGE_MASK), 0);
1878 
1879 			blkctr += (read_size / DEV_BSIZE);
1880 
1881 			pmap_kremove(tempva, num_io_pages * PAGE_SIZE);
1882 			pmap_update(pmap_kernel());
1883 
1884 			processed += read_size;
1885 			img_cur += read_size;
1886 		}
1887 	}
1888 
1889 	pmap_kremove(hibernate_fchunk_area, 24 * PAGE_SIZE);
1890 	pmap_update(pmap_kernel());
1891 
1892 	return (0);
1893 }
1894 
1895 /*
1896  * Hibernating a machine comprises the following operations:
1897  *  1. Calculating this machine's hibernate_info information
1898  *  2. Allocating a piglet and saving the piglet's physaddr
1899  *  3. Calculating the memory chunks
1900  *  4. Writing the compressed chunks to disk
1901  *  5. Writing the chunk table
1902  *  6. Writing the signature block (hibernate_info)
1903  *
1904  * On most architectures, the function calling hibernate_suspend would
1905  * then power off the machine using some MD-specific implementation.
1906  */
1907 int
1908 hibernate_suspend(void)
1909 {
1910 	union hibernate_info hib;
1911 	u_long start, end;
1912 
1913 	/*
1914 	 * Calculate memory ranges, swap offsets, etc.
1915 	 * This also allocates a piglet whose physaddr is stored in
1916 	 * hib->piglet_pa and vaddr stored in hib->piglet_va
1917 	 */
1918 	if (get_hibernate_info(&hib, 1)) {
1919 		DPRINTF("failed to obtain hibernate info\n");
1920 		return (1);
1921 	}
1922 
1923 	/* Find a page-addressed region in swap [start,end] */
1924 	if (uvm_hibswap(hib.dev, &start, &end)) {
1925 		printf("hibernate: cannot find any swap\n");
1926 		return (1);
1927 	}
1928 
1929 	if (end - start < 1000) {
1930 		printf("hibernate: insufficient swap (%lu is too small)\n",
1931 			end - start);
1932 		return (1);
1933 	}
1934 
1935 	/* Calculate block offsets in swap */
1936 	hib.image_offset = ctod(start);
1937 
1938 	DPRINTF("hibernate @ block %lld max-length %lu blocks\n",
1939 	    hib.image_offset, ctod(end) - ctod(start));
1940 
1941 	pmap_activate(curproc);
1942 	DPRINTF("hibernate: writing chunks\n");
1943 	if (hibernate_write_chunks(&hib)) {
1944 		DPRINTF("hibernate_write_chunks failed\n");
1945 		return (1);
1946 	}
1947 
1948 	DPRINTF("hibernate: writing chunktable\n");
1949 	if (hibernate_write_chunktable(&hib)) {
1950 		DPRINTF("hibernate_write_chunktable failed\n");
1951 		return (1);
1952 	}
1953 
1954 	DPRINTF("hibernate: writing signature\n");
1955 	if (hibernate_write_signature(&hib)) {
1956 		DPRINTF("hibernate_write_signature failed\n");
1957 		return (1);
1958 	}
1959 
1960 	/* Allow the disk to settle */
1961 	delay(500000);
1962 
1963 	/*
1964 	 * Give the device-specific I/O function a notification that we're
1965 	 * done, and that it can clean up or shutdown as needed.
1966 	 */
1967 	hib.io_func(hib.dev, 0, (vaddr_t)NULL, 0, HIB_DONE, hib.io_page);
1968 	return (0);
1969 }
1970 
1971 int
1972 hibernate_alloc(void)
1973 {
1974 	KASSERT(global_piglet_va == 0);
1975 	KASSERT(hibernate_temp_page == 0);
1976 
1977 	pmap_activate(curproc);
1978 	pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE,
1979 	    PROT_READ | PROT_WRITE);
1980 
1981 	/* Allocate a piglet, store its addresses in the supplied globals */
1982 	if (uvm_pmr_alloc_piglet(&global_piglet_va, &global_piglet_pa,
1983 	    HIBERNATE_CHUNK_SIZE * 4, HIBERNATE_CHUNK_SIZE))
1984 		goto unmap;
1985 
1986 	/*
1987 	 * Allocate VA for the temp page.
1988 	 *
1989 	 * This will become part of the suspended kernel and will
1990 	 * be freed in hibernate_free, upon resume (or hibernate
1991 	 * failure)
1992 	 */
1993 	hibernate_temp_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any,
1994 	    &kp_none, &kd_nowait);
1995 	if (!hibernate_temp_page) {
1996 		uvm_pmr_free_piglet(global_piglet_va,
1997 		    4 * HIBERNATE_CHUNK_SIZE);
1998 		global_piglet_va = 0;
1999 		goto unmap;
2000 	}
2001 	return (0);
2002 unmap:
2003 	pmap_kremove(HIBERNATE_HIBALLOC_PAGE, PAGE_SIZE);
2004 	pmap_update(pmap_kernel());
2005 	return (ENOMEM);
2006 }
2007 
2008 /*
2009  * Free items allocated by hibernate_alloc()
2010  */
2011 void
2012 hibernate_free(void)
2013 {
2014 	pmap_activate(curproc);
2015 
2016 	if (global_piglet_va)
2017 		uvm_pmr_free_piglet(global_piglet_va,
2018 		    4 * HIBERNATE_CHUNK_SIZE);
2019 
2020 	if (hibernate_temp_page) {
2021 		pmap_kremove(hibernate_temp_page, PAGE_SIZE);
2022 		km_free((void *)hibernate_temp_page, PAGE_SIZE,
2023 		    &kv_any, &kp_none);
2024 	}
2025 
2026 	global_piglet_va = 0;
2027 	hibernate_temp_page = 0;
2028 	pmap_kremove(HIBERNATE_HIBALLOC_PAGE, PAGE_SIZE);
2029 	pmap_update(pmap_kernel());
2030 }
2031